A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique

•This manuscript presents a new energy harvester that is suitable for wearable devices.•It combines electromagnetic and piezoelectric energy harvesters in one unit to harvest energy simultaneously from both transducers.•The design in this paper takes into account the attributes of both electromagnet...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 257; pp. 198 - 207
Main Authors Hamid, Rawnak, Yuce, Mehmet Rasit
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.04.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •This manuscript presents a new energy harvester that is suitable for wearable devices.•It combines electromagnetic and piezoelectric energy harvesters in one unit to harvest energy simultaneously from both transducers.•The design in this paper takes into account the attributes of both electromagnetic and piezoelectric energy harvesters to produce high output currents and high voltages for an efficient power generation method for wearable energy harvesting systems.•Detailed experimental results are presented. Wearable sensor electronics require a sustainable electrical power supply to operate. Energy harvesting techniques can be used to convert available nonelectrical energy sources into electrical energy. This paper presents WE-Harvest system, which is a new wearable energy harvesting system that combines piezoelectric and electromagnetic energy harvesters in one unit to generate a combined electrical energy source. Piezoelectric transducers are used to obtain sufficient regulated output voltages while electromagnetic is employed for its high power generation capability. Regular human body motions provide input vibrations for the proposed energy harvester unit. Several conditioning circuit topologies are proposed to efficiently extract energy from the two sources. The experimental results demonstrate that the combined topology enhances the power generation efficiency as well as enables stable output DC voltages. The dependence of energy harvester output on the load and input frequency has also been investigated.
AbstractList Wearable sensor electronics require a sustainable electrical power supply to operate. Energy harvesting techniques can be used to convert available nonelectrical energy sources into electrical energy. This paper presents WE-Harvest system, which is a new wearable energy harvesting system that combines piezoelectric and electromagnetic energy harvesters in one unit to generate a combined electrical energy source. Piezoelectric transducers are used to obtain sufficient regulated output voltages while electro- magnetic is employed for its high power generation capability. Regular human body motions provide input vibrations for the proposed energy harvester unit. Several conditioning circuit topologies are pro- posed to efficiently extract energy from the two sources. The experimental results demonstrate that the combined topology enhances the power generation efficiency as well as enables stable output DC voltages. The dependence of energy harvester output on the load and input frequency has also been investigated.
•This manuscript presents a new energy harvester that is suitable for wearable devices.•It combines electromagnetic and piezoelectric energy harvesters in one unit to harvest energy simultaneously from both transducers.•The design in this paper takes into account the attributes of both electromagnetic and piezoelectric energy harvesters to produce high output currents and high voltages for an efficient power generation method for wearable energy harvesting systems.•Detailed experimental results are presented. Wearable sensor electronics require a sustainable electrical power supply to operate. Energy harvesting techniques can be used to convert available nonelectrical energy sources into electrical energy. This paper presents WE-Harvest system, which is a new wearable energy harvesting system that combines piezoelectric and electromagnetic energy harvesters in one unit to generate a combined electrical energy source. Piezoelectric transducers are used to obtain sufficient regulated output voltages while electromagnetic is employed for its high power generation capability. Regular human body motions provide input vibrations for the proposed energy harvester unit. Several conditioning circuit topologies are proposed to efficiently extract energy from the two sources. The experimental results demonstrate that the combined topology enhances the power generation efficiency as well as enables stable output DC voltages. The dependence of energy harvester output on the load and input frequency has also been investigated.
Author Hamid, Rawnak
Yuce, Mehmet Rasit
Author_xml – sequence: 1
  givenname: Rawnak
  surname: Hamid
  fullname: Hamid, Rawnak
  email: rawnak.hamid@monash.edu
– sequence: 2
  givenname: Mehmet Rasit
  surname: Yuce
  fullname: Yuce, Mehmet Rasit
  email: mehmet.yuce@monash.edu
BookMark eNp9kM1KAzEUhYNUsFYfwN2A6xlvkkni4KoU_6DgRnEZMpnbNqVmapJW6sp38A19EiN15UI4cO_ifPdwzzEZ-N4jIWcUKgpUXiyr6E3FgKoKWJY8IEN6qXjJQTYDMoSG1WXNanVEjmNcAgDnSg3J87h4QxNMu8ICPYb5rliYsMWYMBQb71Kxic7Pi7XD9x5XaFNw9uvjc7_2L2buMTlbLHZtcF2R0C68e93gCTmcmVXE0985Ik8314-Tu3L6cHs_GU9Ly5lIJZczzgW0SFuQYGslJauFrYW0YtYiBwvGcGy4vOxAcco4KslrAUoKI1THR-R8f3cd-hwbk172m-BzpKZNLRRrKG-yS-1dNvQxBpxp65JJrvcpGLfSFPRPi3qpc4v6p0UNLEtmkv4h18G9mLD7l7naM5gf3zoMOlqH3mLnQm5Nd737h_4GlUmNtA
CitedBy_id crossref_primary_10_1016_j_sna_2019_111813
crossref_primary_10_1155_2020_5681703
crossref_primary_10_1016_j_apenergy_2019_113805
crossref_primary_10_1016_j_mejo_2019_104685
crossref_primary_10_1051_ijmqe_2023004
crossref_primary_10_3390_mi13020232
crossref_primary_10_1002_er_5816
crossref_primary_10_1109_JIOT_2023_3289091
crossref_primary_10_3390_mi14020240
crossref_primary_10_1051_matecconf_201821105004
crossref_primary_10_1007_s11277_020_07840_y
crossref_primary_10_1016_j_enconman_2022_115466
crossref_primary_10_1016_j_rser_2020_110473
crossref_primary_10_1088_1757_899X_588_1_012014
crossref_primary_10_1063_5_0161822
crossref_primary_10_1016_j_sna_2021_112641
crossref_primary_10_1177_1045389X231194986
crossref_primary_10_1016_j_est_2022_106119
crossref_primary_10_1088_1361_665X_acec23
crossref_primary_10_1109_ACCESS_2020_3042388
crossref_primary_10_1016_j_engstruct_2020_110789
crossref_primary_10_1007_s11431_023_2535_0
crossref_primary_10_1080_19475411_2018_1454532
crossref_primary_10_3390_en15093441
crossref_primary_10_1007_s11431_023_2531_9
crossref_primary_10_1007_s00521_020_04813_x
crossref_primary_10_1016_j_sna_2024_115288
crossref_primary_10_3390_mi14071333
crossref_primary_10_1109_ACCESS_2017_2716344
crossref_primary_10_1109_TCSII_2022_3224726
crossref_primary_10_3390_app122412514
crossref_primary_10_1016_j_compstruct_2020_112979
crossref_primary_10_1007_s12555_018_0091_0
crossref_primary_10_1007_s40684_019_00132_2
crossref_primary_10_1002_adma_201707271
crossref_primary_10_1007_s40684_021_00321_y
crossref_primary_10_1007_s42417_024_01355_7
crossref_primary_10_1016_j_sna_2017_07_059
crossref_primary_10_1063_5_0156781
crossref_primary_10_1002_sstr_202300282
crossref_primary_10_1002_nano_202000242
crossref_primary_10_1002_ente_202200373
crossref_primary_10_1016_j_aeue_2019_152926
crossref_primary_10_1016_j_enconman_2017_10_054
crossref_primary_10_1016_j_ymssp_2021_108198
crossref_primary_10_1088_1361_665X_abf41f
crossref_primary_10_1016_j_bios_2020_112410
crossref_primary_10_1088_1742_6596_1052_1_012093
crossref_primary_10_1109_TIE_2020_2988188
crossref_primary_10_3390_nanoenergyadv2010004
crossref_primary_10_1002_msd2_12035
crossref_primary_10_1016_j_nanoen_2019_103943
crossref_primary_10_46604_peti_2022_9210
crossref_primary_10_1016_j_nanoen_2022_107485
crossref_primary_10_1007_s12008_023_01522_2
crossref_primary_10_1088_1361_665X_abca09
crossref_primary_10_1063_5_0160131
crossref_primary_10_34133_cbsystems_0053
crossref_primary_10_1088_1361_6439_ac7d92
crossref_primary_10_46604_peti_2021_7002
crossref_primary_10_3390_jlpea13040062
crossref_primary_10_3390_su151813564
crossref_primary_10_3390_electronics10060661
crossref_primary_10_3390_mi12070803
crossref_primary_10_3389_fnano_2023_1268931
crossref_primary_10_1177_0954406218799788
crossref_primary_10_1038_s41598_022_22232_x
crossref_primary_10_1115_1_4050038
crossref_primary_10_3390_act8030055
crossref_primary_10_1016_j_nanoen_2018_12_010
Cites_doi 10.1088/0964-1726/23/6/065016
10.1109/JSEN.2014.2309900
10.1109/JSSC.2014.2328343
10.1109/TCSI.2014.2334972
10.1016/j.sna.2015.07.020
10.1109/EMBC.2013.6610281
10.1109/JETCAS.2012.2187106
10.1109/TCSI.2013.2265973
10.1088/0960-1317/19/9/094008
10.1109/JSEN.2010.2053922
10.1016/j.sna.2015.08.014
10.1109/JSEN.2013.2252526
10.1016/j.sna.2014.12.006
10.1109/JETCAS.2014.2337195
10.1109/IEMBS.2010.5627952
10.1016/j.sna.2010.06.004
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Apr 15, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 15, 2017
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2017.02.026
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
EndPage 207
ExternalDocumentID 10_1016_j_sna_2017_02_026
S0924424717303151
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c325t-36f3350be1b060c4766245c456c5fbe30c0aa3e9368d073123e763450765a57d3
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Sun Jul 13 03:46:54 EDT 2025
Tue Jul 01 01:05:24 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Fri Feb 23 02:21:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Piezoelectric energy harvesting
Electromagnetic energy harvesting
Wearable sensors
Wearable energy harvesting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-36f3350be1b060c4766245c456c5fbe30c0aa3e9368d073123e763450765a57d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1945729139
PQPubID 2045401
PageCount 10
ParticipantIDs proquest_journals_1945729139
crossref_citationtrail_10_1016_j_sna_2017_02_026
crossref_primary_10_1016_j_sna_2017_02_026
elsevier_sciencedirect_doi_10_1016_j_sna_2017_02_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Yuce (bib0005) 2010; 162
Yuce, Khan (bib0010) 2011
Zhu (bib0035) 2011
Nguyen, Feng, Hafliger, Chakrabartty (bib0095) 2014; 61
Ghaed (bib0015) 2013; 60
E. Shahhaidar, et al., Piezoelectric and electromagnetic respiratory effort energy harvesters, Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3–7 July 2013, pp. 3439–3442.
Alghisi, Dalolaa, Ferrari, Ferrari (bib0050) 2015
Li (bib0090) 2014; 23
×
Wahbah, Alhawari, Mohammad, Saleh, Ismail (bib0070) 2014; 4
25.4
Desai, Yoo, Chandrakasan (bib0020) 2014; 49
Nintanavongsa (bib0110) 2012; 2
P.D. Mitcheson, Energy harvesting for human wearable and implantable bio-sensors, Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2010, pp. 3432–3436.
Leonov (bib0025) 2013; 13
Bowers, Arnold (bib0055) 2009; 19
Berdya, Valentinoc, Peroulis (bib0060) 2015; 222
R. Hamid, A. Mohammadi, and M.R. Yuce, WE-Harvest: a wearable piezoelectric-electromagnetic energy harvester, Proceedings of the International Conference on Body Area Networks (BodyNets 2015), September, 2015.
(bib0105) 2009; 21
Zhu, Moheimani, Yuce (bib0040) 2011; 11
Simon, Hamate, Nagasawa, Kuwano (bib0045) 2010
Toh, Tan, Koh, Siek (bib0030) 2014; 14
LTC3588-1:Piezoelectric Energy Harvesting Power Supply. http://www.linear.com/product/LTC3588-1.
12.7
mm Block (Rare Earth). http://aussiemagnets.com.au/product/-25.4-x--25.4-x--12.7mm-Block-%28Rare-Earth%29.html.
Xia, Chen, Ren (bib0065) 2015; 234
Leonov (10.1016/j.sna.2017.02.026_bib0025) 2013; 13
Li (10.1016/j.sna.2017.02.026_bib0090) 2014; 23
10.1016/j.sna.2017.02.026_bib0115
Zhu (10.1016/j.sna.2017.02.026_bib0040) 2011; 11
Desai (10.1016/j.sna.2017.02.026_bib0020) 2014; 49
(10.1016/j.sna.2017.02.026_bib0105) 2009; 21
Nintanavongsa (10.1016/j.sna.2017.02.026_bib0110) 2012; 2
Toh (10.1016/j.sna.2017.02.026_bib0030) 2014; 14
Alghisi (10.1016/j.sna.2017.02.026_bib0050) 2015
10.1016/j.sna.2017.02.026_bib0085
Yuce (10.1016/j.sna.2017.02.026_bib0010) 2011
Zhu (10.1016/j.sna.2017.02.026_bib0035) 2011
10.1016/j.sna.2017.02.026_bib0075
Nguyen (10.1016/j.sna.2017.02.026_bib0095) 2014; 61
Wahbah (10.1016/j.sna.2017.02.026_bib0070) 2014; 4
10.1016/j.sna.2017.02.026_bib0100
Bowers (10.1016/j.sna.2017.02.026_bib0055) 2009; 19
Simon (10.1016/j.sna.2017.02.026_bib0045) 2010
10.1016/j.sna.2017.02.026_bib0080
Berdya (10.1016/j.sna.2017.02.026_bib0060) 2015; 222
Yuce (10.1016/j.sna.2017.02.026_bib0005) 2010; 162
Xia (10.1016/j.sna.2017.02.026_bib0065) 2015; 234
Ghaed (10.1016/j.sna.2017.02.026_bib0015) 2013; 60
References_xml – volume: 162
  start-page: 116
  year: 2010
  end-page: 129
  ident: bib0005
  article-title: Implementation of wireless body area networks for healthcare systems
  publication-title: Sens. Actuators A: Phys.
– year: 2011
  ident: bib0035
  article-title: Vibration energy harvesting: machinery vibration, human movement and flow induced vibration
  publication-title: Sustainable Energy Harvesting Technologies – Past, Present and Future
– volume: 21
  start-page: 130
  year: 2009
  end-page: 131
  ident: bib0105
  publication-title: Energy Harvesting Technologies
– reference: mm Block (Rare Earth). http://aussiemagnets.com.au/product/-25.4-x--25.4-x--12.7mm-Block-%28Rare-Earth%29.html.
– reference: LTC3588-1:Piezoelectric Energy Harvesting Power Supply. http://www.linear.com/product/LTC3588-1.
– reference: 25.4
– reference: R. Hamid, A. Mohammadi, and M.R. Yuce, WE-Harvest: a wearable piezoelectric-electromagnetic energy harvester, Proceedings of the International Conference on Body Area Networks (BodyNets 2015), September, 2015.
– year: 2011
  ident: bib0010
  article-title: Wireless Body Area Networks: Technology
  publication-title: Implementation and Applications
– reference: P.D. Mitcheson, Energy harvesting for human wearable and implantable bio-sensors, Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2010, pp. 3432–3436.
– reference: E. Shahhaidar, et al., Piezoelectric and electromagnetic respiratory effort energy harvesters, Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3–7 July 2013, pp. 3439–3442.
– volume: 2
  start-page: 24
  year: 2012
  end-page: 33
  ident: bib0110
  article-title: Design optimization and implementation for RF energy harvesting circuits
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
– reference: ×
– volume: 61
  start-page: 3330
  year: 2014
  end-page: 3338
  ident: bib0095
  article-title: Hybrid CMOS rectifier based on synergistic RF-piezoelectric energy scavenging
  publication-title: IEEE Trans. Circuits Syst. I
– volume: 11
  start-page: 155
  year: 2011
  end-page: 161
  ident: bib0040
  article-title: A 2-DOF MEMS ultrasonic energy harvester
  publication-title: IEEE Sens. J.
– start-page: 569
  year: 2015
  end-page: 581
  ident: bib0050
  article-title: Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion
  publication-title: Sens. Actuators A: Phys.
– volume: 234
  start-page: 87
  year: 2015
  end-page: 98
  ident: bib0065
  article-title: Analysis of piezoelectric–electromagnetic hybrid vibration energy harvester under different electrical boundary conditions
  publication-title: Sens. Actuators A: Phys.
– volume: 222
  start-page: 262
  year: 2015
  end-page: 271
  ident: bib0060
  article-title: Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester
  publication-title: Sens. Actuators A: Phys.
– volume: 14
  start-page: 2299
  year: 2014
  end-page: 2306
  ident: bib0030
  article-title: Autonomous wearable sensor nodes with flexible energy harvesting
  publication-title: IEEE Sens. J.
– volume: 19
  year: 2009
  ident: bib0055
  article-title: Spherical, rolling magnet generators for passive energy harvesting from human motion
  publication-title: J. Micromech. Microeng.
– volume: 13
  start-page: 2284
  year: 2013
  end-page: 2291
  ident: bib0025
  article-title: Thermoelectric energy harvesting of human body heat for wearable sensors
  publication-title: IEEE Sens. J.
– reference: 12.7
– start-page: 33
  year: 2010
  end-page: 36
  ident: bib0045
  article-title: 3D vibration harvesting using free moving ball in PZT microbox
  publication-title: Proc. Power MEMS
– volume: 49
  start-page: 1995
  year: 2014
  end-page: 2004
  ident: bib0020
  article-title: A Scalable, 2.9
  publication-title: IEEE J. Solid-State Circuits
– volume: 4
  start-page: 354
  year: 2014
  end-page: 363
  ident: bib0070
  article-title: Characterization of human body-based thermal and vibration energy harvesting for wearable devices
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
– volume: 60
  start-page: 3152
  year: 2013
  end-page: 3162
  ident: bib0015
  article-title: Circuits for a cubic-millimeter energy-autonomous wireless intraocular pressure monitor
  publication-title: IEEE Trans. Circuits Syst. I
– volume: 23
  start-page: 1
  year: 2014
  end-page: 17
  ident: bib0090
  article-title: An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester
  publication-title: Smart Mater. Struct.
– volume: 23
  start-page: 1
  issue: 6
  year: 2014
  ident: 10.1016/j.sna.2017.02.026_bib0090
  article-title: An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/6/065016
– volume: 14
  start-page: 2299
  issue: 7
  year: 2014
  ident: 10.1016/j.sna.2017.02.026_bib0030
  article-title: Autonomous wearable sensor nodes with flexible energy harvesting
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2309900
– year: 2011
  ident: 10.1016/j.sna.2017.02.026_bib0035
  article-title: Vibration energy harvesting: machinery vibration, human movement and flow induced vibration
– ident: 10.1016/j.sna.2017.02.026_bib0115
– start-page: 33
  year: 2010
  ident: 10.1016/j.sna.2017.02.026_bib0045
  article-title: 3D vibration harvesting using free moving ball in PZT microbox
  publication-title: Proc. Power MEMS
– volume: 49
  start-page: 1995
  issue: 9
  year: 2014
  ident: 10.1016/j.sna.2017.02.026_bib0020
  article-title: A Scalable, 2.9mW, 1Mb/s e-Textiles body area network transceiver with remotely-powered nodes and bi-directional data communication
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2014.2328343
– volume: 61
  start-page: 3330
  year: 2014
  ident: 10.1016/j.sna.2017.02.026_bib0095
  article-title: Hybrid CMOS rectifier based on synergistic RF-piezoelectric energy scavenging
  publication-title: IEEE Trans. Circuits Syst. I
  doi: 10.1109/TCSI.2014.2334972
– start-page: 569
  year: 2015
  ident: 10.1016/j.sna.2017.02.026_bib0050
  article-title: Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2015.07.020
– ident: 10.1016/j.sna.2017.02.026_bib0085
  doi: 10.1109/EMBC.2013.6610281
– volume: 2
  start-page: 24
  year: 2012
  ident: 10.1016/j.sna.2017.02.026_bib0110
  article-title: Design optimization and implementation for RF energy harvesting circuits
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2012.2187106
– year: 2011
  ident: 10.1016/j.sna.2017.02.026_bib0010
  article-title: Wireless Body Area Networks: Technology
– ident: 10.1016/j.sna.2017.02.026_bib0100
– volume: 60
  start-page: 3152
  issue: 12
  year: 2013
  ident: 10.1016/j.sna.2017.02.026_bib0015
  article-title: Circuits for a cubic-millimeter energy-autonomous wireless intraocular pressure monitor
  publication-title: IEEE Trans. Circuits Syst. I
  doi: 10.1109/TCSI.2013.2265973
– volume: 19
  issue: 9
  year: 2009
  ident: 10.1016/j.sna.2017.02.026_bib0055
  article-title: Spherical, rolling magnet generators for passive energy harvesting from human motion
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/19/9/094008
– volume: 11
  start-page: 155
  year: 2011
  ident: 10.1016/j.sna.2017.02.026_bib0040
  article-title: A 2-DOF MEMS ultrasonic energy harvester
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2010.2053922
– volume: 234
  start-page: 87
  year: 2015
  ident: 10.1016/j.sna.2017.02.026_bib0065
  article-title: Analysis of piezoelectric–electromagnetic hybrid vibration energy harvester under different electrical boundary conditions
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2015.08.014
– volume: 13
  start-page: 2284
  issue: 6
  year: 2013
  ident: 10.1016/j.sna.2017.02.026_bib0025
  article-title: Thermoelectric energy harvesting of human body heat for wearable sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2252526
– volume: 222
  start-page: 262
  issue: 1
  year: 2015
  ident: 10.1016/j.sna.2017.02.026_bib0060
  article-title: Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2014.12.006
– volume: 4
  start-page: 354
  issue: 3
  year: 2014
  ident: 10.1016/j.sna.2017.02.026_bib0070
  article-title: Characterization of human body-based thermal and vibration energy harvesting for wearable devices
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2014.2337195
– ident: 10.1016/j.sna.2017.02.026_bib0080
  doi: 10.1109/IEMBS.2010.5627952
– ident: 10.1016/j.sna.2017.02.026_bib0075
– volume: 21
  start-page: 130
  year: 2009
  ident: 10.1016/j.sna.2017.02.026_bib0105
– volume: 162
  start-page: 116
  year: 2010
  ident: 10.1016/j.sna.2017.02.026_bib0005
  article-title: Implementation of wireless body area networks for healthcare systems
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2010.06.004
SSID ssj0003377
Score 2.4929612
Snippet •This manuscript presents a new energy harvester that is suitable for wearable devices.•It combines electromagnetic and piezoelectric energy harvesters in one...
Wearable sensor electronics require a sustainable electrical power supply to operate. Energy harvesting techniques can be used to convert available...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 198
SubjectTerms Alternative energy sources
Electric power generation
Electric power supplies
Electromagnetic energy harvesting
Electromagnetics
Energy consumption
Energy conversion efficiency
Energy harvesting
Energy sources
Harvesters
Output
Piezoelectric energy harvesting
Piezoelectric transducers
Piezoelectricity
Power supply
Sensors
Studies
Topology
Wearable energy harvesting
Wearable sensors
Wearable technology
Title A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique
URI https://dx.doi.org/10.1016/j.sna.2017.02.026
https://www.proquest.com/docview/1945729139
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnqJQkAcmpFAnfqQZq4qqgOgCCDbLcR1aBGkFLQgGxH_gH_JLuHMTXkIdkJIhkR1F5_Pns3zfd4TsZrFN6mnWDawACBRGisCEkQ2ymBshbN3YBLnDJx3VPhdHl_JyhjRLLgymVRbYP8F0j9bFm1phzdqw36-dMtg6iEjgMTKWKvAMdhGjl--_fKV5cO6rL2LjAFuXJ5s-x-s-R-mhMPaynaiv8Pfa9Aul_dLTWiKLRcxIG5PfWiYzLl8hC9-UBFfJRYM-gs8iD4o6T-ejPXP34GUQ6BimLcUE9ys67LvnwaT0Td--v74VVXBuzVWObEbae0IGF_1Udl0j562Ds2Y7KGomBJZHchRwlXEuWerClClmwR4qEtJCmGRlljrOLDOGu4SrehdmN6xbDhBGQFSopJFxl6-T2XyQuw1CM8myemQV7AAd3mmSdGEslWUOYDKRFcJKa2lbCIpjXYsbXWaOXWswsEYDaxbBpSpk77PLcKKmMa2xKIdA_3AJDWg_rVu1HC5dzMd7HSZCwjYCwt3N_311i8zjE54jhbJKZkd3Y7cN4cgo3fH-tkPmGofH7c4HQ_HfjQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcEPQhaHn4UC5I6TrxI5tDD4iClucFULm5jtdZFkF2tbuA6KHqf-hP6T_il3Qm6_CoKg6VkJJLEkfWePzNjDzzDcDHInVZMy_akZMIgdIqGdk4cVGRCiula1qXUe3w_oFuHcudE3UyAb_rWhhKqwzYP8b0Cq3Dk0aQZqPf7TYOOYYOMpF0jEytCuKQWbnrb64xbht-3v6Ci7yaJFubRxutKLQWiJxI1CgSuhBC8dzHOdfcyVTrRCqH3oRTRe4Fd9xa4TOhm23cBAjvHjeiROdJK6vStsD_voApiXBBbRM-_bjPKxGiavdIs4toevVRapVUNiyJ6yhOK55QInT4tzH8yyxUtm5rFmaCk8rWx3KYgwlfvobpB9SFb-DrOrtGQVDhFfNV_SA7tYOrineBXSJOMMqo77B-13_vjXvtdN3tz1-h7c6F7ZRUPslOb6hkjN1Ryb6F42eR5DuYLHulnwdWKF40E6cx5PR051nWRuXRjnvE5UwtAK-lZVxgMKdGGuemTlU7MyhgQwI2PMFLL8Da3ZD-mL7jqY9lvQTmkQ4aNC9PDVusl8sEABiaOJMK4xb0r9__319X4GXraH_P7G0f7H6AV_SGDrFitQiTo8GlX0JfaJQvV7rH4NtzK_sftRQYng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+wearable+energy+harvester+unit+using+piezoelectric%E2%80%93electromagnetic+hybrid+technique&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Hamid%2C+Rawnak&rft.au=Yuce%2C+Mehmet+Rasit&rft.date=2017-04-15&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=257&rft.spage=198&rft.epage=207&rft_id=info:doi/10.1016%2Fj.sna.2017.02.026&rft.externalDocID=S0924424717303151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon