Discovery of mesoscopic nematicity wave in iron-based superconductors
Electrons in solids can break rotational symmetry, resulting in electronic nematicity. This phenomenon has been observed in both cuprate-based and iron-based high-temperature superconductors, and its relationship to superconductivity remains a subject of debate. Shimojima et al . used linear dichroi...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 373; no. 6559; pp. 1122 - 1125 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
03.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abd6701 |
Cover
Loading…
Abstract | Electrons in solids can break rotational symmetry, resulting in electronic nematicity. This phenomenon has been observed in both cuprate-based and iron-based high-temperature superconductors, and its relationship to superconductivity remains a subject of debate. Shimojima
et al
. used linear dichroism measurements to image nematicity in two iron-based superconductors. Unexpectedly, the researchers found periodic patterns with very long wavelengths. The findings could be described with a phenomenological model assuming a train of nematic domain walls. —JS
Linear dichroism measurements show periodic patterns with very long wavelengths.
Nematicity is ubiquitous in the electronic phases of iron-based superconductors. The order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unexplored. We use linear dichroism (LD) in a low-temperature laser–photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe
2
(As
0.87
P
0.13
)
2
. In contrast to structural domains, which have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with wavelengths more than 1000 times as long as the unit cell. Our findings put strong constraints on the theoretical investigation of electronic nematicity. |
---|---|
AbstractList | Nematicity is ubiquitous in the electronic phases of iron-based superconductors. The order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unexplored. We use linear dichroism (LD) in a low-temperature laser–photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe
(As
P
)
. In contrast to structural domains, which have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with wavelengths more than 1000 times as long as the unit cell. Our findings put strong constraints on the theoretical investigation of electronic nematicity. Patterned nematicsElectrons in solids can break rotational symmetry, resulting in electronic nematicity. This phenomenon has been observed in both cuprate-based and iron-based high-temperature superconductors, and its relationship to superconductivity remains a subject of debate. Shimojima et al. used linear dichroism measurements to image nematicity in two iron-based superconductors. Unexpectedly, the researchers found periodic patterns with very long wavelengths. The findings could be described with a phenomenological model assuming a train of nematic domain walls. —JSNematicity is ubiquitous in the electronic phases of iron-based superconductors. The order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unexplored. We use linear dichroism (LD) in a low-temperature laser–photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe2(As0.87P0.13)2. In contrast to structural domains, which have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with wavelengths more than 1000 times as long as the unit cell. Our findings put strong constraints on the theoretical investigation of electronic nematicity. Nematicity is ubiquitous in the electronic phases of iron-based superconductors. The order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unexplored. We use linear dichroism (LD) in a low-temperature laser–photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe2(As0.87P0.13)2. In contrast to structural domains, which have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with wavelengths more than 1000 times as long as the unit cell. Our findings put strong constraints on the theoretical investigation of electronic nematicity.Nematicity is ubiquitous in the electronic phases of iron-based superconductors. The order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unexplored. We use linear dichroism (LD) in a low-temperature laser–photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe2(As0.87P0.13)2. In contrast to structural domains, which have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with wavelengths more than 1000 times as long as the unit cell. Our findings put strong constraints on the theoretical investigation of electronic nematicity. Electrons in solids can break rotational symmetry, resulting in electronic nematicity. This phenomenon has been observed in both cuprate-based and iron-based high-temperature superconductors, and its relationship to superconductivity remains a subject of debate. Shimojima et al . used linear dichroism measurements to image nematicity in two iron-based superconductors. Unexpectedly, the researchers found periodic patterns with very long wavelengths. The findings could be described with a phenomenological model assuming a train of nematic domain walls. —JS Linear dichroism measurements show periodic patterns with very long wavelengths. Nematicity is ubiquitous in the electronic phases of iron-based superconductors. The order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unexplored. We use linear dichroism (LD) in a low-temperature laser–photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe 2 (As 0.87 P 0.13 ) 2 . In contrast to structural domains, which have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with wavelengths more than 1000 times as long as the unit cell. Our findings put strong constraints on the theoretical investigation of electronic nematicity. |
Author | Shin, S. Motoyui, Y. Kasahara, S. Shibauchi, T. Onari, S. Matsuda, Y. Bareille, C. Kontani, H. Shimojima, T. Taniuchi, T. Nakajima, M. |
Author_xml | – sequence: 1 givenname: T. orcidid: 0000-0002-2162-4539 surname: Shimojima fullname: Shimojima, T. organization: RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan – sequence: 2 givenname: Y. surname: Motoyui fullname: Motoyui, Y. organization: Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan – sequence: 3 givenname: T. surname: Taniuchi fullname: Taniuchi, T. organization: Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan., Material Innovation Research Center (MIRC), The University of Tokyo, Kashiwa, Chiba 277-8561, Japan – sequence: 4 givenname: C. orcidid: 0000-0002-2042-7437 surname: Bareille fullname: Bareille, C. organization: Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan., Material Innovation Research Center (MIRC), The University of Tokyo, Kashiwa, Chiba 277-8561, Japan – sequence: 5 givenname: S. surname: Onari fullname: Onari, S. organization: Department of Physics, Nagoya University, Furo-cho, Nagoya 464-8602, Japan – sequence: 6 givenname: H. orcidid: 0000-0002-8127-7903 surname: Kontani fullname: Kontani, H. organization: Department of Physics, Nagoya University, Furo-cho, Nagoya 464-8602, Japan – sequence: 7 givenname: M. orcidid: 0000-0002-1203-4967 surname: Nakajima fullname: Nakajima, M. organization: Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan – sequence: 8 givenname: S. orcidid: 0000-0002-6007-9617 surname: Kasahara fullname: Kasahara, S. organization: Department of Physics, Kyoto University, Kyoto 606-8502, Japan – sequence: 9 givenname: T. orcidid: 0000-0001-5831-4924 surname: Shibauchi fullname: Shibauchi, T. organization: Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561, Japan – sequence: 10 givenname: Y. orcidid: 0000-0001-9947-9418 surname: Matsuda fullname: Matsuda, Y. organization: Department of Physics, Kyoto University, Kyoto 606-8502, Japan – sequence: 11 givenname: S. orcidid: 0000-0002-2505-9362 surname: Shin fullname: Shin, S. organization: Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan., Material Innovation Research Center (MIRC), The University of Tokyo, Kashiwa, Chiba 277-8561, Japan., Office of University Professor, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34516833$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1rwzAQxUVJaT7auVsxdOniRLIsyRpLm35AoEt2I8tnULClVLJT8t9XJW6HQKfjuN97HO_N0cQ6CwjdErwkJOOroA1YDUtV1VxgcoFmBEuWygzTCZphTHlaYMGmaB7CDuN4k_QKTWnOCC8onaH1swnaHcAfE9ckHQQX173RiYVO9Uab_ph8qQMkxibGO5tWKkCdhGEPXjtbD7p3Plyjy0a1AW7GuUDbl_X26S3dfLy-Pz1uUk0z1qeU1lWltSxkDYxVFAoNPFcVkznHRHGhtZJMSKzyhtO64LTgGFgjKqkbIugCPZxs9959DhD6sovfQ9sqC24IZcZExijJJIvo_Rm6c4O38bkyi7a4YFjwSN2N1FB1UJd7bzrlj-VvPhFYnQDtXQgemj-E4PKngXJsoBwbiAp2pogZxiSd7b0y7b-6b2jrjZQ |
CitedBy_id | crossref_primary_10_3389_fphy_2022_866664 crossref_primary_10_1021_acs_jpclett_5c00007 crossref_primary_10_3389_fphy_2022_859017 crossref_primary_10_1088_1361_648X_ad88c6 crossref_primary_10_1103_PhysRevMaterials_8_084806 crossref_primary_10_1103_PhysRevB_105_024519 crossref_primary_10_7566_JPSJNC_21_20 crossref_primary_10_7566_JPSJ_93_103702 crossref_primary_10_1380_ejssnt_2023_013 crossref_primary_10_1038_s41567_022_01833_3 crossref_primary_10_1380_vss_65_224 crossref_primary_10_3389_fphy_2022_915619 crossref_primary_10_1016_j_ultramic_2023_113815 crossref_primary_10_1088_1674_1056_ad174a crossref_primary_10_1103_PhysRevB_106_L140503 crossref_primary_10_1088_1742_6596_2545_1_012006 crossref_primary_10_1103_PhysRevB_109_014518 crossref_primary_10_1038_s41535_023_00592_5 |
Cites_doi | 10.1002/sia.740010103 10.1038/nphys4205 10.1103/PhysRevLett.105.157003 10.1038/nature09260 10.1126/sciadv.aau9123 10.1063/1.4906755 10.1103/PhysRevB.100.020504 10.1088/1367-2630/aa8a04 10.1038/s41467-018-05529-2 10.7566/JPSJ.84.072001 10.1073/pnas.1015572108 10.1103/PhysRevB.79.180508 10.1103/PhysRevB.93.060502 10.1103/PhysRevX.5.031022 10.1126/science.aab0103 10.1103/PhysRevLett.104.057002 10.1146/annurev-conmatphys-070909-103925 10.1038/nmat2071 10.1038/s41598-018-20332-1 10.1103/PhysRevB.92.205117 10.1088/0022-3719/15/23/020 10.1038/nature11178 10.1038/s41567-020-0826-8 10.1103/PhysRevLett.120.267202 10.1126/science.1107559 10.1103/PhysRevLett.121.027001 10.1038/nphys3434 10.1038/nphys3594 10.1038/ncomms11781 10.1073/pnas.1717331115 10.1126/science.1152309 10.1126/science.1190482 10.1126/science.1189925 10.1126/science.aad1824 10.1038/nphys2877 10.1143/JPSJ.81.104710 10.1103/PhysRevLett.123.066402 10.1103/PhysRevB.87.180505 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abd6701 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1125 |
ExternalDocumentID | 34516833 10_1126_science_abd6701 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c325t-33dbbcc989de55b3e8ce64ab594601a67cca95790a4f63d863860e5f7b9cf173 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 09:53:14 EDT 2025 Fri Jul 25 19:08:42 EDT 2025 Thu Apr 03 06:53:18 EDT 2025 Tue Jul 01 01:35:36 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6559 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-33dbbcc989de55b3e8ce64ab594601a67cca95790a4f63d863860e5f7b9cf173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2505-9362 0000-0002-8127-7903 0000-0002-2042-7437 0000-0002-2162-4539 0000-0001-9947-9418 0000-0002-1203-4967 0000-0002-6007-9617 0000-0001-5831-4924 |
PMID | 34516833 |
PQID | 2638085076 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2572531295 proquest_journals_2638085076 pubmed_primary_34516833 crossref_primary_10_1126_science_abd6701 crossref_citationtrail_10_1126_science_abd6701 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-03 2021-Sep-03 20210903 |
PublicationDateYYYYMMDD | 2021-09-03 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_38_2 doi: 10.1002/sia.740010103 – ident: e_1_3_2_7_2 doi: 10.1038/nphys4205 – ident: e_1_3_2_17_2 doi: 10.1103/PhysRevLett.105.157003 – ident: e_1_3_2_31_2 doi: 10.1038/nature09260 – ident: e_1_3_2_41_2 doi: 10.1126/sciadv.aau9123 – ident: e_1_3_2_22_2 doi: 10.1063/1.4906755 – ident: e_1_3_2_28_2 doi: 10.1103/PhysRevB.100.020504 – ident: e_1_3_2_15_2 doi: 10.1088/1367-2630/aa8a04 – ident: e_1_3_2_27_2 doi: 10.1038/s41467-018-05529-2 – ident: e_1_3_2_40_2 doi: 10.7566/JPSJ.84.072001 – ident: e_1_3_2_12_2 doi: 10.1073/pnas.1015572108 – ident: e_1_3_2_19_2 doi: 10.1103/PhysRevB.79.180508 – ident: e_1_3_2_26_2 doi: 10.1103/PhysRevB.93.060502 – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevX.5.031022 – ident: e_1_3_2_8_2 doi: 10.1126/science.aab0103 – ident: e_1_3_2_25_2 doi: 10.1103/PhysRevLett.104.057002 – ident: e_1_3_2_2_2 doi: 10.1146/annurev-conmatphys-070909-103925 – ident: e_1_3_2_33_2 doi: 10.1038/nmat2071 – ident: e_1_3_2_24_2 doi: 10.1038/s41598-018-20332-1 – ident: e_1_3_2_14_2 doi: 10.1103/PhysRevB.92.205117 – ident: e_1_3_2_32_2 doi: 10.1088/0022-3719/15/23/020 – ident: e_1_3_2_6_2 doi: 10.1038/nature11178 – ident: e_1_3_2_21_2 doi: 10.1038/s41567-020-0826-8 – ident: e_1_3_2_30_2 doi: 10.1103/PhysRevLett.120.267202 – ident: e_1_3_2_36_2 – ident: e_1_3_2_29_2 doi: 10.1126/science.1107559 – ident: e_1_3_2_20_2 doi: 10.1103/PhysRevLett.121.027001 – ident: e_1_3_2_18_2 doi: 10.1038/nphys3434 – ident: e_1_3_2_39_2 doi: 10.1038/nphys3594 – ident: e_1_3_2_37_2 doi: 10.1038/ncomms11781 – ident: e_1_3_2_35_2 doi: 10.1073/pnas.1717331115 – ident: e_1_3_2_3_2 doi: 10.1126/science.1152309 – ident: e_1_3_2_5_2 doi: 10.1126/science.1190482 – ident: e_1_3_2_34_2 doi: 10.1126/science.1189925 – ident: e_1_3_2_4_2 doi: 10.1126/science.aad1824 – ident: e_1_3_2_9_2 doi: 10.1038/nphys2877 – ident: e_1_3_2_11_2 doi: 10.1143/JPSJ.81.104710 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevLett.123.066402 – ident: e_1_3_2_10_2 doi: 10.1103/PhysRevB.87.180505 |
SSID | ssj0009593 |
Score | 2.471896 |
Snippet | Electrons in solids can break rotational symmetry, resulting in electronic nematicity. This phenomenon has been observed in both cuprate-based and iron-based... Nematicity is ubiquitous in the electronic phases of iron-based superconductors. The order parameter that characterizes the nematic phase has been investigated... Patterned nematicsElectrons in solids can break rotational symmetry, resulting in electronic nematicity. This phenomenon has been observed in both... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1122 |
SubjectTerms | Antiferromagnetism Dichroism Domain walls High temperature High temperature superconductors Iron Lasers Linear dichroism Low temperature Order parameters Photoelectric emission Sine waves Superconductivity Unit cell Wavelengths |
Title | Discovery of mesoscopic nematicity wave in iron-based superconductors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34516833 https://www.proquest.com/docview/2638085076 https://www.proquest.com/docview/2572531295 |
Volume | 373 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_OK4IvYuvXaZUIPlSOhLvd7ObyeLUtRdAXI9SnsF_BiCalSZD6r_jPOpNscrnSg-pLSPY2e0t-s7MzO1-EvFXcUqG18a0CGMLMWl-ZpfGpXVIqQSWhFOOdP34S51_CDxf8YjL5M_JaamoV6N-3xpX8D6rQBrhilOw_IDsMCg1wD_jCFRCG650wPskrjS6YzkpelRhjkut50SViRQH7F1YXyos5RrP5uGWZedVc2itQgzHTa-mMOU487Vc6iJ2DKWcE4OCTuO48B3pHAvfa6FTh8zegge_5z1Y0TYIB1rIur5vWgeDr0JjIIseSLNtdsRADxim2J7nB-HCCLlvvKzZmuC7fcbfddDx2geUhqevmmDCL2IjaBHdpwjuuCjIhHe3Q8Mhv5_6jepU2kMqIyJ2UbOXZvrH_DV6JrT5EReoGSN0A98geBR2ETsne-vjk-GxnTmeXOWoUk9XPYVvo2aHJtBJN8og8dKqIt-7oap9MbHFA7nfFSa8PyL5DtfKOXG7yd4_J6UByXpl5G5LzNiTnIcl5eeFtSM67QXJPSHJ2mrw_910lDl8zymufMaOU1vEqNpZzxexKWxFKxeMQFHopIuADaO9dyDATzKyAqYuF5VmkYp0tI_aUTIuysM-JRw2XmVRCSLQvaylRWgIZNgszmi0MnZGg_1KpdlnqsVjKj3QHOjNyNLxw2SVo2d31sP_0qVvFVUphrpi2MRIz8mb4GXgsGs5kYcsG-vCIwl5FYz4jzzrIhv9iWOl6xdiLu8_jJXmwWSuHZFpfNfYViLa1eu1I7C949Kko |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+mesoscopic+nematicity+wave+in+iron-based+superconductors&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Shimojima%2C+T.&rft.au=Motoyui%2C+Y.&rft.au=Taniuchi%2C+T.&rft.au=Bareille%2C+C.&rft.date=2021-09-03&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=373&rft.issue=6559&rft.spage=1122&rft.epage=1125&rft_id=info:doi/10.1126%2Fscience.abd6701&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abd6701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |