An interactive query-based approach for summarizing scientific documents

Purpose Query-based summarization approaches might not be able to provide summaries compatible with the user’s information need, as they mostly rely on a limited source of information, usually represented as a single query by the user. This issue becomes even more challenging when dealing with scien...

Full description

Saved in:
Bibliographic Details
Published inInformation discovery and delivery Vol. 50; no. 2; pp. 176 - 191
Main Authors Bayatmakou, Farnoush, Mohebi, Azadeh, Ahmadi, Abbas
Format Journal Article
LanguageEnglish
Published Emerald Publishing Limited 18.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Query-based summarization approaches might not be able to provide summaries compatible with the user’s information need, as they mostly rely on a limited source of information, usually represented as a single query by the user. This issue becomes even more challenging when dealing with scientific documents, as they contain more specific subject-related terms, while the user may not be able to express his/her specific information need in a query with limited terms. This study aims to propose an interactive multi-document text summarization approach that generates an eligible summary that is more compatible with the user’s information need. This approach allows the user to interactively specify the composition of a multi-document summary. Design/methodology/approach This approach exploits the user’s opinion in two stages. The initial query is refined by user-selected keywords/keyphrases and complete sentences extracted from the set of retrieved documents. It is followed by a novel method for sentence expansion using the genetic algorithm, and ranking the final set of sentences using the maximal marginal relevance method. Basically, for implementation, the Web of Science data set in the artificial intelligence (AI) category is considered. Findings The proposed approach receives feedback from the user in terms of favorable keywords and sentences. The feedback eventually improves the summary as the end. To assess the performance of the proposed system, this paper has asked 45 users who were graduate students in the field of AI to fill out a questionnaire. The quality of the final summary has been also evaluated from the user’s perspective and information redundancy. It has been investigated that the proposed approach leads to higher degrees of user satisfaction compared to the ones with no or only one step of the interaction. Originality/value The interactive summarization approach goes beyond the initial user’s query, while it includes the user’s preferred keywords/keyphrases and sentences through a systematic interaction. With respect to these interactions, the system gives the user a more clear idea of the information he/she is looking for and consequently adjusting the final result to the ultimate information need. Such interaction allows the summarization system to achieve a comprehensive understanding of the user’s information needs while expanding context-based knowledge and guiding the user toward his/her information journey.
AbstractList Purpose Query-based summarization approaches might not be able to provide summaries compatible with the user’s information need, as they mostly rely on a limited source of information, usually represented as a single query by the user. This issue becomes even more challenging when dealing with scientific documents, as they contain more specific subject-related terms, while the user may not be able to express his/her specific information need in a query with limited terms. This study aims to propose an interactive multi-document text summarization approach that generates an eligible summary that is more compatible with the user’s information need. This approach allows the user to interactively specify the composition of a multi-document summary. Design/methodology/approach This approach exploits the user’s opinion in two stages. The initial query is refined by user-selected keywords/keyphrases and complete sentences extracted from the set of retrieved documents. It is followed by a novel method for sentence expansion using the genetic algorithm, and ranking the final set of sentences using the maximal marginal relevance method. Basically, for implementation, the Web of Science data set in the artificial intelligence (AI) category is considered. Findings The proposed approach receives feedback from the user in terms of favorable keywords and sentences. The feedback eventually improves the summary as the end. To assess the performance of the proposed system, this paper has asked 45 users who were graduate students in the field of AI to fill out a questionnaire. The quality of the final summary has been also evaluated from the user’s perspective and information redundancy. It has been investigated that the proposed approach leads to higher degrees of user satisfaction compared to the ones with no or only one step of the interaction. Originality/value The interactive summarization approach goes beyond the initial user’s query, while it includes the user’s preferred keywords/keyphrases and sentences through a systematic interaction. With respect to these interactions, the system gives the user a more clear idea of the information he/she is looking for and consequently adjusting the final result to the ultimate information need. Such interaction allows the summarization system to achieve a comprehensive understanding of the user’s information needs while expanding context-based knowledge and guiding the user toward his/her information journey.
Author Bayatmakou, Farnoush
Mohebi, Azadeh
Ahmadi, Abbas
Author_xml – sequence: 1
  givenname: Farnoush
  surname: Bayatmakou
  fullname: Bayatmakou, Farnoush
  email: f.bayatmakou@aut.ac.ir
– sequence: 2
  givenname: Azadeh
  surname: Mohebi
  fullname: Mohebi, Azadeh
  email: mohebi@irandoc.ac.ir
– sequence: 3
  givenname: Abbas
  surname: Ahmadi
  fullname: Ahmadi, Abbas
  email: abbas.ahmadi@aut.ac.ir
BookMark eNp9kEFLwzAUx4NMcM7dPeYLxL0kTdMcx6ZuMPCi55KmiUbadCadMD-9LRNBEU_v_z_83nv8LtEkdMEidE3hhlIoFtv1mlAgDBgQoCw7Q1PGVUFyJsTkO2fyAs1TegUAWmRZzmCKNsuAfeht1Kb37xa_HWw8kkonW2O938dOmxfsuojToW119B8-PONkvA29d97gujOHdijpCp073SQ7_5oz9HR3-7jakN3D_Xa13BHDmehJljEqdEWNkI5JqrhzhQFBleR5wSs1NKs1UzkVtQRXSaa0qk1RCSktZ4zPEJz2mtilFK0r99EPnx1LCuUooxxkjHmUUY4yBiT_hRjf6953oY_aN_-BixNo20FQU_916od3_gnzNHM8
CitedBy_id crossref_primary_10_1007_s13369_023_07983_7
crossref_primary_10_12688_f1000research_151493_2
crossref_primary_10_1016_j_ipm_2025_104104
crossref_primary_10_12688_f1000research_151493_1
Cites_doi 10.2200/S00235ED1V01Y201004ICR015
10.1016/j.ipm.2017.08.002
10.1016/j.ipm.2007.01.009
10.1109/TEVC.2004.826895
10.1145/1507509.1507511
10.1007/978-1-4614-3223-4_3
10.1007/s10115-017-1042-4
10.1016/j.ipm.2008.07.001
10.1016/j.ipm.2015.12.012
10.1007/s00500-015-1881-4
10.1002/asi.4630260106
10.1016/j.eswa.2016.08.030
10.1007/s10462-017-9566-2
10.14778/3229863.3236220
10.1016/j.neucom.2014.08.031
10.1145/2559170
10.1016/j.eswa.2013.04.023
10.1016/j.eswa.2020.113679
10.1002/9780470689646.ch1
10.1504/IJKMS.2008.019750
10.1007/s11042-018-5749-3
ContentType Journal Article
Copyright Emerald Publishing Limited
Copyright_xml – notice: Emerald Publishing Limited
DBID AAYXX
CITATION
DOI 10.1108/IDD-10-2020-0124
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2398-6255
EndPage 191
ExternalDocumentID 10_1108_IDD_10_2020_0124
10.1108/IDD-10-2020-0124
GroupedDBID 3FY
5VS
7WY
9F-
AAGBP
AAMCF
AAPBV
AAUDR
ABIJV
ABSDC
ADOMW
AEUCW
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASMFL
BENPR
BVLZF
EBS
FNNZZ
GEI
GQ.
KLENG
M0C
M1O
TGG
TMF
TMT
X0
Z11
Z12
Z21
.X0
8FW
AAYXX
ABJNI
ABYQI
ACXJU
AFKRA
AFNTC
AHMHQ
AODMV
AUCOK
BEZIV
BPHCQ
CITATION
H13
K6~
M42
PQBIZ
PQQKQ
PROAC
SCAQC
ID FETCH-LOGICAL-c325t-44215ab1c57f27193ff8c051973683b9f8ceaa29615d70fb729a9dc8b577e3223
IEDL.DBID GEI
ISSN 2398-6247
IngestDate Thu Jul 31 00:21:41 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Fri Apr 15 04:09:19 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Interactive systems
Genetic algorithm
Query-based text summarization
Sentence expansion
Text summarization
Query-based keywords extraction
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-44215ab1c57f27193ff8c051973683b9f8ceaa29615d70fb729a9dc8b577e3223
OpenAccessLink https://doi.org/10.1108/IDD-10-2020-0124
PageCount 16
ParticipantIDs emerald_primary_10_1108_IDD-10-2020-0124
crossref_citationtrail_10_1108_IDD_10_2020_0124
crossref_primary_10_1108_IDD_10_2020_0124
PublicationCentury 2000
PublicationDate 20220418
2022-04-18
PublicationDateYYYYMMDD 2022-04-18
PublicationDate_xml – month: 04
  year: 2022
  text: 20220418
  day: 18
PublicationDecade 2020
PublicationTitle Information discovery and delivery
PublicationYear 2022
Publisher Emerald Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
References (key2022041407472674800_ref044) 2016; 52
(key2022041407472674800_ref008) 2010
(key2022041407472674800_ref031) 2012
(key2022041407472674800_ref024) 2009
(key2022041407472674800_ref014) 2021; 165
(key2022041407472674800_ref041) 2019; 78
(key2022041407472674800_ref028) 2019
(key2022041407472674800_ref013) 2007; 43
(key2022041407472674800_ref042) 2004; 8
(key2022041407472674800_ref035) 2015
(key2022041407472674800_ref011) 2002
(key2022041407472674800_ref005) 2017
(key2022041407472674800_ref051) 2006
(key2022041407472674800_ref019) 2015
(key2022041407472674800_ref047) 2011
(key2022041407472674800_ref030) 2013; 2013
(key2022041407472674800_ref012) 2014; 32
(key2022041407472674800_ref004) 2010
(key2022041407472674800_ref025) 2003
(key2022041407472674800_ref045) 2017; 53
(key2022041407472674800_ref036) 2019
(key2022041407472674800_ref003) 2018; 11
(key2022041407472674800_ref038) 1975; 26
(key2022041407472674800_ref050) 2005
(key2022041407472674800_ref021) 2019
(key2022041407472674800_ref027) 2009; 2
(key2022041407472674800_ref039) 2008
(key2022041407472674800_ref052) 2007
(key2022041407472674800_ref002) 2000
(key2022041407472674800_ref029) 2005
(key2022041407472674800_ref015) 2015; 149
(key2022041407472674800_ref034) 2008; 2
(key2022041407472674800_ref001) 2017; 21
(key2022041407472674800_ref006) 2009
(key2022041407472674800_ref020) 2017; 53
(key2022041407472674800_ref009) 1998
(key2022041407472674800_ref016) 2013; 40
(key2022041407472674800_ref032) 2011
(key2022041407472674800_ref048) 2009; 45
(key2022041407472674800_ref022) 2010
(key2022041407472674800_ref037) 2010
(key2022041407472674800_ref023) 2019; 51
(key2022041407472674800_ref040) 2010
(key2022041407472674800_ref010) 2010; 2
(key2022041407472674800_ref017) 2019
(key2022041407472674800_ref018) 2001
(key2022041407472674800_ref007) 2008
(key2022041407472674800_ref049) 2010
(key2022041407472674800_ref043) 2011
(key2022041407472674800_ref026) 2019
(key2022041407472674800_ref046) 2019
(key2022041407472674800_ref033) 2016; 65
References_xml – year: 2019
  ident: key2022041407472674800_ref026
  article-title: Joint lifelong topic model and manifold ranking for document summarization
– start-page: 299
  volume-title: in Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval
  year: 2002
  ident: key2022041407472674800_ref011
  article-title: Predicting query performance
– start-page: 567
  volume-title: in ‘Proceedings of the 15th ACM international conference on Information and knowledge management’
  year: 2006
  ident: key2022041407472674800_ref051
  article-title: Ranking robustness: a novel framework to predict query performance
– start-page: 569
  volume-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  year: 2011
  ident: key2022041407472674800_ref047
  article-title: iDVS: an interactive multi-document visual summarization system
– volume: 2
  start-page: 1
  issue: 1
  year: 2010
  ident: key2022041407472674800_ref010
  article-title: Estimating the query difficulty for information retrieval
  publication-title: Synthesis Lectures on Information Concepts, Retrieval, and Services
  doi: 10.2200/S00235ED1V01Y201004ICR015
– volume: 53
  start-page: 1320
  issue: 6
  year: 2017
  ident: key2022041407472674800_ref020
  article-title: Query performance prediction for microblog search
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2017.08.002
– start-page: 1
  year: 2019
  ident: key2022041407472674800_ref028
  article-title: Automatic keyphrase extraction: a survey and trends
  publication-title: Journal of Intelligent Information Systems
– volume: 2
  start-page: 202
  issue: 3
  year: 2009
  ident: key2022041407472674800_ref027
  article-title: Experiences with and reflections on text summarization tools
  publication-title: International Journal of Computational Intelligence Systems
– volume: 43
  start-page: 1715
  issue: 6
  year: 2007
  ident: key2022041407472674800_ref013
  article-title: User-model based personalized summarization
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2007.01.009
– start-page: 1121
  volume-title: in Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval
  year: 2015
  ident: key2022041407472674800_ref019
  article-title: Information retrieval with verbose queries
– start-page: 125
  volume-title: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics 2
  year: 2003
  ident: key2022041407472674800_ref025
  article-title: iNeATS: interactive multi-document summarization
– year: 2005
  ident: key2022041407472674800_ref029
  article-title: Linguistic features to predict query difficulty
– volume: 8
  start-page: 365
  issue: 4
  year: 2004
  ident: key2022041407472674800_ref042
  article-title: Hybrid taguchi-genetic algorithm for global numerical optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826895
– volume-title: PKDD/MLTIA Workshop on Machine Learning and Textual Information Access
  year: 2000
  ident: key2022041407472674800_ref002
  article-title: Interactive learning for text summarization
– start-page: 8
  volume-title: Proceedings of the 2009 workshop on Web Search Click Data
  year: 2009
  ident: key2022041407472674800_ref006
  article-title: Analysis of long queries in a large scale search log
  doi: 10.1145/1507509.1507511
– start-page: 43
  volume-title: Mining Text Data
  year: 2012
  ident: key2022041407472674800_ref031
  article-title: A survey of text summarization techniques
  doi: 10.1007/978-1-4614-3223-4_3
– start-page: 291
  volume-title: in Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval
  year: 2010
  ident: key2022041407472674800_ref022
  article-title: Evaluating verbose query processing techniques
– start-page: 491
  volume-title: in Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval
  year: 2008
  ident: key2022041407472674800_ref007
  article-title: Discovering key concepts in verbose queries
– volume: 53
  start-page: 297
  issue: 2
  year: 2017
  ident: key2022041407472674800_ref045
  article-title: Recent advances in document summarization
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-017-1042-4
– volume: 45
  start-page: 35
  issue: 1
  year: 2009
  ident: key2022041407472674800_ref048
  article-title: Using query expansion in graph-based approach for query-focused multi-document summarization
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2008.07.001
– start-page: 259
  volume-title: in Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval
  year: 2010
  ident: key2022041407472674800_ref040
  article-title: Using statistical decision theory and relevance models for query-performance prediction
– start-page: 968
  volume-title: International Conference on Measuring Technology and Mechatronics Automation
  year: 2010
  ident: key2022041407472674800_ref049
  article-title: Query-focused summarization based on genetic algorithm
– volume: 52
  start-page: 670
  issue: 4
  year: 2016
  ident: key2022041407472674800_ref044
  article-title: Query-focused multi-document summarization using hypergraph-based ranking
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2015.12.012
– volume: 21
  start-page: 1785
  issue: 7
  year: 2017
  ident: key2022041407472674800_ref001
  article-title: Query-based multi-documents summarization using linguistic knowledge and content word expansion
  publication-title: Soft Computing
  doi: 10.1007/s00500-015-1881-4
– start-page: 571
  volume-title: in Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval
  year: 2010
  ident: key2022041407472674800_ref004
  article-title: Exploring reductions for long web queries
– start-page: 1
  volume-title: Complex & Intelligent Systems
  year: 2019
  ident: key2022041407472674800_ref036
  article-title: Improvement of query-based text summarization using word sense disambiguation
– start-page: 325
  volume-title: in 2017 Artificial Intelligence and Signal Processing Conference (AISP)
  year: 2017
  ident: key2022041407472674800_ref005
  article-title: Automatic query-based keyword and keyphrase extraction
– start-page: 564
  volume-title: in Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval
  year: 2009
  ident: key2022041407472674800_ref024
  article-title: Reducing long queries using query quality predictors
– volume-title: In Proceedings of Document Understanding Conference, Vancouver, BC, Canada
  year: 2005
  ident: key2022041407472674800_ref050
  article-title: A BE-based multi-document summarizer with query interpretation
– volume: 26
  start-page: 33
  issue: 1
  year: 1975
  ident: key2022041407472674800_ref038
  article-title: A theory of term importance in automatic text analysis
  publication-title: Journal of the American Society for Information Science
  doi: 10.1002/asi.4630260106
– start-page: 330
  volume-title: in ‘International Conference on Interactive Collaborative Robotics’
  year: 2019
  ident: key2022041407472674800_ref046
  article-title: A new social robot for interactive query-based summarization: scientific document summarization
– start-page: 543
  volume-title: in ‘Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval
  year: 2007
  ident: key2022041407472674800_ref052
  article-title: Query performance prediction in web search environments
– volume: 65
  start-page: 68
  year: 2016
  ident: key2022041407472674800_ref033
  article-title: Assessing shallow sentence scoring techniques and combinations for single and multi-document summarization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.08.030
– volume: 51
  start-page: 371
  issue: 3
  year: 2019
  ident: key2022041407472674800_ref023
  article-title: Text summarization from legal documents: a survey
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-017-9566-2
– volume: 11
  start-page: 1902
  issue: 12
  year: 2018
  ident: key2022041407472674800_ref003
  article-title: Sherlock: a system for interactive summarization of large text collections
  publication-title: Proceedings of the Vldb Endowment
  doi: 10.14778/3229863.3236220
– volume-title: Introduction to Information Retrieval
  year: 2008
  ident: key2022041407472674800_ref039
– start-page: 27
  volume-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  year: 2010
  ident: key2022041407472674800_ref008
  article-title: A context-sensitive manifold ranking approach to query-focused multi-document summarization
– volume: 149
  start-page: 1613
  year: 2015
  ident: key2022041407472674800_ref015
  article-title: Topic aspect-oriented summarization via group selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.031
– start-page: 1
  year: 2019
  ident: key2022041407472674800_ref017
  article-title: Preference-based interactive multi-document summarisation
  publication-title: Information Retrieval Journal
– start-page: 335
  volume-title: in Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval
  year: 1998
  ident: key2022041407472674800_ref009
  article-title: The use of MMR, diversity-based reranking for reordering documents and producing summaries
– start-page: 1163
  volume-title: Proceedings – International Conference on Data Engineering
  year: 2011
  ident: key2022041407472674800_ref043
  article-title: On query result diversification
– start-page: 19
  volume-title: In Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval
  year: 2001
  ident: key2022041407472674800_ref018
  article-title: Generic text summarization using relevance measure and latent semantic analysis
– volume: 2013
  start-page: 8
  year: 2013
  ident: key2022041407472674800_ref030
  article-title: Use of genetic algorithm for cohesive summary extraction to assist reading difficulties
  publication-title: Applied Computational Intelligence and Soft Computing
– start-page: 1342
  volume-title: in Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing
  year: 2011
  ident: key2022041407472674800_ref032
  article-title: Summarize what you are interested in: an optimization framework for interactive personalized summarization
– volume: 32
  start-page: 1
  issue: 1
  year: 2014
  ident: key2022041407472674800_ref012
  article-title: Document score distribution models for query performance inference and prediction
  publication-title: ACM Transactions on Information Systems ( Systems)
  doi: 10.1145/2559170
– volume: 40
  start-page: 5755
  issue: 14
  year: 2013
  ident: key2022041407472674800_ref016
  article-title: Assessing sentence scoring techniques for extractive text summarization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.04.023
– start-page: 1
  volume-title: in Proceedings of the Workshop on Human-In-the-Loop Data Analytics
  year: 2019
  ident: key2022041407472674800_ref021
  article-title: Interactive summarization of large document collections
– volume: 165
  start-page: 113679
  year: 2021
  ident: key2022041407472674800_ref014
  article-title: Automatic text summarization: a comprehensive survey
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113679
– start-page: 98
  volume-title: In Advanced Computing and Communication (ISACC), 2015 International Symposium on IEEE
  year: 2015
  ident: key2022041407472674800_ref035
  article-title: A survey on existing extractive techniques for query-based text summarization
– start-page: 1
  volume-title: Text Mining: Applications and Theory
  year: 2010
  ident: key2022041407472674800_ref037
  article-title: Automatic keyword extraction from individual documents
  doi: 10.1002/9780470689646.ch1
– volume: 2
  start-page: 426
  issue: 4
  year: 2008
  ident: key2022041407472674800_ref034
  article-title: Summarising text with a genetic algorithm-based sentence extraction
  publication-title: International Journal of Knowledge Management Studies
  doi: 10.1504/IJKMS.2008.019750
– volume: 78
  start-page: 857
  issue: 1
  year: 2019
  ident: key2022041407472674800_ref041
  article-title: Abstractive text summarization using lstm-cnn based deep learning
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-5749-3
SSID ssj0001844620
Score 2.20899
Snippet Purpose Query-based summarization approaches might not be able to provide summaries compatible with the user’s information need, as they mostly rely on a...
SourceID crossref
emerald
SourceType Enrichment Source
Index Database
Publisher
StartPage 176
Title An interactive query-based approach for summarizing scientific documents
URI https://www.emerald.com/insight/content/doi/10.1108/IDD-10-2020-0124/full/html
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVKWVj4ECDKlzwwwOAmcR07GStKVZDoRKVuke04oqKkqKRI9NfjS-KKogoxsCWSEyUX5-7d-d4zQld-oKBfTRGInoRxExLFg4CEQoaRkYbJGMjJj0M-GLGHcThuoKHjwpRtlVU5pvTTk_wdklQPGretF14JDsDuNfe9HngRChmQ9bPMg4q191y8TrfQdgC_siP_uppLZJOfUqkRVO8Ip0y4lcsNt1uLVI6u-y349PfQzD121XPy0l4Uqq2XPxQd_--99tFujVNxt5pYB6hh8kM06OYY9CVKZtWHwTamzD8JBMIUO3FybFEwrihxk6WNi7iiXEJHEk5nelFS6o7QqH_3dDsg9VYMRHdoWBDGLDSQKtChyKiwoC_LIg3oT3R41FGxPTNS0tjio1T4mbKQXcapjlQohLE-o3OMmvksNycIU-vXQIUt0jxlFv8plTKeGWZiKnmW-i3kObMnutYph-0ypkmZr_hRYu0Dx2CfBOzTQjerK94qjY5fxl7Xn2HT0DWzn_596BnaoUCLAA3I6Bw1i_nCXFiwUqjLcgZ-AcS13nk
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZKGWDhIUCUpwcGGNwkjp04Y0WpUmg7tVK3KE4cUVFSVFIk-uvx5VFRVCEGtkRyouRs3X1n3_cdQjemJaFeTRKInoQ5ihPpWBbhbsiFChULPSAn9weOP2KPYz6uoUHFhcnLKovtmNxPT9J3SFINKNzWXnglOADda7rtNngRChmQ9rPMgB1r4zl7nW6hbU6ZWJF_qz0XoZOfXKkRVO-IQ5lbnVxueN1apKrout-CT2cfzarPLmpOXpqLTDaj5Q9Fx__7rwO0V-JU3CoW1iGqqfQI-a0Ug75Ezqz6UFjHlPkngUAY40qcHGsUjAtK3GSp4yIuKJdQkYTjWbTIKXXHaNR5GN77pGzFQCKb8owwpqFBKK2Iuwl1NehLEhEB-nNtR9jS03cqDKmn8VHsmonUkD304khI7rpK-wz7BNXTWapOEabar4EKm4icWE8RlzJmTqKY8mjoJLHZQEZl9iAqdcqhXcY0yPMVUwTaPnAN9gnAPg10t3rirdDo-GXsbTkNm4aumf3s70Ov0Y4_7PeCXnfwdI52KVAkQA9SXKB6Nl-oSw1cMnmVr8YvXnLhZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interactive+query-based+approach+for+summarizing+scientific+documents&rft.jtitle=Information+discovery+and+delivery&rft.au=Bayatmakou%2C+Farnoush&rft.au=Mohebi%2C+Azadeh&rft.au=Ahmadi%2C+Abbas&rft.date=2022-04-18&rft.pub=Emerald+Publishing+Limited&rft.issn=2398-6247&rft.eissn=2398-6255&rft.volume=50&rft.issue=2&rft.spage=176&rft.epage=191&rft_id=info:doi/10.1108%2FIDD-10-2020-0124&rft.externalDocID=10.1108%2FIDD-10-2020-0124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6247&client=summon