Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review
Nanostructured metal oxide semiconductor-based gas sensors possess extensive applications due to relatively inexpensive, lightweight, long-lasting, robust, and high sensitivity and quick response and recovery times. Several strategies have been developed to enhance their sensing properties and meet...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 341; p. 113578 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.07.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanostructured metal oxide semiconductor-based gas sensors possess extensive applications due to relatively inexpensive, lightweight, long-lasting, robust, and high sensitivity and quick response and recovery times. Several strategies have been developed to enhance their sensing properties and meet the extended market demand for novel applications by modifying surface morphology, reducing particle size, and manipulating function.This work mainly concentrates on the systematic review of various synthesis methods of nanostructured metal oxide-based semiconductors and their superior gas sensing properties, such as fast response and recovery and a low detection limit towards different hazardous gases.With the prime concern of environmental pollution, a wide range of novel nanostructured metal-oxide based semiconductor gas sensors and their gas sensing properties are interpreted and summarized here.It is essential to measure the sensitivity of the sensors to ensure that they are prepared in a reproducible manner.They must work in ambient conditions andin the presence of humidity. Recent progress in the research and development of metal oxide semiconductor-based gas sensor technology is surveyed in this review. From the bottleneck, this review organizes some prospects that can be expected in future investigations on the gas sensing mechanism of metal oxide semiconductors.
[Display omitted] |
---|---|
AbstractList | Nanostructured metal oxide semiconductor-based gas sensors possess extensive applications due to relatively inexpensive, lightweight, long-lasting, robust, and high sensitivity and quick response and recovery times. Several strategies have been developed to enhance their sensing properties and meet the extended market demand for novel applications by modifying surface morphology, reducing particle size, and manipulating function.This work mainly concentrates on the systematic review of various synthesis methods of nanostructured metal oxide-based semiconductors and their superior gas sensing properties, such as fast response and recovery and a low detection limit towards different hazardous gases.With the prime concern of environmental pollution, a wide range of novel nanostructured metal-oxide based semiconductor gas sensors and their gas sensing properties are interpreted and summarized here.It is essential to measure the sensitivity of the sensors to ensure that they are prepared in a reproducible manner.They must work in ambient conditions andin the presence of humidity. Recent progress in the research and development of metal oxide semiconductor-based gas sensor technology is surveyed in this review. From the bottleneck, this review organizes some prospects that can be expected in future investigations on the gas sensing mechanism of metal oxide semiconductors. Nanostructured metal oxide semiconductor-based gas sensors possess extensive applications due to relatively inexpensive, lightweight, long-lasting, robust, and high sensitivity and quick response and recovery times. Several strategies have been developed to enhance their sensing properties and meet the extended market demand for novel applications by modifying surface morphology, reducing particle size, and manipulating function.This work mainly concentrates on the systematic review of various synthesis methods of nanostructured metal oxide-based semiconductors and their superior gas sensing properties, such as fast response and recovery and a low detection limit towards different hazardous gases.With the prime concern of environmental pollution, a wide range of novel nanostructured metal-oxide based semiconductor gas sensors and their gas sensing properties are interpreted and summarized here.It is essential to measure the sensitivity of the sensors to ensure that they are prepared in a reproducible manner.They must work in ambient conditions andin the presence of humidity. Recent progress in the research and development of metal oxide semiconductor-based gas sensor technology is surveyed in this review. From the bottleneck, this review organizes some prospects that can be expected in future investigations on the gas sensing mechanism of metal oxide semiconductors. [Display omitted] |
ArticleNumber | 113578 |
Author | Pothukanuri, Nagaraju Krishna, Kurugundla Gopi Gandi, Suman Parne, Saidireddy Joshi, Dhananjay Kathirvelu, Velavan |
Author_xml | – sequence: 1 givenname: Kurugundla Gopi surname: Krishna fullname: Krishna, Kurugundla Gopi organization: Department of Applied Sciences, National Insitute of Technology, Goa 403401, India – sequence: 2 givenname: Saidireddy surname: Parne fullname: Parne, Saidireddy organization: Department of Applied Sciences, National Insitute of Technology, Goa 403401, India – sequence: 3 givenname: Nagaraju surname: Pothukanuri fullname: Pothukanuri, Nagaraju email: nagarajuphysics@gmail.com organization: Nanosensor Research Laboratory, Department of Physics, CMR Technical Campus, Kandlakoya, Medchal Road, Hyderabad, Telangana State 501401, India – sequence: 4 givenname: Velavan surname: Kathirvelu fullname: Kathirvelu, Velavan organization: Department of Applied Sciences, National Insitute of Technology, Goa 403401, India – sequence: 5 givenname: Suman surname: Gandi fullname: Gandi, Suman organization: Department of Applied Sciences, National Insitute of Technology, Goa 403401, India – sequence: 6 givenname: Dhananjay surname: Joshi fullname: Joshi, Dhananjay organization: Department of Physics,Indian Institute of Science Education and Research Mohali, Mohali 140306, India |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnrfmY7PJ6qkUv6AoiJ5DNjurKW1Sk2zVf29KPXnwNDDvPDPMM0Ej5x0gdE7wjGBSX65m0ekZxZTOCGFcyCM0JlKwkuG6GaExbmhVVrQSJ2gS4wpjzJgQY_T8qJ2PKQwmDQG6YgNJrwv_ZTsoImys8a7LmQ9lq2PO33TMfRd9iFfFvDB-sw3wnht2B0WAnYXPU3Tc63WEs986Ra-3Ny-L-3L5dPewmC9LwyhPJdOaAgUhoe05b2QlQXacATDdE94yBkQ0pBFS9pVpWYVzXNc51bhreIvZFF0c9m6D_xggJrXyQ3D5pKK15Dx_T2ieEocpE3yMAXplbNLJepeCtmtFsNoLVCuVBaq9QHUQmEnyh9wGu9Hh-1_m-sBAfjzLCCoaC85AZwOYpDpv_6F_ABNWi5k |
CitedBy_id | crossref_primary_10_1016_j_inoche_2025_114350 crossref_primary_10_1016_j_ccr_2023_215542 crossref_primary_10_1007_s10853_023_08997_0 crossref_primary_10_1016_j_ceramint_2024_09_230 crossref_primary_10_1016_j_snb_2023_133703 crossref_primary_10_1039_D3CP04777F crossref_primary_10_3390_ma15217489 crossref_primary_10_1016_j_snb_2023_134912 crossref_primary_10_1016_j_sna_2025_116365 crossref_primary_10_1109_JSEN_2024_3374055 crossref_primary_10_1149_2162_8777_ad1207 crossref_primary_10_1016_j_snb_2024_136498 crossref_primary_10_3390_chemosensors13030102 crossref_primary_10_1038_s41467_023_39213_x crossref_primary_10_1016_j_mssp_2023_107457 crossref_primary_10_1016_j_ceramint_2025_03_227 crossref_primary_10_1002_smtd_202402179 crossref_primary_10_3390_s25030655 crossref_primary_10_1016_j_matlet_2023_134852 crossref_primary_10_3390_electronics13071252 crossref_primary_10_1007_s10854_024_12427_5 crossref_primary_10_3390_chemosensors10080329 crossref_primary_10_1016_j_apsusc_2024_160518 crossref_primary_10_1134_S1063782624601523 crossref_primary_10_1016_j_ijhydene_2022_05_254 crossref_primary_10_1016_j_jtice_2024_105395 crossref_primary_10_1145_3659605 crossref_primary_10_21303_2461_4262_2024_003364 crossref_primary_10_1016_j_jece_2023_111504 crossref_primary_10_1039_D2TC04690C crossref_primary_10_3390_ma17061364 crossref_primary_10_1109_TII_2024_3452279 crossref_primary_10_3390_nano13172493 crossref_primary_10_1016_j_snb_2023_134575 crossref_primary_10_1016_j_snb_2024_136149 crossref_primary_10_1016_j_surfin_2024_105459 crossref_primary_10_1016_j_snb_2022_133198 crossref_primary_10_1039_D4CP04718D crossref_primary_10_1021_acssensors_4c01812 crossref_primary_10_1016_j_mssp_2024_108944 crossref_primary_10_1557_s43580_024_00968_0 crossref_primary_10_1007_s10854_023_10780_5 crossref_primary_10_1016_j_jallcom_2022_167782 crossref_primary_10_3390_chemosensors12040060 crossref_primary_10_1016_j_physb_2023_414852 crossref_primary_10_1039_D3TA07949J crossref_primary_10_31613_ceramist_2023_26_3_06 crossref_primary_10_3390_chemosensors11020126 crossref_primary_10_3390_chemosensors12040065 crossref_primary_10_1007_s10854_024_13196_x crossref_primary_10_1016_j_snb_2025_137655 crossref_primary_10_1016_j_cclet_2024_109490 crossref_primary_10_1016_j_mseb_2023_116734 crossref_primary_10_1021_acsami_4c19998 crossref_primary_10_3390_ma17235743 crossref_primary_10_3390_nano13202810 crossref_primary_10_3390_s23239548 crossref_primary_10_12677_jsta_2024_123052 crossref_primary_10_1016_j_jallcom_2023_171103 crossref_primary_10_3390_chemosensors10120515 crossref_primary_10_3390_gels9040283 crossref_primary_10_1021_acsomega_4c10981 crossref_primary_10_1007_s10854_023_10898_6 crossref_primary_10_1016_j_ceramint_2024_07_262 crossref_primary_10_1039_D3NJ00578J crossref_primary_10_1016_j_sna_2024_115510 crossref_primary_10_1016_j_chemphys_2024_112470 crossref_primary_10_1016_j_snb_2023_135134 crossref_primary_10_1016_j_snb_2024_136721 crossref_primary_10_1021_acssensors_3c02059 crossref_primary_10_1016_j_snb_2023_134163 crossref_primary_10_1021_acssensors_4c01835 crossref_primary_10_1016_j_susmat_2025_e01293 crossref_primary_10_1109_JSEN_2024_3478088 crossref_primary_10_1016_j_optmat_2023_114099 crossref_primary_10_3390_ma17051009 crossref_primary_10_1016_j_ceramint_2023_12_051 crossref_primary_10_3390_nano15020129 crossref_primary_10_1007_s12034_023_02959_7 crossref_primary_10_1016_j_snb_2023_134496 crossref_primary_10_1016_j_inoche_2025_114373 crossref_primary_10_1149_2162_8777_adac8c crossref_primary_10_3390_s24206731 crossref_primary_10_1109_JSEN_2023_3296724 crossref_primary_10_1007_s10854_024_11997_8 crossref_primary_10_1149_2162_8777_ad7b72 crossref_primary_10_1088_1361_6528_acdbd3 crossref_primary_10_1080_14328917_2023_2267362 crossref_primary_10_1016_j_sna_2024_115776 crossref_primary_10_1016_j_coesh_2023_100528 crossref_primary_10_1021_acssensors_3c01742 crossref_primary_10_1016_j_ccr_2024_216320 crossref_primary_10_1016_j_apsusc_2024_160047 crossref_primary_10_1039_D2CS00761D crossref_primary_10_1007_s10854_024_13285_x crossref_primary_10_1016_j_snb_2023_133975 crossref_primary_10_1109_TIM_2024_3485428 crossref_primary_10_1016_j_snb_2024_135533 crossref_primary_10_3390_technologies11060156 crossref_primary_10_1016_j_cej_2023_145304 crossref_primary_10_1039_D4TC03729D crossref_primary_10_1149_2162_8777_ad1c8c crossref_primary_10_1016_j_jmrt_2023_08_273 crossref_primary_10_3390_chemosensors10080297 crossref_primary_10_1016_j_microc_2024_110782 crossref_primary_10_1016_j_vacuum_2025_114119 crossref_primary_10_1016_j_snb_2024_136773 crossref_primary_10_1016_j_snb_2023_134751 crossref_primary_10_1016_j_microc_2025_113083 crossref_primary_10_1007_s00339_025_08320_5 crossref_primary_10_3390_ijms25158009 crossref_primary_10_1016_j_snb_2024_136648 crossref_primary_10_1149_2162_8777_ad34fb crossref_primary_10_1109_JSEN_2024_3425902 crossref_primary_10_1002_adsr_202300024 crossref_primary_10_1016_j_microc_2024_111643 crossref_primary_10_1016_j_snr_2024_100219 crossref_primary_10_15625_2525_2518_18528 crossref_primary_10_1016_j_chphi_2023_100318 crossref_primary_10_1021_acsami_4c12495 crossref_primary_10_1016_j_mssp_2023_107967 crossref_primary_10_1016_j_sna_2022_114044 crossref_primary_10_1134_S199079312303003X crossref_primary_10_1002_adfm_202309111 crossref_primary_10_1002_tcr_202300350 crossref_primary_10_1016_j_inoche_2025_114051 crossref_primary_10_1002_slct_202204328 crossref_primary_10_1155_tswj_4211483 crossref_primary_10_1007_s11665_024_10588_2 crossref_primary_10_1016_j_snr_2024_100246 crossref_primary_10_55452_1998_6688_2023_20_3_68_75 crossref_primary_10_1016_j_inoche_2023_111941 crossref_primary_10_1016_j_jmrt_2024_07_054 crossref_primary_10_1016_j_snb_2023_133882 crossref_primary_10_1039_D3TC00157A crossref_primary_10_1016_j_surfin_2023_103012 crossref_primary_10_1021_acsomega_3c04453 crossref_primary_10_1016_j_micrna_2024_207982 crossref_primary_10_1016_j_mssp_2024_108429 crossref_primary_10_1007_s00339_024_08112_3 crossref_primary_10_1364_AO_517016 crossref_primary_10_1016_j_jallcom_2023_172104 crossref_primary_10_1016_j_ceramint_2024_10_068 crossref_primary_10_1016_j_ceramint_2023_03_090 crossref_primary_10_1016_j_snb_2024_136783 crossref_primary_10_1002_admt_202301507 crossref_primary_10_1016_j_snb_2023_134550 crossref_primary_10_1016_j_jece_2024_112497 crossref_primary_10_1002_admt_202401639 crossref_primary_10_26599_CF_2025_9200037 crossref_primary_10_1016_j_microc_2023_109353 crossref_primary_10_1016_j_vacuum_2023_112773 crossref_primary_10_1002_adfm_202415971 crossref_primary_10_3390_cryst13071144 crossref_primary_10_1016_j_snb_2025_137262 crossref_primary_10_1007_s11664_024_11408_y crossref_primary_10_1016_j_ceramint_2025_01_356 crossref_primary_10_1021_acs_accounts_4c00323 crossref_primary_10_1016_j_vacuum_2023_112640 crossref_primary_10_1002_admi_202400217 crossref_primary_10_1007_s11220_023_00450_5 crossref_primary_10_3390_jcs6110326 crossref_primary_10_1149_1945_7111_ad8f67 crossref_primary_10_1016_j_mtcomm_2023_107831 crossref_primary_10_1016_j_ceramint_2025_02_036 crossref_primary_10_1016_j_matlet_2025_138332 crossref_primary_10_1016_j_snb_2023_133355 crossref_primary_10_1007_s10854_023_11780_1 crossref_primary_10_1016_j_ceramint_2024_09_387 crossref_primary_10_31857_S0207401X23050035 crossref_primary_10_3390_app15052522 crossref_primary_10_1002_smtd_202400245 crossref_primary_10_1016_j_ceramint_2023_03_274 crossref_primary_10_3390_s23062975 crossref_primary_10_1016_j_mssp_2024_109021 crossref_primary_10_1166_jno_2024_3640 crossref_primary_10_1021_acsami_4c10401 crossref_primary_10_3390_s24020584 crossref_primary_10_1016_j_nexres_2024_100092 crossref_primary_10_1039_D4NR04687K crossref_primary_10_1002_adfm_202415517 crossref_primary_10_1007_s10971_023_06298_1 crossref_primary_10_1016_j_scitotenv_2024_172048 crossref_primary_10_1016_j_sna_2023_114676 crossref_primary_10_1021_acsaenm_3c00751 crossref_primary_10_1016_j_ccr_2024_216049 crossref_primary_10_3390_ma16083249 crossref_primary_10_3390_s23198322 crossref_primary_10_1007_s11220_024_00477_2 crossref_primary_10_1088_1361_6463_ad3bc7 crossref_primary_10_1021_acsaelm_4c00567 crossref_primary_10_1016_j_chemosphere_2023_140657 crossref_primary_10_1016_j_snb_2024_136583 crossref_primary_10_1002_adfm_202314686 crossref_primary_10_1007_s13399_023_04847_w |
Cites_doi | 10.1016/j.snb.2020.128843 10.1021/acsanm.0c03239 10.1016/j.snb.2017.05.172 10.1021/cr500567r 10.1016/j.jcis.2018.10.010 10.1016/j.matdes.2016.05.006 10.1021/acsami.9b20776 10.1038/s41598-019-43752-z 10.1186/s11671-017-1891-5 10.1021/acsami.5b11485 10.3390/s120302598 10.1016/j.snb.2005.03.011 10.1016/j.apsusc.2018.03.217 10.1016/j.snb.2021.130704 10.1016/j.snb.2013.05.030 10.1016/j.physb.2018.10.034 10.1016/j.snb.2015.09.075 10.1016/j.snb.2019.127129 10.1016/j.cplett.2017.06.008 10.1016/j.snb.2014.07.074 10.1016/j.snb.2019.01.049 10.1016/j.snb.2017.01.015 10.1016/j.flatc.2017.07.002 10.1016/j.snb.2017.09.154 10.1016/j.snb.2019.126845 10.1016/j.pmatsci.2009.08.003 10.1016/j.aca.2013.05.057 10.1039/C7TC03724D 10.3390/s20113096 10.1109/JSEN.2018.2890074 10.1016/j.sna.2006.10.004 10.1016/j.matchemphys.2018.04.104 10.1016/j.snb.2017.05.113 10.3390/s20226694 10.3390/en13112731 10.1016/j.rinp.2017.02.008 10.1039/C9NR07699A 10.1016/j.mee.2016.07.008 10.1016/j.snb.2021.130302 10.1016/j.apsusc.2017.11.047 10.1016/j.ceramint.2017.02.088 10.1016/j.ceramint.2018.06.110 10.1039/C8MH01365A 10.1116/1.5047237 10.1007/s13391-020-00205-4 10.1016/j.snb.2021.129493 10.1016/j.jallcom.2018.12.180 10.1007/s10854-018-9952-9 10.1016/j.sna.2017.10.021 10.1142/S0219581X15500118 10.1016/j.matlet.2016.02.040 10.1016/j.mseb.2017.12.036 10.1016/j.snb.2020.129371 10.1016/j.snb.2016.09.024 10.1021/acsnano.6b01196 10.1016/j.snb.2018.12.051 10.1016/j.vacuum.2010.01.054 10.1016/j.apsusc.2004.10.036 10.1039/C7RA05217K 10.1016/j.snb.2017.10.032 10.1016/j.snb.2014.03.012 10.1016/j.egyr.2019.08.070 10.1038/s41598-017-12553-7 10.1016/j.snb.2012.05.057 10.1016/j.ceramint.2017.07.165 10.1080/14686996.2019.1599694 10.3390/s120709635 10.1016/j.snb.2011.08.032 10.1016/j.ceramint.2017.12.038 10.1039/C5NR01924A 10.1016/j.aca.2018.09.020 10.1016/j.apsusc.2021.151262 10.1016/j.snb.2011.03.010 10.1016/j.physe.2019.01.006 10.1007/s11664-020-08246-z 10.1039/c0nr00047g 10.1016/j.ceramint.2016.07.060 10.1038/s41467-019-09157-2 10.1016/j.snb.2017.05.064 10.1016/j.snb.2016.09.145 10.1016/j.snb.2019.126946 10.1007/s40843-016-5117-0 10.1016/j.mseb.2007.01.044 10.1016/j.snb.2017.05.029 10.1016/j.jallcom.2008.11.095 10.1016/j.snb.2013.11.005 10.1039/b616684a 10.3390/s100302088 10.1016/j.ceramint.2008.01.028 10.1016/j.mseb.2014.10.007 10.1016/j.surfcoat.2019.01.100 10.1016/j.ceramint.2019.09.132 10.1016/j.snb.2019.01.146 10.1016/j.ceramint.2013.06.016 10.1016/j.mspro.2015.06.041 10.1016/j.jallcom.2015.09.046 10.1016/j.snb.2018.02.052 10.1039/C9RA02356A 10.1016/j.jallcom.2012.03.020 10.1007/s11664-017-5400-5 10.1016/j.snb.2017.09.206 10.1063/1.2924430 10.1039/C8CS00904J 10.1016/j.proeng.2012.09.157 10.1021/ac0202278 10.1016/bs.coac.2020.08.009 10.1016/j.snb.2019.127054 10.1016/j.mser.2008.02.001 10.3390/s17122779 10.1007/s12034-017-1461-6 10.1016/j.snb.2013.08.045 10.1016/j.snb.2020.128191 10.1016/j.matchemphys.2021.124731 10.1109/JSEN.2015.2391286 10.1016/j.snb.2017.02.063 10.1016/j.jallcom.2019.01.349 10.1007/s10853-020-04569-8 10.1016/j.jcis.2020.02.081 10.1016/j.apsusc.2017.08.229 10.1016/j.matlet.2007.03.024 10.1007/s12274-020-3020-5 10.1016/j.mseb.2007.11.020 10.1007/s11356-020-07680-0 10.1016/j.mseb.2017.09.002 10.1016/j.snb.2018.10.063 10.1016/j.snb.2020.127965 10.1016/j.pcrysgrow.2008.08.003 10.1016/j.snb.2020.128406 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Jul 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Jul 1, 2022 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2022.113578 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | 10_1016_j_sna_2022_113578 S0924424722002163 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c325t-3aa2e2e78ebf559848e8d53ee3af15b33e17919788f4cb340e8d66e3aa0d95b03 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Sun Jul 13 05:11:16 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Tue Jul 01 02:24:52 EDT 2025 Fri Feb 23 02:40:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thin films Nanomaterials Metal oxide semiconductors Gas sensors And response and recovery times |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-3aa2e2e78ebf559848e8d53ee3af15b33e17919788f4cb340e8d66e3aa0d95b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2685587312 |
PQPubID | 2045401 |
ParticipantIDs | proquest_journals_2685587312 crossref_citationtrail_10_1016_j_sna_2022_113578 crossref_primary_10_1016_j_sna_2022_113578 elsevier_sciencedirect_doi_10_1016_j_sna_2022_113578 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Yang, Wang, Liu, Liu, Gao, Sun, Jie, Zhang, Wang, Lu (bib91) 2017; 241 Bakker, Telting-Diaz (bib55) 2002; 74 Dey (bib6) 2018; 229 Jiang, Zhang, Wang, Gong (bib50) 2021; 14 Amiri, Roshan, Mirzaei, Neri, Ayesh (bib76) 2020 Cayir Taşdemirci (bib39) 2020; 16 Kim, Choi, Jang, Kim, Hakim, Tuller, Kim (bib57) 2016; 10 Han, Zhai, Gu, Wang (bib81) 2018; 262 Song, Chen, Zhang, Zhang, Liu, Sun, Yan, Lu (bib71) 2019; 287 Ahmada, Kang, Sadek, Moafi, Sberveglieri, Wlodarski (bib87) 2012; 47 Shinde, Patil, Kajale, Gaikwad, Jain (bib15) 2012; 528 Ma, Yu, Yuan, Li, Li, Yin, Fan (bib28) 2019; 782 Kang, Koo, Jang, Kim, Jeong, Kim, Ahn, Choi, Il-DooKim (bib67) 2021; 331 Wei, Zhoua, Lu, Xua, Gui, Tang (bib97) 2019; 109 Kandalkar, Gunjakar, Lokhande, Joo (bib44) 2009; 478 Xu, Li, Li, Chen, Zhu (bib113) 2018; 44 Oviroh, Akbarzadeh, Pan, Maarten Coetzee, Jen (bib47) 2019; 20 Wang, Yin, Zhang, Xiang, Gao (bib65) 2010; 10 Zito, Perfecto, Volanti (bib77) 2017; 244 Zhu, Li, Zeng (bib88) 2018; 427 Qiu, Hu, Min, Quan, Tian, Ji, Zheng, Qin, Wang, Pan, Cheng, Chen, Zhang, Wang (bib125) 2020; 12 Wang, Zhang, Fei, Gu, Han (bib126) 2020; 318 Weintraub, Zhou, Li, Deng (bib7) 2010; 2 Dhinakaran, Vigneswari, Lavanya, Shree (bib17) 2020 Chen, Shen, Zhou, Zhao, Zhong, Li, Han, Wei, Meng (bib63) 2019; 280 Durrani, Al-Kuhaili, Bakhtiari, Haider (bib128) 2012; 12 Wang, Hu, Qin (bib93) 2016; 171 Zhang, Zou, Xu, Liao, Liu, Ho, Xiao, Jiang, Li (bib98) 2015; 7 Kim, Kim, Yong (bib56) 2012; 116 Chengxiang Wang, Zhang, Xiang, Gao (bib23) 2010; 10 Zhu, Zeng (bib27) 2017; 267 Wang, Zhao, Sun, Li, Ji, Chen, Zhang, Hu (bib134) 2017; 240 Sun, Wang, Liu, Sun, Ma, Lu (bib85) 2012; 173 Singh, Deb, Sarkar, Sharma (bib131) 2021; 4 Sun, Liao, Kou (bib69) 2017; 60 Vallejos, Gràcia, Pizúrová, Figueras, Čechal, Hubálekc, Cané (bib117) 2019; 301 Bhati, Hojamberdiev, Kumar (bib22) 2020; 6 Faisal (bib94) 2017; 40 Zhao, Gong, Niu, Wang (bib86) 2019; 299 Godavarti, Mote, Ramana Reddy, Nagaraju, Kumar, Dasari, Dasari (bib30) 2019; 553 Chou, Chen, Liu, Chen, Liou, Hsu, Liu (bib106) 2015; 15 Wang, Chu, Wu (bib96) 2006; 113 Fernando Gorup, HenriqueAmorin, Camargo, Sequinel, Cincotto, Biasotto, Ramesar, de, La Porta (bib35) 2020 Shamala, Murthy, Radhakrishna, Rao (bib36) 2007; 135 Park, Sun, Jin, Kim, Lee, Lee (bib127) 2016; 8 Lupan, Postica, Ababii, Hoppe, Cretu, Tiginyanu, Sontea, Pauporté, Viana, Adelung (bib99) 2016; 164 Nikolic, Milovanovic, Vasiljevic, Stamenkovic (bib21) 2020; 20 Ham, Son (bib48) 2017; 5 Kim, Kim, Mirzaei, Kim, Kim (bib68) 2021; 332 Tchalala, Bhatt, Chappanda, Tavares, Adil, Belmabkhout, Shkurenko, Cadiau, Heymans, De Weireld, Maurin, Salama, Eddaoudi (bib54) 2019; 10 Takami, Sato, Mousav, Ohara, Umetsu, Adschiri (bib26) 2007; 61 Dhivya, Prasad, Sridharan (bib102) 2014; 40 Zheng, Guo, Liu, Gao (bib1) 2013; 18 Teja, Koh (bib25) 2009; 55 Suna, Wang, Du, Li, Wang, Hou (bib137) 2021; 868 Pineau, Krumeich, Güntner, Pratsinis (bib118) 2021; 327 Gerasimov, Gromov, Ikim, Ilegbusi, Ozerin, Trakhtenberg (bib122) 2020; 320 Sharma, Tomar, Gupta (bib10) 2015; 14 Walker, Akbar, Morris (bib8) 2019; 286 Nagaraju, Vijayakumar, Choudhary, Reddy (bib13) 2017; 226 Umar, Lee, Kumar, Al-Dossary, Ibrahim, Baskoutas (bib82) 2016; 105 Hu, Wang, Liu, Li, Zeng (bib136) 2020; 46 Tyagi, Sharma, Tomar, Gupta (bib9) 2014; 4 Ouhaibi, Ghamnia, Dahamni, Heresanu, Fauquet, Tonneau (bib34) 2018; 3 Punginsang, Zappa, Comini, Wisitsoraat, Sberveglieri, Ponzoni, Liewhiran (bib107) 2022; 571 Cao, Li, Li, Li, Huang, Yang (bib84) 2018; 447 Sheng, Lee, Choi, Hong, Kim, Park (bib45) 2018; 36 Al-Hadeethi, Umar, Ibrahim, Al-Heniti, Kumar, Baskoutas, Raffah (bib132) 2017; 43 Wu, Huang, Zeng, Zhang, Yang, Xia, Xiong, Xie (bib110) 2014; 198 Girija, Somasundaram, Debnath, Topkar, Vatsa (bib114) 2018; 214 Kanica, Kaur, Singh, Thangaraj (bib31) 2017; 682 Nagaraju, Vijayakumar, Ramana Reddy, Deshpande (bib33) 2019; 9 Sun, Zhou, Wang, Wang, Xu, Lu (bib111) 2014; 190 Zhyrovetsky, Popovych, Savkaand, Serednytski (bib73) 2017; 12 Mohammad, Sharareh, Amir Homayoun (bib29) 2020; 27 Zhang, Yu, Li, Zhu, Wan (bib95) 2008; 103 Mohamed Sali, Joy, Meenakshisundaram, Karn, Gopalakrishnan, Karthick, Jeyadheepan, Sankaranarayanan (bib103) 2017; 7 Zhu, Xu, Yang, Zhou, Chen, Dong, Bai, Lu, Song (bib138) 2020; 569 Ganguly, Jha, Guha, Jacob (bib70) 2020; 49 Bochenkov, Sergeev (bib53) 2010; 3 Kumar Sahu, Pandey, Kumar, Pandey, Takashima, Mishra, Prakash (bib20) 2017; 246 Badadhe, Mulla (bib32) 2011; 156 Karaduman, Corlu, Yildirim, Ateş, Acar (bib40) 2017; 46 Shinde, Lokhande, Mane, Han (bib43) 2005; 245 Saboor, Ueda, Kamada, Hyodo, Mortazavi, Khodadadi, Shimizu (bib120) 2016; 223 Kim, Lee (bib11) 2014; 192 Bai, Xie, Hu, Zhang, Zeng (bib115) 2008; 149 Liu, Cheng, Liu, Hu, Zhang, Ning (bib52) 2012; 12 Lin, Lv, Li, Wang (bib64) 2017; 17 Ha, DucThinh, Thanh Huong, Phuong, Thach, Hong (bib129) 2018; 434 Ma, Lee, Xu, Yoon (bib14) 2015; 115 Fan, Sun, Wang, Majidi, Huang, Kumar, Liu (bib123) 2020; 55 Thi, Thu, Duc, Cuong, Nguyen, Khieu, Nam, VanToan, Hung, Van Hieu (bib130) 2018; 255 Raksa, Gardchareon, Chairuangsri, Mangkorntong, Mangkorntong, Choopun (bib83) 2009; 35 Zhou, Xu, Umar, Chen, Kumar (bib133) 2018; 256 Hu, Liang, Sun, Zhao, Zhang, Li, Zhang, Chen, Zhuiykovz (bib92) 2017; 252 Mani, Rayappan (bib79) 2015; 191 Huang, Zou, Shi, Zhao, Li, Hao, Zhang (bib101) 2013; 787 Subha, Jayaraj (bib2) 2019; 13 Chu, Young, Ji, Chu, Chen (bib41) 2020; 13 Miller, Akbar, Morris (bib5) 2014; 204 Bhuvaneshwari, Gopalakrishnan (bib105) 2016; 654 Zappa, Galstyan, Kaur, Sisman, Comini (bib16) 2018; 1039 Leng, Wang, Wang, Wu, Yan, Li, Guo, Liu, Zhang, Guo (bib37) 2019; 48 Paliwal, Sharma, Tomar, Gupta (bib18) 2017; 250 Sanctis, Krausmann, Jörg, Schneider (bib46) 2018; 6 Yin, Wang, Sun, Tong, Zhu, Lv, Ye, Wang, Luo, Huang (bib61) 2017; 7 He, Xie, Zhao, Hu, Li, Zhu (bib124) 2019; 788 Khudadad, Yousif, Abed (bib90) 2021; 269 Mineo, Moulaee, Neri, Mirabella, Bruno (bib62) 2021; 348 Jiang, Zhao, Sun, Nie, Ji, Lei, Wang (bib108) 2016; 42 Wu, Li, Tung, Huang, Chiang, Liu, Horng (bib49) 2019; 9 Al-Hashem, Akbar, Morris (bib109) 2019; 301 Chaloeipote, Prathumwan, Subannajui, Wisitsoraat, Wongchoosuk (bib80) 2021; 123 Liang, Tang, Xiong, Wang, Xue, Yang, Zhang (bib3) 2010; 84 Yang, Lu, Wang, Zhang, Chen, Sun, Yang, Sun, Lu (bib116) 2020; 313 Pearton, Ren, Wang, Chu, Chen, Chang, Lim, Lin, Norton (bib4) 2010; 55 Liu, Shen, Chen, Corriou (bib100) 2018; 29 Ji, Zeng, Li (bib24) 2019; 11 Korotcenkov (bib59) 2008; 61 Huang, Zhou, Liu, Li, Geng, Xiaoqing, Du, Qian (bib135) 2020; 310 MinLi, Kan, Li, Quan, Fu, Luo, Liu, Wang, Yang, Wei, Fu (bib19) 2019; 362 Zhang, Dong, Wu, Pan, Fan (bib38) 2019; 19 Li, Li, Wu, Wang, Luo, Torun, Hu, Yang, Grundmann, Liu, Fu (bib75) 2019; 6 Sayegh, Lee, Yang, Weber, IgorIatsunsky, Coy, Razzouk, Kim, Bechelany (bib119) 2021; 344 Katoch, Sun, Choi, Byun, Kim (bib12) 2013; 185 Bhatia, Verma, Bedi (bib78) 2017; 7 Ueda, Abe, Kamada, Bishop, Tuller, Hyodo, Shimizu (bib121) 2017; 252 Korotcenkov (bib51) 2007; 139 Zhang, Yin, Yang, Zhang, Han (bib112) 2019; 283 Tong, Shen, Chen, Corriou (bib58) 2017; 43 Chen, Hsiao, Chen, Chang, Chou, Liu, Lin, Liu (bib104) 2018; 256 Gao, Yu, Chen, Sun, Liu, Yan, Liu, Lu (bib72) 2019; 535 Patil, Anwane, Kondawar (bib74) 2015; 10 Wetchakuna, Samerjai, Tamaekonga, Liewhirana, Siriwonga, Kruefua, Wisitsoraat, Tuantranont, Phanichphant (bib60) 2011; 160 Zhou, Chen, Xu, Kumar, Gui, Zhao, Tang, Zhu (bib89) 2018; 44 Rahmani, Yaacob, Sabri (bib66) 2017; 251 Hodes (bib42) 2007; 9 Zhang (10.1016/j.sna.2022.113578_bib112) 2019; 283 Chengxiang Wang (10.1016/j.sna.2022.113578_bib23) 2010; 10 Raksa (10.1016/j.sna.2022.113578_bib83) 2009; 35 Bochenkov (10.1016/j.sna.2022.113578_bib53) 2010; 3 Kang (10.1016/j.sna.2022.113578_bib67) 2021; 331 Dhivya (10.1016/j.sna.2022.113578_bib102) 2014; 40 Miller (10.1016/j.sna.2022.113578_bib5) 2014; 204 Fernando Gorup (10.1016/j.sna.2022.113578_bib35) 2020 Qiu (10.1016/j.sna.2022.113578_bib125) 2020; 12 Takami (10.1016/j.sna.2022.113578_bib26) 2007; 61 Xu (10.1016/j.sna.2022.113578_bib113) 2018; 44 Lupan (10.1016/j.sna.2022.113578_bib99) 2016; 164 Singh (10.1016/j.sna.2022.113578_bib131) 2021; 4 Korotcenkov (10.1016/j.sna.2022.113578_bib51) 2007; 139 Nagaraju (10.1016/j.sna.2022.113578_bib13) 2017; 226 Gao (10.1016/j.sna.2022.113578_bib72) 2019; 535 Tchalala (10.1016/j.sna.2022.113578_bib54) 2019; 10 Chaloeipote (10.1016/j.sna.2022.113578_bib80) 2021; 123 Ma (10.1016/j.sna.2022.113578_bib14) 2015; 115 Chou (10.1016/j.sna.2022.113578_bib106) 2015; 15 Shamala (10.1016/j.sna.2022.113578_bib36) 2007; 135 Godavarti (10.1016/j.sna.2022.113578_bib30) 2019; 553 Mohamed Sali (10.1016/j.sna.2022.113578_bib103) 2017; 7 Oviroh (10.1016/j.sna.2022.113578_bib47) 2019; 20 Korotcenkov (10.1016/j.sna.2022.113578_bib59) 2008; 61 Al-Hashem (10.1016/j.sna.2022.113578_bib109) 2019; 301 Sun (10.1016/j.sna.2022.113578_bib69) 2017; 60 He (10.1016/j.sna.2022.113578_bib124) 2019; 788 Kumar Sahu (10.1016/j.sna.2022.113578_bib20) 2017; 246 Zhou (10.1016/j.sna.2022.113578_bib133) 2018; 256 Zhao (10.1016/j.sna.2022.113578_bib86) 2019; 299 Ji (10.1016/j.sna.2022.113578_bib24) 2019; 11 Mohammad (10.1016/j.sna.2022.113578_bib29) 2020; 27 Wu (10.1016/j.sna.2022.113578_bib49) 2019; 9 Hu (10.1016/j.sna.2022.113578_bib92) 2017; 252 Nikolic (10.1016/j.sna.2022.113578_bib21) 2020; 20 Al-Hadeethi (10.1016/j.sna.2022.113578_bib132) 2017; 43 Hodes (10.1016/j.sna.2022.113578_bib42) 2007; 9 Li (10.1016/j.sna.2022.113578_bib75) 2019; 6 Han (10.1016/j.sna.2022.113578_bib81) 2018; 262 Amiri (10.1016/j.sna.2022.113578_bib76) 2020 Liu (10.1016/j.sna.2022.113578_bib100) 2018; 29 Lin (10.1016/j.sna.2022.113578_bib64) 2017; 17 Liu (10.1016/j.sna.2022.113578_bib52) 2012; 12 Thi (10.1016/j.sna.2022.113578_bib130) 2018; 255 Paliwal (10.1016/j.sna.2022.113578_bib18) 2017; 250 Tong (10.1016/j.sna.2022.113578_bib58) 2017; 43 Zhang (10.1016/j.sna.2022.113578_bib95) 2008; 103 Bhati (10.1016/j.sna.2022.113578_bib22) 2020; 6 Shinde (10.1016/j.sna.2022.113578_bib15) 2012; 528 Chen (10.1016/j.sna.2022.113578_bib104) 2018; 256 Hu (10.1016/j.sna.2022.113578_bib136) 2020; 46 Subha (10.1016/j.sna.2022.113578_bib2) 2019; 13 Bakker (10.1016/j.sna.2022.113578_bib55) 2002; 74 Vallejos (10.1016/j.sna.2022.113578_bib117) 2019; 301 Katoch (10.1016/j.sna.2022.113578_bib12) 2013; 185 Bhuvaneshwari (10.1016/j.sna.2022.113578_bib105) 2016; 654 Umar (10.1016/j.sna.2022.113578_bib82) 2016; 105 Sharma (10.1016/j.sna.2022.113578_bib10) 2015; 14 Jiang (10.1016/j.sna.2022.113578_bib108) 2016; 42 Zhang (10.1016/j.sna.2022.113578_bib98) 2015; 7 Dhinakaran (10.1016/j.sna.2022.113578_bib17) 2020 Wang (10.1016/j.sna.2022.113578_bib93) 2016; 171 Patil (10.1016/j.sna.2022.113578_bib74) 2015; 10 Ahmada (10.1016/j.sna.2022.113578_bib87) 2012; 47 Huang (10.1016/j.sna.2022.113578_bib101) 2013; 787 Wang (10.1016/j.sna.2022.113578_bib126) 2020; 318 Ha (10.1016/j.sna.2022.113578_bib129) 2018; 434 Kim (10.1016/j.sna.2022.113578_bib11) 2014; 192 Cao (10.1016/j.sna.2022.113578_bib84) 2018; 447 Tyagi (10.1016/j.sna.2022.113578_bib9) 2014; 4 Ouhaibi (10.1016/j.sna.2022.113578_bib34) 2018; 3 Mineo (10.1016/j.sna.2022.113578_bib62) 2021; 348 Mani (10.1016/j.sna.2022.113578_bib79) 2015; 191 Yang (10.1016/j.sna.2022.113578_bib91) 2017; 241 Weintraub (10.1016/j.sna.2022.113578_bib7) 2010; 2 Wei (10.1016/j.sna.2022.113578_bib97) 2019; 109 Ganguly (10.1016/j.sna.2022.113578_bib70) 2020; 49 Walker (10.1016/j.sna.2022.113578_bib8) 2019; 286 Cayir Taşdemirci (10.1016/j.sna.2022.113578_bib39) 2020; 16 Sun (10.1016/j.sna.2022.113578_bib85) 2012; 173 Dey (10.1016/j.sna.2022.113578_bib6) 2018; 229 Karaduman (10.1016/j.sna.2022.113578_bib40) 2017; 46 Kim (10.1016/j.sna.2022.113578_bib56) 2012; 116 Zhang (10.1016/j.sna.2022.113578_bib38) 2019; 19 Wang (10.1016/j.sna.2022.113578_bib65) 2010; 10 Yang (10.1016/j.sna.2022.113578_bib116) 2020; 313 Zhyrovetsky (10.1016/j.sna.2022.113578_bib73) 2017; 12 Pearton (10.1016/j.sna.2022.113578_bib4) 2010; 55 Rahmani (10.1016/j.sna.2022.113578_bib66) 2017; 251 Liang (10.1016/j.sna.2022.113578_bib3) 2010; 84 Gerasimov (10.1016/j.sna.2022.113578_bib122) 2020; 320 Zheng (10.1016/j.sna.2022.113578_bib1) 2013; 18 MinLi (10.1016/j.sna.2022.113578_bib19) 2019; 362 Ma (10.1016/j.sna.2022.113578_bib28) 2019; 782 Kim (10.1016/j.sna.2022.113578_bib57) 2016; 10 Park (10.1016/j.sna.2022.113578_bib127) 2016; 8 Bai (10.1016/j.sna.2022.113578_bib115) 2008; 149 Kandalkar (10.1016/j.sna.2022.113578_bib44) 2009; 478 Nagaraju (10.1016/j.sna.2022.113578_bib33) 2019; 9 Chen (10.1016/j.sna.2022.113578_bib63) 2019; 280 Badadhe (10.1016/j.sna.2022.113578_bib32) 2011; 156 Sheng (10.1016/j.sna.2022.113578_bib45) 2018; 36 Ueda (10.1016/j.sna.2022.113578_bib121) 2017; 252 Chu (10.1016/j.sna.2022.113578_bib41) 2020; 13 Kanica (10.1016/j.sna.2022.113578_bib31) 2017; 682 Leng (10.1016/j.sna.2022.113578_bib37) 2019; 48 Wetchakuna (10.1016/j.sna.2022.113578_bib60) 2011; 160 Bhatia (10.1016/j.sna.2022.113578_bib78) 2017; 7 Jiang (10.1016/j.sna.2022.113578_bib50) 2021; 14 Zhu (10.1016/j.sna.2022.113578_bib27) 2017; 267 Teja (10.1016/j.sna.2022.113578_bib25) 2009; 55 Zhu (10.1016/j.sna.2022.113578_bib88) 2018; 427 Wu (10.1016/j.sna.2022.113578_bib110) 2014; 198 Zito (10.1016/j.sna.2022.113578_bib77) 2017; 244 Punginsang (10.1016/j.sna.2022.113578_bib107) 2022; 571 Zhou (10.1016/j.sna.2022.113578_bib89) 2018; 44 Fan (10.1016/j.sna.2022.113578_bib123) 2020; 55 Sayegh (10.1016/j.sna.2022.113578_bib119) 2021; 344 Khudadad (10.1016/j.sna.2022.113578_bib90) 2021; 269 Wang (10.1016/j.sna.2022.113578_bib96) 2006; 113 Suna (10.1016/j.sna.2022.113578_bib137) 2021; 868 Song (10.1016/j.sna.2022.113578_bib71) 2019; 287 Huang (10.1016/j.sna.2022.113578_bib135) 2020; 310 Sun (10.1016/j.sna.2022.113578_bib111) 2014; 190 Durrani (10.1016/j.sna.2022.113578_bib128) 2012; 12 Wang (10.1016/j.sna.2022.113578_bib134) 2017; 240 Saboor (10.1016/j.sna.2022.113578_bib120) 2016; 223 Ham (10.1016/j.sna.2022.113578_bib48) 2017; 5 Zhu (10.1016/j.sna.2022.113578_bib138) 2020; 569 Zappa (10.1016/j.sna.2022.113578_bib16) 2018; 1039 Faisal (10.1016/j.sna.2022.113578_bib94) 2017; 40 Girija (10.1016/j.sna.2022.113578_bib114) 2018; 214 Shinde (10.1016/j.sna.2022.113578_bib43) 2005; 245 Sanctis (10.1016/j.sna.2022.113578_bib46) 2018; 6 Pineau (10.1016/j.sna.2022.113578_bib118) 2021; 327 Yin (10.1016/j.sna.2022.113578_bib61) 2017; 7 Kim (10.1016/j.sna.2022.113578_bib68) 2021; 332 |
References_xml | – volume: 214 start-page: 297 year: 2018 end-page: 305 ident: bib114 article-title: Enhanced H2S sensing properties of Gallium doped ZnO nanocrystalline films as investigated by DC conductivity and impedance spectroscopy publication-title: Mater. Chem. Phys. – volume: 240 start-page: 664 year: 2017 end-page: 673 ident: bib134 article-title: Fabrication and gas sensing properties of Au-loaded SnO publication-title: Sens. Actuators B Chem. – volume: 116 start-page: 15682 year: 2012 end-page: 15691 ident: bib56 article-title: CuO/Nzo heterostructured nanorods: photochemical synthesis and the mechanism of H publication-title: J. Phys. Chem. – volume: 251 start-page: 57 year: 2017 end-page: 64 ident: bib66 article-title: Hydrogen sensors based on 2D WO publication-title: Sens. Actuators B Chem. – volume: 29 start-page: 18380 year: 2018 end-page: 18387 ident: bib100 article-title: A high-performance NH publication-title: J. Mater. Sci. Mater. Electron – volume: 27 start-page: 11541 year: 2020 end-page: 11553 ident: bib29 article-title: Sono-coprecipitation synthesis of ZnO/CuO nanophotocatalyst for removal of parathion from wastewater publication-title: Environ. Sci. Pollut. Res. – volume: 46 start-page: 4017 year: 2017 end-page: 4023 ident: bib40 article-title: Hydrogen gas sensing characteristics of nanostructured NiO thin films synthesized by SILAR method publication-title: J. Electron. Mater. – volume: 13 start-page: 1 year: 2019 end-page: 11 ident: bib2 article-title: Enhanced room temperature gas sensing properties of low temperature solution processed ZnO/CuO heterojunction publication-title: BMC Chem. – volume: 20 start-page: 465 year: 2019 end-page: 496 ident: bib47 article-title: New development of atomic layer deposition: processes, methods and applications publication-title: Sci. Technol. Adv. Mater. – volume: 787 start-page: 233 year: 2013 end-page: 238 ident: bib101 article-title: A new sensor for ammonia based on cyanidin-sensitized titanium dioxide film operating at room temperature publication-title: Anal. Chim. Acta – volume: 682 start-page: 140 year: 2017 end-page: 146 ident: bib31 article-title: Preparation and characterization of Ag-doped In publication-title: Chem. Phys. Lett. – volume: 55 start-page: 1 year: 2010 end-page: 59 ident: bib4 article-title: Recent advances in wide bandgap semiconductor biological and gas sensors publication-title: Prog. Mater. Sci. – volume: 9 start-page: 7459 year: 2019 ident: bib49 article-title: NO gas sensor based on ZnGa publication-title: Sci. Rep. – volume: 14 start-page: 1789 year: 2021 end-page: 1801 ident: bib50 article-title: Synthesis of magnetic two-dimensional materials by chemical vapor deposition publication-title: Nano Res. – volume: 6 start-page: 470 year: 2019 end-page: 506 ident: bib75 publication-title: Mater. Horiz. – volume: 7 start-page: 12206 year: 2017 ident: bib61 article-title: Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electro hydrodynamic nanowire template for enhanced gas-sensing properties publication-title: Sci. Rep. – volume: 301 year: 2019 ident: bib117 article-title: Gas sensitive ZnO structures with reduced humidity-interference publication-title: Sens. Actuators B Chem. – volume: 252 start-page: 116 year: 2017 end-page: 126 ident: bib92 article-title: Highly sensitive NO publication-title: Sens. Actuators B Chem. – volume: 12 start-page: 19755 year: 2020 end-page: 19767 ident: bib125 article-title: Observation of switchable dual-conductive channels and related nitric oxide gas-sensing properties in the N-rGO/ZnO heterogeneous structure publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 2805 year: 2016 end-page: 2811 ident: bib127 article-title: Synergistic effects of a combination of cr2o3-functionalization and UV-irradiation techniques on the ethanol gas sensing performance of ZnO nanorod gas sensors publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 4392 year: 2018 end-page: 4400 ident: bib89 article-title: Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO publication-title: Ceram. Int. – volume: 229 start-page: 206 year: 2018 end-page: 217 ident: bib6 article-title: Semiconductor metal oxide gas sensors: a review publication-title: Mater. Sci. Eng. B – volume: 36 year: 2018 ident: bib45 article-title: Review Article: Atomic layer deposition for oxide semiconductor thin film transistors: advances in research and development publication-title: J. Vac. Sci. Technol. A – volume: 434 start-page: 1048 year: 2018 end-page: 1055 ident: bib129 article-title: Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene Oxide publication-title: Appl. Surf. Sci. – volume: 55 start-page: 7702 year: 2020 end-page: 7714 ident: bib123 article-title: Enhanced H publication-title: J. Mater. Sci. – volume: 55 start-page: 22 year: 2009 end-page: 45 ident: bib25 article-title: Synthesis, properties, and applications of magnetic iron oxide nanoparticles publication-title: Prog. Cryst. Growth Charact. Mater. – volume: 20 start-page: 6694 year: 2020 ident: bib21 article-title: Semiconductor gas sensors: materials, technology, design, and application publication-title: Sensors – volume: 47 start-page: 358 year: 2012 end-page: 361 ident: bib87 article-title: Synthesis of WO publication-title: Procedia Eng. – volume: 331 year: 2021 ident: bib67 article-title: 2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO publication-title: Sens. Actuators B Chem. – volume: 113 start-page: 320 year: 2006 end-page: 323 ident: bib96 article-title: Detection of H publication-title: Sens. Actuators B – volume: 42 start-page: 15881 year: 2016 end-page: 15888 ident: bib108 article-title: Highly sensitive acetone sensor based on Eu-doped SnO publication-title: Ceram. Int. – volume: 280 start-page: 151 year: 2019 end-page: 161 ident: bib63 article-title: NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization publication-title: Sens. Actuators B Chem. – volume: 447 start-page: 173 year: 2018 end-page: 181 ident: bib84 article-title: Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application publication-title: Appl. Surf. Sci. – volume: 5 start-page: 40 year: 2017 end-page: 49 ident: bib48 article-title: Low-temperature synthesis of graphene by chemical vapor deposition and its applications publication-title: FlatChem – volume: 320 year: 2020 ident: bib122 article-title: Structure and gas-sensing properties of SnO publication-title: Sens. Actuators B Chem. – volume: 18 start-page: 1 year: 2013 end-page: 22 ident: bib1 article-title: Hierarchically nanostructured materials for sustainable environmental applications publication-title: Front. Chem. – volume: 256 start-page: 656 year: 2018 end-page: 664 ident: bib133 article-title: Pt nanoparticles decorated SnO publication-title: Sens. Actuators B Chem. – volume: 84 start-page: 1154 year: 2010 end-page: 1158 ident: bib3 article-title: Synthesis and characterization of hetero epitaxial GaN films on Si(111) publication-title: Vacuum – volume: 571 year: 2022 ident: bib107 article-title: Selective H publication-title: Appl. Surf. Sci. – volume: 13 start-page: 2731 year: 2020 ident: bib41 article-title: Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition Their Application to Nanogenerators publication-title: Energies – volume: 185 start-page: 411 year: 2013 end-page: 416 ident: bib12 article-title: Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers publication-title: Sens. Actuators B Chem. – volume: 788 start-page: 36 year: 2019 end-page: 43 ident: bib124 article-title: Highly sensitive and selective H publication-title: J. Alloy. Compd. – volume: 569 start-page: 358 year: 2020 end-page: 365 ident: bib138 article-title: Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: synthesis, characterization, and application for the detection of an exhaled diabetes biomarker publication-title: J. Colloid Interface Sci. – volume: 61 start-page: 1 year: 2008 end-page: 39 ident: bib59 article-title: The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors publication-title: Mater. Sci. Eng. R Rep. – volume: 318 year: 2020 ident: bib126 article-title: α-Fe publication-title: Sens. Actuators B Chem. – volume: 9 start-page: 2181 year: 2007 end-page: 2196 ident: bib42 article-title: Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition publication-title: Phys. Chem. Chem. Phys. – volume: 283 start-page: 399 year: 2019 end-page: 406 ident: bib112 article-title: Investigation of the H publication-title: Sens. Actuators B Chem. – volume: 246 start-page: 243 year: 2017 end-page: 251 ident: bib20 publication-title: Sens. Actuators B Chem. – volume: 123 year: 2021 ident: bib80 article-title: 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature publication-title: Mater. Sci. Semicond. Process. – volume: 40 start-page: 409 year: 2014 end-page: 415 ident: bib102 article-title: Nanostructured TiO publication-title: Ceram. Int. – volume: 160 start-page: 580 year: 2011 end-page: 591 ident: bib60 article-title: Semiconducting metal oxides as sensors for environmentally hazardous gases publication-title: Sens. Actuators B Chem. – volume: 164 start-page: 63 year: 2016 end-page: 70 ident: bib99 article-title: Influence of CuO nanostructures morphology on hydrogen gas sensing performances publication-title: Microelectron. Eng. – volume: 10 start-page: 1328 year: 2019 ident: bib54 article-title: Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air publication-title: Nat. Commun. – volume: 528 start-page: 109 year: 2012 end-page: 114 ident: bib15 article-title: Synthesis of ZnO nanorods by spray pyrolysis for H publication-title: J. Alloy. Compd. – volume: 19 start-page: 2855 year: 2019 end-page: 2862 ident: bib38 article-title: Liquefied petroleum gas sensing properties of ZnO/PPy/PbS QDs nanocomposite prepared by self-assembly combining with SILAR method publication-title: IEEE Sens. J. – volume: 10 start-page: 5891 year: 2016 end-page: 5899 ident: bib57 article-title: Mesoporous WO publication-title: ACS Nano – volume: 256 start-page: 962 year: 2018 end-page: 967 ident: bib104 article-title: Characteristics of a Pt/NiO thin film-based ammonia gas sensor publication-title: Sens. Actuators B Chem. – volume: 332 year: 2021 ident: bib68 article-title: Synergistic effects of SnO publication-title: Sens. Actuators B Chem. – volume: 255 start-page: 3275 year: 2018 end-page: 3283 ident: bib130 article-title: Fe2O3 nanoporous network fabricated from Fe publication-title: Sens. Actuators B Chem. – volume: 105 start-page: 16 year: 2016 end-page: 24 ident: bib82 article-title: Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures publication-title: Mater. Des. – volume: 269 year: 2021 ident: bib90 article-title: Effect of heat treatment on WO3 nanostructures based NO publication-title: Mater. Chem. Phys. – volume: 348 year: 2021 ident: bib62 article-title: H publication-title: Sens. Actuators B Chem. – volume: 44 start-page: 16773 year: 2018 end-page: 16780 ident: bib113 article-title: Facile fabrication and superior gas sensing properties of spongelike Co-doped ZnO microspheres for ethanol sensors publication-title: Ceram. Int. – volume: 553 start-page: 151 year: 2019 end-page: 160 ident: bib30 publication-title: Phys. B Condens. Matter – volume: 9 start-page: 16515 year: 2019 end-page: 16524 ident: bib33 publication-title: RSC Adv. – volume: 287 start-page: 191 year: 2019 end-page: 198 ident: bib71 publication-title: Sens. Actuators B Chem. – volume: 35 start-page: 649 year: 2009 end-page: 652 ident: bib83 article-title: Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction publication-title: Ceram. Int. – volume: 362 start-page: 78 year: 2019 end-page: 83 ident: bib19 publication-title: Surf. Coat. Technol. – start-page: 235 year: 2020 end-page: 262 ident: bib17 article-title: Comprehensive Analytical Chemistry – volume: 156 start-page: 943 year: 2011 end-page: 948 ident: bib32 article-title: Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis publication-title: Sens. Actuators B Chem. – volume: 3 start-page: 31 year: 2010 end-page: 52 ident: bib53 publication-title: Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures – volume: 245 start-page: 407 year: 2005 end-page: 413 ident: bib43 article-title: Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect publication-title: Appl. Surf. Sci. – volume: 139 start-page: 1 year: 2007 end-page: 23 ident: bib51 article-title: Metal oxides for solid-state gas sensors: what determines our choice? publication-title: Mater. Sci. Eng. B – volume: 46 start-page: 1609 year: 2020 end-page: 1614 ident: bib136 article-title: Enhanced hydrogen gas sensing properties of Pd-doped SnO publication-title: Ceram. Int – volume: 192 start-page: 607 year: 2014 end-page: 627 ident: bib11 article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview publication-title: Sens. Actuators B Chem. – volume: 204 start-page: 250 year: 2014 end-page: 272 ident: bib5 article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review publication-title: Sens. Actuators B Chem. – volume: 7 start-page: 801 year: 2017 end-page: 806 ident: bib78 article-title: Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques publication-title: Results Phys. – volume: 191 start-page: 41 year: 2015 end-page: 50 ident: bib79 article-title: A highly selective and wide range ammonia sensor—nanostructured ZnO: Co thin film publication-title: Mater. Sci. Eng. B – volume: 115 start-page: 7944 year: 2015 end-page: 8000 ident: bib14 article-title: Recent progress on the development of chemosensors for gases publication-title: Chem. Rev. – volume: 310 year: 2020 ident: bib135 article-title: Enhanced acetone-sensing properties to ppb detection level using Au/Pddoped ZnO nanorod publication-title: Sens. Actuators B Chem. – volume: 241 start-page: 806 year: 2017 end-page: 813 ident: bib91 publication-title: Sens. Actuators B Chem. – volume: 226 start-page: 99 year: 2017 end-page: 106 ident: bib13 article-title: Preparation and characterization of nanostructured Gd doped cerium oxide thin films by pulsed laser deposition for acetone sensor application publication-title: Mater. Sci. Eng. B – volume: 250 start-page: 679 year: 2017 end-page: 685 ident: bib18 publication-title: Sens. Actuators B Chem. – volume: 10 start-page: 195 year: 2015 end-page: 204 ident: bib74 article-title: Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing publication-title: Procedia Mater. Sci. – volume: 14 year: 2015 ident: bib10 article-title: Polyaniline/SnO publication-title: Int. J. Nanosci. – volume: 782 start-page: 1121 year: 2019 end-page: 1126 ident: bib28 article-title: Room temperature photoelectric NO publication-title: J. Alloy. Compd. – volume: 299 year: 2019 ident: bib86 article-title: Electrospun Ca-doped In publication-title: Sens. Actuators B Chem. – volume: 43 start-page: 6765 year: 2017 end-page: 6770 ident: bib132 article-title: Synthesis, characterization and acetone gas sensing applications of Ag doped ZnO nanoneedles publication-title: Ceram. Int. – volume: 74 start-page: 2781 year: 2002 end-page: 2800 ident: bib55 article-title: Electrochemical sensors publication-title: Anal. Chem. – volume: 10 start-page: 2088 year: 2010 end-page: 2106 ident: bib23 article-title: Metal oxide gas sensors: sensitivity and influencing factors publication-title: Sensors – volume: 11 start-page: 22664 year: 2019 end-page: 22684 ident: bib24 article-title: Gas sensing mechanisms of metal oxide semiconductors: a focus review publication-title: Nanoscale – volume: 43 start-page: 14200 year: 2017 end-page: 14209 ident: bib58 article-title: A fast response and recovery H publication-title: Ceram. Int. – start-page: 9 year: 2020 end-page: 30 ident: bib35 article-title: Chapter 2 - Methods for design and fabrication of nanosensors: the case of ZnO-based nanosensor publication-title: Nanosensors for Smart Cities Micro and Nano Technologies – volume: 6 start-page: 464 year: 2018 end-page: 472 ident: bib46 article-title: Stacked indium oxide/zinc oxide heterostructures as semiconductors in thin film transistor devices: a case study using atomic layer deposition publication-title: J. Mater. Chem. C – volume: 10 start-page: 2088 year: 2010 end-page: 2106 ident: bib65 article-title: Metal oxide gas sensors: sensitivity and influencing factors publication-title: Sensors – volume: 173 start-page: 52 year: 2012 end-page: 57 ident: bib85 article-title: Hydrothermal synthesis of 3D urchin-like -Fe publication-title: Sens. Actuators B Chem. – volume: 2 start-page: 1573 year: 2010 end-page: 1587 ident: bib7 article-title: Solution synthesis of one-dimensional ZnO nanomaterials and their applications publication-title: Nanoscale – volume: 60 start-page: 1 year: 2017 end-page: 24 ident: bib69 article-title: Strategies for designing metal oxide nanostructures publication-title: Sci. China Mater. – volume: 103 year: 2008 ident: bib95 article-title: Room-temperature high-sensitivity H publication-title: J. Appl. Phys. – volume: 190 start-page: 32 year: 2014 end-page: 39 ident: bib111 article-title: One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO publication-title: Sens. Actuators B Chem. – volume: 40 start-page: 1061 year: 2017 end-page: 1068 ident: bib94 article-title: Synthesis of ZnO comb-like nanostructures for high sensitivity H publication-title: Bull. Mater. Sci. – volume: 1039 start-page: 1 year: 2018 end-page: 23 ident: bib16 article-title: “Metal oxide-based heterostructures for gas sensors”- A review publication-title: Anal. Chim. Acta – volume: 198 start-page: 62 year: 2014 end-page: 69 ident: bib110 article-title: Al-doping induced formation of oxygen-vacancy for enhancing gas-sensing properties of SnO publication-title: Sens. Actuators B Chem. – volume: 535 start-page: 458 year: 2019 end-page: 468 ident: bib72 article-title: Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO publication-title: J. Colloid Interface Sci. – volume: 223 start-page: 429 year: 2016 end-page: 439 ident: bib120 article-title: Enhanced NO publication-title: Sens. Actuators B Chem. – volume: 61 start-page: 4769 year: 2007 end-page: 4772 ident: bib26 article-title: Hydrothermal synthesis of surface-modified iron oxide nanoparticles publication-title: Mater. Lett. – volume: 267 start-page: 242 year: 2017 end-page: 261 ident: bib27 article-title: Room-temperature gas sensing of ZnO-based gas sensor: a review publication-title: Sens. Actuators A Chem. – volume: 301 year: 2019 ident: bib109 article-title: Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review publication-title: Sens. Actuators B Chem. – volume: 244 start-page: 466 year: 2017 end-page: 474 ident: bib77 article-title: Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO publication-title: Sens. Actuators B Chem. – volume: 12 start-page: 9635 year: 2012 end-page: 9665 ident: bib52 article-title: A survey on gas sensing technology publication-title: Sensors – volume: 654 start-page: 202 year: 2016 end-page: 208 ident: bib105 article-title: Enhanced ammonia sensing characteristics of Cr doped CuO nanoboats publication-title: J. Alloy. Compd. – volume: 149 start-page: 12 year: 2008 ident: bib115 article-title: Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor publication-title: Mater. Sci. Eng. B – start-page: 3096 year: 2020 ident: bib76 article-title: Nanostructured metal oxide-based acetone gas sensors. A review publication-title: Sensors – volume: 109 start-page: 253 year: 2019 end-page: 260 ident: bib97 article-title: Morphology controllable synthesis of hierarchical WO publication-title: Phys. E Low. Dimens. Syst. Nanostruct. – volume: 327 year: 2021 ident: bib118 article-title: Y-doped ZnO films for acetic acid sensing down to ppb at high humidity publication-title: Sens. Actuators B Chem. – volume: 868 year: 2021 ident: bib137 article-title: Formaldehyde gas sensors based on SnO publication-title: J. Alloy. Compd. – volume: 478 start-page: 594 year: 2009 end-page: 598 ident: bib44 article-title: Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition publication-title: J. Alloy. Compd. – volume: 7 start-page: 10078 year: 2015 end-page: 10084 ident: bib98 article-title: Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor publication-title: Nanoscale – volume: 12 start-page: 2598 year: 2012 end-page: 2609 ident: bib128 article-title: Investigation of the carbon monoxide gas sensing characteristics of tin oxide mixed cerium oxide thin films publication-title: Sensors – volume: 17 start-page: 2779 year: 2017 ident: bib64 article-title: The morphologies of the semiconductor oxides and their gas-sensing properties publication-title: Sensors – volume: 4 start-page: 18 year: 2014 ident: bib9 article-title: Effect of MgO and V publication-title: Chem. Sensors – volume: 262 start-page: 655 year: 2018 end-page: 663 ident: bib81 article-title: Highly sensitive NO publication-title: Sens. Actuators B Chem. – volume: 135 start-page: 552 year: 2007 end-page: 557 ident: bib36 article-title: Characterization of Al publication-title: Sens. Actuators A Phys. – volume: 313 year: 2020 ident: bib116 article-title: Acetone sensors with high stability to humidity changes based on Ru-doped NiO flower-like microspheres publication-title: Sens. Actuators B Chem. – volume: 6 start-page: 46 year: 2020 end-page: 62 ident: bib22 article-title: Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review publication-title: Energy Rep. – volume: 4 start-page: 2594 year: 2021 end-page: 2605 ident: bib131 article-title: MoS publication-title: ACS Appl. Nano Mater. – volume: 252 start-page: 268 year: 2017 end-page: 276 ident: bib121 article-title: Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode publication-title: Sens. Actuators B Chem. – volume: 12 start-page: 132 year: 2017 ident: bib73 article-title: Nanopowder metal oxide for photoluminescent gas sensing publication-title: Nanoscale Res. Lett. – volume: 427 start-page: 281 year: 2018 end-page: 287 ident: bib88 article-title: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties publication-title: Appl. Surf. Sci. – volume: 15 start-page: 3711 year: 2015 end-page: 3715 ident: bib106 article-title: On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor publication-title: IEEE Sens. J. – volume: 344 year: 2021 ident: bib119 article-title: Humidity-resistant gas sensors based on SnO publication-title: Sens. Actuators B Chem. – volume: 16 start-page: 239 year: 2020 end-page: 246 ident: bib39 article-title: Copper oxide thin films synthesized by SILAR: role of varying annealing temperature publication-title: Electron. Mater. Lett. – volume: 7 start-page: 37720 year: 2017 end-page: 37728 ident: bib103 publication-title: RSC Adv. – volume: 49 start-page: 5070 year: 2020 end-page: 5076 ident: bib70 article-title: Synthesis of CuO nanoflowers and their application towards inflammable gas sensing publication-title: J. Electron. Mater. – volume: 286 start-page: 624 year: 2019 end-page: 640 ident: bib8 article-title: Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: a review publication-title: Sens. Actuators B Chem. – volume: 3 start-page: 29 year: 2018 end-page: 36 ident: bib34 article-title: The effect of strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method publication-title: J. Sci. -Adv. Mater. Dev. – volume: 48 start-page: 3015 year: 2019 end-page: 3072 ident: bib37 article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion publication-title: Chem. Soc. Rev. – volume: 171 start-page: 146 year: 2016 end-page: 149 ident: bib93 article-title: Solvothermal synthesis of WO publication-title: Mater. Lett. – volume: 327 year: 2021 ident: 10.1016/j.sna.2022.113578_bib118 article-title: Y-doped ZnO films for acetic acid sensing down to ppb at high humidity publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128843 – volume: 4 start-page: 2594 issue: 3 year: 2021 ident: 10.1016/j.sna.2022.113578_bib131 article-title: MoS2/WO3 nanosheets for detection of ammonia publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c03239 – volume: 252 start-page: 268 year: 2017 ident: 10.1016/j.sna.2022.113578_bib121 article-title: Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.05.172 – volume: 123 issue: 1 year: 2021 ident: 10.1016/j.sna.2022.113578_bib80 article-title: 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature publication-title: Mater. Sci. Semicond. Process. – volume: 115 start-page: 7944 year: 2015 ident: 10.1016/j.sna.2022.113578_bib14 article-title: Recent progress on the development of chemosensors for gases publication-title: Chem. Rev. doi: 10.1021/cr500567r – volume: 535 start-page: 458 year: 2019 ident: 10.1016/j.sna.2022.113578_bib72 article-title: Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.10.010 – volume: 105 start-page: 16 issue: 5 year: 2016 ident: 10.1016/j.sna.2022.113578_bib82 article-title: Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.05.006 – volume: 12 start-page: 19755 issue: 17 year: 2020 ident: 10.1016/j.sna.2022.113578_bib125 article-title: Observation of switchable dual-conductive channels and related nitric oxide gas-sensing properties in the N-rGO/ZnO heterogeneous structure publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20776 – volume: 9 start-page: 7459 year: 2019 ident: 10.1016/j.sna.2022.113578_bib49 article-title: NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition publication-title: Sci. Rep. doi: 10.1038/s41598-019-43752-z – volume: 12 start-page: 132 year: 2017 ident: 10.1016/j.sna.2022.113578_bib73 article-title: Nanopowder metal oxide for photoluminescent gas sensing publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-1891-5 – volume: 8 start-page: 2805 year: 2016 ident: 10.1016/j.sna.2022.113578_bib127 article-title: Synergistic effects of a combination of cr2o3-functionalization and UV-irradiation techniques on the ethanol gas sensing performance of ZnO nanorod gas sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11485 – volume: 12 start-page: 2598 issue: 3 year: 2012 ident: 10.1016/j.sna.2022.113578_bib128 article-title: Investigation of the carbon monoxide gas sensing characteristics of tin oxide mixed cerium oxide thin films publication-title: Sensors doi: 10.3390/s120302598 – volume: 113 start-page: 320 year: 2006 ident: 10.1016/j.sna.2022.113578_bib96 article-title: Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods publication-title: Sens. Actuators B doi: 10.1016/j.snb.2005.03.011 – volume: 447 start-page: 173 year: 2018 ident: 10.1016/j.sna.2022.113578_bib84 article-title: Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.217 – volume: 348 year: 2021 ident: 10.1016/j.sna.2022.113578_bib62 article-title: H2 detection mechanism in chemoresistive sensor based on low-cost synthesized WO3 nanorods publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130704 – volume: 185 start-page: 411 year: 2013 ident: 10.1016/j.sna.2022.113578_bib12 article-title: Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.05.030 – volume: 553 start-page: 151 year: 2019 ident: 10.1016/j.sna.2022.113578_bib30 publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2018.10.034 – volume: 223 start-page: 429 year: 2016 ident: 10.1016/j.sna.2022.113578_bib120 article-title: Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.09.075 – volume: 310 year: 2020 ident: 10.1016/j.sna.2022.113578_bib135 article-title: Enhanced acetone-sensing properties to ppb detection level using Au/Pddoped ZnO nanorod publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.127129 – volume: 682 start-page: 140 year: 2017 ident: 10.1016/j.sna.2022.113578_bib31 article-title: Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.06.008 – volume: 204 start-page: 250 year: 2014 ident: 10.1016/j.sna.2022.113578_bib5 article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.07.074 – volume: 286 start-page: 624 year: 2019 ident: 10.1016/j.sna.2022.113578_bib8 article-title: Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: a review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.01.049 – volume: 244 start-page: 466 year: 2017 ident: 10.1016/j.sna.2022.113578_bib77 article-title: Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.01.015 – volume: 5 start-page: 40 year: 2017 ident: 10.1016/j.sna.2022.113578_bib48 article-title: Low-temperature synthesis of graphene by chemical vapor deposition and its applications publication-title: FlatChem doi: 10.1016/j.flatc.2017.07.002 – volume: 255 start-page: 3275 year: 2018 ident: 10.1016/j.sna.2022.113578_bib130 article-title: Fe2O3 nanoporous network fabricated from Fe3O4/reduced grapheme oxide for high-performance ethanol gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.09.154 – volume: 301 year: 2019 ident: 10.1016/j.sna.2022.113578_bib109 article-title: Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.126845 – volume: 55 start-page: 1 issue: 2010 year: 2010 ident: 10.1016/j.sna.2022.113578_bib4 article-title: Recent advances in wide bandgap semiconductor biological and gas sensors publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2009.08.003 – volume: 787 start-page: 233 year: 2013 ident: 10.1016/j.sna.2022.113578_bib101 article-title: A new sensor for ammonia based on cyanidin-sensitized titanium dioxide film operating at room temperature publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2013.05.057 – volume: 6 start-page: 464 year: 2018 ident: 10.1016/j.sna.2022.113578_bib46 article-title: Stacked indium oxide/zinc oxide heterostructures as semiconductors in thin film transistor devices: a case study using atomic layer deposition publication-title: J. Mater. Chem. C doi: 10.1039/C7TC03724D – start-page: 3096 year: 2020 ident: 10.1016/j.sna.2022.113578_bib76 article-title: Nanostructured metal oxide-based acetone gas sensors. A review publication-title: Sensors doi: 10.3390/s20113096 – start-page: 9 year: 2020 ident: 10.1016/j.sna.2022.113578_bib35 article-title: Chapter 2 - Methods for design and fabrication of nanosensors: the case of ZnO-based nanosensor – volume: 116 start-page: 15682 issue: 29 year: 2012 ident: 10.1016/j.sna.2022.113578_bib56 article-title: CuO/Nzo heterostructured nanorods: photochemical synthesis and the mechanism of H2S gas sensing publication-title: J. Phys. Chem. – volume: 19 start-page: 2855 issue: 8 year: 2019 ident: 10.1016/j.sna.2022.113578_bib38 article-title: Liquefied petroleum gas sensing properties of ZnO/PPy/PbS QDs nanocomposite prepared by self-assembly combining with SILAR method publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2890074 – volume: 135 start-page: 552 issue: 2 year: 2007 ident: 10.1016/j.sna.2022.113578_bib36 article-title: Characterization of Al2O3 thin films prepared by spray pyrolysis method for humidity sensor publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2006.10.004 – volume: 214 start-page: 297 year: 2018 ident: 10.1016/j.sna.2022.113578_bib114 article-title: Enhanced H2S sensing properties of Gallium doped ZnO nanocrystalline films as investigated by DC conductivity and impedance spectroscopy publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.04.104 – volume: 252 start-page: 116 year: 2017 ident: 10.1016/j.sna.2022.113578_bib92 article-title: Highly sensitive NO2 detection on ppb level by devices based on Pd-loaded In2O3 hierarchical microstructures publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.05.113 – volume: 20 start-page: 6694 year: 2020 ident: 10.1016/j.sna.2022.113578_bib21 article-title: Semiconductor gas sensors: materials, technology, design, and application publication-title: Sensors doi: 10.3390/s20226694 – volume: 13 start-page: 2731 year: 2020 ident: 10.1016/j.sna.2022.113578_bib41 article-title: Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition Their Application to Nanogenerators publication-title: Energies doi: 10.3390/en13112731 – volume: 7 start-page: 801 year: 2017 ident: 10.1016/j.sna.2022.113578_bib78 article-title: Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques publication-title: Results Phys. doi: 10.1016/j.rinp.2017.02.008 – volume: 11 start-page: 22664 year: 2019 ident: 10.1016/j.sna.2022.113578_bib24 article-title: Gas sensing mechanisms of metal oxide semiconductors: a focus review publication-title: Nanoscale doi: 10.1039/C9NR07699A – volume: 164 start-page: 63 year: 2016 ident: 10.1016/j.sna.2022.113578_bib99 article-title: Influence of CuO nanostructures morphology on hydrogen gas sensing performances publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2016.07.008 – volume: 344 year: 2021 ident: 10.1016/j.sna.2022.113578_bib119 article-title: Humidity-resistant gas sensors based on SnO2 nanowires coated with a porous alumina nanomembrane by molecular layer deposition publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130302 – volume: 434 start-page: 1048 year: 2018 ident: 10.1016/j.sna.2022.113578_bib129 article-title: Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene Oxide publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.11.047 – volume: 43 start-page: 6765 issue: 9 year: 2017 ident: 10.1016/j.sna.2022.113578_bib132 article-title: Synthesis, characterization and acetone gas sensing applications of Ag doped ZnO nanoneedles publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.02.088 – volume: 44 start-page: 16773 year: 2018 ident: 10.1016/j.sna.2022.113578_bib113 article-title: Facile fabrication and superior gas sensing properties of spongelike Co-doped ZnO microspheres for ethanol sensors publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.06.110 – volume: 6 start-page: 470 year: 2019 ident: 10.1016/j.sna.2022.113578_bib75 publication-title: Mater. Horiz. doi: 10.1039/C8MH01365A – volume: 36 year: 2018 ident: 10.1016/j.sna.2022.113578_bib45 article-title: Review Article: Atomic layer deposition for oxide semiconductor thin film transistors: advances in research and development publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.5047237 – volume: 16 start-page: 239 year: 2020 ident: 10.1016/j.sna.2022.113578_bib39 article-title: Copper oxide thin films synthesized by SILAR: role of varying annealing temperature publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-020-00205-4 – volume: 332 year: 2021 ident: 10.1016/j.sna.2022.113578_bib68 article-title: Synergistic effects of SnO2 and Au nanoparticles decorated on WS2 nanosheets for flexible, room-temperature CO gas sensing publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.129493 – volume: 782 start-page: 1121 year: 2019 ident: 10.1016/j.sna.2022.113578_bib28 article-title: Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.12.180 – volume: 29 start-page: 18380 year: 2018 ident: 10.1016/j.sna.2022.113578_bib100 article-title: A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature publication-title: J. Mater. Sci. Mater. Electron doi: 10.1007/s10854-018-9952-9 – volume: 267 start-page: 242 year: 2017 ident: 10.1016/j.sna.2022.113578_bib27 article-title: Room-temperature gas sensing of ZnO-based gas sensor: a review publication-title: Sens. Actuators A Chem. doi: 10.1016/j.sna.2017.10.021 – volume: 14 issue: 4 year: 2015 ident: 10.1016/j.sna.2022.113578_bib10 article-title: Polyaniline/SnO2 nanocomposite sensor for NO2 gas sensing at low operating temperature publication-title: Int. J. Nanosci. doi: 10.1142/S0219581X15500118 – volume: 171 start-page: 146 year: 2016 ident: 10.1016/j.sna.2022.113578_bib93 article-title: Solvothermal synthesis of WO3 nanocrystals with nanosheet and nanorod morphologies and the gas-sensing properties publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.02.040 – volume: 229 start-page: 206 year: 2018 ident: 10.1016/j.sna.2022.113578_bib6 article-title: Semiconductor metal oxide gas sensors: a review publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2017.12.036 – volume: 331 year: 2021 ident: 10.1016/j.sna.2022.113578_bib67 article-title: 2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.129371 – volume: 240 start-page: 664 year: 2017 ident: 10.1016/j.sna.2022.113578_bib134 article-title: Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for highly sensitive hydrogen detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.09.024 – volume: 10 start-page: 5891 issue: 6 year: 2016 ident: 10.1016/j.sna.2022.113578_bib57 article-title: Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath publication-title: ACS Nano doi: 10.1021/acsnano.6b01196 – volume: 283 start-page: 399 year: 2019 ident: 10.1016/j.sna.2022.113578_bib112 article-title: Investigation of the H2 sensing properties of multilayer mesoporous pure and Pd-doped SnO2 thin film publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.12.051 – volume: 84 start-page: 1154 year: 2010 ident: 10.1016/j.sna.2022.113578_bib3 article-title: Synthesis and characterization of hetero epitaxial GaN films on Si(111) publication-title: Vacuum doi: 10.1016/j.vacuum.2010.01.054 – volume: 245 start-page: 407 year: 2005 ident: 10.1016/j.sna.2022.113578_bib43 article-title: Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.10.036 – volume: 7 start-page: 37720 year: 2017 ident: 10.1016/j.sna.2022.113578_bib103 publication-title: RSC Adv. doi: 10.1039/C7RA05217K – volume: 256 start-page: 962 year: 2018 ident: 10.1016/j.sna.2022.113578_bib104 article-title: Characteristics of a Pt/NiO thin film-based ammonia gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.10.032 – volume: 198 start-page: 62 year: 2014 ident: 10.1016/j.sna.2022.113578_bib110 article-title: Al-doping induced formation of oxygen-vacancy for enhancing gas-sensing properties of SnO2 NTs by electrospinning publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.03.012 – volume: 6 start-page: 46 year: 2020 ident: 10.1016/j.sna.2022.113578_bib22 article-title: Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review publication-title: Energy Rep. doi: 10.1016/j.egyr.2019.08.070 – volume: 7 start-page: 12206 year: 2017 ident: 10.1016/j.sna.2022.113578_bib61 article-title: Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electro hydrodynamic nanowire template for enhanced gas-sensing properties publication-title: Sci. Rep. doi: 10.1038/s41598-017-12553-7 – volume: 173 start-page: 52 year: 2012 ident: 10.1016/j.sna.2022.113578_bib85 article-title: Hydrothermal synthesis of 3D urchin-like -Fe2O3 nanostructure for gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.05.057 – volume: 43 start-page: 14200 issue: 16 year: 2017 ident: 10.1016/j.sna.2022.113578_bib58 article-title: A fast response and recovery H2S gas sensor based on free-standing TiO2 nanotube array films prepared by one-step anodization method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.07.165 – volume: 20 start-page: 465 issue: 1 year: 2019 ident: 10.1016/j.sna.2022.113578_bib47 article-title: New development of atomic layer deposition: processes, methods and applications publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2019.1599694 – volume: 12 start-page: 9635 year: 2012 ident: 10.1016/j.sna.2022.113578_bib52 article-title: A survey on gas sensing technology publication-title: Sensors doi: 10.3390/s120709635 – volume: 160 start-page: 580 issue: 1 year: 2011 ident: 10.1016/j.sna.2022.113578_bib60 article-title: Semiconducting metal oxides as sensors for environmentally hazardous gases publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.08.032 – volume: 3 start-page: 29 year: 2018 ident: 10.1016/j.sna.2022.113578_bib34 article-title: The effect of strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method publication-title: J. Sci. -Adv. Mater. Dev. – volume: 44 start-page: 4392 issue: 4 year: 2018 ident: 10.1016/j.sna.2022.113578_bib89 article-title: Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.12.038 – volume: 7 start-page: 10078 year: 2015 ident: 10.1016/j.sna.2022.113578_bib98 article-title: Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor publication-title: Nanoscale doi: 10.1039/C5NR01924A – volume: 1039 start-page: 1 year: 2018 ident: 10.1016/j.sna.2022.113578_bib16 article-title: “Metal oxide-based heterostructures for gas sensors”- A review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.09.020 – volume: 571 year: 2022 ident: 10.1016/j.sna.2022.113578_bib107 article-title: Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151262 – volume: 156 start-page: 943 issue: 2 year: 2011 ident: 10.1016/j.sna.2022.113578_bib32 article-title: Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.03.010 – volume: 109 start-page: 253 year: 2019 ident: 10.1016/j.sna.2022.113578_bib97 article-title: Morphology controllable synthesis of hierarchical WO3 nanostructures and C2H2 sensing properties publication-title: Phys. E Low. Dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2019.01.006 – volume: 49 start-page: 5070 issue: 8 year: 2020 ident: 10.1016/j.sna.2022.113578_bib70 article-title: Synthesis of CuO nanoflowers and their application towards inflammable gas sensing publication-title: J. Electron. Mater. doi: 10.1007/s11664-020-08246-z – volume: 2 start-page: 1573 year: 2010 ident: 10.1016/j.sna.2022.113578_bib7 article-title: Solution synthesis of one-dimensional ZnO nanomaterials and their applications publication-title: Nanoscale doi: 10.1039/c0nr00047g – volume: 42 start-page: 15881 year: 2016 ident: 10.1016/j.sna.2022.113578_bib108 article-title: Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun, nano fibers publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.07.060 – volume: 10 start-page: 1328 year: 2019 ident: 10.1016/j.sna.2022.113578_bib54 article-title: Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air publication-title: Nat. Commun. doi: 10.1038/s41467-019-09157-2 – volume: 250 start-page: 679 year: 2017 ident: 10.1016/j.sna.2022.113578_bib18 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.05.064 – volume: 241 start-page: 806 issue: 31 year: 2017 ident: 10.1016/j.sna.2022.113578_bib91 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.09.145 – volume: 299 year: 2019 ident: 10.1016/j.sna.2022.113578_bib86 article-title: Electrospun Ca-doped In2O3 nanotubes for ethanol detection with enhanced sensitivity and selectivity publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.126946 – volume: 60 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.sna.2022.113578_bib69 article-title: Strategies for designing metal oxide nanostructures publication-title: Sci. China Mater. doi: 10.1007/s40843-016-5117-0 – volume: 4 start-page: 18 year: 2014 ident: 10.1016/j.sna.2022.113578_bib9 article-title: Effect of MgO and V2O5 catalyst on the sensing behaviour of tin oxide thin film for SO2 Gas publication-title: Chem. Sensors – volume: 139 start-page: 1 year: 2007 ident: 10.1016/j.sna.2022.113578_bib51 article-title: Metal oxides for solid-state gas sensors: what determines our choice? publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2007.01.044 – volume: 251 start-page: 57 year: 2017 ident: 10.1016/j.sna.2022.113578_bib66 article-title: Hydrogen sensors based on 2D WO3 nanosheets prepared by Anodization publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.05.029 – volume: 478 start-page: 594 year: 2009 ident: 10.1016/j.sna.2022.113578_bib44 article-title: Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2008.11.095 – volume: 192 start-page: 607 year: 2014 ident: 10.1016/j.sna.2022.113578_bib11 article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.11.005 – volume: 9 start-page: 2181 year: 2007 ident: 10.1016/j.sna.2022.113578_bib42 article-title: Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b616684a – volume: 10 start-page: 2088 year: 2010 ident: 10.1016/j.sna.2022.113578_bib65 article-title: Metal oxide gas sensors: sensitivity and influencing factors publication-title: Sensors doi: 10.3390/s100302088 – volume: 35 start-page: 649 year: 2009 ident: 10.1016/j.sna.2022.113578_bib83 article-title: Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2008.01.028 – volume: 191 start-page: 41 year: 2015 ident: 10.1016/j.sna.2022.113578_bib79 article-title: A highly selective and wide range ammonia sensor—nanostructured ZnO: Co thin film publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2014.10.007 – volume: 18 start-page: 1 year: 2013 ident: 10.1016/j.sna.2022.113578_bib1 article-title: Hierarchically nanostructured materials for sustainable environmental applications publication-title: Front. Chem. – volume: 362 start-page: 78 year: 2019 ident: 10.1016/j.sna.2022.113578_bib19 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.01.100 – volume: 46 start-page: 1609 issue: 2 year: 2020 ident: 10.1016/j.sna.2022.113578_bib136 article-title: Enhanced hydrogen gas sensing properties of Pd-doped SnO2 nanofibres by Ar plasma treatment publication-title: Ceram. Int doi: 10.1016/j.ceramint.2019.09.132 – volume: 287 start-page: 191 year: 2019 ident: 10.1016/j.sna.2022.113578_bib71 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.01.146 – volume: 40 start-page: 409 year: 2014 ident: 10.1016/j.sna.2022.113578_bib102 article-title: Nanostructured TiO2 films: enhanced NH3 detection at room temperature publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.06.016 – volume: 10 start-page: 195 year: 2015 ident: 10.1016/j.sna.2022.113578_bib74 article-title: Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing publication-title: Procedia Mater. Sci. doi: 10.1016/j.mspro.2015.06.041 – volume: 10 start-page: 2088 year: 2010 ident: 10.1016/j.sna.2022.113578_bib23 article-title: Metal oxide gas sensors: sensitivity and influencing factors publication-title: Sensors doi: 10.3390/s100302088 – volume: 654 start-page: 202 year: 2016 ident: 10.1016/j.sna.2022.113578_bib105 article-title: Enhanced ammonia sensing characteristics of Cr doped CuO nanoboats publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.09.046 – volume: 262 start-page: 655 year: 2018 ident: 10.1016/j.sna.2022.113578_bib81 article-title: Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3nano bricks at low temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.02.052 – volume: 9 start-page: 16515 year: 2019 ident: 10.1016/j.sna.2022.113578_bib33 publication-title: RSC Adv. doi: 10.1039/C9RA02356A – volume: 528 start-page: 109 year: 2012 ident: 10.1016/j.sna.2022.113578_bib15 article-title: Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2012.03.020 – volume: 46 start-page: 4017 issue: 7 year: 2017 ident: 10.1016/j.sna.2022.113578_bib40 article-title: Hydrogen gas sensing characteristics of nanostructured NiO thin films synthesized by SILAR method publication-title: J. Electron. Mater. doi: 10.1007/s11664-017-5400-5 – volume: 3 start-page: 31 year: 2010 ident: 10.1016/j.sna.2022.113578_bib53 – volume: 256 start-page: 656 year: 2018 ident: 10.1016/j.sna.2022.113578_bib133 article-title: Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.09.206 – volume: 103 year: 2008 ident: 10.1016/j.sna.2022.113578_bib95 article-title: Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance publication-title: J. Appl. Phys. doi: 10.1063/1.2924430 – volume: 48 start-page: 3015 year: 2019 ident: 10.1016/j.sna.2022.113578_bib37 article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00904J – volume: 47 start-page: 358 year: 2012 ident: 10.1016/j.sna.2022.113578_bib87 article-title: Synthesis of WO3 nanorod based thin films for ethanol and H2 sensing publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.09.157 – volume: 74 start-page: 2781 year: 2002 ident: 10.1016/j.sna.2022.113578_bib55 article-title: Electrochemical sensors publication-title: Anal. Chem. doi: 10.1021/ac0202278 – start-page: 235 year: 2020 ident: 10.1016/j.sna.2022.113578_bib17 doi: 10.1016/bs.coac.2020.08.009 – volume: 301 year: 2019 ident: 10.1016/j.sna.2022.113578_bib117 article-title: Gas sensitive ZnO structures with reduced humidity-interference publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.127054 – volume: 61 start-page: 1 year: 2008 ident: 10.1016/j.sna.2022.113578_bib59 article-title: The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2008.02.001 – volume: 17 start-page: 2779 issue: 12 year: 2017 ident: 10.1016/j.sna.2022.113578_bib64 article-title: The morphologies of the semiconductor oxides and their gas-sensing properties publication-title: Sensors doi: 10.3390/s17122779 – volume: 40 start-page: 1061 year: 2017 ident: 10.1016/j.sna.2022.113578_bib94 article-title: Synthesis of ZnO comb-like nanostructures for high sensitivity H2S gas sensor fabrication at room temperature publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-017-1461-6 – volume: 190 start-page: 32 year: 2014 ident: 10.1016/j.sna.2022.113578_bib111 article-title: One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.08.045 – volume: 318 year: 2020 ident: 10.1016/j.sna.2022.113578_bib126 article-title: α-Fe2O3/NiO heterojunction nanorods with enhanced gas sensing performance for acetone publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128191 – volume: 269 year: 2021 ident: 10.1016/j.sna.2022.113578_bib90 article-title: Effect of heat treatment on WO3 nanostructures based NO2 gas sensor low-cost device publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.124731 – volume: 15 start-page: 3711 issue: 7 year: 2015 ident: 10.1016/j.sna.2022.113578_bib106 article-title: On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2391286 – volume: 246 start-page: 243 year: 2017 ident: 10.1016/j.sna.2022.113578_bib20 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.02.063 – volume: 788 start-page: 36 year: 2019 ident: 10.1016/j.sna.2022.113578_bib124 article-title: Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/room temperature publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.01.349 – volume: 55 start-page: 7702 year: 2020 ident: 10.1016/j.sna.2022.113578_bib123 article-title: Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04569-8 – volume: 569 start-page: 358 year: 2020 ident: 10.1016/j.sna.2022.113578_bib138 article-title: Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: synthesis, characterization, and application for the detection of an exhaled diabetes biomarker publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.02.081 – volume: 13 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.sna.2022.113578_bib2 article-title: Enhanced room temperature gas sensing properties of low temperature solution processed ZnO/CuO heterojunction publication-title: BMC Chem. – volume: 427 start-page: 281 year: 2018 ident: 10.1016/j.sna.2022.113578_bib88 article-title: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.229 – volume: 61 start-page: 4769 year: 2007 ident: 10.1016/j.sna.2022.113578_bib26 article-title: Hydrothermal synthesis of surface-modified iron oxide nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2007.03.024 – volume: 14 start-page: 1789 year: 2021 ident: 10.1016/j.sna.2022.113578_bib50 article-title: Synthesis of magnetic two-dimensional materials by chemical vapor deposition publication-title: Nano Res. doi: 10.1007/s12274-020-3020-5 – volume: 149 start-page: 12 year: 2008 ident: 10.1016/j.sna.2022.113578_bib115 article-title: Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2007.11.020 – volume: 27 start-page: 11541 year: 2020 ident: 10.1016/j.sna.2022.113578_bib29 article-title: Sono-coprecipitation synthesis of ZnO/CuO nanophotocatalyst for removal of parathion from wastewater publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-07680-0 – volume: 868 year: 2021 ident: 10.1016/j.sna.2022.113578_bib137 article-title: Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers publication-title: J. Alloy. Compd. – volume: 226 start-page: 99 year: 2017 ident: 10.1016/j.sna.2022.113578_bib13 article-title: Preparation and characterization of nanostructured Gd doped cerium oxide thin films by pulsed laser deposition for acetone sensor application publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2017.09.002 – volume: 280 start-page: 151 year: 2019 ident: 10.1016/j.sna.2022.113578_bib63 article-title: NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.10.063 – volume: 313 year: 2020 ident: 10.1016/j.sna.2022.113578_bib116 article-title: Acetone sensors with high stability to humidity changes based on Ru-doped NiO flower-like microspheres publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.127965 – volume: 55 start-page: 22 year: 2009 ident: 10.1016/j.sna.2022.113578_bib25 article-title: Synthesis, properties, and applications of magnetic iron oxide nanoparticles publication-title: Prog. Cryst. Growth Charact. Mater. doi: 10.1016/j.pcrysgrow.2008.08.003 – volume: 320 year: 2020 ident: 10.1016/j.sna.2022.113578_bib122 article-title: Structure and gas-sensing properties of SnO2-In2O3 nanocomposites synthesized by impregnation method publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128406 |
SSID | ssj0003377 |
Score | 2.702756 |
SecondaryResourceType | review_article |
Snippet | Nanostructured metal oxide semiconductor-based gas sensors possess extensive applications due to relatively inexpensive, lightweight, long-lasting, robust, and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113578 |
SubjectTerms | And response and recovery times Comminution Gas sensors Metal oxide semiconductors Metal oxides Nanomaterials Nanostructure Nanostructured materials Particle size R&D Recovery Research & development Semiconductors Sensitivity Sensors Thin films |
Title | Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review |
URI | https://dx.doi.org/10.1016/j.sna.2022.113578 https://www.proquest.com/docview/2685587312 |
Volume | 341 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwIYUmfsVhqyqqAqIDUKmbFScOFEFSJUVi4rfjy4OXUAfG2OcoOp_vzs7n7xA6Edrm8IyFjghjH45umCOFZ5wgsIupzMlLLr2biRhP2dWMz1po2NyFAVhl7fsrn15667qlX2uzv5jP-3eu3TowAmSHEKgEMH4y5oOVn71_wTwoLasvgrAD0s2fzRLjVaRAPUQIVDbhUGnt79j0y0uXoWe0hTbrnBEPqs_aRi2T7qCNb0yCu-jWesms4oJ9zU2MX4xNqnH2No8NLgD_nqVA7JrlDoStGD-EhW1PiywvzvEAA7A8N48VmB1X11n20HR0cT8cO3W5BCeihC8dGobEEONLoxOgXWfSyJhTY2iYeFxTaoCK1O4aZcIiTZlru4WwvaEbB1y7dB-10yw1BwhHdpuVEKEZ8UIWBVzqmEfCxFJozXmiO8htFKWimkscSlo8qwY09qSsbhXoVlW67aDTzyGLikhjlTBrtK9-WIOyjn7VsG4zU6peioUiQnIufeqRw_-99Qitw1OF0e2itp1Lc2wzkaXulabWQ2uDy-vx5AMqDdzC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6icGg5VNBFhQL1ob1USifjbTxIPSAWDWU5tCBxc-PkpQyCBE1AwIU_1T_Ie1lKW1UcKnGNY8v6bL8l-fw9gPc2UAyvdRLZJBvwpxsdOdvHaDikw1TH5LWW3t6-HR3qL0fmaAp-dndhmFbZ2v7GptfWun3Sa9HsnY_HvW8xpQ5astghOyrbVbDewZsrytuqz9sbtMgfpNzaPFgfRW1pgShV0lxEKkkkShw4DDlLlGuHLjMKUSV53wSlkGU7KcNyuU6D0jE1W0utSZwNTYgVjfsEZjSZCy6b8On2nleiVF3ukWcX8fS6X6k1qawqWOtISi6lYri027-d4V9uofZ1W3PwvA1SxVqDwzxMYfECZn-TLnwJX8ksl4347OUEM3GGFMWL8nqcoaiYcF8WrCRbTiL2k5n4kVT0vKjKSbUq1gQz2Sd43LDnRXN_5hUcPgqIr2G6KAt8AyKlvC6XNmjZT3Q6NC5kJrWYORuCMXlYgLgDyqeteDnX0Dj1HUvtxBO2nrH1DbYL8PFXl_NGueOhl3WHvv9j-3nyLA91W-pWyrdnv_LSOmPcQPXl4v-N-g6ejg72dv3u9v7OW3jGLQ1BeAmmaV1xmcKgi7BSbzsB3x97n98B-5sYuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanostructured+metal+oxide+semiconductor-based+gas+sensors%3A+A+comprehensive+review&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Krishna%2C+Kurugundla+Gopi&rft.au=Parne%2C+Saidireddy&rft.au=Pothukanuri%2C+Nagaraju&rft.au=Kathirvelu%2C+Velavan&rft.date=2022-07-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=341&rft.spage=1&rft_id=info:doi/10.1016%2Fj.sna.2022.113578&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |