An interactive query-based approach for summarizing scientific documents
Purpose Query-based summarization approaches might not be able to provide summaries compatible with the user’s information need, as they mostly rely on a limited source of information, usually represented as a single query by the user. This issue becomes even more challenging when dealing with scien...
Saved in:
Published in | Information discovery and delivery Vol. 50; no. 2; pp. 176 - 191 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Emerald Publishing Limited
18.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Query-based summarization approaches might not be able to provide summaries compatible with the user’s information need, as they mostly rely on a limited source of information, usually represented as a single query by the user. This issue becomes even more challenging when dealing with scientific documents, as they contain more specific subject-related terms, while the user may not be able to express his/her specific information need in a query with limited terms. This study aims to propose an interactive multi-document text summarization approach that generates an eligible summary that is more compatible with the user’s information need. This approach allows the user to interactively specify the composition of a multi-document summary.
Design/methodology/approach
This approach exploits the user’s opinion in two stages. The initial query is refined by user-selected keywords/keyphrases and complete sentences extracted from the set of retrieved documents. It is followed by a novel method for sentence expansion using the genetic algorithm, and ranking the final set of sentences using the maximal marginal relevance method. Basically, for implementation, the Web of Science data set in the artificial intelligence (AI) category is considered.
Findings
The proposed approach receives feedback from the user in terms of favorable keywords and sentences. The feedback eventually improves the summary as the end. To assess the performance of the proposed system, this paper has asked 45 users who were graduate students in the field of AI to fill out a questionnaire. The quality of the final summary has been also evaluated from the user’s perspective and information redundancy. It has been investigated that the proposed approach leads to higher degrees of user satisfaction compared to the ones with no or only one step of the interaction.
Originality/value
The interactive summarization approach goes beyond the initial user’s query, while it includes the user’s preferred keywords/keyphrases and sentences through a systematic interaction. With respect to these interactions, the system gives the user a more clear idea of the information he/she is looking for and consequently adjusting the final result to the ultimate information need. Such interaction allows the summarization system to achieve a comprehensive understanding of the user’s information needs while expanding context-based knowledge and guiding the user toward his/her information journey. |
---|---|
AbstractList | Purpose
Query-based summarization approaches might not be able to provide summaries compatible with the user’s information need, as they mostly rely on a limited source of information, usually represented as a single query by the user. This issue becomes even more challenging when dealing with scientific documents, as they contain more specific subject-related terms, while the user may not be able to express his/her specific information need in a query with limited terms. This study aims to propose an interactive multi-document text summarization approach that generates an eligible summary that is more compatible with the user’s information need. This approach allows the user to interactively specify the composition of a multi-document summary.
Design/methodology/approach
This approach exploits the user’s opinion in two stages. The initial query is refined by user-selected keywords/keyphrases and complete sentences extracted from the set of retrieved documents. It is followed by a novel method for sentence expansion using the genetic algorithm, and ranking the final set of sentences using the maximal marginal relevance method. Basically, for implementation, the Web of Science data set in the artificial intelligence (AI) category is considered.
Findings
The proposed approach receives feedback from the user in terms of favorable keywords and sentences. The feedback eventually improves the summary as the end. To assess the performance of the proposed system, this paper has asked 45 users who were graduate students in the field of AI to fill out a questionnaire. The quality of the final summary has been also evaluated from the user’s perspective and information redundancy. It has been investigated that the proposed approach leads to higher degrees of user satisfaction compared to the ones with no or only one step of the interaction.
Originality/value
The interactive summarization approach goes beyond the initial user’s query, while it includes the user’s preferred keywords/keyphrases and sentences through a systematic interaction. With respect to these interactions, the system gives the user a more clear idea of the information he/she is looking for and consequently adjusting the final result to the ultimate information need. Such interaction allows the summarization system to achieve a comprehensive understanding of the user’s information needs while expanding context-based knowledge and guiding the user toward his/her information journey. |
Author | Bayatmakou, Farnoush Mohebi, Azadeh Ahmadi, Abbas |
Author_xml | – sequence: 1 givenname: Farnoush surname: Bayatmakou fullname: Bayatmakou, Farnoush email: f.bayatmakou@aut.ac.ir – sequence: 2 givenname: Azadeh surname: Mohebi fullname: Mohebi, Azadeh email: mohebi@irandoc.ac.ir – sequence: 3 givenname: Abbas surname: Ahmadi fullname: Ahmadi, Abbas email: abbas.ahmadi@aut.ac.ir |
BookMark | eNp9kEFLwzAUx4NMcM7dPeYLxL0kTdMcx6ZuMPCi55KmiUbadCadMD-9LRNBEU_v_z_83nv8LtEkdMEidE3hhlIoFtv1mlAgDBgQoCw7Q1PGVUFyJsTkO2fyAs1TegUAWmRZzmCKNsuAfeht1Kb37xa_HWw8kkonW2O938dOmxfsuojToW119B8-PONkvA29d97gujOHdijpCp073SQ7_5oz9HR3-7jakN3D_Xa13BHDmehJljEqdEWNkI5JqrhzhQFBleR5wSs1NKs1UzkVtQRXSaa0qk1RCSktZ4zPEJz2mtilFK0r99EPnx1LCuUooxxkjHmUUY4yBiT_hRjf6953oY_aN_-BixNo20FQU_916od3_gnzNHM8 |
CitedBy_id | crossref_primary_10_1007_s13369_023_07983_7 crossref_primary_10_12688_f1000research_151493_2 crossref_primary_10_1016_j_ipm_2025_104104 crossref_primary_10_12688_f1000research_151493_1 |
Cites_doi | 10.2200/S00235ED1V01Y201004ICR015 10.1016/j.ipm.2017.08.002 10.1016/j.ipm.2007.01.009 10.1109/TEVC.2004.826895 10.1145/1507509.1507511 10.1007/978-1-4614-3223-4_3 10.1007/s10115-017-1042-4 10.1016/j.ipm.2008.07.001 10.1016/j.ipm.2015.12.012 10.1007/s00500-015-1881-4 10.1002/asi.4630260106 10.1016/j.eswa.2016.08.030 10.1007/s10462-017-9566-2 10.14778/3229863.3236220 10.1016/j.neucom.2014.08.031 10.1145/2559170 10.1016/j.eswa.2013.04.023 10.1016/j.eswa.2020.113679 10.1002/9780470689646.ch1 10.1504/IJKMS.2008.019750 10.1007/s11042-018-5749-3 |
ContentType | Journal Article |
Copyright | Emerald Publishing Limited |
Copyright_xml | – notice: Emerald Publishing Limited |
DBID | AAYXX CITATION |
DOI | 10.1108/IDD-10-2020-0124 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2398-6255 |
EndPage | 191 |
ExternalDocumentID | 10_1108_IDD_10_2020_0124 10.1108/IDD-10-2020-0124 |
GroupedDBID | 3FY 5VS 7WY 9F- AAGBP AAMCF AAPBV AAUDR ABIJV ABSDC ADOMW AEUCW AJEBP ALMA_UNASSIGNED_HOLDINGS ALSLI ASMFL BENPR BVLZF EBS FNNZZ GEI GQ. KLENG M0C M1O TGG TMF TMT X0 Z11 Z12 Z21 .X0 8FW AAYXX ABJNI ABYQI ACXJU AFKRA AFNTC AHMHQ AODMV AUCOK BEZIV BPHCQ CITATION H13 K6~ M42 PQBIZ PQQKQ PROAC SCAQC |
ID | FETCH-LOGICAL-c325t-44215ab1c57f27193ff8c051973683b9f8ceaa29615d70fb729a9dc8b577e3223 |
IEDL.DBID | GEI |
ISSN | 2398-6247 |
IngestDate | Thu Jul 31 00:21:41 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 Fri Apr 15 04:09:19 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Interactive systems Genetic algorithm Query-based text summarization Sentence expansion Text summarization Query-based keywords extraction |
Language | English |
License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-44215ab1c57f27193ff8c051973683b9f8ceaa29615d70fb729a9dc8b577e3223 |
OpenAccessLink | https://doi.org/10.1108/IDD-10-2020-0124 |
PageCount | 16 |
ParticipantIDs | emerald_primary_10_1108_IDD-10-2020-0124 crossref_citationtrail_10_1108_IDD_10_2020_0124 crossref_primary_10_1108_IDD_10_2020_0124 |
PublicationCentury | 2000 |
PublicationDate | 20220418 2022-04-18 |
PublicationDateYYYYMMDD | 2022-04-18 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220418 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Information discovery and delivery |
PublicationYear | 2022 |
Publisher | Emerald Publishing Limited |
Publisher_xml | – name: Emerald Publishing Limited |
References | (key2022041407472674800_ref044) 2016; 52 (key2022041407472674800_ref008) 2010 (key2022041407472674800_ref031) 2012 (key2022041407472674800_ref024) 2009 (key2022041407472674800_ref014) 2021; 165 (key2022041407472674800_ref041) 2019; 78 (key2022041407472674800_ref028) 2019 (key2022041407472674800_ref013) 2007; 43 (key2022041407472674800_ref042) 2004; 8 (key2022041407472674800_ref035) 2015 (key2022041407472674800_ref011) 2002 (key2022041407472674800_ref005) 2017 (key2022041407472674800_ref051) 2006 (key2022041407472674800_ref019) 2015 (key2022041407472674800_ref047) 2011 (key2022041407472674800_ref030) 2013; 2013 (key2022041407472674800_ref012) 2014; 32 (key2022041407472674800_ref004) 2010 (key2022041407472674800_ref025) 2003 (key2022041407472674800_ref045) 2017; 53 (key2022041407472674800_ref036) 2019 (key2022041407472674800_ref003) 2018; 11 (key2022041407472674800_ref038) 1975; 26 (key2022041407472674800_ref050) 2005 (key2022041407472674800_ref021) 2019 (key2022041407472674800_ref027) 2009; 2 (key2022041407472674800_ref039) 2008 (key2022041407472674800_ref052) 2007 (key2022041407472674800_ref002) 2000 (key2022041407472674800_ref029) 2005 (key2022041407472674800_ref015) 2015; 149 (key2022041407472674800_ref034) 2008; 2 (key2022041407472674800_ref001) 2017; 21 (key2022041407472674800_ref006) 2009 (key2022041407472674800_ref020) 2017; 53 (key2022041407472674800_ref009) 1998 (key2022041407472674800_ref016) 2013; 40 (key2022041407472674800_ref032) 2011 (key2022041407472674800_ref048) 2009; 45 (key2022041407472674800_ref022) 2010 (key2022041407472674800_ref037) 2010 (key2022041407472674800_ref023) 2019; 51 (key2022041407472674800_ref040) 2010 (key2022041407472674800_ref010) 2010; 2 (key2022041407472674800_ref017) 2019 (key2022041407472674800_ref018) 2001 (key2022041407472674800_ref007) 2008 (key2022041407472674800_ref049) 2010 (key2022041407472674800_ref043) 2011 (key2022041407472674800_ref026) 2019 (key2022041407472674800_ref046) 2019 (key2022041407472674800_ref033) 2016; 65 |
References_xml | – year: 2019 ident: key2022041407472674800_ref026 article-title: Joint lifelong topic model and manifold ranking for document summarization – start-page: 299 volume-title: in Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval year: 2002 ident: key2022041407472674800_ref011 article-title: Predicting query performance – start-page: 567 volume-title: in ‘Proceedings of the 15th ACM international conference on Information and knowledge management’ year: 2006 ident: key2022041407472674800_ref051 article-title: Ranking robustness: a novel framework to predict query performance – start-page: 569 volume-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) year: 2011 ident: key2022041407472674800_ref047 article-title: iDVS: an interactive multi-document visual summarization system – volume: 2 start-page: 1 issue: 1 year: 2010 ident: key2022041407472674800_ref010 article-title: Estimating the query difficulty for information retrieval publication-title: Synthesis Lectures on Information Concepts, Retrieval, and Services doi: 10.2200/S00235ED1V01Y201004ICR015 – volume: 53 start-page: 1320 issue: 6 year: 2017 ident: key2022041407472674800_ref020 article-title: Query performance prediction for microblog search publication-title: Information Processing & Management doi: 10.1016/j.ipm.2017.08.002 – start-page: 1 year: 2019 ident: key2022041407472674800_ref028 article-title: Automatic keyphrase extraction: a survey and trends publication-title: Journal of Intelligent Information Systems – volume: 2 start-page: 202 issue: 3 year: 2009 ident: key2022041407472674800_ref027 article-title: Experiences with and reflections on text summarization tools publication-title: International Journal of Computational Intelligence Systems – volume: 43 start-page: 1715 issue: 6 year: 2007 ident: key2022041407472674800_ref013 article-title: User-model based personalized summarization publication-title: Information Processing and Management doi: 10.1016/j.ipm.2007.01.009 – start-page: 1121 volume-title: in Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval year: 2015 ident: key2022041407472674800_ref019 article-title: Information retrieval with verbose queries – start-page: 125 volume-title: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics 2 year: 2003 ident: key2022041407472674800_ref025 article-title: iNeATS: interactive multi-document summarization – year: 2005 ident: key2022041407472674800_ref029 article-title: Linguistic features to predict query difficulty – volume: 8 start-page: 365 issue: 4 year: 2004 ident: key2022041407472674800_ref042 article-title: Hybrid taguchi-genetic algorithm for global numerical optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.826895 – volume-title: PKDD/MLTIA Workshop on Machine Learning and Textual Information Access year: 2000 ident: key2022041407472674800_ref002 article-title: Interactive learning for text summarization – start-page: 8 volume-title: Proceedings of the 2009 workshop on Web Search Click Data year: 2009 ident: key2022041407472674800_ref006 article-title: Analysis of long queries in a large scale search log doi: 10.1145/1507509.1507511 – start-page: 43 volume-title: Mining Text Data year: 2012 ident: key2022041407472674800_ref031 article-title: A survey of text summarization techniques doi: 10.1007/978-1-4614-3223-4_3 – start-page: 291 volume-title: in Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval year: 2010 ident: key2022041407472674800_ref022 article-title: Evaluating verbose query processing techniques – start-page: 491 volume-title: in Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval year: 2008 ident: key2022041407472674800_ref007 article-title: Discovering key concepts in verbose queries – volume: 53 start-page: 297 issue: 2 year: 2017 ident: key2022041407472674800_ref045 article-title: Recent advances in document summarization publication-title: Knowledge and Information Systems doi: 10.1007/s10115-017-1042-4 – volume: 45 start-page: 35 issue: 1 year: 2009 ident: key2022041407472674800_ref048 article-title: Using query expansion in graph-based approach for query-focused multi-document summarization publication-title: Information Processing & Management doi: 10.1016/j.ipm.2008.07.001 – start-page: 259 volume-title: in Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval year: 2010 ident: key2022041407472674800_ref040 article-title: Using statistical decision theory and relevance models for query-performance prediction – start-page: 968 volume-title: International Conference on Measuring Technology and Mechatronics Automation year: 2010 ident: key2022041407472674800_ref049 article-title: Query-focused summarization based on genetic algorithm – volume: 52 start-page: 670 issue: 4 year: 2016 ident: key2022041407472674800_ref044 article-title: Query-focused multi-document summarization using hypergraph-based ranking publication-title: Information Processing & Management doi: 10.1016/j.ipm.2015.12.012 – volume: 21 start-page: 1785 issue: 7 year: 2017 ident: key2022041407472674800_ref001 article-title: Query-based multi-documents summarization using linguistic knowledge and content word expansion publication-title: Soft Computing doi: 10.1007/s00500-015-1881-4 – start-page: 571 volume-title: in Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval year: 2010 ident: key2022041407472674800_ref004 article-title: Exploring reductions for long web queries – start-page: 1 volume-title: Complex & Intelligent Systems year: 2019 ident: key2022041407472674800_ref036 article-title: Improvement of query-based text summarization using word sense disambiguation – start-page: 325 volume-title: in 2017 Artificial Intelligence and Signal Processing Conference (AISP) year: 2017 ident: key2022041407472674800_ref005 article-title: Automatic query-based keyword and keyphrase extraction – start-page: 564 volume-title: in Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval year: 2009 ident: key2022041407472674800_ref024 article-title: Reducing long queries using query quality predictors – volume-title: In Proceedings of Document Understanding Conference, Vancouver, BC, Canada year: 2005 ident: key2022041407472674800_ref050 article-title: A BE-based multi-document summarizer with query interpretation – volume: 26 start-page: 33 issue: 1 year: 1975 ident: key2022041407472674800_ref038 article-title: A theory of term importance in automatic text analysis publication-title: Journal of the American Society for Information Science doi: 10.1002/asi.4630260106 – start-page: 330 volume-title: in ‘International Conference on Interactive Collaborative Robotics’ year: 2019 ident: key2022041407472674800_ref046 article-title: A new social robot for interactive query-based summarization: scientific document summarization – start-page: 543 volume-title: in ‘Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval year: 2007 ident: key2022041407472674800_ref052 article-title: Query performance prediction in web search environments – volume: 65 start-page: 68 year: 2016 ident: key2022041407472674800_ref033 article-title: Assessing shallow sentence scoring techniques and combinations for single and multi-document summarization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.08.030 – volume: 51 start-page: 371 issue: 3 year: 2019 ident: key2022041407472674800_ref023 article-title: Text summarization from legal documents: a survey publication-title: Artificial Intelligence Review doi: 10.1007/s10462-017-9566-2 – volume: 11 start-page: 1902 issue: 12 year: 2018 ident: key2022041407472674800_ref003 article-title: Sherlock: a system for interactive summarization of large text collections publication-title: Proceedings of the Vldb Endowment doi: 10.14778/3229863.3236220 – volume-title: Introduction to Information Retrieval year: 2008 ident: key2022041407472674800_ref039 – start-page: 27 volume-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) year: 2010 ident: key2022041407472674800_ref008 article-title: A context-sensitive manifold ranking approach to query-focused multi-document summarization – volume: 149 start-page: 1613 year: 2015 ident: key2022041407472674800_ref015 article-title: Topic aspect-oriented summarization via group selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.031 – start-page: 1 year: 2019 ident: key2022041407472674800_ref017 article-title: Preference-based interactive multi-document summarisation publication-title: Information Retrieval Journal – start-page: 335 volume-title: in Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval year: 1998 ident: key2022041407472674800_ref009 article-title: The use of MMR, diversity-based reranking for reordering documents and producing summaries – start-page: 1163 volume-title: Proceedings – International Conference on Data Engineering year: 2011 ident: key2022041407472674800_ref043 article-title: On query result diversification – start-page: 19 volume-title: In Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval year: 2001 ident: key2022041407472674800_ref018 article-title: Generic text summarization using relevance measure and latent semantic analysis – volume: 2013 start-page: 8 year: 2013 ident: key2022041407472674800_ref030 article-title: Use of genetic algorithm for cohesive summary extraction to assist reading difficulties publication-title: Applied Computational Intelligence and Soft Computing – start-page: 1342 volume-title: in Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing year: 2011 ident: key2022041407472674800_ref032 article-title: Summarize what you are interested in: an optimization framework for interactive personalized summarization – volume: 32 start-page: 1 issue: 1 year: 2014 ident: key2022041407472674800_ref012 article-title: Document score distribution models for query performance inference and prediction publication-title: ACM Transactions on Information Systems ( Systems) doi: 10.1145/2559170 – volume: 40 start-page: 5755 issue: 14 year: 2013 ident: key2022041407472674800_ref016 article-title: Assessing sentence scoring techniques for extractive text summarization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.04.023 – start-page: 1 volume-title: in Proceedings of the Workshop on Human-In-the-Loop Data Analytics year: 2019 ident: key2022041407472674800_ref021 article-title: Interactive summarization of large document collections – volume: 165 start-page: 113679 year: 2021 ident: key2022041407472674800_ref014 article-title: Automatic text summarization: a comprehensive survey publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113679 – start-page: 98 volume-title: In Advanced Computing and Communication (ISACC), 2015 International Symposium on IEEE year: 2015 ident: key2022041407472674800_ref035 article-title: A survey on existing extractive techniques for query-based text summarization – start-page: 1 volume-title: Text Mining: Applications and Theory year: 2010 ident: key2022041407472674800_ref037 article-title: Automatic keyword extraction from individual documents doi: 10.1002/9780470689646.ch1 – volume: 2 start-page: 426 issue: 4 year: 2008 ident: key2022041407472674800_ref034 article-title: Summarising text with a genetic algorithm-based sentence extraction publication-title: International Journal of Knowledge Management Studies doi: 10.1504/IJKMS.2008.019750 – volume: 78 start-page: 857 issue: 1 year: 2019 ident: key2022041407472674800_ref041 article-title: Abstractive text summarization using lstm-cnn based deep learning publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-5749-3 |
SSID | ssj0001844620 |
Score | 2.20899 |
Snippet | Purpose
Query-based summarization approaches might not be able to provide summaries compatible with the user’s information need, as they mostly rely on a... |
SourceID | crossref emerald |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 176 |
Title | An interactive query-based approach for summarizing scientific documents |
URI | https://www.emerald.com/insight/content/doi/10.1108/IDD-10-2020-0124/full/html |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVKWVj4ECDKlzwwwOAmcR07GStKVZDoRKVuke04oqKkqKRI9NfjS-KKogoxsCWSEyUX5-7d-d4zQld-oKBfTRGInoRxExLFg4CEQoaRkYbJGMjJj0M-GLGHcThuoKHjwpRtlVU5pvTTk_wdklQPGretF14JDsDuNfe9HngRChmQ9bPMg4q191y8TrfQdgC_siP_uppLZJOfUqkRVO8Ip0y4lcsNt1uLVI6u-y349PfQzD121XPy0l4Uqq2XPxQd_--99tFujVNxt5pYB6hh8kM06OYY9CVKZtWHwTamzD8JBMIUO3FybFEwrihxk6WNi7iiXEJHEk5nelFS6o7QqH_3dDsg9VYMRHdoWBDGLDSQKtChyKiwoC_LIg3oT3R41FGxPTNS0tjio1T4mbKQXcapjlQohLE-o3OMmvksNycIU-vXQIUt0jxlFv8plTKeGWZiKnmW-i3kObMnutYph-0ypkmZr_hRYu0Dx2CfBOzTQjerK94qjY5fxl7Xn2HT0DWzn_596BnaoUCLAA3I6Bw1i_nCXFiwUqjLcgZ-AcS13nk |
linkProvider | Emerald |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZKGWDhIUCUpwcGGNwkjp04Y0WpUmg7tVK3KE4cUVFSVFIk-uvx5VFRVCEGtkRyouRs3X1n3_cdQjemJaFeTRKInoQ5ihPpWBbhbsiFChULPSAn9weOP2KPYz6uoUHFhcnLKovtmNxPT9J3SFINKNzWXnglOADda7rtNngRChmQ9rPMgB1r4zl7nW6hbU6ZWJF_qz0XoZOfXKkRVO-IQ5lbnVxueN1apKrout-CT2cfzarPLmpOXpqLTDaj5Q9Fx__7rwO0V-JU3CoW1iGqqfQI-a0Ug75Ezqz6UFjHlPkngUAY40qcHGsUjAtK3GSp4yIuKJdQkYTjWbTIKXXHaNR5GN77pGzFQCKb8owwpqFBKK2Iuwl1NehLEhEB-nNtR9jS03cqDKmn8VHsmonUkD304khI7rpK-wz7BNXTWapOEabar4EKm4icWE8RlzJmTqKY8mjoJLHZQEZl9iAqdcqhXcY0yPMVUwTaPnAN9gnAPg10t3rirdDo-GXsbTkNm4aumf3s70Ov0Y4_7PeCXnfwdI52KVAkQA9SXKB6Nl-oSw1cMnmVr8YvXnLhZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interactive+query-based+approach+for+summarizing+scientific+documents&rft.jtitle=Information+discovery+and+delivery&rft.au=Bayatmakou%2C+Farnoush&rft.au=Mohebi%2C+Azadeh&rft.au=Ahmadi%2C+Abbas&rft.date=2022-04-18&rft.pub=Emerald+Publishing+Limited&rft.issn=2398-6247&rft.eissn=2398-6255&rft.volume=50&rft.issue=2&rft.spage=176&rft.epage=191&rft_id=info:doi/10.1108%2FIDD-10-2020-0124&rft.externalDocID=10.1108%2FIDD-10-2020-0124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6247&client=summon |