Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening

Elucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role of electron-electron correlations in this state, Liu et al. placed another graphene bilayer, this one having a conventional arrangement of the graphene sheets, in...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 371; no. 6535; pp. 1261 - 1265
Main Authors Liu, Xiaoxue, Wang, Zhi, Watanabe, K., Taniguchi, T., Vafek, Oskar, Li, J. I. A.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 19.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Elucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role of electron-electron correlations in this state, Liu et al. placed another graphene bilayer, this one having a conventional arrangement of the graphene sheets, in the immediate vicinity of a sample of MATBG. By varying the carrier density in the conventional bilayer, the researchers controlled the strength of interactions in MATBG. Weakening the interactions strengthened superconductivity, consistent with scenarios in which the electron-phonon coupling competes against Coulomb interactions to stabilize the superconducting phase. Science , this issue p. 1261 A hybrid double-layer structure is used to probe the nature of superconductivity in twisted bilayer graphene. Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene.
AbstractList Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene.
Tuning the interactionsElucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role of electron-electron correlations in this state, Liu et al. placed another graphene bilayer, this one having a conventional arrangement of the graphene sheets, in the immediate vicinity of a sample of MATBG. By varying the carrier density in the conventional bilayer, the researchers controlled the strength of interactions in MATBG. Weakening the interactions strengthened superconductivity, consistent with scenarios in which the electron-phonon coupling competes against Coulomb interactions to stabilize the superconducting phase.Science, this issue p. 1261Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene.
Elucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role of electron-electron correlations in this state, Liu et al. placed another graphene bilayer, this one having a conventional arrangement of the graphene sheets, in the immediate vicinity of a sample of MATBG. By varying the carrier density in the conventional bilayer, the researchers controlled the strength of interactions in MATBG. Weakening the interactions strengthened superconductivity, consistent with scenarios in which the electron-phonon coupling competes against Coulomb interactions to stabilize the superconducting phase. Science , this issue p. 1261 A hybrid double-layer structure is used to probe the nature of superconductivity in twisted bilayer graphene. Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene.
Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene.Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene.
Author Vafek, Oskar
Wang, Zhi
Watanabe, K.
Liu, Xiaoxue
Taniguchi, T.
Li, J. I. A.
Author_xml – sequence: 1
  givenname: Xiaoxue
  orcidid: 0000-0001-8761-4010
  surname: Liu
  fullname: Liu, Xiaoxue
  organization: Department of Physics, Brown University, Providence, RI 02912, USA
– sequence: 2
  givenname: Zhi
  orcidid: 0000-0001-5272-4519
  surname: Wang
  fullname: Wang, Zhi
  organization: Department of Physics, Brown University, Providence, RI 02912, USA
– sequence: 3
  givenname: K.
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, K.
  organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
– sequence: 4
  givenname: T.
  orcidid: 0000-0002-1467-3105
  surname: Taniguchi
  fullname: Taniguchi, T.
  organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
– sequence: 5
  givenname: Oskar
  orcidid: 0000-0001-7561-9287
  surname: Vafek
  fullname: Vafek, Oskar
  organization: Department of Physics, Florida State University, Tallahassee, FL 32306, USA., National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
– sequence: 6
  givenname: J. I. A.
  orcidid: 0000-0002-8431-2567
  surname: Li
  fullname: Li, J. I. A.
  organization: Department of Physics, Brown University, Providence, RI 02912, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33737488$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LAzEQxYNUtFbP3mTBi5dt87HJZo9S_IKCFz15CEk6WyPZpCa7iP-9W60XwdMMzO89hvdO0CTEAAidEzwnhIpFtg6Chbk2Rta8OkBTghteNhSzCZpizEQpcc2P0UnObxiPt4YdoWPGalZXUk7Ry9MQXNgU4MH2KYbCxpTA696NuwtFpzfOljpsPBT9h8s9rAvjvP6EVGyS3r5CgGLIO4tlHHzsTJFtAtiZnqLDVvsMZ_s5Q8-3N0_L-3L1ePewvF6VllHel0xaXAtNGWhiK6llo4VthTFV2zApaUNEK3gtgLWVIUYTWDNh19a2hjDCWzZDVz--2xTfB8i96ly24L0OEIesKB9zYJhTMqKXf9C3OKQwfrejqJSMjtHM0MWeGkwHa7VNrtPpU_3GNgL8B7Ap5pygVdb135n1STuvCFa7etS-HrWvZ9Qt_uh-rf9TfAF225Yv
CitedBy_id crossref_primary_10_1103_PhysRevResearch_5_L012034
crossref_primary_10_1038_s41567_021_01347_4
crossref_primary_10_1103_PhysRevLett_129_117602
crossref_primary_10_1038_s41578_024_00671_4
crossref_primary_10_1063_5_0207883
crossref_primary_10_1002_pssb_202200344
crossref_primary_10_1103_PhysRevB_110_045133
crossref_primary_10_1039_D3CP04656G
crossref_primary_10_1088_1361_648X_ac99ca
crossref_primary_10_1103_PhysRevLett_131_166501
crossref_primary_10_1103_PhysRevResearch_4_043151
crossref_primary_10_1038_s41535_021_00410_w
crossref_primary_10_3390_nano13142059
crossref_primary_10_7498_aps_71_20220347
crossref_primary_10_1073_pnas_2107874118
crossref_primary_10_1103_PhysRevX_11_041063
crossref_primary_10_21468_SciPostPhys_13_3_052
crossref_primary_10_1007_s44214_024_00063_3
crossref_primary_10_1103_PhysRevResearch_5_043214
crossref_primary_10_1038_s41467_023_40684_1
crossref_primary_10_7566_JPSJ_90_124702
crossref_primary_10_1007_s11433_022_2000_y
crossref_primary_10_1063_5_0139179
crossref_primary_10_7498_aps_70_20210476
crossref_primary_10_1103_PhysRevB_107_104407
crossref_primary_10_1103_PhysRevB_108_165409
crossref_primary_10_1103_PhysRevB_110_085160
crossref_primary_10_1088_2053_1583_ac38ca
crossref_primary_10_1021_acsnano_4c12770
crossref_primary_10_1103_PhysRevLett_127_266402
crossref_primary_10_1103_PhysRevLett_132_056601
crossref_primary_10_1038_s41567_022_01556_5
crossref_primary_10_1088_1367_2630_ad3000
crossref_primary_10_1103_PhysRevB_104_075144
crossref_primary_10_1103_PhysRevB_110_174512
crossref_primary_10_1088_1361_648X_acd294
crossref_primary_10_1103_PhysRevB_104_075143
crossref_primary_10_1088_1674_1056_acc8c3
crossref_primary_10_1002_adfm_202411472
crossref_primary_10_1103_PhysRevLett_133_146001
crossref_primary_10_1038_s41567_023_02195_0
crossref_primary_10_1088_1674_1056_ac9de4
crossref_primary_10_1103_PhysRevB_110_L041108
crossref_primary_10_1103_PhysRevLett_132_166901
crossref_primary_10_1103_PhysRevB_110_245118
crossref_primary_10_1103_PhysRevB_107_174512
crossref_primary_10_1021_acsnano_4c02733
crossref_primary_10_1103_PhysRevB_110_115114
crossref_primary_10_1038_s41467_024_48385_z
crossref_primary_10_1103_PhysRevB_110_214517
crossref_primary_10_1038_s41699_023_00408_x
crossref_primary_10_1088_1361_648X_ad46bc
crossref_primary_10_1039_D4NR03330B
crossref_primary_10_1088_1361_648X_ad1f8c
crossref_primary_10_7498_aps_72_20230079
crossref_primary_10_1016_j_rinp_2022_105780
crossref_primary_10_1103_PhysRevB_108_195148
crossref_primary_10_1103_PhysRevB_107_075123
crossref_primary_10_1088_1367_2630_ad8fc6
crossref_primary_10_1002_advs_202103170
crossref_primary_10_1038_s41586_024_07584_w
crossref_primary_10_1038_s41535_021_00379_6
crossref_primary_10_1021_acs_nanolett_2c02000
crossref_primary_10_1088_2516_1075_ac49f5
crossref_primary_10_1109_ACCESS_2024_3465221
crossref_primary_10_1039_D2NR07242D
crossref_primary_10_1103_PhysRevLett_131_096401
crossref_primary_10_1007_s11467_023_1302_6
crossref_primary_10_1103_PhysRevB_103_235401
crossref_primary_10_1103_PhysRevLett_127_187001
crossref_primary_10_1103_PhysRevB_107_024509
crossref_primary_10_1038_s41467_025_56141_0
crossref_primary_10_1103_PhysRevB_108_035129
crossref_primary_10_1103_PhysRevB_104_115110
crossref_primary_10_1016_j_physe_2022_115267
crossref_primary_10_1038_s41524_022_00789_5
crossref_primary_10_1103_PhysRevB_108_045138
crossref_primary_10_1038_s41467_022_31851_x
crossref_primary_10_1021_acsami_3c15839
crossref_primary_10_1103_PhysRevLett_132_226001
crossref_primary_10_1515_nanoph_2022_0798
crossref_primary_10_1103_PhysRevLett_133_196501
crossref_primary_10_1063_10_0019420
crossref_primary_10_1063_10_0019421
crossref_primary_10_1088_1361_6633_ad67ed
crossref_primary_10_1103_PhysRevB_103_195127
crossref_primary_10_1103_PhysRevB_111_035110
crossref_primary_10_3390_nano12183133
crossref_primary_10_3390_molecules27020379
crossref_primary_10_1021_acsnano_3c09993
crossref_primary_10_1021_acs_nanolett_3c01262
crossref_primary_10_1103_PhysRevLett_134_116605
crossref_primary_10_1103_PhysRevB_108_064202
crossref_primary_10_1103_PhysRevLett_129_076401
crossref_primary_10_1103_PhysRevResearch_5_023166
crossref_primary_10_1038_s42005_023_01480_x
crossref_primary_10_1103_PhysRevLett_128_065901
crossref_primary_10_1038_s41578_024_00682_1
crossref_primary_10_1103_PhysRevB_105_L081405
crossref_primary_10_1021_acs_nanolett_2c02010
crossref_primary_10_1038_s41467_023_42275_6
crossref_primary_10_1021_acssensors_2c02790
crossref_primary_10_1038_s41524_022_00697_8
crossref_primary_10_1039_D3CP02902F
crossref_primary_10_1103_PhysRevLett_127_247703
crossref_primary_10_1103_PhysRevB_106_L201403
crossref_primary_10_1073_pnas_2307151120
crossref_primary_10_1103_PhysRevB_111_045136
crossref_primary_10_1038_s41567_022_01515_0
crossref_primary_10_1103_PhysRevX_12_031020
crossref_primary_10_1038_s41586_024_08381_1
crossref_primary_10_1016_j_carbon_2022_12_059
crossref_primary_10_1088_1674_1056_acbd2c
crossref_primary_10_1038_s41467_021_23031_0
crossref_primary_10_1038_s41567_022_01589_w
crossref_primary_10_1103_PhysRevB_105_L241109
crossref_primary_10_1103_PhysRevB_108_195119
crossref_primary_10_1038_s41467_024_54200_6
crossref_primary_10_1103_PhysRevLett_131_026502
crossref_primary_10_1103_PhysRevB_106_115436
crossref_primary_10_1103_PhysRevB_109_075166
crossref_primary_10_1103_PhysRevMaterials_9_L021002
crossref_primary_10_1103_PhysRevB_111_125140
crossref_primary_10_1103_PhysRevB_111_125143
crossref_primary_10_7498_aps_71_20220872
crossref_primary_10_1103_PhysRevB_109_125404
crossref_primary_10_1103_PhysRevB_105_184505
crossref_primary_10_1103_PhysRevB_110_165406
crossref_primary_10_1038_s41567_022_01700_1
crossref_primary_10_1103_PhysRevLett_128_247402
crossref_primary_10_1103_PhysRevX_15_011045
crossref_primary_10_1103_PhysRevB_109_045419
crossref_primary_10_1103_PhysRevB_103_205411
crossref_primary_10_1103_PhysRevB_103_205412
crossref_primary_10_1103_PhysRevB_103_205413
crossref_primary_10_1103_PhysRevB_103_205414
crossref_primary_10_1103_PhysRevB_103_205415
crossref_primary_10_1103_PhysRevB_111_035431
crossref_primary_10_1103_PhysRevB_103_205416
crossref_primary_10_1103_PhysRevX_14_031045
crossref_primary_10_1103_PhysRevB_104_214403
crossref_primary_10_1103_PhysRevB_108_214521
crossref_primary_10_1103_PhysRevB_105_155135
crossref_primary_10_1103_PhysRevLett_128_156401
crossref_primary_10_1103_PhysRevB_109_045404
crossref_primary_10_1103_PhysRevB_106_024507
crossref_primary_10_1103_PhysRevLett_127_197701
crossref_primary_10_1103_PhysRevX_13_011026
crossref_primary_10_1103_PhysRevB_110_085422
crossref_primary_10_1103_PhysRevB_109_184502
crossref_primary_10_1149_1945_7111_ac700b
crossref_primary_10_4028_p_596y29
crossref_primary_10_1103_PhysRevB_108_L121409
crossref_primary_10_1103_PhysRevB_107_075408
crossref_primary_10_1103_RevModPhys_95_011002
crossref_primary_10_1126_sciadv_abn3181
crossref_primary_10_1088_2632_2153_ad2287
crossref_primary_10_1103_PhysRevLett_133_266603
crossref_primary_10_1016_j_xcrp_2024_102356
crossref_primary_10_1103_PhysRevB_107_L081403
crossref_primary_10_1088_1674_1056_acddcf
crossref_primary_10_1103_PhysRevB_104_035119
crossref_primary_10_1103_PhysRevB_107_144111
crossref_primary_10_1103_PhysRevB_108_235120
crossref_primary_10_1007_s44214_022_00010_0
crossref_primary_10_1103_PhysRevB_106_235112
crossref_primary_10_1103_PhysRevLett_129_047601
crossref_primary_10_7498_aps_72_20230120
crossref_primary_10_1103_PhysRevB_103_195411
crossref_primary_10_1103_PhysRevLett_129_187001
crossref_primary_10_1038_s41567_023_02060_0
crossref_primary_10_1103_PhysRevB_106_104506
crossref_primary_10_1103_PhysRevResearch_4_013131
crossref_primary_10_1103_PhysRevX_12_021018
crossref_primary_10_1103_PhysRevB_104_L081403
crossref_primary_10_1103_PhysRevB_103_L241110
crossref_primary_10_1103_PhysRevB_109_195167
crossref_primary_10_1103_PhysRevB_108_024510
crossref_primary_10_1039_D1NR06808C
crossref_primary_10_1103_PhysRevB_104_115167
crossref_primary_10_1103_PhysRevResearch_4_L032006
crossref_primary_10_1088_2631_7990_acee2e
crossref_primary_10_1103_PhysRevLett_130_146001
crossref_primary_10_1103_PhysRevB_106_L121111
crossref_primary_10_1103_PhysRevB_109_104504
crossref_primary_10_1103_PhysRevLett_127_097001
crossref_primary_10_7498_aps_70_20210929
crossref_primary_10_1103_PhysRevB_108_094115
crossref_primary_10_1038_s41586_023_06226_x
crossref_primary_10_1021_acs_nanolett_4c04242
crossref_primary_10_1038_s42254_022_00466_y
crossref_primary_10_1103_PhysRevB_110_115154
crossref_primary_10_1038_s41467_024_46247_2
crossref_primary_10_1103_PhysRevLett_130_076204
crossref_primary_10_1103_PhysRevB_105_035405
crossref_primary_10_1038_s41467_021_25438_1
Cites_doi 10.1103/PhysRevB.74.161403
10.1103/PhysRevX.8.041041
10.1126/science.aav1910
10.1038/nature26154
10.1126/sciadv.aau3826
10.1038/s41567-020-0928-3
10.1126/science.aao2521
10.1103/PhysRevLett.99.070401
10.1038/s41586-020-2459-6
10.1103/PhysRevLett.122.246401
10.1038/s41567-019-0596-3
10.1103/PhysRevLett.121.087001
10.1103/PhysRevLett.65.923
10.1038/nature26160
10.1038/nature14165
10.1103/PhysRevB.100.161102
10.1038/s41567-019-0571-z
10.1103/RevModPhys.78.17
10.1103/PhysRevB.101.224513
10.1103/PhysRevB.84.085441
10.1038/s41586-019-1695-0
10.1038/s41586-020-2473-8
10.1103/PhysRevB.99.134515
10.1038/s41467-017-00824-w
10.1103/PhysRevB.97.235453
10.1073/pnas.1108174108
10.1103/PhysRevB.99.165112
10.1103/PhysRevB.12.905
10.1103/PhysRev.167.331
10.1038/nature23893
10.1038/s41563-019-0346-z
10.1021/acs.nanolett.5b05263
10.1038/nphys2114
10.1103/PhysRevB.98.081102
10.1103/PhysRevB.63.134508
10.1038/s41586-020-2255-3
10.1103/PhysRevLett.122.257002
10.1103/PhysRevLett.124.076801
10.1103/PhysRevLett.121.257001
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abb8754
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1265
ExternalDocumentID 33737488
10_1126_science_abb8754
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
AEUPB
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c325t-38c076a23ea1c48a89a6cf6bb4f93882916f6576e3f4b1ba1ed36cdccfb1315f3
ISSN 0036-8075
1095-9203
IngestDate Wed Jul 30 11:18:38 EDT 2025
Fri Jul 25 10:47:01 EDT 2025
Wed Feb 19 02:28:43 EST 2025
Thu Apr 24 23:02:21 EDT 2025
Tue Jul 01 01:35:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6535
Language English
License Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-38c076a23ea1c48a89a6cf6bb4f93882916f6576e3f4b1ba1ed36cdccfb1315f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3701-8119
0000-0001-5272-4519
0000-0002-1467-3105
0000-0001-7561-9287
0000-0001-8761-4010
0000-0002-8431-2567
PMID 33737488
PQID 2502883237
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2503630521
proquest_journals_2502883237
pubmed_primary_33737488
crossref_citationtrail_10_1126_science_abb8754
crossref_primary_10_1126_science_abb8754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-19
20210319
PublicationDateYYYYMMDD 2021-03-19
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
Zhang Y. (e_1_3_2_27_2) 2009; 116
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_45_2
  doi: 10.1103/PhysRevB.74.161403
– ident: e_1_3_2_10_2
  doi: 10.1103/PhysRevX.8.041041
– ident: e_1_3_2_3_2
  doi: 10.1126/science.aav1910
– volume: 116
  year: 2009
  ident: e_1_3_2_27_2
  publication-title: Nature
– ident: e_1_3_2_7_2
  doi: 10.1038/nature26154
– ident: e_1_3_2_37_2
  doi: 10.1126/sciadv.aau3826
– ident: e_1_3_2_15_2
  doi: 10.1038/s41567-020-0928-3
– ident: e_1_3_2_28_2
  doi: 10.1126/science.aao2521
– ident: e_1_3_2_31_2
  doi: 10.1103/PhysRevLett.99.070401
– ident: e_1_3_2_14_2
  doi: 10.1038/s41586-020-2459-6
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevLett.122.246401
– ident: e_1_3_2_38_2
– ident: e_1_3_2_42_2
– ident: e_1_3_2_40_2
  doi: 10.1038/s41567-019-0596-3
– ident: e_1_3_2_9_2
  doi: 10.1103/PhysRevLett.121.087001
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevLett.65.923
– ident: e_1_3_2_2_2
  doi: 10.1038/nature26160
– ident: e_1_3_2_5_2
  doi: 10.1038/nature14165
– ident: e_1_3_2_22_2
  doi: 10.1103/PhysRevB.100.161102
– ident: e_1_3_2_41_2
  doi: 10.1038/s41567-019-0571-z
– ident: e_1_3_2_6_2
  doi: 10.1103/RevModPhys.78.17
– ident: e_1_3_2_13_2
  doi: 10.1103/PhysRevB.101.224513
– ident: e_1_3_2_33_2
  doi: 10.1103/PhysRevB.84.085441
– ident: e_1_3_2_4_2
  doi: 10.1038/s41586-019-1695-0
– ident: e_1_3_2_16_2
  doi: 10.1038/s41586-020-2473-8
– ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevB.99.134515
– ident: e_1_3_2_34_2
  doi: 10.1038/s41467-017-00824-w
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevB.97.235453
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.1108174108
– ident: e_1_3_2_39_2
  doi: 10.1103/PhysRevB.99.165112
– ident: e_1_3_2_21_2
  doi: 10.1103/PhysRevB.12.905
– ident: e_1_3_2_20_2
  doi: 10.1103/PhysRev.167.331
– ident: e_1_3_2_29_2
  doi: 10.1038/nature23893
– ident: e_1_3_2_23_2
  doi: 10.1038/s41563-019-0346-z
– ident: e_1_3_2_24_2
– ident: e_1_3_2_43_2
  doi: 10.1021/acs.nanolett.5b05263
– ident: e_1_3_2_35_2
  doi: 10.1038/nphys2114
– ident: e_1_3_2_17_2
  doi: 10.1103/PhysRevB.98.081102
– ident: e_1_3_2_36_2
  doi: 10.1103/PhysRevB.63.134508
– ident: e_1_3_2_25_2
  doi: 10.1038/s41586-020-2255-3
– ident: e_1_3_2_18_2
  doi: 10.1103/PhysRevLett.122.257002
– ident: e_1_3_2_8_2
  doi: 10.1103/PhysRevLett.124.076801
– ident: e_1_3_2_19_2
  doi: 10.1103/PhysRevLett.121.257001
SSID ssj0009593
Score 2.687586
Snippet Elucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role of electron-electron...
Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry...
Tuning the interactionsElucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1261
SubjectTerms Bilayers
Carrier density
Constraint modelling
Correlation analysis
Electrons
Fermions
Graphene
Quantum phenomena
Screening
Superconductivity
Tuning
Title Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening
URI https://www.ncbi.nlm.nih.gov/pubmed/33737488
https://www.proquest.com/docview/2502883237
https://www.proquest.com/docview/2503630521
Volume 371
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZymAvY-2-0nVDgz10BIdYsmX7Md0aysi6lwTC9mAkRW4NqTNWm-7jn9_JOjvu1kI3CCYolh30--l0dzrdEfImWumVlhmzeSrBQNGB9qTSsRdqHwBXYRIk9rzzx1Nxsgg-LMNlr_ere7qkVCP988ZzJf-DKrQBrvaU7D8g2z4UGuA74AtXQBiud8O4qr0aTSmbobalNlxwm_VjXEgQa54sztZmWF5ZPEHbzNcStOxhnaga5Nywwp3_ar25UEMQImDYNssZKq3N_AdltN3g6cDaRipOXDxBE16A3Tq-hlleWUiXudx8r7abQuiy_nyeb5tAZ5XKXPPDzmWRn9naLdvYbnRXsDpeC4Wik7BjWxySjZ1UMze0oVjmrjQL8k-EPOzIWZ-5FO5_LwCdkpVmJJUCeyzYrnXN_v7pp3S6mM3S-fFyfo_sMLAxWJ_sTI7eH03_zNnc_jvMDNU5c9W84LpSc4ulUmss80fkIZoadOJ4s0t6ptgj913x0R97ZBfxuaSHmHv87WPyxVGKNpSiHUrRvKAdSlGkFEVK0YZStKYURUrRllJPyGJ6PH934mH9DU9zFpYej_U4EpJxI30dxDJOpNCZUCrIEg6WGVgWmQB71fAsUL6SvllxAVNfZwomepjxp6RfbArznNDAN4lmUgu1igMVmgQ-sRZjFYGKuYr8ARk1A5hqTE5va6Ss09pIZSLFEU9xxAfksO3w1eVluf3WgwaRFCfvZQqav62zzXg0IK_bn0G02v0yWZhNVd_DBben2wfkmUOyfRfnkU3cFO_fofcL8mA7Ew5Iv_xWmZegypbqFVLuN8unpaM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+electron+correlation+in+magic-angle+twisted+bilayer+graphene+using+Coulomb+screening&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Liu%2C+Xiaoxue&rft.au=Wang%2C+Zhi&rft.au=Watanabe%2C+K&rft.au=Taniguchi%2C+T&rft.date=2021-03-19&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=371&rft.issue=6535&rft.spage=1261&rft_id=info:doi/10.1126%2Fscience.abb8754&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon