Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review

Nanostructured metal oxide semiconductor-based gas sensors possess extensive applications due to relatively inexpensive, lightweight, long-lasting, robust, and high sensitivity and quick response and recovery times. Several strategies have been developed to enhance their sensing properties and meet...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 341; p. 113578
Main Authors Krishna, Kurugundla Gopi, Parne, Saidireddy, Pothukanuri, Nagaraju, Kathirvelu, Velavan, Gandi, Suman, Joshi, Dhananjay
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.07.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanostructured metal oxide semiconductor-based gas sensors possess extensive applications due to relatively inexpensive, lightweight, long-lasting, robust, and high sensitivity and quick response and recovery times. Several strategies have been developed to enhance their sensing properties and meet the extended market demand for novel applications by modifying surface morphology, reducing particle size, and manipulating function.This work mainly concentrates on the systematic review of various synthesis methods of nanostructured metal oxide-based semiconductors and their superior gas sensing properties, such as fast response and recovery and a low detection limit towards different hazardous gases.With the prime concern of environmental pollution, a wide range of novel nanostructured metal-oxide based semiconductor gas sensors and their gas sensing properties are interpreted and summarized here.It is essential to measure the sensitivity of the sensors to ensure that they are prepared in a reproducible manner.They must work in ambient conditions andin the presence of humidity. Recent progress in the research and development of metal oxide semiconductor-based gas sensor technology is surveyed in this review. From the bottleneck, this review organizes some prospects that can be expected in future investigations on the gas sensing mechanism of metal oxide semiconductors. [Display omitted]
AbstractList Nanostructured metal oxide semiconductor-based gas sensors possess extensive applications due to relatively inexpensive, lightweight, long-lasting, robust, and high sensitivity and quick response and recovery times. Several strategies have been developed to enhance their sensing properties and meet the extended market demand for novel applications by modifying surface morphology, reducing particle size, and manipulating function.This work mainly concentrates on the systematic review of various synthesis methods of nanostructured metal oxide-based semiconductors and their superior gas sensing properties, such as fast response and recovery and a low detection limit towards different hazardous gases.With the prime concern of environmental pollution, a wide range of novel nanostructured metal-oxide based semiconductor gas sensors and their gas sensing properties are interpreted and summarized here.It is essential to measure the sensitivity of the sensors to ensure that they are prepared in a reproducible manner.They must work in ambient conditions andin the presence of humidity. Recent progress in the research and development of metal oxide semiconductor-based gas sensor technology is surveyed in this review. From the bottleneck, this review organizes some prospects that can be expected in future investigations on the gas sensing mechanism of metal oxide semiconductors.
Nanostructured metal oxide semiconductor-based gas sensors possess extensive applications due to relatively inexpensive, lightweight, long-lasting, robust, and high sensitivity and quick response and recovery times. Several strategies have been developed to enhance their sensing properties and meet the extended market demand for novel applications by modifying surface morphology, reducing particle size, and manipulating function.This work mainly concentrates on the systematic review of various synthesis methods of nanostructured metal oxide-based semiconductors and their superior gas sensing properties, such as fast response and recovery and a low detection limit towards different hazardous gases.With the prime concern of environmental pollution, a wide range of novel nanostructured metal-oxide based semiconductor gas sensors and their gas sensing properties are interpreted and summarized here.It is essential to measure the sensitivity of the sensors to ensure that they are prepared in a reproducible manner.They must work in ambient conditions andin the presence of humidity. Recent progress in the research and development of metal oxide semiconductor-based gas sensor technology is surveyed in this review. From the bottleneck, this review organizes some prospects that can be expected in future investigations on the gas sensing mechanism of metal oxide semiconductors. [Display omitted]
ArticleNumber 113578
Author Pothukanuri, Nagaraju
Krishna, Kurugundla Gopi
Gandi, Suman
Parne, Saidireddy
Joshi, Dhananjay
Kathirvelu, Velavan
Author_xml – sequence: 1
  givenname: Kurugundla Gopi
  surname: Krishna
  fullname: Krishna, Kurugundla Gopi
  organization: Department of Applied Sciences, National Insitute of Technology, Goa 403401, India
– sequence: 2
  givenname: Saidireddy
  surname: Parne
  fullname: Parne, Saidireddy
  organization: Department of Applied Sciences, National Insitute of Technology, Goa 403401, India
– sequence: 3
  givenname: Nagaraju
  surname: Pothukanuri
  fullname: Pothukanuri, Nagaraju
  email: nagarajuphysics@gmail.com
  organization: Nanosensor Research Laboratory, Department of Physics, CMR Technical Campus, Kandlakoya, Medchal Road, Hyderabad, Telangana State 501401, India
– sequence: 4
  givenname: Velavan
  surname: Kathirvelu
  fullname: Kathirvelu, Velavan
  organization: Department of Applied Sciences, National Insitute of Technology, Goa 403401, India
– sequence: 5
  givenname: Suman
  surname: Gandi
  fullname: Gandi, Suman
  organization: Department of Applied Sciences, National Insitute of Technology, Goa 403401, India
– sequence: 6
  givenname: Dhananjay
  surname: Joshi
  fullname: Joshi, Dhananjay
  organization: Department of Physics,Indian Institute of Science Education and Research Mohali, Mohali 140306, India
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnrfmY7PJ6qkUv6AoiJ5DNjurKW1Sk2zVf29KPXnwNDDvPDPMM0Ej5x0gdE7wjGBSX65m0ekZxZTOCGFcyCM0JlKwkuG6GaExbmhVVrQSJ2gS4wpjzJgQY_T8qJ2PKQwmDQG6YgNJrwv_ZTsoImys8a7LmQ9lq2PO33TMfRd9iFfFvDB-sw3wnht2B0WAnYXPU3Tc63WEs986Ra-3Ny-L-3L5dPewmC9LwyhPJdOaAgUhoe05b2QlQXacATDdE94yBkQ0pBFS9pVpWYVzXNc51bhreIvZFF0c9m6D_xggJrXyQ3D5pKK15Dx_T2ieEocpE3yMAXplbNLJepeCtmtFsNoLVCuVBaq9QHUQmEnyh9wGu9Hh-1_m-sBAfjzLCCoaC85AZwOYpDpv_6F_ABNWi5k
CitedBy_id crossref_primary_10_1016_j_inoche_2025_114350
crossref_primary_10_1016_j_ccr_2023_215542
crossref_primary_10_1007_s10853_023_08997_0
crossref_primary_10_1016_j_ceramint_2024_09_230
crossref_primary_10_1016_j_snb_2023_133703
crossref_primary_10_1039_D3CP04777F
crossref_primary_10_3390_ma15217489
crossref_primary_10_1016_j_snb_2023_134912
crossref_primary_10_1016_j_sna_2025_116365
crossref_primary_10_1109_JSEN_2024_3374055
crossref_primary_10_1149_2162_8777_ad1207
crossref_primary_10_1016_j_snb_2024_136498
crossref_primary_10_3390_chemosensors13030102
crossref_primary_10_1038_s41467_023_39213_x
crossref_primary_10_1016_j_mssp_2023_107457
crossref_primary_10_1016_j_ceramint_2025_03_227
crossref_primary_10_1002_smtd_202402179
crossref_primary_10_3390_s25030655
crossref_primary_10_1016_j_matlet_2023_134852
crossref_primary_10_3390_electronics13071252
crossref_primary_10_1007_s10854_024_12427_5
crossref_primary_10_3390_chemosensors10080329
crossref_primary_10_1016_j_apsusc_2024_160518
crossref_primary_10_1134_S1063782624601523
crossref_primary_10_1016_j_ijhydene_2022_05_254
crossref_primary_10_1016_j_jtice_2024_105395
crossref_primary_10_1145_3659605
crossref_primary_10_21303_2461_4262_2024_003364
crossref_primary_10_1016_j_jece_2023_111504
crossref_primary_10_1039_D2TC04690C
crossref_primary_10_3390_ma17061364
crossref_primary_10_1109_TII_2024_3452279
crossref_primary_10_3390_nano13172493
crossref_primary_10_1016_j_snb_2023_134575
crossref_primary_10_1016_j_snb_2024_136149
crossref_primary_10_1016_j_surfin_2024_105459
crossref_primary_10_1016_j_snb_2022_133198
crossref_primary_10_1039_D4CP04718D
crossref_primary_10_1021_acssensors_4c01812
crossref_primary_10_1016_j_mssp_2024_108944
crossref_primary_10_1557_s43580_024_00968_0
crossref_primary_10_1007_s10854_023_10780_5
crossref_primary_10_1016_j_jallcom_2022_167782
crossref_primary_10_3390_chemosensors12040060
crossref_primary_10_1016_j_physb_2023_414852
crossref_primary_10_1039_D3TA07949J
crossref_primary_10_31613_ceramist_2023_26_3_06
crossref_primary_10_3390_chemosensors11020126
crossref_primary_10_3390_chemosensors12040065
crossref_primary_10_1007_s10854_024_13196_x
crossref_primary_10_1016_j_snb_2025_137655
crossref_primary_10_1016_j_cclet_2024_109490
crossref_primary_10_1016_j_mseb_2023_116734
crossref_primary_10_1021_acsami_4c19998
crossref_primary_10_3390_ma17235743
crossref_primary_10_3390_nano13202810
crossref_primary_10_3390_s23239548
crossref_primary_10_12677_jsta_2024_123052
crossref_primary_10_1016_j_jallcom_2023_171103
crossref_primary_10_3390_chemosensors10120515
crossref_primary_10_3390_gels9040283
crossref_primary_10_1021_acsomega_4c10981
crossref_primary_10_1007_s10854_023_10898_6
crossref_primary_10_1016_j_ceramint_2024_07_262
crossref_primary_10_1039_D3NJ00578J
crossref_primary_10_1016_j_sna_2024_115510
crossref_primary_10_1016_j_chemphys_2024_112470
crossref_primary_10_1016_j_snb_2023_135134
crossref_primary_10_1016_j_snb_2024_136721
crossref_primary_10_1021_acssensors_3c02059
crossref_primary_10_1016_j_snb_2023_134163
crossref_primary_10_1021_acssensors_4c01835
crossref_primary_10_1016_j_susmat_2025_e01293
crossref_primary_10_1109_JSEN_2024_3478088
crossref_primary_10_1016_j_optmat_2023_114099
crossref_primary_10_3390_ma17051009
crossref_primary_10_1016_j_ceramint_2023_12_051
crossref_primary_10_3390_nano15020129
crossref_primary_10_1007_s12034_023_02959_7
crossref_primary_10_1016_j_snb_2023_134496
crossref_primary_10_1016_j_inoche_2025_114373
crossref_primary_10_1149_2162_8777_adac8c
crossref_primary_10_3390_s24206731
crossref_primary_10_1109_JSEN_2023_3296724
crossref_primary_10_1007_s10854_024_11997_8
crossref_primary_10_1149_2162_8777_ad7b72
crossref_primary_10_1088_1361_6528_acdbd3
crossref_primary_10_1080_14328917_2023_2267362
crossref_primary_10_1016_j_sna_2024_115776
crossref_primary_10_1016_j_coesh_2023_100528
crossref_primary_10_1021_acssensors_3c01742
crossref_primary_10_1016_j_ccr_2024_216320
crossref_primary_10_1016_j_apsusc_2024_160047
crossref_primary_10_1039_D2CS00761D
crossref_primary_10_1007_s10854_024_13285_x
crossref_primary_10_1016_j_snb_2023_133975
crossref_primary_10_1109_TIM_2024_3485428
crossref_primary_10_1016_j_snb_2024_135533
crossref_primary_10_3390_technologies11060156
crossref_primary_10_1016_j_cej_2023_145304
crossref_primary_10_1039_D4TC03729D
crossref_primary_10_1149_2162_8777_ad1c8c
crossref_primary_10_1016_j_jmrt_2023_08_273
crossref_primary_10_3390_chemosensors10080297
crossref_primary_10_1016_j_microc_2024_110782
crossref_primary_10_1016_j_vacuum_2025_114119
crossref_primary_10_1016_j_snb_2024_136773
crossref_primary_10_1016_j_snb_2023_134751
crossref_primary_10_1016_j_microc_2025_113083
crossref_primary_10_1007_s00339_025_08320_5
crossref_primary_10_3390_ijms25158009
crossref_primary_10_1016_j_snb_2024_136648
crossref_primary_10_1149_2162_8777_ad34fb
crossref_primary_10_1109_JSEN_2024_3425902
crossref_primary_10_1002_adsr_202300024
crossref_primary_10_1016_j_microc_2024_111643
crossref_primary_10_1016_j_snr_2024_100219
crossref_primary_10_15625_2525_2518_18528
crossref_primary_10_1016_j_chphi_2023_100318
crossref_primary_10_1021_acsami_4c12495
crossref_primary_10_1016_j_mssp_2023_107967
crossref_primary_10_1016_j_sna_2022_114044
crossref_primary_10_1134_S199079312303003X
crossref_primary_10_1002_adfm_202309111
crossref_primary_10_1002_tcr_202300350
crossref_primary_10_1016_j_inoche_2025_114051
crossref_primary_10_1002_slct_202204328
crossref_primary_10_1155_tswj_4211483
crossref_primary_10_1007_s11665_024_10588_2
crossref_primary_10_1016_j_snr_2024_100246
crossref_primary_10_55452_1998_6688_2023_20_3_68_75
crossref_primary_10_1016_j_inoche_2023_111941
crossref_primary_10_1016_j_jmrt_2024_07_054
crossref_primary_10_1016_j_snb_2023_133882
crossref_primary_10_1039_D3TC00157A
crossref_primary_10_1016_j_surfin_2023_103012
crossref_primary_10_1021_acsomega_3c04453
crossref_primary_10_1016_j_micrna_2024_207982
crossref_primary_10_1016_j_mssp_2024_108429
crossref_primary_10_1007_s00339_024_08112_3
crossref_primary_10_1364_AO_517016
crossref_primary_10_1016_j_jallcom_2023_172104
crossref_primary_10_1016_j_ceramint_2024_10_068
crossref_primary_10_1016_j_ceramint_2023_03_090
crossref_primary_10_1016_j_snb_2024_136783
crossref_primary_10_1002_admt_202301507
crossref_primary_10_1016_j_snb_2023_134550
crossref_primary_10_1016_j_jece_2024_112497
crossref_primary_10_1002_admt_202401639
crossref_primary_10_26599_CF_2025_9200037
crossref_primary_10_1016_j_microc_2023_109353
crossref_primary_10_1016_j_vacuum_2023_112773
crossref_primary_10_1002_adfm_202415971
crossref_primary_10_3390_cryst13071144
crossref_primary_10_1016_j_snb_2025_137262
crossref_primary_10_1007_s11664_024_11408_y
crossref_primary_10_1016_j_ceramint_2025_01_356
crossref_primary_10_1021_acs_accounts_4c00323
crossref_primary_10_1016_j_vacuum_2023_112640
crossref_primary_10_1002_admi_202400217
crossref_primary_10_1007_s11220_023_00450_5
crossref_primary_10_3390_jcs6110326
crossref_primary_10_1149_1945_7111_ad8f67
crossref_primary_10_1016_j_mtcomm_2023_107831
crossref_primary_10_1016_j_ceramint_2025_02_036
crossref_primary_10_1016_j_matlet_2025_138332
crossref_primary_10_1016_j_snb_2023_133355
crossref_primary_10_1007_s10854_023_11780_1
crossref_primary_10_1016_j_ceramint_2024_09_387
crossref_primary_10_31857_S0207401X23050035
crossref_primary_10_3390_app15052522
crossref_primary_10_1002_smtd_202400245
crossref_primary_10_1016_j_ceramint_2023_03_274
crossref_primary_10_3390_s23062975
crossref_primary_10_1016_j_mssp_2024_109021
crossref_primary_10_1166_jno_2024_3640
crossref_primary_10_1021_acsami_4c10401
crossref_primary_10_3390_s24020584
crossref_primary_10_1016_j_nexres_2024_100092
crossref_primary_10_1039_D4NR04687K
crossref_primary_10_1002_adfm_202415517
crossref_primary_10_1007_s10971_023_06298_1
crossref_primary_10_1016_j_scitotenv_2024_172048
crossref_primary_10_1016_j_sna_2023_114676
crossref_primary_10_1021_acsaenm_3c00751
crossref_primary_10_1016_j_ccr_2024_216049
crossref_primary_10_3390_ma16083249
crossref_primary_10_3390_s23198322
crossref_primary_10_1007_s11220_024_00477_2
crossref_primary_10_1088_1361_6463_ad3bc7
crossref_primary_10_1021_acsaelm_4c00567
crossref_primary_10_1016_j_chemosphere_2023_140657
crossref_primary_10_1016_j_snb_2024_136583
crossref_primary_10_1002_adfm_202314686
crossref_primary_10_1007_s13399_023_04847_w
Cites_doi 10.1016/j.snb.2020.128843
10.1021/acsanm.0c03239
10.1016/j.snb.2017.05.172
10.1021/cr500567r
10.1016/j.jcis.2018.10.010
10.1016/j.matdes.2016.05.006
10.1021/acsami.9b20776
10.1038/s41598-019-43752-z
10.1186/s11671-017-1891-5
10.1021/acsami.5b11485
10.3390/s120302598
10.1016/j.snb.2005.03.011
10.1016/j.apsusc.2018.03.217
10.1016/j.snb.2021.130704
10.1016/j.snb.2013.05.030
10.1016/j.physb.2018.10.034
10.1016/j.snb.2015.09.075
10.1016/j.snb.2019.127129
10.1016/j.cplett.2017.06.008
10.1016/j.snb.2014.07.074
10.1016/j.snb.2019.01.049
10.1016/j.snb.2017.01.015
10.1016/j.flatc.2017.07.002
10.1016/j.snb.2017.09.154
10.1016/j.snb.2019.126845
10.1016/j.pmatsci.2009.08.003
10.1016/j.aca.2013.05.057
10.1039/C7TC03724D
10.3390/s20113096
10.1109/JSEN.2018.2890074
10.1016/j.sna.2006.10.004
10.1016/j.matchemphys.2018.04.104
10.1016/j.snb.2017.05.113
10.3390/s20226694
10.3390/en13112731
10.1016/j.rinp.2017.02.008
10.1039/C9NR07699A
10.1016/j.mee.2016.07.008
10.1016/j.snb.2021.130302
10.1016/j.apsusc.2017.11.047
10.1016/j.ceramint.2017.02.088
10.1016/j.ceramint.2018.06.110
10.1039/C8MH01365A
10.1116/1.5047237
10.1007/s13391-020-00205-4
10.1016/j.snb.2021.129493
10.1016/j.jallcom.2018.12.180
10.1007/s10854-018-9952-9
10.1016/j.sna.2017.10.021
10.1142/S0219581X15500118
10.1016/j.matlet.2016.02.040
10.1016/j.mseb.2017.12.036
10.1016/j.snb.2020.129371
10.1016/j.snb.2016.09.024
10.1021/acsnano.6b01196
10.1016/j.snb.2018.12.051
10.1016/j.vacuum.2010.01.054
10.1016/j.apsusc.2004.10.036
10.1039/C7RA05217K
10.1016/j.snb.2017.10.032
10.1016/j.snb.2014.03.012
10.1016/j.egyr.2019.08.070
10.1038/s41598-017-12553-7
10.1016/j.snb.2012.05.057
10.1016/j.ceramint.2017.07.165
10.1080/14686996.2019.1599694
10.3390/s120709635
10.1016/j.snb.2011.08.032
10.1016/j.ceramint.2017.12.038
10.1039/C5NR01924A
10.1016/j.aca.2018.09.020
10.1016/j.apsusc.2021.151262
10.1016/j.snb.2011.03.010
10.1016/j.physe.2019.01.006
10.1007/s11664-020-08246-z
10.1039/c0nr00047g
10.1016/j.ceramint.2016.07.060
10.1038/s41467-019-09157-2
10.1016/j.snb.2017.05.064
10.1016/j.snb.2016.09.145
10.1016/j.snb.2019.126946
10.1007/s40843-016-5117-0
10.1016/j.mseb.2007.01.044
10.1016/j.snb.2017.05.029
10.1016/j.jallcom.2008.11.095
10.1016/j.snb.2013.11.005
10.1039/b616684a
10.3390/s100302088
10.1016/j.ceramint.2008.01.028
10.1016/j.mseb.2014.10.007
10.1016/j.surfcoat.2019.01.100
10.1016/j.ceramint.2019.09.132
10.1016/j.snb.2019.01.146
10.1016/j.ceramint.2013.06.016
10.1016/j.mspro.2015.06.041
10.1016/j.jallcom.2015.09.046
10.1016/j.snb.2018.02.052
10.1039/C9RA02356A
10.1016/j.jallcom.2012.03.020
10.1007/s11664-017-5400-5
10.1016/j.snb.2017.09.206
10.1063/1.2924430
10.1039/C8CS00904J
10.1016/j.proeng.2012.09.157
10.1021/ac0202278
10.1016/bs.coac.2020.08.009
10.1016/j.snb.2019.127054
10.1016/j.mser.2008.02.001
10.3390/s17122779
10.1007/s12034-017-1461-6
10.1016/j.snb.2013.08.045
10.1016/j.snb.2020.128191
10.1016/j.matchemphys.2021.124731
10.1109/JSEN.2015.2391286
10.1016/j.snb.2017.02.063
10.1016/j.jallcom.2019.01.349
10.1007/s10853-020-04569-8
10.1016/j.jcis.2020.02.081
10.1016/j.apsusc.2017.08.229
10.1016/j.matlet.2007.03.024
10.1007/s12274-020-3020-5
10.1016/j.mseb.2007.11.020
10.1007/s11356-020-07680-0
10.1016/j.mseb.2017.09.002
10.1016/j.snb.2018.10.063
10.1016/j.snb.2020.127965
10.1016/j.pcrysgrow.2008.08.003
10.1016/j.snb.2020.128406
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Jul 1, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 1, 2022
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2022.113578
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2022_113578
S0924424722002163
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c325t-3aa2e2e78ebf559848e8d53ee3af15b33e17919788f4cb340e8d66e3aa0d95b03
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Sun Jul 13 05:11:16 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Tue Jul 01 02:24:52 EDT 2025
Fri Feb 23 02:40:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thin films
Nanomaterials
Metal oxide semiconductors
Gas sensors
And response and recovery times
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-3aa2e2e78ebf559848e8d53ee3af15b33e17919788f4cb340e8d66e3aa0d95b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2685587312
PQPubID 2045401
ParticipantIDs proquest_journals_2685587312
crossref_citationtrail_10_1016_j_sna_2022_113578
crossref_primary_10_1016_j_sna_2022_113578
elsevier_sciencedirect_doi_10_1016_j_sna_2022_113578
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Yang, Wang, Liu, Liu, Gao, Sun, Jie, Zhang, Wang, Lu (bib91) 2017; 241
Bakker, Telting-Diaz (bib55) 2002; 74
Dey (bib6) 2018; 229
Jiang, Zhang, Wang, Gong (bib50) 2021; 14
Amiri, Roshan, Mirzaei, Neri, Ayesh (bib76) 2020
Cayir Taşdemirci (bib39) 2020; 16
Kim, Choi, Jang, Kim, Hakim, Tuller, Kim (bib57) 2016; 10
Han, Zhai, Gu, Wang (bib81) 2018; 262
Song, Chen, Zhang, Zhang, Liu, Sun, Yan, Lu (bib71) 2019; 287
Ahmada, Kang, Sadek, Moafi, Sberveglieri, Wlodarski (bib87) 2012; 47
Shinde, Patil, Kajale, Gaikwad, Jain (bib15) 2012; 528
Ma, Yu, Yuan, Li, Li, Yin, Fan (bib28) 2019; 782
Kang, Koo, Jang, Kim, Jeong, Kim, Ahn, Choi, Il-DooKim (bib67) 2021; 331
Wei, Zhoua, Lu, Xua, Gui, Tang (bib97) 2019; 109
Kandalkar, Gunjakar, Lokhande, Joo (bib44) 2009; 478
Xu, Li, Li, Chen, Zhu (bib113) 2018; 44
Oviroh, Akbarzadeh, Pan, Maarten Coetzee, Jen (bib47) 2019; 20
Wang, Yin, Zhang, Xiang, Gao (bib65) 2010; 10
Zito, Perfecto, Volanti (bib77) 2017; 244
Zhu, Li, Zeng (bib88) 2018; 427
Qiu, Hu, Min, Quan, Tian, Ji, Zheng, Qin, Wang, Pan, Cheng, Chen, Zhang, Wang (bib125) 2020; 12
Wang, Zhang, Fei, Gu, Han (bib126) 2020; 318
Weintraub, Zhou, Li, Deng (bib7) 2010; 2
Dhinakaran, Vigneswari, Lavanya, Shree (bib17) 2020
Chen, Shen, Zhou, Zhao, Zhong, Li, Han, Wei, Meng (bib63) 2019; 280
Durrani, Al-Kuhaili, Bakhtiari, Haider (bib128) 2012; 12
Wang, Hu, Qin (bib93) 2016; 171
Zhang, Zou, Xu, Liao, Liu, Ho, Xiao, Jiang, Li (bib98) 2015; 7
Kim, Kim, Yong (bib56) 2012; 116
Chengxiang Wang, Zhang, Xiang, Gao (bib23) 2010; 10
Zhu, Zeng (bib27) 2017; 267
Wang, Zhao, Sun, Li, Ji, Chen, Zhang, Hu (bib134) 2017; 240
Sun, Wang, Liu, Sun, Ma, Lu (bib85) 2012; 173
Singh, Deb, Sarkar, Sharma (bib131) 2021; 4
Sun, Liao, Kou (bib69) 2017; 60
Vallejos, Gràcia, Pizúrová, Figueras, Čechal, Hubálekc, Cané (bib117) 2019; 301
Bhati, Hojamberdiev, Kumar (bib22) 2020; 6
Faisal (bib94) 2017; 40
Zhao, Gong, Niu, Wang (bib86) 2019; 299
Godavarti, Mote, Ramana Reddy, Nagaraju, Kumar, Dasari, Dasari (bib30) 2019; 553
Chou, Chen, Liu, Chen, Liou, Hsu, Liu (bib106) 2015; 15
Wang, Chu, Wu (bib96) 2006; 113
Fernando Gorup, HenriqueAmorin, Camargo, Sequinel, Cincotto, Biasotto, Ramesar, de, La Porta (bib35) 2020
Shamala, Murthy, Radhakrishna, Rao (bib36) 2007; 135
Park, Sun, Jin, Kim, Lee, Lee (bib127) 2016; 8
Lupan, Postica, Ababii, Hoppe, Cretu, Tiginyanu, Sontea, Pauporté, Viana, Adelung (bib99) 2016; 164
Nikolic, Milovanovic, Vasiljevic, Stamenkovic (bib21) 2020; 20
Ham, Son (bib48) 2017; 5
Kim, Kim, Mirzaei, Kim, Kim (bib68) 2021; 332
Tchalala, Bhatt, Chappanda, Tavares, Adil, Belmabkhout, Shkurenko, Cadiau, Heymans, De Weireld, Maurin, Salama, Eddaoudi (bib54) 2019; 10
Takami, Sato, Mousav, Ohara, Umetsu, Adschiri (bib26) 2007; 61
Dhivya, Prasad, Sridharan (bib102) 2014; 40
Zheng, Guo, Liu, Gao (bib1) 2013; 18
Teja, Koh (bib25) 2009; 55
Suna, Wang, Du, Li, Wang, Hou (bib137) 2021; 868
Pineau, Krumeich, Güntner, Pratsinis (bib118) 2021; 327
Gerasimov, Gromov, Ikim, Ilegbusi, Ozerin, Trakhtenberg (bib122) 2020; 320
Sharma, Tomar, Gupta (bib10) 2015; 14
Walker, Akbar, Morris (bib8) 2019; 286
Nagaraju, Vijayakumar, Choudhary, Reddy (bib13) 2017; 226
Umar, Lee, Kumar, Al-Dossary, Ibrahim, Baskoutas (bib82) 2016; 105
Hu, Wang, Liu, Li, Zeng (bib136) 2020; 46
Tyagi, Sharma, Tomar, Gupta (bib9) 2014; 4
Ouhaibi, Ghamnia, Dahamni, Heresanu, Fauquet, Tonneau (bib34) 2018; 3
Punginsang, Zappa, Comini, Wisitsoraat, Sberveglieri, Ponzoni, Liewhiran (bib107) 2022; 571
Cao, Li, Li, Li, Huang, Yang (bib84) 2018; 447
Sheng, Lee, Choi, Hong, Kim, Park (bib45) 2018; 36
Al-Hadeethi, Umar, Ibrahim, Al-Heniti, Kumar, Baskoutas, Raffah (bib132) 2017; 43
Wu, Huang, Zeng, Zhang, Yang, Xia, Xiong, Xie (bib110) 2014; 198
Girija, Somasundaram, Debnath, Topkar, Vatsa (bib114) 2018; 214
Kanica, Kaur, Singh, Thangaraj (bib31) 2017; 682
Nagaraju, Vijayakumar, Ramana Reddy, Deshpande (bib33) 2019; 9
Sun, Zhou, Wang, Wang, Xu, Lu (bib111) 2014; 190
Zhyrovetsky, Popovych, Savkaand, Serednytski (bib73) 2017; 12
Mohammad, Sharareh, Amir Homayoun (bib29) 2020; 27
Zhang, Yu, Li, Zhu, Wan (bib95) 2008; 103
Mohamed Sali, Joy, Meenakshisundaram, Karn, Gopalakrishnan, Karthick, Jeyadheepan, Sankaranarayanan (bib103) 2017; 7
Zhu, Xu, Yang, Zhou, Chen, Dong, Bai, Lu, Song (bib138) 2020; 569
Ganguly, Jha, Guha, Jacob (bib70) 2020; 49
Bochenkov, Sergeev (bib53) 2010; 3
Kumar Sahu, Pandey, Kumar, Pandey, Takashima, Mishra, Prakash (bib20) 2017; 246
Badadhe, Mulla (bib32) 2011; 156
Karaduman, Corlu, Yildirim, Ateş, Acar (bib40) 2017; 46
Shinde, Lokhande, Mane, Han (bib43) 2005; 245
Saboor, Ueda, Kamada, Hyodo, Mortazavi, Khodadadi, Shimizu (bib120) 2016; 223
Kim, Lee (bib11) 2014; 192
Bai, Xie, Hu, Zhang, Zeng (bib115) 2008; 149
Liu, Cheng, Liu, Hu, Zhang, Ning (bib52) 2012; 12
Lin, Lv, Li, Wang (bib64) 2017; 17
Ha, DucThinh, Thanh Huong, Phuong, Thach, Hong (bib129) 2018; 434
Ma, Lee, Xu, Yoon (bib14) 2015; 115
Fan, Sun, Wang, Majidi, Huang, Kumar, Liu (bib123) 2020; 55
Thi, Thu, Duc, Cuong, Nguyen, Khieu, Nam, VanToan, Hung, Van Hieu (bib130) 2018; 255
Raksa, Gardchareon, Chairuangsri, Mangkorntong, Mangkorntong, Choopun (bib83) 2009; 35
Zhou, Xu, Umar, Chen, Kumar (bib133) 2018; 256
Hu, Liang, Sun, Zhao, Zhang, Li, Zhang, Chen, Zhuiykovz (bib92) 2017; 252
Mani, Rayappan (bib79) 2015; 191
Huang, Zou, Shi, Zhao, Li, Hao, Zhang (bib101) 2013; 787
Subha, Jayaraj (bib2) 2019; 13
Chu, Young, Ji, Chu, Chen (bib41) 2020; 13
Miller, Akbar, Morris (bib5) 2014; 204
Bhuvaneshwari, Gopalakrishnan (bib105) 2016; 654
Zappa, Galstyan, Kaur, Sisman, Comini (bib16) 2018; 1039
Leng, Wang, Wang, Wu, Yan, Li, Guo, Liu, Zhang, Guo (bib37) 2019; 48
Paliwal, Sharma, Tomar, Gupta (bib18) 2017; 250
Sanctis, Krausmann, Jörg, Schneider (bib46) 2018; 6
Yin, Wang, Sun, Tong, Zhu, Lv, Ye, Wang, Luo, Huang (bib61) 2017; 7
He, Xie, Zhao, Hu, Li, Zhu (bib124) 2019; 788
Khudadad, Yousif, Abed (bib90) 2021; 269
Mineo, Moulaee, Neri, Mirabella, Bruno (bib62) 2021; 348
Jiang, Zhao, Sun, Nie, Ji, Lei, Wang (bib108) 2016; 42
Wu, Li, Tung, Huang, Chiang, Liu, Horng (bib49) 2019; 9
Al-Hashem, Akbar, Morris (bib109) 2019; 301
Chaloeipote, Prathumwan, Subannajui, Wisitsoraat, Wongchoosuk (bib80) 2021; 123
Liang, Tang, Xiong, Wang, Xue, Yang, Zhang (bib3) 2010; 84
Yang, Lu, Wang, Zhang, Chen, Sun, Yang, Sun, Lu (bib116) 2020; 313
Pearton, Ren, Wang, Chu, Chen, Chang, Lim, Lin, Norton (bib4) 2010; 55
Liu, Shen, Chen, Corriou (bib100) 2018; 29
Ji, Zeng, Li (bib24) 2019; 11
Korotcenkov (bib59) 2008; 61
Huang, Zhou, Liu, Li, Geng, Xiaoqing, Du, Qian (bib135) 2020; 310
MinLi, Kan, Li, Quan, Fu, Luo, Liu, Wang, Yang, Wei, Fu (bib19) 2019; 362
Zhang, Dong, Wu, Pan, Fan (bib38) 2019; 19
Li, Li, Wu, Wang, Luo, Torun, Hu, Yang, Grundmann, Liu, Fu (bib75) 2019; 6
Sayegh, Lee, Yang, Weber, IgorIatsunsky, Coy, Razzouk, Kim, Bechelany (bib119) 2021; 344
Katoch, Sun, Choi, Byun, Kim (bib12) 2013; 185
Bhatia, Verma, Bedi (bib78) 2017; 7
Ueda, Abe, Kamada, Bishop, Tuller, Hyodo, Shimizu (bib121) 2017; 252
Korotcenkov (bib51) 2007; 139
Zhang, Yin, Yang, Zhang, Han (bib112) 2019; 283
Tong, Shen, Chen, Corriou (bib58) 2017; 43
Chen, Hsiao, Chen, Chang, Chou, Liu, Lin, Liu (bib104) 2018; 256
Gao, Yu, Chen, Sun, Liu, Yan, Liu, Lu (bib72) 2019; 535
Patil, Anwane, Kondawar (bib74) 2015; 10
Wetchakuna, Samerjai, Tamaekonga, Liewhirana, Siriwonga, Kruefua, Wisitsoraat, Tuantranont, Phanichphant (bib60) 2011; 160
Zhou, Chen, Xu, Kumar, Gui, Zhao, Tang, Zhu (bib89) 2018; 44
Rahmani, Yaacob, Sabri (bib66) 2017; 251
Hodes (bib42) 2007; 9
Zhang (10.1016/j.sna.2022.113578_bib112) 2019; 283
Chengxiang Wang (10.1016/j.sna.2022.113578_bib23) 2010; 10
Raksa (10.1016/j.sna.2022.113578_bib83) 2009; 35
Bochenkov (10.1016/j.sna.2022.113578_bib53) 2010; 3
Kang (10.1016/j.sna.2022.113578_bib67) 2021; 331
Dhivya (10.1016/j.sna.2022.113578_bib102) 2014; 40
Miller (10.1016/j.sna.2022.113578_bib5) 2014; 204
Fernando Gorup (10.1016/j.sna.2022.113578_bib35) 2020
Qiu (10.1016/j.sna.2022.113578_bib125) 2020; 12
Takami (10.1016/j.sna.2022.113578_bib26) 2007; 61
Xu (10.1016/j.sna.2022.113578_bib113) 2018; 44
Lupan (10.1016/j.sna.2022.113578_bib99) 2016; 164
Singh (10.1016/j.sna.2022.113578_bib131) 2021; 4
Korotcenkov (10.1016/j.sna.2022.113578_bib51) 2007; 139
Nagaraju (10.1016/j.sna.2022.113578_bib13) 2017; 226
Gao (10.1016/j.sna.2022.113578_bib72) 2019; 535
Tchalala (10.1016/j.sna.2022.113578_bib54) 2019; 10
Chaloeipote (10.1016/j.sna.2022.113578_bib80) 2021; 123
Ma (10.1016/j.sna.2022.113578_bib14) 2015; 115
Chou (10.1016/j.sna.2022.113578_bib106) 2015; 15
Shamala (10.1016/j.sna.2022.113578_bib36) 2007; 135
Godavarti (10.1016/j.sna.2022.113578_bib30) 2019; 553
Mohamed Sali (10.1016/j.sna.2022.113578_bib103) 2017; 7
Oviroh (10.1016/j.sna.2022.113578_bib47) 2019; 20
Korotcenkov (10.1016/j.sna.2022.113578_bib59) 2008; 61
Al-Hashem (10.1016/j.sna.2022.113578_bib109) 2019; 301
Sun (10.1016/j.sna.2022.113578_bib69) 2017; 60
He (10.1016/j.sna.2022.113578_bib124) 2019; 788
Kumar Sahu (10.1016/j.sna.2022.113578_bib20) 2017; 246
Zhou (10.1016/j.sna.2022.113578_bib133) 2018; 256
Zhao (10.1016/j.sna.2022.113578_bib86) 2019; 299
Ji (10.1016/j.sna.2022.113578_bib24) 2019; 11
Mohammad (10.1016/j.sna.2022.113578_bib29) 2020; 27
Wu (10.1016/j.sna.2022.113578_bib49) 2019; 9
Hu (10.1016/j.sna.2022.113578_bib92) 2017; 252
Nikolic (10.1016/j.sna.2022.113578_bib21) 2020; 20
Al-Hadeethi (10.1016/j.sna.2022.113578_bib132) 2017; 43
Hodes (10.1016/j.sna.2022.113578_bib42) 2007; 9
Li (10.1016/j.sna.2022.113578_bib75) 2019; 6
Han (10.1016/j.sna.2022.113578_bib81) 2018; 262
Amiri (10.1016/j.sna.2022.113578_bib76) 2020
Liu (10.1016/j.sna.2022.113578_bib100) 2018; 29
Lin (10.1016/j.sna.2022.113578_bib64) 2017; 17
Liu (10.1016/j.sna.2022.113578_bib52) 2012; 12
Thi (10.1016/j.sna.2022.113578_bib130) 2018; 255
Paliwal (10.1016/j.sna.2022.113578_bib18) 2017; 250
Tong (10.1016/j.sna.2022.113578_bib58) 2017; 43
Zhang (10.1016/j.sna.2022.113578_bib95) 2008; 103
Bhati (10.1016/j.sna.2022.113578_bib22) 2020; 6
Shinde (10.1016/j.sna.2022.113578_bib15) 2012; 528
Chen (10.1016/j.sna.2022.113578_bib104) 2018; 256
Hu (10.1016/j.sna.2022.113578_bib136) 2020; 46
Subha (10.1016/j.sna.2022.113578_bib2) 2019; 13
Bakker (10.1016/j.sna.2022.113578_bib55) 2002; 74
Vallejos (10.1016/j.sna.2022.113578_bib117) 2019; 301
Katoch (10.1016/j.sna.2022.113578_bib12) 2013; 185
Bhuvaneshwari (10.1016/j.sna.2022.113578_bib105) 2016; 654
Umar (10.1016/j.sna.2022.113578_bib82) 2016; 105
Sharma (10.1016/j.sna.2022.113578_bib10) 2015; 14
Jiang (10.1016/j.sna.2022.113578_bib108) 2016; 42
Zhang (10.1016/j.sna.2022.113578_bib98) 2015; 7
Dhinakaran (10.1016/j.sna.2022.113578_bib17) 2020
Wang (10.1016/j.sna.2022.113578_bib93) 2016; 171
Patil (10.1016/j.sna.2022.113578_bib74) 2015; 10
Ahmada (10.1016/j.sna.2022.113578_bib87) 2012; 47
Huang (10.1016/j.sna.2022.113578_bib101) 2013; 787
Wang (10.1016/j.sna.2022.113578_bib126) 2020; 318
Ha (10.1016/j.sna.2022.113578_bib129) 2018; 434
Kim (10.1016/j.sna.2022.113578_bib11) 2014; 192
Cao (10.1016/j.sna.2022.113578_bib84) 2018; 447
Tyagi (10.1016/j.sna.2022.113578_bib9) 2014; 4
Ouhaibi (10.1016/j.sna.2022.113578_bib34) 2018; 3
Mineo (10.1016/j.sna.2022.113578_bib62) 2021; 348
Mani (10.1016/j.sna.2022.113578_bib79) 2015; 191
Yang (10.1016/j.sna.2022.113578_bib91) 2017; 241
Weintraub (10.1016/j.sna.2022.113578_bib7) 2010; 2
Wei (10.1016/j.sna.2022.113578_bib97) 2019; 109
Ganguly (10.1016/j.sna.2022.113578_bib70) 2020; 49
Walker (10.1016/j.sna.2022.113578_bib8) 2019; 286
Cayir Taşdemirci (10.1016/j.sna.2022.113578_bib39) 2020; 16
Sun (10.1016/j.sna.2022.113578_bib85) 2012; 173
Dey (10.1016/j.sna.2022.113578_bib6) 2018; 229
Karaduman (10.1016/j.sna.2022.113578_bib40) 2017; 46
Kim (10.1016/j.sna.2022.113578_bib56) 2012; 116
Zhang (10.1016/j.sna.2022.113578_bib38) 2019; 19
Wang (10.1016/j.sna.2022.113578_bib65) 2010; 10
Yang (10.1016/j.sna.2022.113578_bib116) 2020; 313
Zhyrovetsky (10.1016/j.sna.2022.113578_bib73) 2017; 12
Pearton (10.1016/j.sna.2022.113578_bib4) 2010; 55
Rahmani (10.1016/j.sna.2022.113578_bib66) 2017; 251
Liang (10.1016/j.sna.2022.113578_bib3) 2010; 84
Gerasimov (10.1016/j.sna.2022.113578_bib122) 2020; 320
Zheng (10.1016/j.sna.2022.113578_bib1) 2013; 18
MinLi (10.1016/j.sna.2022.113578_bib19) 2019; 362
Ma (10.1016/j.sna.2022.113578_bib28) 2019; 782
Kim (10.1016/j.sna.2022.113578_bib57) 2016; 10
Park (10.1016/j.sna.2022.113578_bib127) 2016; 8
Bai (10.1016/j.sna.2022.113578_bib115) 2008; 149
Kandalkar (10.1016/j.sna.2022.113578_bib44) 2009; 478
Nagaraju (10.1016/j.sna.2022.113578_bib33) 2019; 9
Chen (10.1016/j.sna.2022.113578_bib63) 2019; 280
Badadhe (10.1016/j.sna.2022.113578_bib32) 2011; 156
Sheng (10.1016/j.sna.2022.113578_bib45) 2018; 36
Ueda (10.1016/j.sna.2022.113578_bib121) 2017; 252
Chu (10.1016/j.sna.2022.113578_bib41) 2020; 13
Kanica (10.1016/j.sna.2022.113578_bib31) 2017; 682
Leng (10.1016/j.sna.2022.113578_bib37) 2019; 48
Wetchakuna (10.1016/j.sna.2022.113578_bib60) 2011; 160
Bhatia (10.1016/j.sna.2022.113578_bib78) 2017; 7
Jiang (10.1016/j.sna.2022.113578_bib50) 2021; 14
Zhu (10.1016/j.sna.2022.113578_bib27) 2017; 267
Teja (10.1016/j.sna.2022.113578_bib25) 2009; 55
Zhu (10.1016/j.sna.2022.113578_bib88) 2018; 427
Wu (10.1016/j.sna.2022.113578_bib110) 2014; 198
Zito (10.1016/j.sna.2022.113578_bib77) 2017; 244
Punginsang (10.1016/j.sna.2022.113578_bib107) 2022; 571
Zhou (10.1016/j.sna.2022.113578_bib89) 2018; 44
Fan (10.1016/j.sna.2022.113578_bib123) 2020; 55
Sayegh (10.1016/j.sna.2022.113578_bib119) 2021; 344
Khudadad (10.1016/j.sna.2022.113578_bib90) 2021; 269
Wang (10.1016/j.sna.2022.113578_bib96) 2006; 113
Suna (10.1016/j.sna.2022.113578_bib137) 2021; 868
Song (10.1016/j.sna.2022.113578_bib71) 2019; 287
Huang (10.1016/j.sna.2022.113578_bib135) 2020; 310
Sun (10.1016/j.sna.2022.113578_bib111) 2014; 190
Durrani (10.1016/j.sna.2022.113578_bib128) 2012; 12
Wang (10.1016/j.sna.2022.113578_bib134) 2017; 240
Saboor (10.1016/j.sna.2022.113578_bib120) 2016; 223
Ham (10.1016/j.sna.2022.113578_bib48) 2017; 5
Zhu (10.1016/j.sna.2022.113578_bib138) 2020; 569
Zappa (10.1016/j.sna.2022.113578_bib16) 2018; 1039
Faisal (10.1016/j.sna.2022.113578_bib94) 2017; 40
Girija (10.1016/j.sna.2022.113578_bib114) 2018; 214
Shinde (10.1016/j.sna.2022.113578_bib43) 2005; 245
Sanctis (10.1016/j.sna.2022.113578_bib46) 2018; 6
Pineau (10.1016/j.sna.2022.113578_bib118) 2021; 327
Yin (10.1016/j.sna.2022.113578_bib61) 2017; 7
Kim (10.1016/j.sna.2022.113578_bib68) 2021; 332
References_xml – volume: 214
  start-page: 297
  year: 2018
  end-page: 305
  ident: bib114
  article-title: Enhanced H2S sensing properties of Gallium doped ZnO nanocrystalline films as investigated by DC conductivity and impedance spectroscopy
  publication-title: Mater. Chem. Phys.
– volume: 240
  start-page: 664
  year: 2017
  end-page: 673
  ident: bib134
  article-title: Fabrication and gas sensing properties of Au-loaded SnO
  publication-title: Sens. Actuators B Chem.
– volume: 116
  start-page: 15682
  year: 2012
  end-page: 15691
  ident: bib56
  article-title: CuO/Nzo heterostructured nanorods: photochemical synthesis and the mechanism of H
  publication-title: J. Phys. Chem.
– volume: 251
  start-page: 57
  year: 2017
  end-page: 64
  ident: bib66
  article-title: Hydrogen sensors based on 2D WO
  publication-title: Sens. Actuators B Chem.
– volume: 29
  start-page: 18380
  year: 2018
  end-page: 18387
  ident: bib100
  article-title: A high-performance NH
  publication-title: J. Mater. Sci. Mater. Electron
– volume: 27
  start-page: 11541
  year: 2020
  end-page: 11553
  ident: bib29
  article-title: Sono-coprecipitation synthesis of ZnO/CuO nanophotocatalyst for removal of parathion from wastewater
  publication-title: Environ. Sci. Pollut. Res.
– volume: 46
  start-page: 4017
  year: 2017
  end-page: 4023
  ident: bib40
  article-title: Hydrogen gas sensing characteristics of nanostructured NiO thin films synthesized by SILAR method
  publication-title: J. Electron. Mater.
– volume: 13
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib2
  article-title: Enhanced room temperature gas sensing properties of low temperature solution processed ZnO/CuO heterojunction
  publication-title: BMC Chem.
– volume: 20
  start-page: 465
  year: 2019
  end-page: 496
  ident: bib47
  article-title: New development of atomic layer deposition: processes, methods and applications
  publication-title: Sci. Technol. Adv. Mater.
– volume: 787
  start-page: 233
  year: 2013
  end-page: 238
  ident: bib101
  article-title: A new sensor for ammonia based on cyanidin-sensitized titanium dioxide film operating at room temperature
  publication-title: Anal. Chim. Acta
– volume: 682
  start-page: 140
  year: 2017
  end-page: 146
  ident: bib31
  article-title: Preparation and characterization of Ag-doped In
  publication-title: Chem. Phys. Lett.
– volume: 55
  start-page: 1
  year: 2010
  end-page: 59
  ident: bib4
  article-title: Recent advances in wide bandgap semiconductor biological and gas sensors
  publication-title: Prog. Mater. Sci.
– volume: 9
  start-page: 7459
  year: 2019
  ident: bib49
  article-title: NO gas sensor based on ZnGa
  publication-title: Sci. Rep.
– volume: 14
  start-page: 1789
  year: 2021
  end-page: 1801
  ident: bib50
  article-title: Synthesis of magnetic two-dimensional materials by chemical vapor deposition
  publication-title: Nano Res.
– volume: 6
  start-page: 470
  year: 2019
  end-page: 506
  ident: bib75
  publication-title: Mater. Horiz.
– volume: 7
  start-page: 12206
  year: 2017
  ident: bib61
  article-title: Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electro hydrodynamic nanowire template for enhanced gas-sensing properties
  publication-title: Sci. Rep.
– volume: 301
  year: 2019
  ident: bib117
  article-title: Gas sensitive ZnO structures with reduced humidity-interference
  publication-title: Sens. Actuators B Chem.
– volume: 252
  start-page: 116
  year: 2017
  end-page: 126
  ident: bib92
  article-title: Highly sensitive NO
  publication-title: Sens. Actuators B Chem.
– volume: 12
  start-page: 19755
  year: 2020
  end-page: 19767
  ident: bib125
  article-title: Observation of switchable dual-conductive channels and related nitric oxide gas-sensing properties in the N-rGO/ZnO heterogeneous structure
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 2805
  year: 2016
  end-page: 2811
  ident: bib127
  article-title: Synergistic effects of a combination of cr2o3-functionalization and UV-irradiation techniques on the ethanol gas sensing performance of ZnO nanorod gas sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 4392
  year: 2018
  end-page: 4400
  ident: bib89
  article-title: Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO
  publication-title: Ceram. Int.
– volume: 229
  start-page: 206
  year: 2018
  end-page: 217
  ident: bib6
  article-title: Semiconductor metal oxide gas sensors: a review
  publication-title: Mater. Sci. Eng. B
– volume: 36
  year: 2018
  ident: bib45
  article-title: Review Article: Atomic layer deposition for oxide semiconductor thin film transistors: advances in research and development
  publication-title: J. Vac. Sci. Technol. A
– volume: 434
  start-page: 1048
  year: 2018
  end-page: 1055
  ident: bib129
  article-title: Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene Oxide
  publication-title: Appl. Surf. Sci.
– volume: 55
  start-page: 7702
  year: 2020
  end-page: 7714
  ident: bib123
  article-title: Enhanced H
  publication-title: J. Mater. Sci.
– volume: 55
  start-page: 22
  year: 2009
  end-page: 45
  ident: bib25
  article-title: Synthesis, properties, and applications of magnetic iron oxide nanoparticles
  publication-title: Prog. Cryst. Growth Charact. Mater.
– volume: 20
  start-page: 6694
  year: 2020
  ident: bib21
  article-title: Semiconductor gas sensors: materials, technology, design, and application
  publication-title: Sensors
– volume: 47
  start-page: 358
  year: 2012
  end-page: 361
  ident: bib87
  article-title: Synthesis of WO
  publication-title: Procedia Eng.
– volume: 331
  year: 2021
  ident: bib67
  article-title: 2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO
  publication-title: Sens. Actuators B Chem.
– volume: 113
  start-page: 320
  year: 2006
  end-page: 323
  ident: bib96
  article-title: Detection of H
  publication-title: Sens. Actuators B
– volume: 42
  start-page: 15881
  year: 2016
  end-page: 15888
  ident: bib108
  article-title: Highly sensitive acetone sensor based on Eu-doped SnO
  publication-title: Ceram. Int.
– volume: 280
  start-page: 151
  year: 2019
  end-page: 161
  ident: bib63
  article-title: NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization
  publication-title: Sens. Actuators B Chem.
– volume: 447
  start-page: 173
  year: 2018
  end-page: 181
  ident: bib84
  article-title: Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 40
  year: 2017
  end-page: 49
  ident: bib48
  article-title: Low-temperature synthesis of graphene by chemical vapor deposition and its applications
  publication-title: FlatChem
– volume: 320
  year: 2020
  ident: bib122
  article-title: Structure and gas-sensing properties of SnO
  publication-title: Sens. Actuators B Chem.
– volume: 18
  start-page: 1
  year: 2013
  end-page: 22
  ident: bib1
  article-title: Hierarchically nanostructured materials for sustainable environmental applications
  publication-title: Front. Chem.
– volume: 256
  start-page: 656
  year: 2018
  end-page: 664
  ident: bib133
  article-title: Pt nanoparticles decorated SnO
  publication-title: Sens. Actuators B Chem.
– volume: 84
  start-page: 1154
  year: 2010
  end-page: 1158
  ident: bib3
  article-title: Synthesis and characterization of hetero epitaxial GaN films on Si(111)
  publication-title: Vacuum
– volume: 571
  year: 2022
  ident: bib107
  article-title: Selective H
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 2731
  year: 2020
  ident: bib41
  article-title: Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition Their Application to Nanogenerators
  publication-title: Energies
– volume: 185
  start-page: 411
  year: 2013
  end-page: 416
  ident: bib12
  article-title: Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers
  publication-title: Sens. Actuators B Chem.
– volume: 788
  start-page: 36
  year: 2019
  end-page: 43
  ident: bib124
  article-title: Highly sensitive and selective H
  publication-title: J. Alloy. Compd.
– volume: 569
  start-page: 358
  year: 2020
  end-page: 365
  ident: bib138
  article-title: Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: synthesis, characterization, and application for the detection of an exhaled diabetes biomarker
  publication-title: J. Colloid Interface Sci.
– volume: 61
  start-page: 1
  year: 2008
  end-page: 39
  ident: bib59
  article-title: The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 318
  year: 2020
  ident: bib126
  article-title: α-Fe
  publication-title: Sens. Actuators B Chem.
– volume: 9
  start-page: 2181
  year: 2007
  end-page: 2196
  ident: bib42
  article-title: Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition
  publication-title: Phys. Chem. Chem. Phys.
– volume: 283
  start-page: 399
  year: 2019
  end-page: 406
  ident: bib112
  article-title: Investigation of the H
  publication-title: Sens. Actuators B Chem.
– volume: 246
  start-page: 243
  year: 2017
  end-page: 251
  ident: bib20
  publication-title: Sens. Actuators B Chem.
– volume: 123
  year: 2021
  ident: bib80
  article-title: 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature
  publication-title: Mater. Sci. Semicond. Process.
– volume: 40
  start-page: 409
  year: 2014
  end-page: 415
  ident: bib102
  article-title: Nanostructured TiO
  publication-title: Ceram. Int.
– volume: 160
  start-page: 580
  year: 2011
  end-page: 591
  ident: bib60
  article-title: Semiconducting metal oxides as sensors for environmentally hazardous gases
  publication-title: Sens. Actuators B Chem.
– volume: 164
  start-page: 63
  year: 2016
  end-page: 70
  ident: bib99
  article-title: Influence of CuO nanostructures morphology on hydrogen gas sensing performances
  publication-title: Microelectron. Eng.
– volume: 10
  start-page: 1328
  year: 2019
  ident: bib54
  article-title: Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air
  publication-title: Nat. Commun.
– volume: 528
  start-page: 109
  year: 2012
  end-page: 114
  ident: bib15
  article-title: Synthesis of ZnO nanorods by spray pyrolysis for H
  publication-title: J. Alloy. Compd.
– volume: 19
  start-page: 2855
  year: 2019
  end-page: 2862
  ident: bib38
  article-title: Liquefied petroleum gas sensing properties of ZnO/PPy/PbS QDs nanocomposite prepared by self-assembly combining with SILAR method
  publication-title: IEEE Sens. J.
– volume: 10
  start-page: 5891
  year: 2016
  end-page: 5899
  ident: bib57
  article-title: Mesoporous WO
  publication-title: ACS Nano
– volume: 256
  start-page: 962
  year: 2018
  end-page: 967
  ident: bib104
  article-title: Characteristics of a Pt/NiO thin film-based ammonia gas sensor
  publication-title: Sens. Actuators B Chem.
– volume: 332
  year: 2021
  ident: bib68
  article-title: Synergistic effects of SnO
  publication-title: Sens. Actuators B Chem.
– volume: 255
  start-page: 3275
  year: 2018
  end-page: 3283
  ident: bib130
  article-title: Fe2O3 nanoporous network fabricated from Fe
  publication-title: Sens. Actuators B Chem.
– volume: 105
  start-page: 16
  year: 2016
  end-page: 24
  ident: bib82
  article-title: Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures
  publication-title: Mater. Des.
– volume: 269
  year: 2021
  ident: bib90
  article-title: Effect of heat treatment on WO3 nanostructures based NO
  publication-title: Mater. Chem. Phys.
– volume: 348
  year: 2021
  ident: bib62
  article-title: H
  publication-title: Sens. Actuators B Chem.
– volume: 44
  start-page: 16773
  year: 2018
  end-page: 16780
  ident: bib113
  article-title: Facile fabrication and superior gas sensing properties of spongelike Co-doped ZnO microspheres for ethanol sensors
  publication-title: Ceram. Int.
– volume: 553
  start-page: 151
  year: 2019
  end-page: 160
  ident: bib30
  publication-title: Phys. B Condens. Matter
– volume: 9
  start-page: 16515
  year: 2019
  end-page: 16524
  ident: bib33
  publication-title: RSC Adv.
– volume: 287
  start-page: 191
  year: 2019
  end-page: 198
  ident: bib71
  publication-title: Sens. Actuators B Chem.
– volume: 35
  start-page: 649
  year: 2009
  end-page: 652
  ident: bib83
  article-title: Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction
  publication-title: Ceram. Int.
– volume: 362
  start-page: 78
  year: 2019
  end-page: 83
  ident: bib19
  publication-title: Surf. Coat. Technol.
– start-page: 235
  year: 2020
  end-page: 262
  ident: bib17
  article-title: Comprehensive Analytical Chemistry
– volume: 156
  start-page: 943
  year: 2011
  end-page: 948
  ident: bib32
  article-title: Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis
  publication-title: Sens. Actuators B Chem.
– volume: 3
  start-page: 31
  year: 2010
  end-page: 52
  ident: bib53
  publication-title: Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures
– volume: 245
  start-page: 407
  year: 2005
  end-page: 413
  ident: bib43
  article-title: Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect
  publication-title: Appl. Surf. Sci.
– volume: 139
  start-page: 1
  year: 2007
  end-page: 23
  ident: bib51
  article-title: Metal oxides for solid-state gas sensors: what determines our choice?
  publication-title: Mater. Sci. Eng. B
– volume: 46
  start-page: 1609
  year: 2020
  end-page: 1614
  ident: bib136
  article-title: Enhanced hydrogen gas sensing properties of Pd-doped SnO
  publication-title: Ceram. Int
– volume: 192
  start-page: 607
  year: 2014
  end-page: 627
  ident: bib11
  article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview
  publication-title: Sens. Actuators B Chem.
– volume: 204
  start-page: 250
  year: 2014
  end-page: 272
  ident: bib5
  article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review
  publication-title: Sens. Actuators B Chem.
– volume: 7
  start-page: 801
  year: 2017
  end-page: 806
  ident: bib78
  article-title: Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques
  publication-title: Results Phys.
– volume: 191
  start-page: 41
  year: 2015
  end-page: 50
  ident: bib79
  article-title: A highly selective and wide range ammonia sensor—nanostructured ZnO: Co thin film
  publication-title: Mater. Sci. Eng. B
– volume: 115
  start-page: 7944
  year: 2015
  end-page: 8000
  ident: bib14
  article-title: Recent progress on the development of chemosensors for gases
  publication-title: Chem. Rev.
– volume: 310
  year: 2020
  ident: bib135
  article-title: Enhanced acetone-sensing properties to ppb detection level using Au/Pddoped ZnO nanorod
  publication-title: Sens. Actuators B Chem.
– volume: 241
  start-page: 806
  year: 2017
  end-page: 813
  ident: bib91
  publication-title: Sens. Actuators B Chem.
– volume: 226
  start-page: 99
  year: 2017
  end-page: 106
  ident: bib13
  article-title: Preparation and characterization of nanostructured Gd doped cerium oxide thin films by pulsed laser deposition for acetone sensor application
  publication-title: Mater. Sci. Eng. B
– volume: 250
  start-page: 679
  year: 2017
  end-page: 685
  ident: bib18
  publication-title: Sens. Actuators B Chem.
– volume: 10
  start-page: 195
  year: 2015
  end-page: 204
  ident: bib74
  article-title: Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing
  publication-title: Procedia Mater. Sci.
– volume: 14
  year: 2015
  ident: bib10
  article-title: Polyaniline/SnO
  publication-title: Int. J. Nanosci.
– volume: 782
  start-page: 1121
  year: 2019
  end-page: 1126
  ident: bib28
  article-title: Room temperature photoelectric NO
  publication-title: J. Alloy. Compd.
– volume: 299
  year: 2019
  ident: bib86
  article-title: Electrospun Ca-doped In
  publication-title: Sens. Actuators B Chem.
– volume: 43
  start-page: 6765
  year: 2017
  end-page: 6770
  ident: bib132
  article-title: Synthesis, characterization and acetone gas sensing applications of Ag doped ZnO nanoneedles
  publication-title: Ceram. Int.
– volume: 74
  start-page: 2781
  year: 2002
  end-page: 2800
  ident: bib55
  article-title: Electrochemical sensors
  publication-title: Anal. Chem.
– volume: 10
  start-page: 2088
  year: 2010
  end-page: 2106
  ident: bib23
  article-title: Metal oxide gas sensors: sensitivity and influencing factors
  publication-title: Sensors
– volume: 11
  start-page: 22664
  year: 2019
  end-page: 22684
  ident: bib24
  article-title: Gas sensing mechanisms of metal oxide semiconductors: a focus review
  publication-title: Nanoscale
– volume: 43
  start-page: 14200
  year: 2017
  end-page: 14209
  ident: bib58
  article-title: A fast response and recovery H
  publication-title: Ceram. Int.
– start-page: 9
  year: 2020
  end-page: 30
  ident: bib35
  article-title: Chapter 2 - Methods for design and fabrication of nanosensors: the case of ZnO-based nanosensor
  publication-title: Nanosensors for Smart Cities Micro and Nano Technologies
– volume: 6
  start-page: 464
  year: 2018
  end-page: 472
  ident: bib46
  article-title: Stacked indium oxide/zinc oxide heterostructures as semiconductors in thin film transistor devices: a case study using atomic layer deposition
  publication-title: J. Mater. Chem. C
– volume: 10
  start-page: 2088
  year: 2010
  end-page: 2106
  ident: bib65
  article-title: Metal oxide gas sensors: sensitivity and influencing factors
  publication-title: Sensors
– volume: 173
  start-page: 52
  year: 2012
  end-page: 57
  ident: bib85
  article-title: Hydrothermal synthesis of 3D urchin-like -Fe
  publication-title: Sens. Actuators B Chem.
– volume: 2
  start-page: 1573
  year: 2010
  end-page: 1587
  ident: bib7
  article-title: Solution synthesis of one-dimensional ZnO nanomaterials and their applications
  publication-title: Nanoscale
– volume: 60
  start-page: 1
  year: 2017
  end-page: 24
  ident: bib69
  article-title: Strategies for designing metal oxide nanostructures
  publication-title: Sci. China Mater.
– volume: 103
  year: 2008
  ident: bib95
  article-title: Room-temperature high-sensitivity H
  publication-title: J. Appl. Phys.
– volume: 190
  start-page: 32
  year: 2014
  end-page: 39
  ident: bib111
  article-title: One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO
  publication-title: Sens. Actuators B Chem.
– volume: 40
  start-page: 1061
  year: 2017
  end-page: 1068
  ident: bib94
  article-title: Synthesis of ZnO comb-like nanostructures for high sensitivity H
  publication-title: Bull. Mater. Sci.
– volume: 1039
  start-page: 1
  year: 2018
  end-page: 23
  ident: bib16
  article-title: “Metal oxide-based heterostructures for gas sensors”- A review
  publication-title: Anal. Chim. Acta
– volume: 198
  start-page: 62
  year: 2014
  end-page: 69
  ident: bib110
  article-title: Al-doping induced formation of oxygen-vacancy for enhancing gas-sensing properties of SnO
  publication-title: Sens. Actuators B Chem.
– volume: 535
  start-page: 458
  year: 2019
  end-page: 468
  ident: bib72
  article-title: Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO
  publication-title: J. Colloid Interface Sci.
– volume: 223
  start-page: 429
  year: 2016
  end-page: 439
  ident: bib120
  article-title: Enhanced NO
  publication-title: Sens. Actuators B Chem.
– volume: 61
  start-page: 4769
  year: 2007
  end-page: 4772
  ident: bib26
  article-title: Hydrothermal synthesis of surface-modified iron oxide nanoparticles
  publication-title: Mater. Lett.
– volume: 267
  start-page: 242
  year: 2017
  end-page: 261
  ident: bib27
  article-title: Room-temperature gas sensing of ZnO-based gas sensor: a review
  publication-title: Sens. Actuators A Chem.
– volume: 301
  year: 2019
  ident: bib109
  article-title: Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review
  publication-title: Sens. Actuators B Chem.
– volume: 244
  start-page: 466
  year: 2017
  end-page: 474
  ident: bib77
  article-title: Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO
  publication-title: Sens. Actuators B Chem.
– volume: 12
  start-page: 9635
  year: 2012
  end-page: 9665
  ident: bib52
  article-title: A survey on gas sensing technology
  publication-title: Sensors
– volume: 654
  start-page: 202
  year: 2016
  end-page: 208
  ident: bib105
  article-title: Enhanced ammonia sensing characteristics of Cr doped CuO nanoboats
  publication-title: J. Alloy. Compd.
– volume: 149
  start-page: 12
  year: 2008
  ident: bib115
  article-title: Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor
  publication-title: Mater. Sci. Eng. B
– start-page: 3096
  year: 2020
  ident: bib76
  article-title: Nanostructured metal oxide-based acetone gas sensors. A review
  publication-title: Sensors
– volume: 109
  start-page: 253
  year: 2019
  end-page: 260
  ident: bib97
  article-title: Morphology controllable synthesis of hierarchical WO
  publication-title: Phys. E Low. Dimens. Syst. Nanostruct.
– volume: 327
  year: 2021
  ident: bib118
  article-title: Y-doped ZnO films for acetic acid sensing down to ppb at high humidity
  publication-title: Sens. Actuators B Chem.
– volume: 868
  year: 2021
  ident: bib137
  article-title: Formaldehyde gas sensors based on SnO
  publication-title: J. Alloy. Compd.
– volume: 478
  start-page: 594
  year: 2009
  end-page: 598
  ident: bib44
  article-title: Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition
  publication-title: J. Alloy. Compd.
– volume: 7
  start-page: 10078
  year: 2015
  end-page: 10084
  ident: bib98
  article-title: Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor
  publication-title: Nanoscale
– volume: 12
  start-page: 2598
  year: 2012
  end-page: 2609
  ident: bib128
  article-title: Investigation of the carbon monoxide gas sensing characteristics of tin oxide mixed cerium oxide thin films
  publication-title: Sensors
– volume: 17
  start-page: 2779
  year: 2017
  ident: bib64
  article-title: The morphologies of the semiconductor oxides and their gas-sensing properties
  publication-title: Sensors
– volume: 4
  start-page: 18
  year: 2014
  ident: bib9
  article-title: Effect of MgO and V
  publication-title: Chem. Sensors
– volume: 262
  start-page: 655
  year: 2018
  end-page: 663
  ident: bib81
  article-title: Highly sensitive NO
  publication-title: Sens. Actuators B Chem.
– volume: 135
  start-page: 552
  year: 2007
  end-page: 557
  ident: bib36
  article-title: Characterization of Al
  publication-title: Sens. Actuators A Phys.
– volume: 313
  year: 2020
  ident: bib116
  article-title: Acetone sensors with high stability to humidity changes based on Ru-doped NiO flower-like microspheres
  publication-title: Sens. Actuators B Chem.
– volume: 6
  start-page: 46
  year: 2020
  end-page: 62
  ident: bib22
  article-title: Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review
  publication-title: Energy Rep.
– volume: 4
  start-page: 2594
  year: 2021
  end-page: 2605
  ident: bib131
  article-title: MoS
  publication-title: ACS Appl. Nano Mater.
– volume: 252
  start-page: 268
  year: 2017
  end-page: 276
  ident: bib121
  article-title: Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode
  publication-title: Sens. Actuators B Chem.
– volume: 12
  start-page: 132
  year: 2017
  ident: bib73
  article-title: Nanopowder metal oxide for photoluminescent gas sensing
  publication-title: Nanoscale Res. Lett.
– volume: 427
  start-page: 281
  year: 2018
  end-page: 287
  ident: bib88
  article-title: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties
  publication-title: Appl. Surf. Sci.
– volume: 15
  start-page: 3711
  year: 2015
  end-page: 3715
  ident: bib106
  article-title: On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor
  publication-title: IEEE Sens. J.
– volume: 344
  year: 2021
  ident: bib119
  article-title: Humidity-resistant gas sensors based on SnO
  publication-title: Sens. Actuators B Chem.
– volume: 16
  start-page: 239
  year: 2020
  end-page: 246
  ident: bib39
  article-title: Copper oxide thin films synthesized by SILAR: role of varying annealing temperature
  publication-title: Electron. Mater. Lett.
– volume: 7
  start-page: 37720
  year: 2017
  end-page: 37728
  ident: bib103
  publication-title: RSC Adv.
– volume: 49
  start-page: 5070
  year: 2020
  end-page: 5076
  ident: bib70
  article-title: Synthesis of CuO nanoflowers and their application towards inflammable gas sensing
  publication-title: J. Electron. Mater.
– volume: 286
  start-page: 624
  year: 2019
  end-page: 640
  ident: bib8
  article-title: Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: a review
  publication-title: Sens. Actuators B Chem.
– volume: 3
  start-page: 29
  year: 2018
  end-page: 36
  ident: bib34
  article-title: The effect of strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method
  publication-title: J. Sci. -Adv. Mater. Dev.
– volume: 48
  start-page: 3015
  year: 2019
  end-page: 3072
  ident: bib37
  article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion
  publication-title: Chem. Soc. Rev.
– volume: 171
  start-page: 146
  year: 2016
  end-page: 149
  ident: bib93
  article-title: Solvothermal synthesis of WO
  publication-title: Mater. Lett.
– volume: 327
  year: 2021
  ident: 10.1016/j.sna.2022.113578_bib118
  article-title: Y-doped ZnO films for acetic acid sensing down to ppb at high humidity
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128843
– volume: 4
  start-page: 2594
  issue: 3
  year: 2021
  ident: 10.1016/j.sna.2022.113578_bib131
  article-title: MoS2/WO3 nanosheets for detection of ammonia
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c03239
– volume: 252
  start-page: 268
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib121
  article-title: Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.05.172
– volume: 123
  issue: 1
  year: 2021
  ident: 10.1016/j.sna.2022.113578_bib80
  article-title: 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature
  publication-title: Mater. Sci. Semicond. Process.
– volume: 115
  start-page: 7944
  year: 2015
  ident: 10.1016/j.sna.2022.113578_bib14
  article-title: Recent progress on the development of chemosensors for gases
  publication-title: Chem. Rev.
  doi: 10.1021/cr500567r
– volume: 535
  start-page: 458
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib72
  article-title: Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.10.010
– volume: 105
  start-page: 16
  issue: 5
  year: 2016
  ident: 10.1016/j.sna.2022.113578_bib82
  article-title: Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.05.006
– volume: 12
  start-page: 19755
  issue: 17
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib125
  article-title: Observation of switchable dual-conductive channels and related nitric oxide gas-sensing properties in the N-rGO/ZnO heterogeneous structure
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20776
– volume: 9
  start-page: 7459
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib49
  article-title: NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43752-z
– volume: 12
  start-page: 132
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib73
  article-title: Nanopowder metal oxide for photoluminescent gas sensing
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-1891-5
– volume: 8
  start-page: 2805
  year: 2016
  ident: 10.1016/j.sna.2022.113578_bib127
  article-title: Synergistic effects of a combination of cr2o3-functionalization and UV-irradiation techniques on the ethanol gas sensing performance of ZnO nanorod gas sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11485
– volume: 12
  start-page: 2598
  issue: 3
  year: 2012
  ident: 10.1016/j.sna.2022.113578_bib128
  article-title: Investigation of the carbon monoxide gas sensing characteristics of tin oxide mixed cerium oxide thin films
  publication-title: Sensors
  doi: 10.3390/s120302598
– volume: 113
  start-page: 320
  year: 2006
  ident: 10.1016/j.sna.2022.113578_bib96
  article-title: Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2005.03.011
– volume: 447
  start-page: 173
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib84
  article-title: Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.217
– volume: 348
  year: 2021
  ident: 10.1016/j.sna.2022.113578_bib62
  article-title: H2 detection mechanism in chemoresistive sensor based on low-cost synthesized WO3 nanorods
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130704
– volume: 185
  start-page: 411
  year: 2013
  ident: 10.1016/j.sna.2022.113578_bib12
  article-title: Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2013.05.030
– volume: 553
  start-page: 151
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib30
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2018.10.034
– volume: 223
  start-page: 429
  year: 2016
  ident: 10.1016/j.sna.2022.113578_bib120
  article-title: Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.09.075
– volume: 310
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib135
  article-title: Enhanced acetone-sensing properties to ppb detection level using Au/Pddoped ZnO nanorod
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.127129
– volume: 682
  start-page: 140
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib31
  article-title: Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2017.06.008
– volume: 204
  start-page: 250
  year: 2014
  ident: 10.1016/j.sna.2022.113578_bib5
  article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.07.074
– volume: 286
  start-page: 624
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib8
  article-title: Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: a review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.01.049
– volume: 244
  start-page: 466
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib77
  article-title: Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.01.015
– volume: 5
  start-page: 40
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib48
  article-title: Low-temperature synthesis of graphene by chemical vapor deposition and its applications
  publication-title: FlatChem
  doi: 10.1016/j.flatc.2017.07.002
– volume: 255
  start-page: 3275
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib130
  article-title: Fe2O3 nanoporous network fabricated from Fe3O4/reduced grapheme oxide for high-performance ethanol gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.09.154
– volume: 301
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib109
  article-title: Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.126845
– volume: 55
  start-page: 1
  issue: 2010
  year: 2010
  ident: 10.1016/j.sna.2022.113578_bib4
  article-title: Recent advances in wide bandgap semiconductor biological and gas sensors
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2009.08.003
– volume: 787
  start-page: 233
  year: 2013
  ident: 10.1016/j.sna.2022.113578_bib101
  article-title: A new sensor for ammonia based on cyanidin-sensitized titanium dioxide film operating at room temperature
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2013.05.057
– volume: 6
  start-page: 464
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib46
  article-title: Stacked indium oxide/zinc oxide heterostructures as semiconductors in thin film transistor devices: a case study using atomic layer deposition
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC03724D
– start-page: 3096
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib76
  article-title: Nanostructured metal oxide-based acetone gas sensors. A review
  publication-title: Sensors
  doi: 10.3390/s20113096
– start-page: 9
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib35
  article-title: Chapter 2 - Methods for design and fabrication of nanosensors: the case of ZnO-based nanosensor
– volume: 116
  start-page: 15682
  issue: 29
  year: 2012
  ident: 10.1016/j.sna.2022.113578_bib56
  article-title: CuO/Nzo heterostructured nanorods: photochemical synthesis and the mechanism of H2S gas sensing
  publication-title: J. Phys. Chem.
– volume: 19
  start-page: 2855
  issue: 8
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib38
  article-title: Liquefied petroleum gas sensing properties of ZnO/PPy/PbS QDs nanocomposite prepared by self-assembly combining with SILAR method
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2890074
– volume: 135
  start-page: 552
  issue: 2
  year: 2007
  ident: 10.1016/j.sna.2022.113578_bib36
  article-title: Characterization of Al2O3 thin films prepared by spray pyrolysis method for humidity sensor
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2006.10.004
– volume: 214
  start-page: 297
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib114
  article-title: Enhanced H2S sensing properties of Gallium doped ZnO nanocrystalline films as investigated by DC conductivity and impedance spectroscopy
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.04.104
– volume: 252
  start-page: 116
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib92
  article-title: Highly sensitive NO2 detection on ppb level by devices based on Pd-loaded In2O3 hierarchical microstructures
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.05.113
– volume: 20
  start-page: 6694
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib21
  article-title: Semiconductor gas sensors: materials, technology, design, and application
  publication-title: Sensors
  doi: 10.3390/s20226694
– volume: 13
  start-page: 2731
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib41
  article-title: Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition Their Application to Nanogenerators
  publication-title: Energies
  doi: 10.3390/en13112731
– volume: 7
  start-page: 801
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib78
  article-title: Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.02.008
– volume: 11
  start-page: 22664
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib24
  article-title: Gas sensing mechanisms of metal oxide semiconductors: a focus review
  publication-title: Nanoscale
  doi: 10.1039/C9NR07699A
– volume: 164
  start-page: 63
  year: 2016
  ident: 10.1016/j.sna.2022.113578_bib99
  article-title: Influence of CuO nanostructures morphology on hydrogen gas sensing performances
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2016.07.008
– volume: 344
  year: 2021
  ident: 10.1016/j.sna.2022.113578_bib119
  article-title: Humidity-resistant gas sensors based on SnO2 nanowires coated with a porous alumina nanomembrane by molecular layer deposition
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130302
– volume: 434
  start-page: 1048
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib129
  article-title: Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene Oxide
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.11.047
– volume: 43
  start-page: 6765
  issue: 9
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib132
  article-title: Synthesis, characterization and acetone gas sensing applications of Ag doped ZnO nanoneedles
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.02.088
– volume: 44
  start-page: 16773
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib113
  article-title: Facile fabrication and superior gas sensing properties of spongelike Co-doped ZnO microspheres for ethanol sensors
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.06.110
– volume: 6
  start-page: 470
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib75
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01365A
– volume: 36
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib45
  article-title: Review Article: Atomic layer deposition for oxide semiconductor thin film transistors: advances in research and development
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.5047237
– volume: 16
  start-page: 239
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib39
  article-title: Copper oxide thin films synthesized by SILAR: role of varying annealing temperature
  publication-title: Electron. Mater. Lett.
  doi: 10.1007/s13391-020-00205-4
– volume: 332
  year: 2021
  ident: 10.1016/j.sna.2022.113578_bib68
  article-title: Synergistic effects of SnO2 and Au nanoparticles decorated on WS2 nanosheets for flexible, room-temperature CO gas sensing
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.129493
– volume: 782
  start-page: 1121
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib28
  article-title: Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.12.180
– volume: 29
  start-page: 18380
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib100
  article-title: A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature
  publication-title: J. Mater. Sci. Mater. Electron
  doi: 10.1007/s10854-018-9952-9
– volume: 267
  start-page: 242
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib27
  article-title: Room-temperature gas sensing of ZnO-based gas sensor: a review
  publication-title: Sens. Actuators A Chem.
  doi: 10.1016/j.sna.2017.10.021
– volume: 14
  issue: 4
  year: 2015
  ident: 10.1016/j.sna.2022.113578_bib10
  article-title: Polyaniline/SnO2 nanocomposite sensor for NO2 gas sensing at low operating temperature
  publication-title: Int. J. Nanosci.
  doi: 10.1142/S0219581X15500118
– volume: 171
  start-page: 146
  year: 2016
  ident: 10.1016/j.sna.2022.113578_bib93
  article-title: Solvothermal synthesis of WO3 nanocrystals with nanosheet and nanorod morphologies and the gas-sensing properties
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.02.040
– volume: 229
  start-page: 206
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib6
  article-title: Semiconductor metal oxide gas sensors: a review
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2017.12.036
– volume: 331
  year: 2021
  ident: 10.1016/j.sna.2022.113578_bib67
  article-title: 2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.129371
– volume: 240
  start-page: 664
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib134
  article-title: Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for highly sensitive hydrogen detection
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.09.024
– volume: 10
  start-page: 5891
  issue: 6
  year: 2016
  ident: 10.1016/j.sna.2022.113578_bib57
  article-title: Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01196
– volume: 283
  start-page: 399
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib112
  article-title: Investigation of the H2 sensing properties of multilayer mesoporous pure and Pd-doped SnO2 thin film
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.12.051
– volume: 84
  start-page: 1154
  year: 2010
  ident: 10.1016/j.sna.2022.113578_bib3
  article-title: Synthesis and characterization of hetero epitaxial GaN films on Si(111)
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2010.01.054
– volume: 245
  start-page: 407
  year: 2005
  ident: 10.1016/j.sna.2022.113578_bib43
  article-title: Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2004.10.036
– volume: 7
  start-page: 37720
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib103
  publication-title: RSC Adv.
  doi: 10.1039/C7RA05217K
– volume: 256
  start-page: 962
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib104
  article-title: Characteristics of a Pt/NiO thin film-based ammonia gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.10.032
– volume: 198
  start-page: 62
  year: 2014
  ident: 10.1016/j.sna.2022.113578_bib110
  article-title: Al-doping induced formation of oxygen-vacancy for enhancing gas-sensing properties of SnO2 NTs by electrospinning
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.03.012
– volume: 6
  start-page: 46
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib22
  article-title: Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2019.08.070
– volume: 7
  start-page: 12206
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib61
  article-title: Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electro hydrodynamic nanowire template for enhanced gas-sensing properties
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12553-7
– volume: 173
  start-page: 52
  year: 2012
  ident: 10.1016/j.sna.2022.113578_bib85
  article-title: Hydrothermal synthesis of 3D urchin-like -Fe2O3 nanostructure for gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.05.057
– volume: 43
  start-page: 14200
  issue: 16
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib58
  article-title: A fast response and recovery H2S gas sensor based on free-standing TiO2 nanotube array films prepared by one-step anodization method
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.07.165
– volume: 20
  start-page: 465
  issue: 1
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib47
  article-title: New development of atomic layer deposition: processes, methods and applications
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2019.1599694
– volume: 12
  start-page: 9635
  year: 2012
  ident: 10.1016/j.sna.2022.113578_bib52
  article-title: A survey on gas sensing technology
  publication-title: Sensors
  doi: 10.3390/s120709635
– volume: 160
  start-page: 580
  issue: 1
  year: 2011
  ident: 10.1016/j.sna.2022.113578_bib60
  article-title: Semiconducting metal oxides as sensors for environmentally hazardous gases
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.08.032
– volume: 3
  start-page: 29
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib34
  article-title: The effect of strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method
  publication-title: J. Sci. -Adv. Mater. Dev.
– volume: 44
  start-page: 4392
  issue: 4
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib89
  article-title: Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.12.038
– volume: 7
  start-page: 10078
  year: 2015
  ident: 10.1016/j.sna.2022.113578_bib98
  article-title: Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor
  publication-title: Nanoscale
  doi: 10.1039/C5NR01924A
– volume: 1039
  start-page: 1
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib16
  article-title: “Metal oxide-based heterostructures for gas sensors”- A review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.09.020
– volume: 571
  year: 2022
  ident: 10.1016/j.sna.2022.113578_bib107
  article-title: Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151262
– volume: 156
  start-page: 943
  issue: 2
  year: 2011
  ident: 10.1016/j.sna.2022.113578_bib32
  article-title: Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.03.010
– volume: 109
  start-page: 253
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib97
  article-title: Morphology controllable synthesis of hierarchical WO3 nanostructures and C2H2 sensing properties
  publication-title: Phys. E Low. Dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2019.01.006
– volume: 49
  start-page: 5070
  issue: 8
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib70
  article-title: Synthesis of CuO nanoflowers and their application towards inflammable gas sensing
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-020-08246-z
– volume: 2
  start-page: 1573
  year: 2010
  ident: 10.1016/j.sna.2022.113578_bib7
  article-title: Solution synthesis of one-dimensional ZnO nanomaterials and their applications
  publication-title: Nanoscale
  doi: 10.1039/c0nr00047g
– volume: 42
  start-page: 15881
  year: 2016
  ident: 10.1016/j.sna.2022.113578_bib108
  article-title: Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun, nano fibers
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.07.060
– volume: 10
  start-page: 1328
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib54
  article-title: Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09157-2
– volume: 250
  start-page: 679
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib18
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.05.064
– volume: 241
  start-page: 806
  issue: 31
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib91
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.09.145
– volume: 299
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib86
  article-title: Electrospun Ca-doped In2O3 nanotubes for ethanol detection with enhanced sensitivity and selectivity
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.126946
– volume: 60
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib69
  article-title: Strategies for designing metal oxide nanostructures
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-016-5117-0
– volume: 4
  start-page: 18
  year: 2014
  ident: 10.1016/j.sna.2022.113578_bib9
  article-title: Effect of MgO and V2O5 catalyst on the sensing behaviour of tin oxide thin film for SO2 Gas
  publication-title: Chem. Sensors
– volume: 139
  start-page: 1
  year: 2007
  ident: 10.1016/j.sna.2022.113578_bib51
  article-title: Metal oxides for solid-state gas sensors: what determines our choice?
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2007.01.044
– volume: 251
  start-page: 57
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib66
  article-title: Hydrogen sensors based on 2D WO3 nanosheets prepared by Anodization
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.05.029
– volume: 478
  start-page: 594
  year: 2009
  ident: 10.1016/j.sna.2022.113578_bib44
  article-title: Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2008.11.095
– volume: 192
  start-page: 607
  year: 2014
  ident: 10.1016/j.sna.2022.113578_bib11
  article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2013.11.005
– volume: 9
  start-page: 2181
  year: 2007
  ident: 10.1016/j.sna.2022.113578_bib42
  article-title: Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b616684a
– volume: 10
  start-page: 2088
  year: 2010
  ident: 10.1016/j.sna.2022.113578_bib65
  article-title: Metal oxide gas sensors: sensitivity and influencing factors
  publication-title: Sensors
  doi: 10.3390/s100302088
– volume: 35
  start-page: 649
  year: 2009
  ident: 10.1016/j.sna.2022.113578_bib83
  article-title: Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2008.01.028
– volume: 191
  start-page: 41
  year: 2015
  ident: 10.1016/j.sna.2022.113578_bib79
  article-title: A highly selective and wide range ammonia sensor—nanostructured ZnO: Co thin film
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2014.10.007
– volume: 18
  start-page: 1
  year: 2013
  ident: 10.1016/j.sna.2022.113578_bib1
  article-title: Hierarchically nanostructured materials for sustainable environmental applications
  publication-title: Front. Chem.
– volume: 362
  start-page: 78
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib19
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.01.100
– volume: 46
  start-page: 1609
  issue: 2
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib136
  article-title: Enhanced hydrogen gas sensing properties of Pd-doped SnO2 nanofibres by Ar plasma treatment
  publication-title: Ceram. Int
  doi: 10.1016/j.ceramint.2019.09.132
– volume: 287
  start-page: 191
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib71
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.01.146
– volume: 40
  start-page: 409
  year: 2014
  ident: 10.1016/j.sna.2022.113578_bib102
  article-title: Nanostructured TiO2 films: enhanced NH3 detection at room temperature
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.06.016
– volume: 10
  start-page: 195
  year: 2015
  ident: 10.1016/j.sna.2022.113578_bib74
  article-title: Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing
  publication-title: Procedia Mater. Sci.
  doi: 10.1016/j.mspro.2015.06.041
– volume: 10
  start-page: 2088
  year: 2010
  ident: 10.1016/j.sna.2022.113578_bib23
  article-title: Metal oxide gas sensors: sensitivity and influencing factors
  publication-title: Sensors
  doi: 10.3390/s100302088
– volume: 654
  start-page: 202
  year: 2016
  ident: 10.1016/j.sna.2022.113578_bib105
  article-title: Enhanced ammonia sensing characteristics of Cr doped CuO nanoboats
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.09.046
– volume: 262
  start-page: 655
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib81
  article-title: Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3nano bricks at low temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.02.052
– volume: 9
  start-page: 16515
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib33
  publication-title: RSC Adv.
  doi: 10.1039/C9RA02356A
– volume: 528
  start-page: 109
  year: 2012
  ident: 10.1016/j.sna.2022.113578_bib15
  article-title: Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2012.03.020
– volume: 46
  start-page: 4017
  issue: 7
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib40
  article-title: Hydrogen gas sensing characteristics of nanostructured NiO thin films synthesized by SILAR method
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-017-5400-5
– volume: 3
  start-page: 31
  year: 2010
  ident: 10.1016/j.sna.2022.113578_bib53
– volume: 256
  start-page: 656
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib133
  article-title: Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.09.206
– volume: 103
  year: 2008
  ident: 10.1016/j.sna.2022.113578_bib95
  article-title: Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2924430
– volume: 48
  start-page: 3015
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib37
  article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00904J
– volume: 47
  start-page: 358
  year: 2012
  ident: 10.1016/j.sna.2022.113578_bib87
  article-title: Synthesis of WO3 nanorod based thin films for ethanol and H2 sensing
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.09.157
– volume: 74
  start-page: 2781
  year: 2002
  ident: 10.1016/j.sna.2022.113578_bib55
  article-title: Electrochemical sensors
  publication-title: Anal. Chem.
  doi: 10.1021/ac0202278
– start-page: 235
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib17
  doi: 10.1016/bs.coac.2020.08.009
– volume: 301
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib117
  article-title: Gas sensitive ZnO structures with reduced humidity-interference
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.127054
– volume: 61
  start-page: 1
  year: 2008
  ident: 10.1016/j.sna.2022.113578_bib59
  article-title: The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2008.02.001
– volume: 17
  start-page: 2779
  issue: 12
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib64
  article-title: The morphologies of the semiconductor oxides and their gas-sensing properties
  publication-title: Sensors
  doi: 10.3390/s17122779
– volume: 40
  start-page: 1061
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib94
  article-title: Synthesis of ZnO comb-like nanostructures for high sensitivity H2S gas sensor fabrication at room temperature
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-017-1461-6
– volume: 190
  start-page: 32
  year: 2014
  ident: 10.1016/j.sna.2022.113578_bib111
  article-title: One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2013.08.045
– volume: 318
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib126
  article-title: α-Fe2O3/NiO heterojunction nanorods with enhanced gas sensing performance for acetone
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128191
– volume: 269
  year: 2021
  ident: 10.1016/j.sna.2022.113578_bib90
  article-title: Effect of heat treatment on WO3 nanostructures based NO2 gas sensor low-cost device
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.124731
– volume: 15
  start-page: 3711
  issue: 7
  year: 2015
  ident: 10.1016/j.sna.2022.113578_bib106
  article-title: On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2391286
– volume: 246
  start-page: 243
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib20
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.02.063
– volume: 788
  start-page: 36
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib124
  article-title: Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/room temperature
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.01.349
– volume: 55
  start-page: 7702
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib123
  article-title: Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-04569-8
– volume: 569
  start-page: 358
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib138
  article-title: Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: synthesis, characterization, and application for the detection of an exhaled diabetes biomarker
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.02.081
– volume: 13
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib2
  article-title: Enhanced room temperature gas sensing properties of low temperature solution processed ZnO/CuO heterojunction
  publication-title: BMC Chem.
– volume: 427
  start-page: 281
  year: 2018
  ident: 10.1016/j.sna.2022.113578_bib88
  article-title: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.229
– volume: 61
  start-page: 4769
  year: 2007
  ident: 10.1016/j.sna.2022.113578_bib26
  article-title: Hydrothermal synthesis of surface-modified iron oxide nanoparticles
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2007.03.024
– volume: 14
  start-page: 1789
  year: 2021
  ident: 10.1016/j.sna.2022.113578_bib50
  article-title: Synthesis of magnetic two-dimensional materials by chemical vapor deposition
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3020-5
– volume: 149
  start-page: 12
  year: 2008
  ident: 10.1016/j.sna.2022.113578_bib115
  article-title: Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2007.11.020
– volume: 27
  start-page: 11541
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib29
  article-title: Sono-coprecipitation synthesis of ZnO/CuO nanophotocatalyst for removal of parathion from wastewater
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-07680-0
– volume: 868
  year: 2021
  ident: 10.1016/j.sna.2022.113578_bib137
  article-title: Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers
  publication-title: J. Alloy. Compd.
– volume: 226
  start-page: 99
  year: 2017
  ident: 10.1016/j.sna.2022.113578_bib13
  article-title: Preparation and characterization of nanostructured Gd doped cerium oxide thin films by pulsed laser deposition for acetone sensor application
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2017.09.002
– volume: 280
  start-page: 151
  year: 2019
  ident: 10.1016/j.sna.2022.113578_bib63
  article-title: NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.10.063
– volume: 313
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib116
  article-title: Acetone sensors with high stability to humidity changes based on Ru-doped NiO flower-like microspheres
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.127965
– volume: 55
  start-page: 22
  year: 2009
  ident: 10.1016/j.sna.2022.113578_bib25
  article-title: Synthesis, properties, and applications of magnetic iron oxide nanoparticles
  publication-title: Prog. Cryst. Growth Charact. Mater.
  doi: 10.1016/j.pcrysgrow.2008.08.003
– volume: 320
  year: 2020
  ident: 10.1016/j.sna.2022.113578_bib122
  article-title: Structure and gas-sensing properties of SnO2-In2O3 nanocomposites synthesized by impregnation method
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128406
SSID ssj0003377
Score 2.702756
SecondaryResourceType review_article
Snippet Nanostructured metal oxide semiconductor-based gas sensors possess extensive applications due to relatively inexpensive, lightweight, long-lasting, robust, and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113578
SubjectTerms And response and recovery times
Comminution
Gas sensors
Metal oxide semiconductors
Metal oxides
Nanomaterials
Nanostructure
Nanostructured materials
Particle size
R&D
Recovery
Research & development
Semiconductors
Sensitivity
Sensors
Thin films
Title Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review
URI https://dx.doi.org/10.1016/j.sna.2022.113578
https://www.proquest.com/docview/2685587312
Volume 341
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwIYUmfsVhqyqqAqIDUKmbFScOFEFSJUVi4rfjy4OXUAfG2OcoOp_vzs7n7xA6Edrm8IyFjghjH45umCOFZ5wgsIupzMlLLr2biRhP2dWMz1po2NyFAVhl7fsrn15667qlX2uzv5jP-3eu3TowAmSHEKgEMH4y5oOVn71_wTwoLasvgrAD0s2fzRLjVaRAPUQIVDbhUGnt79j0y0uXoWe0hTbrnBEPqs_aRi2T7qCNb0yCu-jWesms4oJ9zU2MX4xNqnH2No8NLgD_nqVA7JrlDoStGD-EhW1PiywvzvEAA7A8N48VmB1X11n20HR0cT8cO3W5BCeihC8dGobEEONLoxOgXWfSyJhTY2iYeFxTaoCK1O4aZcIiTZlru4WwvaEbB1y7dB-10yw1BwhHdpuVEKEZ8UIWBVzqmEfCxFJozXmiO8htFKWimkscSlo8qwY09qSsbhXoVlW67aDTzyGLikhjlTBrtK9-WIOyjn7VsG4zU6peioUiQnIufeqRw_-99Qitw1OF0e2itp1Lc2wzkaXulabWQ2uDy-vx5AMqDdzC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6icGg5VNBFhQL1ob1USifjbTxIPSAWDWU5tCBxc-PkpQyCBE1AwIU_1T_Ie1lKW1UcKnGNY8v6bL8l-fw9gPc2UAyvdRLZJBvwpxsdOdvHaDikw1TH5LWW3t6-HR3qL0fmaAp-dndhmFbZ2v7GptfWun3Sa9HsnY_HvW8xpQ5astghOyrbVbDewZsrytuqz9sbtMgfpNzaPFgfRW1pgShV0lxEKkkkShw4DDlLlGuHLjMKUSV53wSlkGU7KcNyuU6D0jE1W0utSZwNTYgVjfsEZjSZCy6b8On2nleiVF3ukWcX8fS6X6k1qawqWOtISi6lYri027-d4V9uofZ1W3PwvA1SxVqDwzxMYfECZn-TLnwJX8ksl4347OUEM3GGFMWL8nqcoaiYcF8WrCRbTiL2k5n4kVT0vKjKSbUq1gQz2Sd43LDnRXN_5hUcPgqIr2G6KAt8AyKlvC6XNmjZT3Q6NC5kJrWYORuCMXlYgLgDyqeteDnX0Dj1HUvtxBO2nrH1DbYL8PFXl_NGueOhl3WHvv9j-3nyLA91W-pWyrdnv_LSOmPcQPXl4v-N-g6ejg72dv3u9v7OW3jGLQ1BeAmmaV1xmcKgi7BSbzsB3x97n98B-5sYuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanostructured+metal+oxide+semiconductor-based+gas+sensors%3A+A+comprehensive+review&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Krishna%2C+Kurugundla+Gopi&rft.au=Parne%2C+Saidireddy&rft.au=Pothukanuri%2C+Nagaraju&rft.au=Kathirvelu%2C+Velavan&rft.date=2022-07-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=341&rft.spage=1&rft_id=info:doi/10.1016%2Fj.sna.2022.113578&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon