Anisotropic design and optimization of conformal gradient lattice structures
In this work, we present a novel anisotropic lattice structure design and multi-scale optimization method that can generate conformal gradient lattice structures (CGLS). The goal of optimization is to achieve gradient density, adaptive orientation and variable scale (or periodic) lattice structures...
Saved in:
Published in | Computer aided design Vol. 119; p. 102787 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.02.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we present a novel anisotropic lattice structure design and multi-scale optimization method that can generate conformal gradient lattice structures (CGLS). The goal of optimization is to achieve gradient density, adaptive orientation and variable scale (or periodic) lattice structures with the highest mechanical stiffness. The asymptotic homogenization method is employed for the calculation of the mechanical properties of various lattice structures. And an equation of elastic tensor and relative density of the unit cell is established. The established function above is then considered in the numerical optimization schemes. In the post-processing, we propose a numerical projecting method based on Fourier transform, which can synthesize conformal gradient lattice structure without changing the size and shape of the unit cells. Besides, the algorithm allows us to minimize distortion and prevent defects in the final lattice and keep the lattice structures smooth and continuous. Finally, in comparison with different parameters and methods are performed to demonstrate the superiority of our proposed method. The results show that the optimized anisotropic conformal gradient lattice structures are much stiffer and exhibit better structural robustness and buckling resistance than the uniform and the directly mapped designs.
[Display omitted]
•An anisotropic design and optimization method is proposed for conformal gradient lattice structures.•The optimized lattice structures exhibit conformal gradient density, adaptive orientation, variable period.•These anisotropic conformal lattice structures are much stiffer than uniform and directly mapped designs. |
---|---|
AbstractList | In this work, we present a novel anisotropic lattice structure design and multi-scale optimization method that can generate conformal gradient lattice structures (CGLS). The goal of optimization is to achieve gradient density, adaptive orientation and variable scale (or periodic) lattice structures with the highest mechanical stiffness. The asymptotic homogenization method is employed for the calculation of the mechanical properties of various lattice structures. And an equation of elastic tensor and relative density of the unit cell is established. The established function above is then considered in the numerical optimization schemes. In the post-processing, we propose a numerical projecting method based on Fourier transform, which can synthesize conformal gradient lattice structure without changing the size and shape of the unit cells. Besides, the algorithm allows us to minimize distortion and prevent defects in the final lattice and keep the lattice structures smooth and continuous. Finally, in comparison with different parameters and methods are performed to demonstrate the superiority of our proposed method. The results show that the optimized anisotropic conformal gradient lattice structures are much stiffer and exhibit better structural robustness and buckling resistance than the uniform and the directly mapped designs. In this work, we present a novel anisotropic lattice structure design and multi-scale optimization method that can generate conformal gradient lattice structures (CGLS). The goal of optimization is to achieve gradient density, adaptive orientation and variable scale (or periodic) lattice structures with the highest mechanical stiffness. The asymptotic homogenization method is employed for the calculation of the mechanical properties of various lattice structures. And an equation of elastic tensor and relative density of the unit cell is established. The established function above is then considered in the numerical optimization schemes. In the post-processing, we propose a numerical projecting method based on Fourier transform, which can synthesize conformal gradient lattice structure without changing the size and shape of the unit cells. Besides, the algorithm allows us to minimize distortion and prevent defects in the final lattice and keep the lattice structures smooth and continuous. Finally, in comparison with different parameters and methods are performed to demonstrate the superiority of our proposed method. The results show that the optimized anisotropic conformal gradient lattice structures are much stiffer and exhibit better structural robustness and buckling resistance than the uniform and the directly mapped designs. [Display omitted] •An anisotropic design and optimization method is proposed for conformal gradient lattice structures.•The optimized lattice structures exhibit conformal gradient density, adaptive orientation, variable period.•These anisotropic conformal lattice structures are much stiffer than uniform and directly mapped designs. |
ArticleNumber | 102787 |
Author | Li, Dawei Xie, Yi Min Liao, Wenhe Dai, Ning |
Author_xml | – sequence: 1 givenname: Dawei surname: Li fullname: Li, Dawei email: davidlee@nuaa.edu.cn organization: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China – sequence: 2 givenname: Wenhe surname: Liao fullname: Liao, Wenhe organization: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China – sequence: 3 givenname: Ning surname: Dai fullname: Dai, Ning email: dai_ning@nuaa.edu.cn organization: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China – sequence: 4 givenname: Yi Min surname: Xie fullname: Xie, Yi Min organization: Centre for Innovative Structures and Materials, School of Engineering, RMIT University, GPO Box 2476, Melbourne 3001, Victoria, Australia |
BookMark | eNp9kE1LAzEQhoNUsFZ_gLeA561JdvOxeCrFLyh40XNIk2zJsk3WJBX015u6njwUBoaB95lhnksw88FbAG4wWmKE2V2_1MosCcJtmQkX_AzMseBtRZigMzBHCKOqaQS9AJcp9Qghgut2DjYr71LIMYxOQ2OT23movIFhzG7vvlV2wcPQQR18F-JeDXAXlXHWZzionJ22MOV40PkQbboC550akr3-6wvw_vjwtn6uNq9PL-vVptI1obmqVUNK8c62ZIsbwxra8i22otsqzljTmDLpWghGqTGCGs0YNoS1XHGuW1svwO20d4zh42BTln04RF9OSlKTlghEOS4pPqV0DClF20nt8u9DOSo3SIzkUZ3sZVEnj-rkpK6Q-B85RrdX8eskcz8xtjz-6WyUSRdN2hoXrc7SBHeC_gHAvIi5 |
CitedBy_id | crossref_primary_10_1016_j_matdes_2022_110963 crossref_primary_10_1016_j_cad_2024_103703 crossref_primary_10_1016_j_cma_2023_116373 crossref_primary_10_1007_s00158_021_02959_3 crossref_primary_10_1016_j_jcp_2020_109909 crossref_primary_10_1080_00405167_2024_2328504 crossref_primary_10_1002_adem_202201811 crossref_primary_10_1016_j_matdes_2023_112029 crossref_primary_10_1016_j_pmatsci_2022_101021 crossref_primary_10_1016_j_matdes_2023_112183 crossref_primary_10_1016_j_compstruct_2020_113298 crossref_primary_10_1016_j_ijmecsci_2021_106879 crossref_primary_10_1016_j_ijmecsci_2022_107842 crossref_primary_10_1016_j_cma_2024_116969 crossref_primary_10_1126_sciadv_abf4838 crossref_primary_10_1016_j_promfg_2021_06_089 crossref_primary_10_1016_j_cma_2022_114589 crossref_primary_10_1016_j_addma_2021_102057 crossref_primary_10_1038_s41598_020_73333_4 crossref_primary_10_1016_j_cad_2020_102854 crossref_primary_10_1109_TVCG_2024_3375012 crossref_primary_10_59782_sidr_v4i1_143 crossref_primary_10_1016_j_prostr_2020_10_074 crossref_primary_10_1007_s11837_021_04659_1 crossref_primary_10_1016_j_commatsci_2024_113258 crossref_primary_10_1016_j_jclepro_2023_136173 crossref_primary_10_1016_j_matdes_2024_113507 crossref_primary_10_1016_j_cad_2023_103531 crossref_primary_10_32604_cmes_2024_054059 crossref_primary_10_1002_cpe_6524 crossref_primary_10_1007_s00170_023_12439_1 crossref_primary_10_1016_j_cma_2022_114861 crossref_primary_10_1016_j_cma_2024_117378 crossref_primary_10_1016_j_ijmecsci_2022_108092 crossref_primary_10_1063_5_0004724 crossref_primary_10_1016_j_ijsolstr_2022_111702 crossref_primary_10_1016_j_matdes_2021_109746 crossref_primary_10_1590_1679_78256240 crossref_primary_10_7736_JKSPE_020_092 crossref_primary_10_1016_j_heliyon_2024_e26001 crossref_primary_10_1016_j_ijmecsci_2022_107836 crossref_primary_10_3390_app11083538 crossref_primary_10_3390_met13101666 crossref_primary_10_1177_1687814020984375 crossref_primary_10_1016_j_cirp_2024_04_005 crossref_primary_10_1016_j_cma_2022_115426 crossref_primary_10_1016_j_heliyon_2023_e14448 crossref_primary_10_1016_j_apm_2022_12_014 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123421 crossref_primary_10_1016_j_cjmeam_2023_100074 crossref_primary_10_1088_1361_651X_ace63d crossref_primary_10_1016_j_matt_2023_01_017 crossref_primary_10_1002_pssb_202400385 crossref_primary_10_1007_s00158_021_03048_1 crossref_primary_10_1115_1_4065065 crossref_primary_10_1016_j_compstruct_2021_114633 crossref_primary_10_1016_j_compstruct_2023_117746 crossref_primary_10_3390_ma17102354 crossref_primary_10_3390_ma17225599 crossref_primary_10_1007_s00158_024_03950_4 crossref_primary_10_1016_j_jmbbm_2024_106625 crossref_primary_10_1016_j_cma_2020_113037 crossref_primary_10_1016_j_tws_2022_109974 crossref_primary_10_1016_j_matdes_2024_113055 crossref_primary_10_1016_j_apacoust_2021_107930 crossref_primary_10_1016_j_marstruc_2023_103433 crossref_primary_10_1080_15397734_2022_2107538 crossref_primary_10_1093_jcde_qwae034 crossref_primary_10_1016_j_matdes_2024_113529 crossref_primary_10_1016_j_pmatsci_2021_100918 crossref_primary_10_1088_1748_3190_acc373 crossref_primary_10_3390_biomedicines12010076 crossref_primary_10_1016_j_matdes_2021_110039 crossref_primary_10_1016_j_engstruct_2024_118134 crossref_primary_10_1016_j_matdes_2021_110318 crossref_primary_10_1002_advs_202202740 crossref_primary_10_1016_j_tws_2023_111539 crossref_primary_10_1016_j_compstruct_2025_118879 crossref_primary_10_1016_j_compstruct_2022_116546 crossref_primary_10_1177_03093247221150666 crossref_primary_10_1007_s11465_024_0798_y crossref_primary_10_1016_j_apm_2023_10_020 crossref_primary_10_1016_j_tws_2024_112856 crossref_primary_10_1016_j_cma_2023_116714 crossref_primary_10_1007_s00158_024_03801_2 crossref_primary_10_1177_1464420720945744 crossref_primary_10_3390_biomimetics9090545 |
Cites_doi | 10.1186/s42492-018-0004-3 10.1016/j.cirp.2016.05.004 10.1016/j.addma.2017.11.008 10.1016/j.jmps.2018.11.008 10.1016/j.cma.2017.12.024 10.1016/j.cad.2017.05.013 10.1016/j.cad.2018.06.003 10.1016/j.compstruc.2018.10.006 10.1002/adem.200900131 10.1016/j.cad.2016.07.006 10.1016/j.commatsci.2013.09.006 10.3722/cadaps.2008.686-696 10.1007/s00170-015-7704-z 10.1007/BF01650949 10.1016/j.cad.2018.10.002 10.1016/j.compstruc.2017.07.007 10.1016/0045-7825(88)90086-2 10.1109/TVCG.2017.2655523 10.1007/s10409-006-0045-2 10.1007/s11831-016-9203-2 10.1016/j.cad.2018.04.008 10.1115/1.4036941 10.1016/j.matdes.2016.01.007 10.1115/1.4028724 10.1007/s001580050176 10.1016/j.cma.2018.10.010 10.1016/j.cma.2019.02.031 10.1016/j.cma.2016.07.018 10.1016/j.compstruct.2011.10.023 10.1016/j.compstruc.2007.04.030 10.1115/1.4042617 10.1016/j.cad.2015.04.001 10.1002/nme.5575 10.1109/TVCG.2009.184 10.1016/0020-7683(94)90154-6 10.1016/j.cma.2016.12.007 10.1016/j.cma.2018.10.017 10.1016/j.cad.2018.04.024 10.1016/S1359-6454(03)00157-5 10.1016/j.commatsci.2018.08.030 10.1016/j.jtbi.2006.06.029 10.1016/j.ijmecsci.2013.10.003 10.1016/j.cma.2016.08.015 10.1108/RPJ-04-2016-0069 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Feb 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Feb 2020 |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cad.2019.102787 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
ExternalDocumentID | 10_1016_j_cad_2019_102787 S0010448519302386 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS F28 FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-3a42a427fe92b14d64597b1e8fba76644d7b1c388655dd85dc661d2697a77c9e3 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Sun Jul 13 03:50:09 EDT 2025 Thu Apr 24 22:57:50 EDT 2025 Tue Jul 01 03:34:36 EDT 2025 Fri Feb 23 02:28:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conformal lattice Lattice optimization Synthesize algorithm Multi-scale optimization Anisotropic design |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-3a42a427fe92b14d64597b1e8fba76644d7b1c388655dd85dc661d2697a77c9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2329280571 |
PQPubID | 2045267 |
ParticipantIDs | proquest_journals_2329280571 crossref_citationtrail_10_1016_j_cad_2019_102787 crossref_primary_10_1016_j_cad_2019_102787 elsevier_sciencedirect_doi_10_1016_j_cad_2019_102787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer aided design |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Gibson, Ashby (b11) 1999 Li, Dai, Jiang (b29) 2016; 83 Li, Dai, Tang (b44) 2019; 141 Dick, Georgii, Burgkart (b8) 2009; 15 Groen, Wu, Sigmund (b49) 2019 Wu, Liu, Tovar (b3) 2017; 192 Thompson, Moroni, Vaneker, Fadel, Campbell, Gibson, Bernard, Schulz, Graf, Ahuja, Martina (b26) 2016; 65 Bendsøe (b15) 1989; 1 Feng, Fu, Lin (b25) 2018; 1 Liu, Yan, Cheng (b18) 2008; 86 Vasiliev, Barynin, Razin (b1) 2012; 94 Sigmund (b19) 2001; 21 Tolstov (b54) 2012 Bendsøe, Kikuchi (b16) 1988; 71 Jin, Li, Gong (b38) 2017 Liu, Du, Zhang (b45) 2017; 84 Brun, Vicente, Topin (b50) 2009; 11 Bensoussan, Lions, Papanicolaou (b13) 2011 Groen, Sigmund (b48) 2018; 113 Gorham, Moore (b55) 2010; vol. 7699 Wu, Wang, Zhang (b33) 2016; 80 Fernández, Munoz, de Arellano López (b7) 2003; 51 Liu, Gaynor, Chen (b30) 2018 Jiang, Guo, Chen (b39) 2019 Zhang, Xiao, Li (b21) 2018; 155 Brennan-Craddock, Brackett, Wildman (b2) 2012; 382 Wang, Xu, Pasini (b20) 2017; 316 Andreassen, Andreasen (b51) 2014; 83 Gao, Luo, Li (b22) 2019; 344 Cheng, Zhang, Biyikli (b41) 2017; 23 Wu, Aage, Westermann (b56) 2018; 24 (b10) 2006 Mahmoud, Elbestawi (b5) 2017; 1 Lubliner, Papadopoulos (b52) 2016 Chu, Graf, Rosen (b28) 2008; 5 Cheng, Bai, To (b42) 2019; 344 Wang, Chen, Wang (b24) 2017; 317 Guo, Zhang, Zhang (b47) 2016; 310 Xia, Xia, Huang (b53) 2018; 25 Wu (b34) 2018; 102 Zhang, Dai, Wang (b12) 2007; 23 Liu, Shapiro (b36) 2018; 102 Zhang, Toman, Yu (b40) 2015; 137 Cheng, Liu, Liang (b4) 2018; 332 Gao, Zhang, Ramanujan (b27) 2015; 69 Panesar, Abdi, Hickman (b32) 2018; 19 Sigmund (b17) 1994; 31 Arabnejad, Pasini (b14) 2013; 77 Hu, Li, Gao (b37) 2019; 108 Fu, Li, Gao (b23) 2019; 212 Skedros, Baucom (b9) 2007; 244 Brackett D, Ashcroft I, Hague R. Topology optimization for additive manufacturing. In: Proceedings of the solid freeform fabrication symposium, Austin, TX. S, Vol. 1, 2011, pp. 348-362. Xu, Shen, Zhou (b6) 2016; 93 Liu, Shapiro (b35) 2017; 90 Zhu, Li, Du (b46) 2019; 124 Li, Liao, Dai (b43) 2018; 104 Bendsøe (10.1016/j.cad.2019.102787_b15) 1989; 1 Zhang (10.1016/j.cad.2019.102787_b40) 2015; 137 Liu (10.1016/j.cad.2019.102787_b45) 2017; 84 10.1016/j.cad.2019.102787_b31 Xu (10.1016/j.cad.2019.102787_b6) 2016; 93 Arabnejad (10.1016/j.cad.2019.102787_b14) 2013; 77 Feng (10.1016/j.cad.2019.102787_b25) 2018; 1 Li (10.1016/j.cad.2019.102787_b29) 2016; 83 Wang (10.1016/j.cad.2019.102787_b20) 2017; 316 Jiang (10.1016/j.cad.2019.102787_b39) 2019 Tolstov (10.1016/j.cad.2019.102787_b54) 2012 Groen (10.1016/j.cad.2019.102787_b49) 2019 Xia (10.1016/j.cad.2019.102787_b53) 2018; 25 Bendsøe (10.1016/j.cad.2019.102787_b16) 1988; 71 Groen (10.1016/j.cad.2019.102787_b48) 2018; 113 Gao (10.1016/j.cad.2019.102787_b27) 2015; 69 Liu (10.1016/j.cad.2019.102787_b30) 2018 Wu (10.1016/j.cad.2019.102787_b34) 2018; 102 Li (10.1016/j.cad.2019.102787_b44) 2019; 141 Brennan-Craddock (10.1016/j.cad.2019.102787_b2) 2012; 382 Fernández (10.1016/j.cad.2019.102787_b7) 2003; 51 Gao (10.1016/j.cad.2019.102787_b22) 2019; 344 Liu (10.1016/j.cad.2019.102787_b36) 2018; 102 Cheng (10.1016/j.cad.2019.102787_b42) 2019; 344 Sigmund (10.1016/j.cad.2019.102787_b17) 1994; 31 Wu (10.1016/j.cad.2019.102787_b56) 2018; 24 Li (10.1016/j.cad.2019.102787_b43) 2018; 104 Gorham (10.1016/j.cad.2019.102787_b55) 2010; vol. 7699 Thompson (10.1016/j.cad.2019.102787_b26) 2016; 65 Panesar (10.1016/j.cad.2019.102787_b32) 2018; 19 Lubliner (10.1016/j.cad.2019.102787_b52) 2016 Wang (10.1016/j.cad.2019.102787_b24) 2017; 317 Andreassen (10.1016/j.cad.2019.102787_b51) 2014; 83 Brun (10.1016/j.cad.2019.102787_b50) 2009; 11 Vasiliev (10.1016/j.cad.2019.102787_b1) 2012; 94 Mahmoud (10.1016/j.cad.2019.102787_b5) 2017; 1 Dick (10.1016/j.cad.2019.102787_b8) 2009; 15 Cheng (10.1016/j.cad.2019.102787_b4) 2018; 332 Zhu (10.1016/j.cad.2019.102787_b46) 2019; 124 Guo (10.1016/j.cad.2019.102787_b47) 2016; 310 Skedros (10.1016/j.cad.2019.102787_b9) 2007; 244 Wu (10.1016/j.cad.2019.102787_b33) 2016; 80 Jin (10.1016/j.cad.2019.102787_b38) 2017 Zhang (10.1016/j.cad.2019.102787_b21) 2018; 155 Hu (10.1016/j.cad.2019.102787_b37) 2019; 108 Fu (10.1016/j.cad.2019.102787_b23) 2019; 212 Sigmund (10.1016/j.cad.2019.102787_b19) 2001; 21 Liu (10.1016/j.cad.2019.102787_b35) 2017; 90 Wu (10.1016/j.cad.2019.102787_b3) 2017; 192 Gibson (10.1016/j.cad.2019.102787_b11) 1999 Zhang (10.1016/j.cad.2019.102787_b12) 2007; 23 Bensoussan (10.1016/j.cad.2019.102787_b13) 2011 (10.1016/j.cad.2019.102787_b10) 2006 Chu (10.1016/j.cad.2019.102787_b28) 2008; 5 Liu (10.1016/j.cad.2019.102787_b18) 2008; 86 Cheng (10.1016/j.cad.2019.102787_b41) 2017; 23 |
References_xml | – volume: 344 start-page: 334 year: 2019 end-page: 359 ident: b42 article-title: Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints publication-title: Comput Methods Appl Mech Engrg – volume: 11 start-page: 805 year: 2009 end-page: 810 ident: b50 article-title: Microstructure and transport properties of cellular materials: representative volume element publication-title: Adv Energy Mater – volume: 113 start-page: 1148 year: 2018 end-page: 1163 ident: b48 article-title: Homogenization-based topology optimization for high-resolution manufacturable microstructures publication-title: Internat J Numer Methods Engrg – start-page: 1 year: 2018 end-page: 27 ident: b30 article-title: Current and future trends in topology optimization for additive manufacturing publication-title: Struct Multidiscip Optim – volume: 102 start-page: 72 year: 2018 end-page: 82 ident: b34 article-title: Continuous optimization of adaptive quadtree structures publication-title: Comput Aided Des – year: 2012 ident: b54 publication-title: Fourier series – volume: 86 start-page: 1417 year: 2008 end-page: 1425 ident: b18 article-title: Optimum structure with homogeneous optimum truss-like material publication-title: Comput Struct – volume: 51 start-page: 3259 year: 2003 end-page: 3275 ident: b7 article-title: Microstructure–mechanical properties correlation in siliconized silicon carbide ceramics publication-title: Acta Mater – volume: 23 start-page: 660 year: 2017 end-page: 677 ident: b41 article-title: Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation publication-title: Rapid Prototyp J – year: 2006 ident: b10 article-title: Cellular ceramics: Structure, manufacturing, properties and applications – volume: vol. 7699 start-page: 769906 year: 2010 ident: b55 article-title: SAR image formation toolbox for MATLAB publication-title: Algorithms for synthetic aperture radar imagery XVII – start-page: 320 year: 2017 end-page: 325 ident: b38 article-title: Optimal design and modeling of 3D variable-density lattice structures publication-title: 2017 8th international conference on mechanical and aerospace engineering (ICMAE) – volume: 19 start-page: 81 year: 2018 end-page: 94 ident: b32 article-title: Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing publication-title: Addit Manuf – reference: Brackett D, Ashcroft I, Hague R. Topology optimization for additive manufacturing. In: Proceedings of the solid freeform fabrication symposium, Austin, TX. S, Vol. 1, 2011, pp. 348-362. – volume: 124 start-page: 612 year: 2019 end-page: 633 ident: b46 article-title: A novel asymptotic-analysis-based homogenisation approach towards fast design of infill graded microstructures publication-title: J Mech Phys Solids – year: 2019 ident: b49 article-title: Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill publication-title: Comput Methods Appl Mech Engrg – volume: 83 start-page: 488 year: 2014 end-page: 495 ident: b51 article-title: How to determine composite material properties using numerical homogenization publication-title: Comput Mater Sci – volume: 80 start-page: 32 year: 2016 end-page: 42 ident: b33 article-title: Self-supporting rhombic infill structures for additive manufacturing publication-title: Comput Aided Des – volume: 344 start-page: 451 year: 2019 end-page: 476 ident: b22 article-title: Topology optimization for multiscale design of porous composites with multi-domain microstructures publication-title: Comput Methods Appl Mech Engrg – year: 2016 ident: b52 article-title: Introduction to solid mechanics – volume: 108 start-page: 1 year: 2019 end-page: 11 ident: b37 article-title: Texture-guided generative structural designs under local control publication-title: Comput Aided Des – volume: 69 start-page: 65 year: 2015 end-page: 89 ident: b27 article-title: The status, challenges, and future of additive manufacturing in engineering publication-title: Comput Aided Des – start-page: 1 year: 2019 end-page: 19 ident: b39 article-title: Concurrent optimization of structural topology and infill properties with a CBF-based level set method publication-title: Front Mech Eng – volume: 83 start-page: 1627 year: 2016 end-page: 1635 ident: b29 article-title: Interior structural optimization based on the density-variable shape modeling of 3D printed objects publication-title: Int J Adv Manuf Technol – volume: 21 start-page: 120 year: 2001 end-page: 127 ident: b19 article-title: A 99 line topology optimization code written in Matlab publication-title: Struct Multidiscip Optim – volume: 24 start-page: 1127 year: 2018 end-page: 1140 ident: b56 article-title: Infill optimization for additive manufacturing—approaching bone-like porous structures publication-title: IEEE Trans Vis Comput Graphics – volume: 93 start-page: 443 year: 2016 end-page: 447 ident: b6 article-title: Design of lattice structures with controlled anisotropy publication-title: Mater Des – volume: 310 start-page: 711 year: 2016 end-page: 748 ident: b47 article-title: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons publication-title: Comput Methods Appl Mech Engrg – volume: 90 start-page: 199 year: 2017 end-page: 209 ident: b35 article-title: Sample-based synthesis of two-scale structures with anisotropy publication-title: Comput Aided Des – volume: 244 start-page: 15 year: 2007 end-page: 45 ident: b9 article-title: Mathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur publication-title: J Theoret Biol – volume: 102 start-page: 194 year: 2018 end-page: 203 ident: b36 article-title: Multiscale shape–material modeling by composition publication-title: Comput Aided Des – volume: 317 start-page: 84 year: 2017 end-page: 101 ident: b24 article-title: Concurrent design with connectable graded microstructures publication-title: Comput Methods Appl Mech Engrg – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: b16 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput Methods Appl Mech Engrg – year: 2011 ident: b13 article-title: Asymptotic analysis for periodic structures publication-title: Amer Math Soc – volume: 316 start-page: 568 year: 2017 end-page: 585 ident: b20 article-title: Multiscale isogeometric topology optimization for lattice materials publication-title: Comput Methods Appl Mech Engrg – volume: 141 year: 2019 ident: b44 article-title: Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes publication-title: J Mech Des – volume: 94 start-page: 1117 year: 2012 end-page: 1127 ident: b1 article-title: Anisogrid composite lattice structures–Development and aerospace applications publication-title: Compos Struct – volume: 77 start-page: 249 year: 2013 end-page: 262 ident: b14 article-title: Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods publication-title: Int J Mech Sci – volume: 31 start-page: 2313 year: 1994 end-page: 2329 ident: b17 article-title: Materials with prescribed constitutive parameters: an inverse homogenization problem publication-title: Int J Solids Struct – volume: 23 start-page: 77 year: 2007 end-page: 89 ident: b12 article-title: Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures publication-title: Acta Mech Sinica – volume: 212 start-page: 162 year: 2019 end-page: 172 ident: b23 article-title: Design of shell-infill structures by a multiscale level set topology optimization method publication-title: Comput Struct – volume: 25 start-page: 437 year: 2018 end-page: 478 ident: b53 article-title: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review publication-title: Arch Comput Methods Eng – volume: 1 start-page: 13 year: 2017 ident: b5 article-title: Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: A review publication-title: J Manuf Mater Process – volume: 137 year: 2015 ident: b40 article-title: Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation publication-title: J Manuf Sci Eng – volume: 5 start-page: 686 year: 2008 end-page: 696 ident: b28 article-title: Design for additive manufacturing of cellular structures publication-title: Comput-Aided Des Appl – volume: 382 year: 2012 ident: b2 article-title: The design of impact absorbing structures for additive manufacture publication-title: J Phys Conf Ser – volume: 84 year: 2017 ident: b45 article-title: Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization publication-title: J Appl Mech – volume: 65 start-page: 737 year: 2016 end-page: 760 ident: b26 article-title: Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints publication-title: CIRP Ann-Manuf Technol – volume: 192 start-page: 71 year: 2017 end-page: 82 ident: b3 article-title: Multiphase topology optimization of lattice injection molds publication-title: Comput Struct – volume: 15 start-page: 1399 year: 2009 end-page: 1406 ident: b8 article-title: Stress tensor field visualization for implant planning in orthopedics publication-title: IEEE Trans Vis Comput Graphics – volume: 1 start-page: 5 year: 2018 ident: b25 article-title: A review of the design methods of complex topology structures for 3D printing publication-title: Vis Comput Ind Biomed Art – year: 1999 ident: b11 article-title: Cellular solids: Structure and properties – volume: 1 start-page: 193 year: 1989 end-page: 202 ident: b15 article-title: Optimal shape design as a material distribution problem publication-title: Struct Optim – volume: 104 start-page: 87 year: 2018 end-page: 99 ident: b43 article-title: Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing publication-title: Comput Aided Des – volume: 155 start-page: 74 year: 2018 end-page: 91 ident: b21 article-title: Multiscale concurrent topology optimization for cellular structures with multiple microstructures based on ordered SIMP interpolation publication-title: Comput Mater Sci – volume: 332 start-page: 408 year: 2018 end-page: 439 ident: b4 article-title: Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design publication-title: Comput Methods Appl Mech Engrg – volume: 1 start-page: 5 issue: 1 year: 2018 ident: 10.1016/j.cad.2019.102787_b25 article-title: A review of the design methods of complex topology structures for 3D printing publication-title: Vis Comput Ind Biomed Art doi: 10.1186/s42492-018-0004-3 – volume: 65 start-page: 737 issue: 2 year: 2016 ident: 10.1016/j.cad.2019.102787_b26 article-title: Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints publication-title: CIRP Ann-Manuf Technol doi: 10.1016/j.cirp.2016.05.004 – volume: 19 start-page: 81 year: 2018 ident: 10.1016/j.cad.2019.102787_b32 article-title: Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing publication-title: Addit Manuf doi: 10.1016/j.addma.2017.11.008 – volume: 124 start-page: 612 year: 2019 ident: 10.1016/j.cad.2019.102787_b46 article-title: A novel asymptotic-analysis-based homogenisation approach towards fast design of infill graded microstructures publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2018.11.008 – volume: 332 start-page: 408 year: 2018 ident: 10.1016/j.cad.2019.102787_b4 article-title: Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2017.12.024 – volume: 90 start-page: 199 year: 2017 ident: 10.1016/j.cad.2019.102787_b35 article-title: Sample-based synthesis of two-scale structures with anisotropy publication-title: Comput Aided Des doi: 10.1016/j.cad.2017.05.013 – volume: 104 start-page: 87 year: 2018 ident: 10.1016/j.cad.2019.102787_b43 article-title: Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing publication-title: Comput Aided Des doi: 10.1016/j.cad.2018.06.003 – volume: 212 start-page: 162 year: 2019 ident: 10.1016/j.cad.2019.102787_b23 article-title: Design of shell-infill structures by a multiscale level set topology optimization method publication-title: Comput Struct doi: 10.1016/j.compstruc.2018.10.006 – volume: 11 start-page: 805 issue: 10 year: 2009 ident: 10.1016/j.cad.2019.102787_b50 article-title: Microstructure and transport properties of cellular materials: representative volume element publication-title: Adv Energy Mater doi: 10.1002/adem.200900131 – volume: 80 start-page: 32 year: 2016 ident: 10.1016/j.cad.2019.102787_b33 article-title: Self-supporting rhombic infill structures for additive manufacturing publication-title: Comput Aided Des doi: 10.1016/j.cad.2016.07.006 – volume: 83 start-page: 488 year: 2014 ident: 10.1016/j.cad.2019.102787_b51 article-title: How to determine composite material properties using numerical homogenization publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2013.09.006 – volume: 5 start-page: 686 issue: 5 year: 2008 ident: 10.1016/j.cad.2019.102787_b28 article-title: Design for additive manufacturing of cellular structures publication-title: Comput-Aided Des Appl doi: 10.3722/cadaps.2008.686-696 – volume: 1 start-page: 13 issue: 2 year: 2017 ident: 10.1016/j.cad.2019.102787_b5 article-title: Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: A review publication-title: J Manuf Mater Process – start-page: 1 year: 2018 ident: 10.1016/j.cad.2019.102787_b30 article-title: Current and future trends in topology optimization for additive manufacturing publication-title: Struct Multidiscip Optim – volume: 83 start-page: 1627 issue: 9–12 year: 2016 ident: 10.1016/j.cad.2019.102787_b29 article-title: Interior structural optimization based on the density-variable shape modeling of 3D printed objects publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7704-z – year: 2006 ident: 10.1016/j.cad.2019.102787_b10 – volume: 1 start-page: 193 issue: 4 year: 1989 ident: 10.1016/j.cad.2019.102787_b15 article-title: Optimal shape design as a material distribution problem publication-title: Struct Optim doi: 10.1007/BF01650949 – volume: 108 start-page: 1 year: 2019 ident: 10.1016/j.cad.2019.102787_b37 article-title: Texture-guided generative structural designs under local control publication-title: Comput Aided Des doi: 10.1016/j.cad.2018.10.002 – volume: 192 start-page: 71 year: 2017 ident: 10.1016/j.cad.2019.102787_b3 article-title: Multiphase topology optimization of lattice injection molds publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.07.007 – ident: 10.1016/j.cad.2019.102787_b31 – volume: 71 start-page: 197 issue: 2 year: 1988 ident: 10.1016/j.cad.2019.102787_b16 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/0045-7825(88)90086-2 – volume: 24 start-page: 1127 issue: 2 year: 2018 ident: 10.1016/j.cad.2019.102787_b56 article-title: Infill optimization for additive manufacturing—approaching bone-like porous structures publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2017.2655523 – year: 2011 ident: 10.1016/j.cad.2019.102787_b13 article-title: Asymptotic analysis for periodic structures publication-title: Amer Math Soc – volume: 382 issue: 1 year: 2012 ident: 10.1016/j.cad.2019.102787_b2 article-title: The design of impact absorbing structures for additive manufacture publication-title: J Phys Conf Ser – year: 1999 ident: 10.1016/j.cad.2019.102787_b11 – volume: 23 start-page: 77 issue: 1 year: 2007 ident: 10.1016/j.cad.2019.102787_b12 article-title: Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures publication-title: Acta Mech Sinica doi: 10.1007/s10409-006-0045-2 – year: 2016 ident: 10.1016/j.cad.2019.102787_b52 – volume: 25 start-page: 437 issue: 2 year: 2018 ident: 10.1016/j.cad.2019.102787_b53 article-title: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-016-9203-2 – volume: 102 start-page: 72 year: 2018 ident: 10.1016/j.cad.2019.102787_b34 article-title: Continuous optimization of adaptive quadtree structures publication-title: Comput Aided Des doi: 10.1016/j.cad.2018.04.008 – volume: 84 issue: 8 year: 2017 ident: 10.1016/j.cad.2019.102787_b45 article-title: Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization publication-title: J Appl Mech doi: 10.1115/1.4036941 – volume: 93 start-page: 443 year: 2016 ident: 10.1016/j.cad.2019.102787_b6 article-title: Design of lattice structures with controlled anisotropy publication-title: Mater Des doi: 10.1016/j.matdes.2016.01.007 – start-page: 1 year: 2019 ident: 10.1016/j.cad.2019.102787_b39 article-title: Concurrent optimization of structural topology and infill properties with a CBF-based level set method publication-title: Front Mech Eng – volume: 137 issue: 2 year: 2015 ident: 10.1016/j.cad.2019.102787_b40 article-title: Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation publication-title: J Manuf Sci Eng doi: 10.1115/1.4028724 – volume: 21 start-page: 120 issue: 2 year: 2001 ident: 10.1016/j.cad.2019.102787_b19 article-title: A 99 line topology optimization code written in Matlab publication-title: Struct Multidiscip Optim doi: 10.1007/s001580050176 – volume: 344 start-page: 334 year: 2019 ident: 10.1016/j.cad.2019.102787_b42 article-title: Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2018.10.010 – year: 2019 ident: 10.1016/j.cad.2019.102787_b49 article-title: Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2019.02.031 – year: 2012 ident: 10.1016/j.cad.2019.102787_b54 – volume: 310 start-page: 711 year: 2016 ident: 10.1016/j.cad.2019.102787_b47 article-title: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2016.07.018 – volume: 94 start-page: 1117 issue: 3 year: 2012 ident: 10.1016/j.cad.2019.102787_b1 article-title: Anisogrid composite lattice structures–Development and aerospace applications publication-title: Compos Struct doi: 10.1016/j.compstruct.2011.10.023 – volume: 86 start-page: 1417 issue: 13–14 year: 2008 ident: 10.1016/j.cad.2019.102787_b18 article-title: Optimum structure with homogeneous optimum truss-like material publication-title: Comput Struct doi: 10.1016/j.compstruc.2007.04.030 – start-page: 320 year: 2017 ident: 10.1016/j.cad.2019.102787_b38 article-title: Optimal design and modeling of 3D variable-density lattice structures – volume: 141 issue: 7 year: 2019 ident: 10.1016/j.cad.2019.102787_b44 article-title: Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes publication-title: J Mech Des doi: 10.1115/1.4042617 – volume: 69 start-page: 65 year: 2015 ident: 10.1016/j.cad.2019.102787_b27 article-title: The status, challenges, and future of additive manufacturing in engineering publication-title: Comput Aided Des doi: 10.1016/j.cad.2015.04.001 – volume: 113 start-page: 1148 issue: 8 year: 2018 ident: 10.1016/j.cad.2019.102787_b48 article-title: Homogenization-based topology optimization for high-resolution manufacturable microstructures publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.5575 – volume: 15 start-page: 1399 issue: 6 year: 2009 ident: 10.1016/j.cad.2019.102787_b8 article-title: Stress tensor field visualization for implant planning in orthopedics publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2009.184 – volume: 31 start-page: 2313 issue: 17 year: 1994 ident: 10.1016/j.cad.2019.102787_b17 article-title: Materials with prescribed constitutive parameters: an inverse homogenization problem publication-title: Int J Solids Struct doi: 10.1016/0020-7683(94)90154-6 – volume: 317 start-page: 84 year: 2017 ident: 10.1016/j.cad.2019.102787_b24 article-title: Concurrent design with connectable graded microstructures publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2016.12.007 – volume: 344 start-page: 451 year: 2019 ident: 10.1016/j.cad.2019.102787_b22 article-title: Topology optimization for multiscale design of porous composites with multi-domain microstructures publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2018.10.017 – volume: vol. 7699 start-page: 769906 year: 2010 ident: 10.1016/j.cad.2019.102787_b55 article-title: SAR image formation toolbox for MATLAB – volume: 102 start-page: 194 year: 2018 ident: 10.1016/j.cad.2019.102787_b36 article-title: Multiscale shape–material modeling by composition publication-title: Comput Aided Des doi: 10.1016/j.cad.2018.04.024 – volume: 51 start-page: 3259 issue: 11 year: 2003 ident: 10.1016/j.cad.2019.102787_b7 article-title: Microstructure–mechanical properties correlation in siliconized silicon carbide ceramics publication-title: Acta Mater doi: 10.1016/S1359-6454(03)00157-5 – volume: 155 start-page: 74 year: 2018 ident: 10.1016/j.cad.2019.102787_b21 article-title: Multiscale concurrent topology optimization for cellular structures with multiple microstructures based on ordered SIMP interpolation publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2018.08.030 – volume: 244 start-page: 15 issue: 1 year: 2007 ident: 10.1016/j.cad.2019.102787_b9 article-title: Mathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur publication-title: J Theoret Biol doi: 10.1016/j.jtbi.2006.06.029 – volume: 77 start-page: 249 year: 2013 ident: 10.1016/j.cad.2019.102787_b14 article-title: Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2013.10.003 – volume: 316 start-page: 568 year: 2017 ident: 10.1016/j.cad.2019.102787_b20 article-title: Multiscale isogeometric topology optimization for lattice materials publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2016.08.015 – volume: 23 start-page: 660 issue: 4 year: 2017 ident: 10.1016/j.cad.2019.102787_b41 article-title: Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation publication-title: Rapid Prototyp J doi: 10.1108/RPJ-04-2016-0069 |
SSID | ssj0002139 |
Score | 2.5594015 |
Snippet | In this work, we present a novel anisotropic lattice structure design and multi-scale optimization method that can generate conformal gradient lattice... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102787 |
SubjectTerms | Algorithms Anisotropic design Anisotropy Asymptotic methods Conformal lattice Density Design optimization Fourier transforms Lattice design Lattice optimization Mechanical properties Multi-scale optimization Multiscale analysis Optimization Post-production processing Robustness (mathematics) Stiffness Synthesize algorithm Tensors Unit cell |
Title | Anisotropic design and optimization of conformal gradient lattice structures |
URI | https://dx.doi.org/10.1016/j.cad.2019.102787 https://www.proquest.com/docview/2329280571 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhvbSH0pUuadChp4IbW5IXHUNoSLecGshNyJJSUlI7JO61394ZL90oORR8sZGMGY1n3qA3T4RcQoWghWDOC3WUekI739OCWy-KQsd5ZHzusBv5cRyNJuJuGk5bZND0wiCtso79VUwvo3X9pFdbs7ecz7HHF0oJkSAEwcSDsttCxOjl1-9fNA8W8AoCQ7zB0c3OZsnxMhrFQgOJAgYxsur-zk2_onSZeoZ7ZLfGjLRffdY-abnsgOx8UxI8JA_9bL7Oi1W-nBtqS1YG1ZmlOUSE17rVkuYzCtVviVIX9HlVkr0KutAFEuBopST7BuX3EZkMb54GI68-KMEznIWFx7VgcMUzJ1kaCIsCMXEauGSW6jgCxGPhzvAEm1CtTUJrICtbFslYx7GRjh-TdpZn7oRQyWWQ-Dy10gZixnyZcBMZ3FxLQwmF9ynxGxMpU6uI42EWC9XQxV4UWFWhVVVl1VNy9TllWUlobBosGrurH36gIMRvmtZp1kjVP-FaAViULAFAGpz9763nZJtheV2StDukDevgLgCDFGm3dLIu2erf3o_GHwIp2XM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3Bcig9oBaK-Gx96AkpIrEdJz6uEGgpy55A4mY5trdatCQrCP-_M4mDoEIckHJJFEfR2HnzRn7zAvAbKwQrJQ9JblWVSBvSxErhE6XyIIRyqQjUjXw9U5Nb-ecuv1uDs6EXhmSVEft7TO_QOl45jdE8XS0W1OOLpYQsiYJQ4lHrsEHuVPkINsaXV5PZCyDzTPQsGCGHBgybm53My1nyC800eRgUJKx7Pz39B9Rd9rn4BluRNrJx_2bfYS3U2_D1lZngDkzH9eKpaR-b1cIx3wkzmK09axAUHmK3JWvmDAvgjqgu2d_HTu_VsqVtSQPHejPZZ6zAf8DtxfnN2SSJ_0pInOB5mwgrOR7FPGheZdKTR0xRZaGcV7ZQSHo8njlRUh-q92XuHSZmz5UubFE4HcQujOqmDnvAtNBZmYrKa5_JOU91KZxytL9W5Rpr731IhxAZF43E6X8WSzMoxu4NRtVQVE0f1X04eRmy6l00PrpZDnE3b5aCQZT_aNjRMEcmfodPBvmi5iVy0uzgc0_9BV8mN9dTM72cXR3CJqdqu9NsH8EI5yQcIyVpq59xyf0DhzTcJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+design+and+optimization+of+conformal+gradient+lattice+structures&rft.jtitle=Computer+aided+design&rft.au=Li%2C+Dawei&rft.au=Liao%2C+Wenhe&rft.au=Dai%2C+Ning&rft.au=Xie%2C+Yi+Min&rft.date=2020-02-01&rft.pub=Elsevier+BV&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=119&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cad.2019.102787&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |