Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening
Elucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role of electron-electron correlations in this state, Liu et al. placed another graphene bilayer, this one having a conventional arrangement of the graphene sheets, in...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 371; no. 6535; pp. 1261 - 1265 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
19.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Elucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role of electron-electron correlations in this state, Liu
et al.
placed another graphene bilayer, this one having a conventional arrangement of the graphene sheets, in the immediate vicinity of a sample of MATBG. By varying the carrier density in the conventional bilayer, the researchers controlled the strength of interactions in MATBG. Weakening the interactions strengthened superconductivity, consistent with scenarios in which the electron-phonon coupling competes against Coulomb interactions to stabilize the superconducting phase.
Science
, this issue p.
1261
A hybrid double-layer structure is used to probe the nature of superconductivity in twisted bilayer graphene.
Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene. |
---|---|
AbstractList | Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene. Tuning the interactionsElucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role of electron-electron correlations in this state, Liu et al. placed another graphene bilayer, this one having a conventional arrangement of the graphene sheets, in the immediate vicinity of a sample of MATBG. By varying the carrier density in the conventional bilayer, the researchers controlled the strength of interactions in MATBG. Weakening the interactions strengthened superconductivity, consistent with scenarios in which the electron-phonon coupling competes against Coulomb interactions to stabilize the superconducting phase.Science, this issue p. 1261Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene. Elucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role of electron-electron correlations in this state, Liu et al. placed another graphene bilayer, this one having a conventional arrangement of the graphene sheets, in the immediate vicinity of a sample of MATBG. By varying the carrier density in the conventional bilayer, the researchers controlled the strength of interactions in MATBG. Weakening the interactions strengthened superconductivity, consistent with scenarios in which the electron-phonon coupling competes against Coulomb interactions to stabilize the superconducting phase. Science , this issue p. 1261 A hybrid double-layer structure is used to probe the nature of superconductivity in twisted bilayer graphene. Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene. Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene.Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene. |
Author | Vafek, Oskar Wang, Zhi Watanabe, K. Liu, Xiaoxue Taniguchi, T. Li, J. I. A. |
Author_xml | – sequence: 1 givenname: Xiaoxue orcidid: 0000-0001-8761-4010 surname: Liu fullname: Liu, Xiaoxue organization: Department of Physics, Brown University, Providence, RI 02912, USA – sequence: 2 givenname: Zhi orcidid: 0000-0001-5272-4519 surname: Wang fullname: Wang, Zhi organization: Department of Physics, Brown University, Providence, RI 02912, USA – sequence: 3 givenname: K. orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, K. organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan – sequence: 4 givenname: T. orcidid: 0000-0002-1467-3105 surname: Taniguchi fullname: Taniguchi, T. organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan – sequence: 5 givenname: Oskar orcidid: 0000-0001-7561-9287 surname: Vafek fullname: Vafek, Oskar organization: Department of Physics, Florida State University, Tallahassee, FL 32306, USA., National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA – sequence: 6 givenname: J. I. A. orcidid: 0000-0002-8431-2567 surname: Li fullname: Li, J. I. A. organization: Department of Physics, Brown University, Providence, RI 02912, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33737488$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LAzEQxYNUtFbP3mTBi5dt87HJZo9S_IKCFz15CEk6WyPZpCa7iP-9W60XwdMMzO89hvdO0CTEAAidEzwnhIpFtg6Chbk2Rta8OkBTghteNhSzCZpizEQpcc2P0UnObxiPt4YdoWPGalZXUk7Ry9MQXNgU4MH2KYbCxpTA696NuwtFpzfOljpsPBT9h8s9rAvjvP6EVGyS3r5CgGLIO4tlHHzsTJFtAtiZnqLDVvsMZ_s5Q8-3N0_L-3L1ePewvF6VllHel0xaXAtNGWhiK6llo4VthTFV2zApaUNEK3gtgLWVIUYTWDNh19a2hjDCWzZDVz--2xTfB8i96ly24L0OEIesKB9zYJhTMqKXf9C3OKQwfrejqJSMjtHM0MWeGkwHa7VNrtPpU_3GNgL8B7Ap5pygVdb135n1STuvCFa7etS-HrWvZ9Qt_uh-rf9TfAF225Yv |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_5_L012034 crossref_primary_10_1038_s41567_021_01347_4 crossref_primary_10_1103_PhysRevLett_129_117602 crossref_primary_10_1038_s41578_024_00671_4 crossref_primary_10_1063_5_0207883 crossref_primary_10_1002_pssb_202200344 crossref_primary_10_1103_PhysRevB_110_045133 crossref_primary_10_1039_D3CP04656G crossref_primary_10_1088_1361_648X_ac99ca crossref_primary_10_1103_PhysRevLett_131_166501 crossref_primary_10_1103_PhysRevResearch_4_043151 crossref_primary_10_1038_s41535_021_00410_w crossref_primary_10_3390_nano13142059 crossref_primary_10_7498_aps_71_20220347 crossref_primary_10_1073_pnas_2107874118 crossref_primary_10_1103_PhysRevX_11_041063 crossref_primary_10_21468_SciPostPhys_13_3_052 crossref_primary_10_1007_s44214_024_00063_3 crossref_primary_10_1103_PhysRevResearch_5_043214 crossref_primary_10_1038_s41467_023_40684_1 crossref_primary_10_7566_JPSJ_90_124702 crossref_primary_10_1007_s11433_022_2000_y crossref_primary_10_1063_5_0139179 crossref_primary_10_7498_aps_70_20210476 crossref_primary_10_1103_PhysRevB_107_104407 crossref_primary_10_1103_PhysRevB_108_165409 crossref_primary_10_1103_PhysRevB_110_085160 crossref_primary_10_1088_2053_1583_ac38ca crossref_primary_10_1021_acsnano_4c12770 crossref_primary_10_1103_PhysRevLett_127_266402 crossref_primary_10_1103_PhysRevLett_132_056601 crossref_primary_10_1038_s41567_022_01556_5 crossref_primary_10_1088_1367_2630_ad3000 crossref_primary_10_1103_PhysRevB_104_075144 crossref_primary_10_1103_PhysRevB_110_174512 crossref_primary_10_1088_1361_648X_acd294 crossref_primary_10_1103_PhysRevB_104_075143 crossref_primary_10_1088_1674_1056_acc8c3 crossref_primary_10_1002_adfm_202411472 crossref_primary_10_1103_PhysRevLett_133_146001 crossref_primary_10_1038_s41567_023_02195_0 crossref_primary_10_1088_1674_1056_ac9de4 crossref_primary_10_1103_PhysRevB_110_L041108 crossref_primary_10_1103_PhysRevLett_132_166901 crossref_primary_10_1103_PhysRevB_110_245118 crossref_primary_10_1103_PhysRevB_107_174512 crossref_primary_10_1021_acsnano_4c02733 crossref_primary_10_1103_PhysRevB_110_115114 crossref_primary_10_1038_s41467_024_48385_z crossref_primary_10_1103_PhysRevB_110_214517 crossref_primary_10_1038_s41699_023_00408_x crossref_primary_10_1088_1361_648X_ad46bc crossref_primary_10_1039_D4NR03330B crossref_primary_10_1088_1361_648X_ad1f8c crossref_primary_10_7498_aps_72_20230079 crossref_primary_10_1016_j_rinp_2022_105780 crossref_primary_10_1103_PhysRevB_108_195148 crossref_primary_10_1103_PhysRevB_107_075123 crossref_primary_10_1088_1367_2630_ad8fc6 crossref_primary_10_1002_advs_202103170 crossref_primary_10_1038_s41586_024_07584_w crossref_primary_10_1038_s41535_021_00379_6 crossref_primary_10_1021_acs_nanolett_2c02000 crossref_primary_10_1088_2516_1075_ac49f5 crossref_primary_10_1109_ACCESS_2024_3465221 crossref_primary_10_1039_D2NR07242D crossref_primary_10_1103_PhysRevLett_131_096401 crossref_primary_10_1007_s11467_023_1302_6 crossref_primary_10_1103_PhysRevB_103_235401 crossref_primary_10_1103_PhysRevLett_127_187001 crossref_primary_10_1103_PhysRevB_107_024509 crossref_primary_10_1038_s41467_025_56141_0 crossref_primary_10_1103_PhysRevB_108_035129 crossref_primary_10_1103_PhysRevB_104_115110 crossref_primary_10_1016_j_physe_2022_115267 crossref_primary_10_1038_s41524_022_00789_5 crossref_primary_10_1103_PhysRevB_108_045138 crossref_primary_10_1038_s41467_022_31851_x crossref_primary_10_1021_acsami_3c15839 crossref_primary_10_1103_PhysRevLett_132_226001 crossref_primary_10_1515_nanoph_2022_0798 crossref_primary_10_1103_PhysRevLett_133_196501 crossref_primary_10_1063_10_0019420 crossref_primary_10_1063_10_0019421 crossref_primary_10_1088_1361_6633_ad67ed crossref_primary_10_1103_PhysRevB_103_195127 crossref_primary_10_1103_PhysRevB_111_035110 crossref_primary_10_3390_nano12183133 crossref_primary_10_3390_molecules27020379 crossref_primary_10_1021_acsnano_3c09993 crossref_primary_10_1021_acs_nanolett_3c01262 crossref_primary_10_1103_PhysRevLett_134_116605 crossref_primary_10_1103_PhysRevB_108_064202 crossref_primary_10_1103_PhysRevLett_129_076401 crossref_primary_10_1103_PhysRevResearch_5_023166 crossref_primary_10_1038_s42005_023_01480_x crossref_primary_10_1103_PhysRevLett_128_065901 crossref_primary_10_1038_s41578_024_00682_1 crossref_primary_10_1103_PhysRevB_105_L081405 crossref_primary_10_1021_acs_nanolett_2c02010 crossref_primary_10_1038_s41467_023_42275_6 crossref_primary_10_1021_acssensors_2c02790 crossref_primary_10_1038_s41524_022_00697_8 crossref_primary_10_1039_D3CP02902F crossref_primary_10_1103_PhysRevLett_127_247703 crossref_primary_10_1103_PhysRevB_106_L201403 crossref_primary_10_1073_pnas_2307151120 crossref_primary_10_1103_PhysRevB_111_045136 crossref_primary_10_1038_s41567_022_01515_0 crossref_primary_10_1103_PhysRevX_12_031020 crossref_primary_10_1038_s41586_024_08381_1 crossref_primary_10_1016_j_carbon_2022_12_059 crossref_primary_10_1088_1674_1056_acbd2c crossref_primary_10_1038_s41467_021_23031_0 crossref_primary_10_1038_s41567_022_01589_w crossref_primary_10_1103_PhysRevB_105_L241109 crossref_primary_10_1103_PhysRevB_108_195119 crossref_primary_10_1038_s41467_024_54200_6 crossref_primary_10_1103_PhysRevLett_131_026502 crossref_primary_10_1103_PhysRevB_106_115436 crossref_primary_10_1103_PhysRevB_109_075166 crossref_primary_10_1103_PhysRevMaterials_9_L021002 crossref_primary_10_1103_PhysRevB_111_125140 crossref_primary_10_1103_PhysRevB_111_125143 crossref_primary_10_7498_aps_71_20220872 crossref_primary_10_1103_PhysRevB_109_125404 crossref_primary_10_1103_PhysRevB_105_184505 crossref_primary_10_1103_PhysRevB_110_165406 crossref_primary_10_1038_s41567_022_01700_1 crossref_primary_10_1103_PhysRevLett_128_247402 crossref_primary_10_1103_PhysRevX_15_011045 crossref_primary_10_1103_PhysRevB_109_045419 crossref_primary_10_1103_PhysRevB_103_205411 crossref_primary_10_1103_PhysRevB_103_205412 crossref_primary_10_1103_PhysRevB_103_205413 crossref_primary_10_1103_PhysRevB_103_205414 crossref_primary_10_1103_PhysRevB_103_205415 crossref_primary_10_1103_PhysRevB_111_035431 crossref_primary_10_1103_PhysRevB_103_205416 crossref_primary_10_1103_PhysRevX_14_031045 crossref_primary_10_1103_PhysRevB_104_214403 crossref_primary_10_1103_PhysRevB_108_214521 crossref_primary_10_1103_PhysRevB_105_155135 crossref_primary_10_1103_PhysRevLett_128_156401 crossref_primary_10_1103_PhysRevB_109_045404 crossref_primary_10_1103_PhysRevB_106_024507 crossref_primary_10_1103_PhysRevLett_127_197701 crossref_primary_10_1103_PhysRevX_13_011026 crossref_primary_10_1103_PhysRevB_110_085422 crossref_primary_10_1103_PhysRevB_109_184502 crossref_primary_10_1149_1945_7111_ac700b crossref_primary_10_4028_p_596y29 crossref_primary_10_1103_PhysRevB_108_L121409 crossref_primary_10_1103_PhysRevB_107_075408 crossref_primary_10_1103_RevModPhys_95_011002 crossref_primary_10_1126_sciadv_abn3181 crossref_primary_10_1088_2632_2153_ad2287 crossref_primary_10_1103_PhysRevLett_133_266603 crossref_primary_10_1016_j_xcrp_2024_102356 crossref_primary_10_1103_PhysRevB_107_L081403 crossref_primary_10_1088_1674_1056_acddcf crossref_primary_10_1103_PhysRevB_104_035119 crossref_primary_10_1103_PhysRevB_107_144111 crossref_primary_10_1103_PhysRevB_108_235120 crossref_primary_10_1007_s44214_022_00010_0 crossref_primary_10_1103_PhysRevB_106_235112 crossref_primary_10_1103_PhysRevLett_129_047601 crossref_primary_10_7498_aps_72_20230120 crossref_primary_10_1103_PhysRevB_103_195411 crossref_primary_10_1103_PhysRevLett_129_187001 crossref_primary_10_1038_s41567_023_02060_0 crossref_primary_10_1103_PhysRevB_106_104506 crossref_primary_10_1103_PhysRevResearch_4_013131 crossref_primary_10_1103_PhysRevX_12_021018 crossref_primary_10_1103_PhysRevB_104_L081403 crossref_primary_10_1103_PhysRevB_103_L241110 crossref_primary_10_1103_PhysRevB_109_195167 crossref_primary_10_1103_PhysRevB_108_024510 crossref_primary_10_1039_D1NR06808C crossref_primary_10_1103_PhysRevB_104_115167 crossref_primary_10_1103_PhysRevResearch_4_L032006 crossref_primary_10_1088_2631_7990_acee2e crossref_primary_10_1103_PhysRevLett_130_146001 crossref_primary_10_1103_PhysRevB_106_L121111 crossref_primary_10_1103_PhysRevB_109_104504 crossref_primary_10_1103_PhysRevLett_127_097001 crossref_primary_10_7498_aps_70_20210929 crossref_primary_10_1103_PhysRevB_108_094115 crossref_primary_10_1038_s41586_023_06226_x crossref_primary_10_1021_acs_nanolett_4c04242 crossref_primary_10_1038_s42254_022_00466_y crossref_primary_10_1103_PhysRevB_110_115154 crossref_primary_10_1038_s41467_024_46247_2 crossref_primary_10_1103_PhysRevLett_130_076204 crossref_primary_10_1103_PhysRevB_105_035405 crossref_primary_10_1038_s41467_021_25438_1 |
Cites_doi | 10.1103/PhysRevB.74.161403 10.1103/PhysRevX.8.041041 10.1126/science.aav1910 10.1038/nature26154 10.1126/sciadv.aau3826 10.1038/s41567-020-0928-3 10.1126/science.aao2521 10.1103/PhysRevLett.99.070401 10.1038/s41586-020-2459-6 10.1103/PhysRevLett.122.246401 10.1038/s41567-019-0596-3 10.1103/PhysRevLett.121.087001 10.1103/PhysRevLett.65.923 10.1038/nature26160 10.1038/nature14165 10.1103/PhysRevB.100.161102 10.1038/s41567-019-0571-z 10.1103/RevModPhys.78.17 10.1103/PhysRevB.101.224513 10.1103/PhysRevB.84.085441 10.1038/s41586-019-1695-0 10.1038/s41586-020-2473-8 10.1103/PhysRevB.99.134515 10.1038/s41467-017-00824-w 10.1103/PhysRevB.97.235453 10.1073/pnas.1108174108 10.1103/PhysRevB.99.165112 10.1103/PhysRevB.12.905 10.1103/PhysRev.167.331 10.1038/nature23893 10.1038/s41563-019-0346-z 10.1021/acs.nanolett.5b05263 10.1038/nphys2114 10.1103/PhysRevB.98.081102 10.1103/PhysRevB.63.134508 10.1038/s41586-020-2255-3 10.1103/PhysRevLett.122.257002 10.1103/PhysRevLett.124.076801 10.1103/PhysRevLett.121.257001 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abb8754 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1265 |
ExternalDocumentID | 33737488 10_1126_science_abb8754 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 AEUPB ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c325t-38c076a23ea1c48a89a6cf6bb4f93882916f6576e3f4b1ba1ed36cdccfb1315f3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Wed Jul 30 11:18:38 EDT 2025 Fri Jul 25 10:47:01 EDT 2025 Wed Feb 19 02:28:43 EST 2025 Thu Apr 24 23:02:21 EDT 2025 Tue Jul 01 01:35:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6535 |
Language | English |
License | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-38c076a23ea1c48a89a6cf6bb4f93882916f6576e3f4b1ba1ed36cdccfb1315f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3701-8119 0000-0001-5272-4519 0000-0002-1467-3105 0000-0001-7561-9287 0000-0001-8761-4010 0000-0002-8431-2567 |
PMID | 33737488 |
PQID | 2502883237 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2503630521 proquest_journals_2502883237 pubmed_primary_33737488 crossref_citationtrail_10_1126_science_abb8754 crossref_primary_10_1126_science_abb8754 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-19 20210319 |
PublicationDateYYYYMMDD | 2021-03-19 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 Zhang Y. (e_1_3_2_27_2) 2009; 116 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_45_2 doi: 10.1103/PhysRevB.74.161403 – ident: e_1_3_2_10_2 doi: 10.1103/PhysRevX.8.041041 – ident: e_1_3_2_3_2 doi: 10.1126/science.aav1910 – volume: 116 year: 2009 ident: e_1_3_2_27_2 publication-title: Nature – ident: e_1_3_2_7_2 doi: 10.1038/nature26154 – ident: e_1_3_2_37_2 doi: 10.1126/sciadv.aau3826 – ident: e_1_3_2_15_2 doi: 10.1038/s41567-020-0928-3 – ident: e_1_3_2_28_2 doi: 10.1126/science.aao2521 – ident: e_1_3_2_31_2 doi: 10.1103/PhysRevLett.99.070401 – ident: e_1_3_2_14_2 doi: 10.1038/s41586-020-2459-6 – ident: e_1_3_2_32_2 doi: 10.1103/PhysRevLett.122.246401 – ident: e_1_3_2_38_2 – ident: e_1_3_2_42_2 – ident: e_1_3_2_40_2 doi: 10.1038/s41567-019-0596-3 – ident: e_1_3_2_9_2 doi: 10.1103/PhysRevLett.121.087001 – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevLett.65.923 – ident: e_1_3_2_2_2 doi: 10.1038/nature26160 – ident: e_1_3_2_5_2 doi: 10.1038/nature14165 – ident: e_1_3_2_22_2 doi: 10.1103/PhysRevB.100.161102 – ident: e_1_3_2_41_2 doi: 10.1038/s41567-019-0571-z – ident: e_1_3_2_6_2 doi: 10.1103/RevModPhys.78.17 – ident: e_1_3_2_13_2 doi: 10.1103/PhysRevB.101.224513 – ident: e_1_3_2_33_2 doi: 10.1103/PhysRevB.84.085441 – ident: e_1_3_2_4_2 doi: 10.1038/s41586-019-1695-0 – ident: e_1_3_2_16_2 doi: 10.1038/s41586-020-2473-8 – ident: e_1_3_2_12_2 doi: 10.1103/PhysRevB.99.134515 – ident: e_1_3_2_34_2 doi: 10.1038/s41467-017-00824-w – ident: e_1_3_2_11_2 doi: 10.1103/PhysRevB.97.235453 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.1108174108 – ident: e_1_3_2_39_2 doi: 10.1103/PhysRevB.99.165112 – ident: e_1_3_2_21_2 doi: 10.1103/PhysRevB.12.905 – ident: e_1_3_2_20_2 doi: 10.1103/PhysRev.167.331 – ident: e_1_3_2_29_2 doi: 10.1038/nature23893 – ident: e_1_3_2_23_2 doi: 10.1038/s41563-019-0346-z – ident: e_1_3_2_24_2 – ident: e_1_3_2_43_2 doi: 10.1021/acs.nanolett.5b05263 – ident: e_1_3_2_35_2 doi: 10.1038/nphys2114 – ident: e_1_3_2_17_2 doi: 10.1103/PhysRevB.98.081102 – ident: e_1_3_2_36_2 doi: 10.1103/PhysRevB.63.134508 – ident: e_1_3_2_25_2 doi: 10.1038/s41586-020-2255-3 – ident: e_1_3_2_18_2 doi: 10.1103/PhysRevLett.122.257002 – ident: e_1_3_2_8_2 doi: 10.1103/PhysRevLett.124.076801 – ident: e_1_3_2_19_2 doi: 10.1103/PhysRevLett.121.257001 |
SSID | ssj0009593 |
Score | 2.687586 |
Snippet | Elucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role of electron-electron... Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry... Tuning the interactionsElucidating the nature of the superconducting state in magic-angle twisted bilayer graphene (MATBG) has proven tricky. To study the role... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1261 |
SubjectTerms | Bilayers Carrier density Constraint modelling Correlation analysis Electrons Fermions Graphene Quantum phenomena Screening Superconductivity Tuning |
Title | Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33737488 https://www.proquest.com/docview/2502883237 https://www.proquest.com/docview/2503630521 |
Volume | 371 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZymAvY-2-0nVDgz10BIdYsmX7Md0aysi6lwTC9mAkRW4NqTNWm-7jn9_JOjvu1kI3CCYolh30--l0dzrdEfImWumVlhmzeSrBQNGB9qTSsRdqHwBXYRIk9rzzx1Nxsgg-LMNlr_ere7qkVCP988ZzJf-DKrQBrvaU7D8g2z4UGuA74AtXQBiud8O4qr0aTSmbobalNlxwm_VjXEgQa54sztZmWF5ZPEHbzNcStOxhnaga5Nywwp3_ar25UEMQImDYNssZKq3N_AdltN3g6cDaRipOXDxBE16A3Tq-hlleWUiXudx8r7abQuiy_nyeb5tAZ5XKXPPDzmWRn9naLdvYbnRXsDpeC4Wik7BjWxySjZ1UMze0oVjmrjQL8k-EPOzIWZ-5FO5_LwCdkpVmJJUCeyzYrnXN_v7pp3S6mM3S-fFyfo_sMLAxWJ_sTI7eH03_zNnc_jvMDNU5c9W84LpSc4ulUmss80fkIZoadOJ4s0t6ptgj913x0R97ZBfxuaSHmHv87WPyxVGKNpSiHUrRvKAdSlGkFEVK0YZStKYURUrRllJPyGJ6PH934mH9DU9zFpYej_U4EpJxI30dxDJOpNCZUCrIEg6WGVgWmQB71fAsUL6SvllxAVNfZwomepjxp6RfbArznNDAN4lmUgu1igMVmgQ-sRZjFYGKuYr8ARk1A5hqTE5va6Ss09pIZSLFEU9xxAfksO3w1eVluf3WgwaRFCfvZQqav62zzXg0IK_bn0G02v0yWZhNVd_DBben2wfkmUOyfRfnkU3cFO_fofcL8mA7Ew5Iv_xWmZegypbqFVLuN8unpaM |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+electron+correlation+in+magic-angle+twisted+bilayer+graphene+using+Coulomb+screening&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Liu%2C+Xiaoxue&rft.au=Wang%2C+Zhi&rft.au=Watanabe%2C+K&rft.au=Taniguchi%2C+T&rft.date=2021-03-19&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=371&rft.issue=6535&rft.spage=1261&rft_id=info:doi/10.1126%2Fscience.abb8754&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |