A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique
•This manuscript presents a new energy harvester that is suitable for wearable devices.•It combines electromagnetic and piezoelectric energy harvesters in one unit to harvest energy simultaneously from both transducers.•The design in this paper takes into account the attributes of both electromagnet...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 257; pp. 198 - 207 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.04.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •This manuscript presents a new energy harvester that is suitable for wearable devices.•It combines electromagnetic and piezoelectric energy harvesters in one unit to harvest energy simultaneously from both transducers.•The design in this paper takes into account the attributes of both electromagnetic and piezoelectric energy harvesters to produce high output currents and high voltages for an efficient power generation method for wearable energy harvesting systems.•Detailed experimental results are presented.
Wearable sensor electronics require a sustainable electrical power supply to operate. Energy harvesting techniques can be used to convert available nonelectrical energy sources into electrical energy. This paper presents WE-Harvest system, which is a new wearable energy harvesting system that combines piezoelectric and electromagnetic energy harvesters in one unit to generate a combined electrical energy source. Piezoelectric transducers are used to obtain sufficient regulated output voltages while electromagnetic is employed for its high power generation capability. Regular human body motions provide input vibrations for the proposed energy harvester unit. Several conditioning circuit topologies are proposed to efficiently extract energy from the two sources. The experimental results demonstrate that the combined topology enhances the power generation efficiency as well as enables stable output DC voltages. The dependence of energy harvester output on the load and input frequency has also been investigated. |
---|---|
AbstractList | Wearable sensor electronics require a sustainable electrical power supply to operate. Energy harvesting techniques can be used to convert available nonelectrical energy sources into electrical energy. This paper presents WE-Harvest system, which is a new wearable energy harvesting system that combines piezoelectric and electromagnetic energy harvesters in one unit to generate a combined electrical energy source. Piezoelectric transducers are used to obtain sufficient regulated output voltages while electro- magnetic is employed for its high power generation capability. Regular human body motions provide input vibrations for the proposed energy harvester unit. Several conditioning circuit topologies are pro- posed to efficiently extract energy from the two sources. The experimental results demonstrate that the combined topology enhances the power generation efficiency as well as enables stable output DC voltages. The dependence of energy harvester output on the load and input frequency has also been investigated. •This manuscript presents a new energy harvester that is suitable for wearable devices.•It combines electromagnetic and piezoelectric energy harvesters in one unit to harvest energy simultaneously from both transducers.•The design in this paper takes into account the attributes of both electromagnetic and piezoelectric energy harvesters to produce high output currents and high voltages for an efficient power generation method for wearable energy harvesting systems.•Detailed experimental results are presented. Wearable sensor electronics require a sustainable electrical power supply to operate. Energy harvesting techniques can be used to convert available nonelectrical energy sources into electrical energy. This paper presents WE-Harvest system, which is a new wearable energy harvesting system that combines piezoelectric and electromagnetic energy harvesters in one unit to generate a combined electrical energy source. Piezoelectric transducers are used to obtain sufficient regulated output voltages while electromagnetic is employed for its high power generation capability. Regular human body motions provide input vibrations for the proposed energy harvester unit. Several conditioning circuit topologies are proposed to efficiently extract energy from the two sources. The experimental results demonstrate that the combined topology enhances the power generation efficiency as well as enables stable output DC voltages. The dependence of energy harvester output on the load and input frequency has also been investigated. |
Author | Hamid, Rawnak Yuce, Mehmet Rasit |
Author_xml | – sequence: 1 givenname: Rawnak surname: Hamid fullname: Hamid, Rawnak email: rawnak.hamid@monash.edu – sequence: 2 givenname: Mehmet Rasit surname: Yuce fullname: Yuce, Mehmet Rasit email: mehmet.yuce@monash.edu |
BookMark | eNp9kM1KAzEUhYNUsFYfwN2A6xlvkkni4KoU_6DgRnEZMpnbNqVmapJW6sp38A19EiN15UI4cO_ifPdwzzEZ-N4jIWcUKgpUXiyr6E3FgKoKWJY8IEN6qXjJQTYDMoSG1WXNanVEjmNcAgDnSg3J87h4QxNMu8ICPYb5rliYsMWYMBQb71Kxic7Pi7XD9x5XaFNw9uvjc7_2L2buMTlbLHZtcF2R0C68e93gCTmcmVXE0985Ik8314-Tu3L6cHs_GU9Ly5lIJZczzgW0SFuQYGslJauFrYW0YtYiBwvGcGy4vOxAcco4KslrAUoKI1THR-R8f3cd-hwbk172m-BzpKZNLRRrKG-yS-1dNvQxBpxp65JJrvcpGLfSFPRPi3qpc4v6p0UNLEtmkv4h18G9mLD7l7naM5gf3zoMOlqH3mLnQm5Nd737h_4GlUmNtA |
CitedBy_id | crossref_primary_10_1016_j_sna_2019_111813 crossref_primary_10_1155_2020_5681703 crossref_primary_10_1016_j_apenergy_2019_113805 crossref_primary_10_1016_j_mejo_2019_104685 crossref_primary_10_1051_ijmqe_2023004 crossref_primary_10_3390_mi13020232 crossref_primary_10_1002_er_5816 crossref_primary_10_1109_JIOT_2023_3289091 crossref_primary_10_3390_mi14020240 crossref_primary_10_1051_matecconf_201821105004 crossref_primary_10_1007_s11277_020_07840_y crossref_primary_10_1016_j_enconman_2022_115466 crossref_primary_10_1016_j_rser_2020_110473 crossref_primary_10_1088_1757_899X_588_1_012014 crossref_primary_10_1063_5_0161822 crossref_primary_10_1016_j_sna_2021_112641 crossref_primary_10_1177_1045389X231194986 crossref_primary_10_1016_j_est_2022_106119 crossref_primary_10_1088_1361_665X_acec23 crossref_primary_10_1109_ACCESS_2020_3042388 crossref_primary_10_1016_j_engstruct_2020_110789 crossref_primary_10_1007_s11431_023_2535_0 crossref_primary_10_1080_19475411_2018_1454532 crossref_primary_10_3390_en15093441 crossref_primary_10_1007_s11431_023_2531_9 crossref_primary_10_1007_s00521_020_04813_x crossref_primary_10_1016_j_sna_2024_115288 crossref_primary_10_3390_mi14071333 crossref_primary_10_1109_ACCESS_2017_2716344 crossref_primary_10_1109_TCSII_2022_3224726 crossref_primary_10_3390_app122412514 crossref_primary_10_1016_j_compstruct_2020_112979 crossref_primary_10_1007_s12555_018_0091_0 crossref_primary_10_1007_s40684_019_00132_2 crossref_primary_10_1002_adma_201707271 crossref_primary_10_1007_s40684_021_00321_y crossref_primary_10_1007_s42417_024_01355_7 crossref_primary_10_1016_j_sna_2017_07_059 crossref_primary_10_1063_5_0156781 crossref_primary_10_1002_sstr_202300282 crossref_primary_10_1002_nano_202000242 crossref_primary_10_1002_ente_202200373 crossref_primary_10_1016_j_aeue_2019_152926 crossref_primary_10_1016_j_enconman_2017_10_054 crossref_primary_10_1016_j_ymssp_2021_108198 crossref_primary_10_1088_1361_665X_abf41f crossref_primary_10_1016_j_bios_2020_112410 crossref_primary_10_1088_1742_6596_1052_1_012093 crossref_primary_10_1109_TIE_2020_2988188 crossref_primary_10_3390_nanoenergyadv2010004 crossref_primary_10_1002_msd2_12035 crossref_primary_10_1016_j_nanoen_2019_103943 crossref_primary_10_46604_peti_2022_9210 crossref_primary_10_1016_j_nanoen_2022_107485 crossref_primary_10_1007_s12008_023_01522_2 crossref_primary_10_1088_1361_665X_abca09 crossref_primary_10_1063_5_0160131 crossref_primary_10_34133_cbsystems_0053 crossref_primary_10_1088_1361_6439_ac7d92 crossref_primary_10_46604_peti_2021_7002 crossref_primary_10_3390_jlpea13040062 crossref_primary_10_3390_su151813564 crossref_primary_10_3390_electronics10060661 crossref_primary_10_3390_mi12070803 crossref_primary_10_3389_fnano_2023_1268931 crossref_primary_10_1177_0954406218799788 crossref_primary_10_1038_s41598_022_22232_x crossref_primary_10_1115_1_4050038 crossref_primary_10_3390_act8030055 crossref_primary_10_1016_j_nanoen_2018_12_010 |
Cites_doi | 10.1088/0964-1726/23/6/065016 10.1109/JSEN.2014.2309900 10.1109/JSSC.2014.2328343 10.1109/TCSI.2014.2334972 10.1016/j.sna.2015.07.020 10.1109/EMBC.2013.6610281 10.1109/JETCAS.2012.2187106 10.1109/TCSI.2013.2265973 10.1088/0960-1317/19/9/094008 10.1109/JSEN.2010.2053922 10.1016/j.sna.2015.08.014 10.1109/JSEN.2013.2252526 10.1016/j.sna.2014.12.006 10.1109/JETCAS.2014.2337195 10.1109/IEMBS.2010.5627952 10.1016/j.sna.2010.06.004 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Apr 15, 2017 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Apr 15, 2017 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2017.02.026 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
EndPage | 207 |
ExternalDocumentID | 10_1016_j_sna_2017_02_026 S0924424717303151 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c325t-36f3350be1b060c4766245c456c5fbe30c0aa3e9368d073123e763450765a57d3 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Sun Jul 13 03:46:54 EDT 2025 Tue Jul 01 01:05:24 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Fri Feb 23 02:21:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Piezoelectric energy harvesting Electromagnetic energy harvesting Wearable sensors Wearable energy harvesting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-36f3350be1b060c4766245c456c5fbe30c0aa3e9368d073123e763450765a57d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1945729139 |
PQPubID | 2045401 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1945729139 crossref_citationtrail_10_1016_j_sna_2017_02_026 crossref_primary_10_1016_j_sna_2017_02_026 elsevier_sciencedirect_doi_10_1016_j_sna_2017_02_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-15 |
PublicationDateYYYYMMDD | 2017-04-15 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Yuce (bib0005) 2010; 162 Yuce, Khan (bib0010) 2011 Zhu (bib0035) 2011 Nguyen, Feng, Hafliger, Chakrabartty (bib0095) 2014; 61 Ghaed (bib0015) 2013; 60 E. Shahhaidar, et al., Piezoelectric and electromagnetic respiratory effort energy harvesters, Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3–7 July 2013, pp. 3439–3442. Alghisi, Dalolaa, Ferrari, Ferrari (bib0050) 2015 Li (bib0090) 2014; 23 × Wahbah, Alhawari, Mohammad, Saleh, Ismail (bib0070) 2014; 4 25.4 Desai, Yoo, Chandrakasan (bib0020) 2014; 49 Nintanavongsa (bib0110) 2012; 2 P.D. Mitcheson, Energy harvesting for human wearable and implantable bio-sensors, Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2010, pp. 3432–3436. Leonov (bib0025) 2013; 13 Bowers, Arnold (bib0055) 2009; 19 Berdya, Valentinoc, Peroulis (bib0060) 2015; 222 R. Hamid, A. Mohammadi, and M.R. Yuce, WE-Harvest: a wearable piezoelectric-electromagnetic energy harvester, Proceedings of the International Conference on Body Area Networks (BodyNets 2015), September, 2015. (bib0105) 2009; 21 Zhu, Moheimani, Yuce (bib0040) 2011; 11 Simon, Hamate, Nagasawa, Kuwano (bib0045) 2010 Toh, Tan, Koh, Siek (bib0030) 2014; 14 LTC3588-1:Piezoelectric Energy Harvesting Power Supply. http://www.linear.com/product/LTC3588-1. 12.7 mm Block (Rare Earth). http://aussiemagnets.com.au/product/-25.4-x--25.4-x--12.7mm-Block-%28Rare-Earth%29.html. Xia, Chen, Ren (bib0065) 2015; 234 Leonov (10.1016/j.sna.2017.02.026_bib0025) 2013; 13 Li (10.1016/j.sna.2017.02.026_bib0090) 2014; 23 10.1016/j.sna.2017.02.026_bib0115 Zhu (10.1016/j.sna.2017.02.026_bib0040) 2011; 11 Desai (10.1016/j.sna.2017.02.026_bib0020) 2014; 49 (10.1016/j.sna.2017.02.026_bib0105) 2009; 21 Nintanavongsa (10.1016/j.sna.2017.02.026_bib0110) 2012; 2 Toh (10.1016/j.sna.2017.02.026_bib0030) 2014; 14 Alghisi (10.1016/j.sna.2017.02.026_bib0050) 2015 10.1016/j.sna.2017.02.026_bib0085 Yuce (10.1016/j.sna.2017.02.026_bib0010) 2011 Zhu (10.1016/j.sna.2017.02.026_bib0035) 2011 10.1016/j.sna.2017.02.026_bib0075 Nguyen (10.1016/j.sna.2017.02.026_bib0095) 2014; 61 Wahbah (10.1016/j.sna.2017.02.026_bib0070) 2014; 4 10.1016/j.sna.2017.02.026_bib0100 Bowers (10.1016/j.sna.2017.02.026_bib0055) 2009; 19 Simon (10.1016/j.sna.2017.02.026_bib0045) 2010 10.1016/j.sna.2017.02.026_bib0080 Berdya (10.1016/j.sna.2017.02.026_bib0060) 2015; 222 Yuce (10.1016/j.sna.2017.02.026_bib0005) 2010; 162 Xia (10.1016/j.sna.2017.02.026_bib0065) 2015; 234 Ghaed (10.1016/j.sna.2017.02.026_bib0015) 2013; 60 |
References_xml | – volume: 162 start-page: 116 year: 2010 end-page: 129 ident: bib0005 article-title: Implementation of wireless body area networks for healthcare systems publication-title: Sens. Actuators A: Phys. – year: 2011 ident: bib0035 article-title: Vibration energy harvesting: machinery vibration, human movement and flow induced vibration publication-title: Sustainable Energy Harvesting Technologies – Past, Present and Future – volume: 21 start-page: 130 year: 2009 end-page: 131 ident: bib0105 publication-title: Energy Harvesting Technologies – reference: mm Block (Rare Earth). http://aussiemagnets.com.au/product/-25.4-x--25.4-x--12.7mm-Block-%28Rare-Earth%29.html. – reference: LTC3588-1:Piezoelectric Energy Harvesting Power Supply. http://www.linear.com/product/LTC3588-1. – reference: 25.4 – reference: R. Hamid, A. Mohammadi, and M.R. Yuce, WE-Harvest: a wearable piezoelectric-electromagnetic energy harvester, Proceedings of the International Conference on Body Area Networks (BodyNets 2015), September, 2015. – year: 2011 ident: bib0010 article-title: Wireless Body Area Networks: Technology publication-title: Implementation and Applications – reference: P.D. Mitcheson, Energy harvesting for human wearable and implantable bio-sensors, Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2010, pp. 3432–3436. – reference: E. Shahhaidar, et al., Piezoelectric and electromagnetic respiratory effort energy harvesters, Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3–7 July 2013, pp. 3439–3442. – volume: 2 start-page: 24 year: 2012 end-page: 33 ident: bib0110 article-title: Design optimization and implementation for RF energy harvesting circuits publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. – reference: × – volume: 61 start-page: 3330 year: 2014 end-page: 3338 ident: bib0095 article-title: Hybrid CMOS rectifier based on synergistic RF-piezoelectric energy scavenging publication-title: IEEE Trans. Circuits Syst. I – volume: 11 start-page: 155 year: 2011 end-page: 161 ident: bib0040 article-title: A 2-DOF MEMS ultrasonic energy harvester publication-title: IEEE Sens. J. – start-page: 569 year: 2015 end-page: 581 ident: bib0050 article-title: Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion publication-title: Sens. Actuators A: Phys. – volume: 234 start-page: 87 year: 2015 end-page: 98 ident: bib0065 article-title: Analysis of piezoelectric–electromagnetic hybrid vibration energy harvester under different electrical boundary conditions publication-title: Sens. Actuators A: Phys. – volume: 222 start-page: 262 year: 2015 end-page: 271 ident: bib0060 article-title: Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester publication-title: Sens. Actuators A: Phys. – volume: 14 start-page: 2299 year: 2014 end-page: 2306 ident: bib0030 article-title: Autonomous wearable sensor nodes with flexible energy harvesting publication-title: IEEE Sens. J. – volume: 19 year: 2009 ident: bib0055 article-title: Spherical, rolling magnet generators for passive energy harvesting from human motion publication-title: J. Micromech. Microeng. – volume: 13 start-page: 2284 year: 2013 end-page: 2291 ident: bib0025 article-title: Thermoelectric energy harvesting of human body heat for wearable sensors publication-title: IEEE Sens. J. – reference: 12.7 – start-page: 33 year: 2010 end-page: 36 ident: bib0045 article-title: 3D vibration harvesting using free moving ball in PZT microbox publication-title: Proc. Power MEMS – volume: 49 start-page: 1995 year: 2014 end-page: 2004 ident: bib0020 article-title: A Scalable, 2.9 publication-title: IEEE J. Solid-State Circuits – volume: 4 start-page: 354 year: 2014 end-page: 363 ident: bib0070 article-title: Characterization of human body-based thermal and vibration energy harvesting for wearable devices publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. – volume: 60 start-page: 3152 year: 2013 end-page: 3162 ident: bib0015 article-title: Circuits for a cubic-millimeter energy-autonomous wireless intraocular pressure monitor publication-title: IEEE Trans. Circuits Syst. I – volume: 23 start-page: 1 year: 2014 end-page: 17 ident: bib0090 article-title: An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester publication-title: Smart Mater. Struct. – volume: 23 start-page: 1 issue: 6 year: 2014 ident: 10.1016/j.sna.2017.02.026_bib0090 article-title: An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/6/065016 – volume: 14 start-page: 2299 issue: 7 year: 2014 ident: 10.1016/j.sna.2017.02.026_bib0030 article-title: Autonomous wearable sensor nodes with flexible energy harvesting publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2309900 – year: 2011 ident: 10.1016/j.sna.2017.02.026_bib0035 article-title: Vibration energy harvesting: machinery vibration, human movement and flow induced vibration – ident: 10.1016/j.sna.2017.02.026_bib0115 – start-page: 33 year: 2010 ident: 10.1016/j.sna.2017.02.026_bib0045 article-title: 3D vibration harvesting using free moving ball in PZT microbox publication-title: Proc. Power MEMS – volume: 49 start-page: 1995 issue: 9 year: 2014 ident: 10.1016/j.sna.2017.02.026_bib0020 article-title: A Scalable, 2.9mW, 1Mb/s e-Textiles body area network transceiver with remotely-powered nodes and bi-directional data communication publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2014.2328343 – volume: 61 start-page: 3330 year: 2014 ident: 10.1016/j.sna.2017.02.026_bib0095 article-title: Hybrid CMOS rectifier based on synergistic RF-piezoelectric energy scavenging publication-title: IEEE Trans. Circuits Syst. I doi: 10.1109/TCSI.2014.2334972 – start-page: 569 year: 2015 ident: 10.1016/j.sna.2017.02.026_bib0050 article-title: Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2015.07.020 – ident: 10.1016/j.sna.2017.02.026_bib0085 doi: 10.1109/EMBC.2013.6610281 – volume: 2 start-page: 24 year: 2012 ident: 10.1016/j.sna.2017.02.026_bib0110 article-title: Design optimization and implementation for RF energy harvesting circuits publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2012.2187106 – year: 2011 ident: 10.1016/j.sna.2017.02.026_bib0010 article-title: Wireless Body Area Networks: Technology – ident: 10.1016/j.sna.2017.02.026_bib0100 – volume: 60 start-page: 3152 issue: 12 year: 2013 ident: 10.1016/j.sna.2017.02.026_bib0015 article-title: Circuits for a cubic-millimeter energy-autonomous wireless intraocular pressure monitor publication-title: IEEE Trans. Circuits Syst. I doi: 10.1109/TCSI.2013.2265973 – volume: 19 issue: 9 year: 2009 ident: 10.1016/j.sna.2017.02.026_bib0055 article-title: Spherical, rolling magnet generators for passive energy harvesting from human motion publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/19/9/094008 – volume: 11 start-page: 155 year: 2011 ident: 10.1016/j.sna.2017.02.026_bib0040 article-title: A 2-DOF MEMS ultrasonic energy harvester publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2010.2053922 – volume: 234 start-page: 87 year: 2015 ident: 10.1016/j.sna.2017.02.026_bib0065 article-title: Analysis of piezoelectric–electromagnetic hybrid vibration energy harvester under different electrical boundary conditions publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2015.08.014 – volume: 13 start-page: 2284 issue: 6 year: 2013 ident: 10.1016/j.sna.2017.02.026_bib0025 article-title: Thermoelectric energy harvesting of human body heat for wearable sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2252526 – volume: 222 start-page: 262 issue: 1 year: 2015 ident: 10.1016/j.sna.2017.02.026_bib0060 article-title: Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2014.12.006 – volume: 4 start-page: 354 issue: 3 year: 2014 ident: 10.1016/j.sna.2017.02.026_bib0070 article-title: Characterization of human body-based thermal and vibration energy harvesting for wearable devices publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2014.2337195 – ident: 10.1016/j.sna.2017.02.026_bib0080 doi: 10.1109/IEMBS.2010.5627952 – ident: 10.1016/j.sna.2017.02.026_bib0075 – volume: 21 start-page: 130 year: 2009 ident: 10.1016/j.sna.2017.02.026_bib0105 – volume: 162 start-page: 116 year: 2010 ident: 10.1016/j.sna.2017.02.026_bib0005 article-title: Implementation of wireless body area networks for healthcare systems publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2010.06.004 |
SSID | ssj0003377 |
Score | 2.4929612 |
Snippet | •This manuscript presents a new energy harvester that is suitable for wearable devices.•It combines electromagnetic and piezoelectric energy harvesters in one... Wearable sensor electronics require a sustainable electrical power supply to operate. Energy harvesting techniques can be used to convert available... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 198 |
SubjectTerms | Alternative energy sources Electric power generation Electric power supplies Electromagnetic energy harvesting Electromagnetics Energy consumption Energy conversion efficiency Energy harvesting Energy sources Harvesters Output Piezoelectric energy harvesting Piezoelectric transducers Piezoelectricity Power supply Sensors Studies Topology Wearable energy harvesting Wearable sensors Wearable technology |
Title | A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique |
URI | https://dx.doi.org/10.1016/j.sna.2017.02.026 https://www.proquest.com/docview/1945729139 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnqJQkAcmpFAnfqQZq4qqgOgCCDbLcR1aBGkFLQgGxH_gH_JLuHMTXkIdkJIhkR1F5_Pns3zfd4TsZrFN6mnWDawACBRGisCEkQ2ymBshbN3YBLnDJx3VPhdHl_JyhjRLLgymVRbYP8F0j9bFm1phzdqw36-dMtg6iEjgMTKWKvAMdhGjl--_fKV5cO6rL2LjAFuXJ5s-x-s-R-mhMPaynaiv8Pfa9Aul_dLTWiKLRcxIG5PfWiYzLl8hC9-UBFfJRYM-gs8iD4o6T-ejPXP34GUQ6BimLcUE9ys67LvnwaT0Td--v74VVXBuzVWObEbae0IGF_1Udl0j562Ds2Y7KGomBJZHchRwlXEuWerClClmwR4qEtJCmGRlljrOLDOGu4SrehdmN6xbDhBGQFSopJFxl6-T2XyQuw1CM8myemQV7AAd3mmSdGEslWUOYDKRFcJKa2lbCIpjXYsbXWaOXWswsEYDaxbBpSpk77PLcKKmMa2xKIdA_3AJDWg_rVu1HC5dzMd7HSZCwjYCwt3N_311i8zjE54jhbJKZkd3Y7cN4cgo3fH-tkPmGofH7c4HQ_HfjQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcEPQhaHn4UC5I6TrxI5tDD4iClucFULm5jtdZFkF2tbuA6KHqf-hP6T_il3Qm6_CoKg6VkJJLEkfWePzNjDzzDcDHInVZMy_akZMIgdIqGdk4cVGRCiula1qXUe3w_oFuHcudE3UyAb_rWhhKqwzYP8b0Cq3Dk0aQZqPf7TYOOYYOMpF0jEytCuKQWbnrb64xbht-3v6Ci7yaJFubRxutKLQWiJxI1CgSuhBC8dzHOdfcyVTrRCqH3oRTRe4Fd9xa4TOhm23cBAjvHjeiROdJK6vStsD_voApiXBBbRM-_bjPKxGiavdIs4toevVRapVUNiyJ6yhOK55QInT4tzH8yyxUtm5rFmaCk8rWx3KYgwlfvobpB9SFb-DrOrtGQVDhFfNV_SA7tYOrineBXSJOMMqo77B-13_vjXvtdN3tz1-h7c6F7ZRUPslOb6hkjN1Ryb6F42eR5DuYLHulnwdWKF40E6cx5PR051nWRuXRjnvE5UwtAK-lZVxgMKdGGuemTlU7MyhgQwI2PMFLL8Da3ZD-mL7jqY9lvQTmkQ4aNC9PDVusl8sEABiaOJMK4xb0r9__319X4GXraH_P7G0f7H6AV_SGDrFitQiTo8GlX0JfaJQvV7rH4NtzK_sftRQYng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+wearable+energy+harvester+unit+using+piezoelectric%E2%80%93electromagnetic+hybrid+technique&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Hamid%2C+Rawnak&rft.au=Yuce%2C+Mehmet+Rasit&rft.date=2017-04-15&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=257&rft.spage=198&rft.epage=207&rft_id=info:doi/10.1016%2Fj.sna.2017.02.026&rft.externalDocID=S0924424717303151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |