Automatic Calibration for CE-QUAL-W2 Model Using Improved Global-Best Harmony Search Algorithm

CE-QUAL-W2 is widely used for simulating hydrodynamics and water quality of the aquatic environments. Currently, the model calibration is mainly based on trial and error, and therefore it is subject to the knowledge and experience of users. The Particle Swarm Optimization (PSO) algorithm has been te...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 13; no. 16; p. 2308
Main Authors Shabani, Afshin, Zhang, Xiaodong, Chu, Xuefeng, Zheng, Haochi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 23.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CE-QUAL-W2 is widely used for simulating hydrodynamics and water quality of the aquatic environments. Currently, the model calibration is mainly based on trial and error, and therefore it is subject to the knowledge and experience of users. The Particle Swarm Optimization (PSO) algorithm has been tested for automatic calibration of CE-QUAL-W2, but it has an issue of prematurely converging to a local optimum. In this study, we proposed an Improved Global-Best Harmony Search (IGHS) algorithm to automatically calibrate the CE-QUAL-W2 model to overcome these shortcomings. We tested the performance of the IGHS calibration method by simulating water temperature of Devils Lake, North Dakota, which agreed with field observations with R2 = 0.98, and RMSE = 1.23 and 0.77 °C for calibration (2008–2011) and validation (2011–2016) periods, respectively. The same comparison, but with the PSO-calibrated CE-QUAL-W2 model, produced R2 = 0.98 and Root Mean Squared Error (RMSE) = 1.33 and 0.91 °C. Between the two calibration methods, the CE-QUAL-W2 model calibrated by the IGHS method could lower the RMSE in water temperature simulation by approximately 7–15%.
AbstractList CE-QUAL-W2 is widely used for simulating hydrodynamics and water quality of the aquatic environments. Currently, the model calibration is mainly based on trial and error, and therefore it is subject to the knowledge and experience of users. The Particle Swarm Optimization (PSO) algorithm has been tested for automatic calibration of CE-QUAL-W2, but it has an issue of prematurely converging to a local optimum. In this study, we proposed an Improved Global-Best Harmony Search (IGHS) algorithm to automatically calibrate the CE-QUAL-W2 model to overcome these shortcomings. We tested the performance of the IGHS calibration method by simulating water temperature of Devils Lake, North Dakota, which agreed with field observations with R² = 0.98, and RMSE = 1.23 and 0.77 °C for calibration (2008–2011) and validation (2011–2016) periods, respectively. The same comparison, but with the PSO-calibrated CE-QUAL-W2 model, produced R² = 0.98 and Root Mean Squared Error (RMSE) = 1.33 and 0.91 °C. Between the two calibration methods, the CE-QUAL-W2 model calibrated by the IGHS method could lower the RMSE in water temperature simulation by approximately 7–15%.
CE-QUAL-W2 is widely used for simulating hydrodynamics and water quality of the aquatic environments. Currently, the model calibration is mainly based on trial and error, and therefore it is subject to the knowledge and experience of users. The Particle Swarm Optimization (PSO) algorithm has been tested for automatic calibration of CE-QUAL-W2, but it has an issue of prematurely converging to a local optimum. In this study, we proposed an Improved Global-Best Harmony Search (IGHS) algorithm to automatically calibrate the CE-QUAL-W2 model to overcome these shortcomings. We tested the performance of the IGHS calibration method by simulating water temperature of Devils Lake, North Dakota, which agreed with field observations with R2 = 0.98, and RMSE = 1.23 and 0.77 °C for calibration (2008–2011) and validation (2011–2016) periods, respectively. The same comparison, but with the PSO-calibrated CE-QUAL-W2 model, produced R2 = 0.98 and Root Mean Squared Error (RMSE) = 1.33 and 0.91 °C. Between the two calibration methods, the CE-QUAL-W2 model calibrated by the IGHS method could lower the RMSE in water temperature simulation by approximately 7–15%.
Author Zheng, Haochi
Zhang, Xiaodong
Shabani, Afshin
Chu, Xuefeng
Author_xml – sequence: 1
  givenname: Afshin
  orcidid: 0000-0002-6930-9503
  surname: Shabani
  fullname: Shabani, Afshin
– sequence: 2
  givenname: Xiaodong
  orcidid: 0000-0002-2982-210X
  surname: Zhang
  fullname: Zhang, Xiaodong
– sequence: 3
  givenname: Xuefeng
  orcidid: 0000-0003-0322-0271
  surname: Chu
  fullname: Chu, Xuefeng
– sequence: 4
  givenname: Haochi
  surname: Zheng
  fullname: Zheng, Haochi
BookMark eNptkF9LwzAUxYNMcM49-A0CvuhDXZp_XR9nmdtgIqLDN0uSpltH2sykVfbtjU5ExPtyz8Pvnns4p6DX2EYDcB6ja0JSNHqPScwxQeMj0McoIRGlNO790idg6P0WhaHpeMxQH7xMutbWoq0UzISppAvSNrC0DmbT6GE1WUbPGN7ZQhu48lWzhot65-ybLuDMWClMdKN9C-fC1bbZw0ctnNrAiVlbV7Wb-gwcl8J4PfzeA7C6nT5l82h5P1tkwVwRzNoIFwoXXCVJTBAispRJWXBNmWRJihSjCDHOlOQyZRLRMpFSUYlxyosYKSw1GYDLg2_I9tqFRHldeaWNEY22nc8xJzyhoRsc0Is_6NZ2rgnpchy-JBghTAJ1daCUs947XeY7V9XC7fMY5Z9l5z9lB3b0h1VV-9Vj60Rl_rn4AGE4gCA
CitedBy_id crossref_primary_10_1007_s40996_024_01719_9
crossref_primary_10_3390_w16101362
crossref_primary_10_3390_w15061013
crossref_primary_10_3390_w15081625
crossref_primary_10_1029_2023RG000816
Cites_doi 10.1007/978-3-642-04317-8
10.1186/2196-4092-1-4
10.1007/s10666-006-9075-1
10.3133/ofr20161076
10.1007/s11269-011-9829-7
10.1038/s41598-019-54433-2
10.1007/s10898-007-9149-x
10.20944/preprints201810.0035.v1
10.1016/j.ejrh.2018.10.003
10.1038/s41597-019-0316-y
10.1111/1752-1688.12825
10.1109/ICSMC.2009.5346625
10.1016/j.jhydrol.2004.12.004
10.1007/s11269-013-0263-x
10.1007/s11269-017-1694-6
10.1016/j.eswa.2014.03.016
10.1080/00221686.2018.1499052
10.1177/003754970107600201
10.1016/j.jhydrol.2006.09.014
10.1111/1752-1688.12535
10.1061/(ASCE)HE.1943-5584.0000608
10.5194/hess-20-375-2016
10.1080/07438140609353898
10.1016/j.envsoft.2014.09.013
10.1016/j.jhydrol.2015.03.027
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
DOI 10.3390/w13162308
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID 10_3390_w13162308
GeographicLocations Iran
United States--US
Devils Lake North Dakota
North Dakota
GeographicLocations_xml – name: Devils Lake North Dakota
– name: Iran
– name: United States--US
– name: North Dakota
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c325t-2dc2d6c7713003bfb7fd6e45b5790c5400565cb6b95b04f7bbc4b2296d10c2be3
IEDL.DBID BENPR
ISSN 2073-4441
IngestDate Fri Jul 11 04:27:11 EDT 2025
Mon Jun 30 07:35:26 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
Tue Jul 01 00:23:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-2dc2d6c7713003bfb7fd6e45b5790c5400565cb6b95b04f7bbc4b2296d10c2be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6930-9503
0000-0003-0322-0271
0000-0002-2982-210X
OpenAccessLink https://www.proquest.com/docview/2565720023?pq-origsite=%requestingapplication%
PQID 2565720023
PQPubID 2032318
ParticipantIDs proquest_miscellaneous_2636746232
proquest_journals_2565720023
crossref_primary_10_3390_w13162308
crossref_citationtrail_10_3390_w13162308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210823
PublicationDateYYYYMMDD 2021-08-23
PublicationDate_xml – month: 08
  year: 2021
  text: 20210823
  day: 23
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Debele (ref_3) 2008; 13
Shabani (ref_11) 2017; 53
ref_36
ref_34
ref_10
ref_31
Noori (ref_7) 2018; 19
ref_19
Karaboga (ref_30) 2007; 39
Afshar (ref_16) 2011; 25
Shabani (ref_8) 2020; 56
Karahan (ref_23) 2013; 18
Yoo (ref_15) 2014; 1
Loganathan (ref_21) 2001; 76
Kim (ref_6) 2006; 22
Afshar (ref_12) 2013; 27
Noori (ref_35) 2019; 57
ref_25
Xiang (ref_24) 2014; 41
Maier (ref_14) 2014; 62
Chen (ref_18) 2016; 20
ref_22
Abbaspour (ref_32) 2015; 524
ref_20
Mahdavi (ref_29) 2007; 188
ref_1
ref_2
ref_28
ref_27
Tayfur (ref_13) 2017; 31
ref_26
Noori (ref_9) 2019; 9
Ostfeld (ref_17) 2005; 310
ref_4
Lindenschmidt (ref_5) 2019; 6
Abbaspour (ref_33) 2007; 333
References_xml – ident: ref_22
  doi: 10.1007/978-3-642-04317-8
– ident: ref_28
– volume: 1
  start-page: 4
  year: 2014
  ident: ref_15
  article-title: Meta-heuristic algorithms as tools for hydrological science
  publication-title: Geosci. Lett.
  doi: 10.1186/2196-4092-1-4
– volume: 13
  start-page: 135
  year: 2008
  ident: ref_3
  article-title: Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins
  publication-title: Environ. Modeling Assess.
  doi: 10.1007/s10666-006-9075-1
– ident: ref_10
  doi: 10.3133/ofr20161076
– volume: 25
  start-page: 2613
  year: 2011
  ident: ref_16
  article-title: Particle Swarm Optimization for Automatic Calibration of Large Scale Water Quality Model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-011-9829-7
– ident: ref_26
– ident: ref_34
– volume: 9
  start-page: 18524
  year: 2019
  ident: ref_9
  article-title: ThSSim: A novel tool for simulation of reservoir thermal stratification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54433-2
– volume: 188
  start-page: 1567
  year: 2007
  ident: ref_29
  article-title: An improved harmony search algorithm for solving optimization problems
  publication-title: Appl. Math. Comput.
– volume: 39
  start-page: 459
  year: 2007
  ident: ref_30
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
– ident: ref_4
  doi: 10.20944/preprints201810.0035.v1
– volume: 19
  start-page: 279
  year: 2018
  ident: ref_7
  article-title: Temporal and depth variation of water quality due to thermal stratification in Karkheh Reservoir, Iran
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2018.10.003
– ident: ref_1
– volume: 6
  start-page: 312
  year: 2019
  ident: ref_5
  article-title: CE-QUAL-W2 model of dam outflow elevation impact on temperature, dissolved oxygen and nutrients in a reservoir
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0316-y
– volume: 56
  start-page: 297
  year: 2020
  ident: ref_8
  article-title: Mitigating Impact of Devils Lake Flooding on the Sheyenne River Sulfate Concentration
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12825
– ident: ref_20
  doi: 10.1109/ICSMC.2009.5346625
– volume: 310
  start-page: 122
  year: 2005
  ident: ref_17
  article-title: A hybrid genetic—Instance based learning algorithm for CE-QUAL-W2 calibration
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.12.004
– volume: 27
  start-page: 1931
  year: 2013
  ident: ref_12
  article-title: Multiobjective Calibration of Reservoir Water Quality Modeling Using Multiobjective Particle Swarm Optimization (MOPSO)
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-013-0263-x
– volume: 31
  start-page: 3205
  year: 2017
  ident: ref_13
  article-title: Modern Optimization Methods in Water Resources Planning, Engineering and Management
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1694-6
– volume: 41
  start-page: 5788
  year: 2014
  ident: ref_24
  article-title: An improved global-best harmony search algorithm for faster optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.03.016
– ident: ref_25
– volume: 57
  start-page: 561
  year: 2019
  ident: ref_35
  article-title: A simple model for simulation of reservoir stratification
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2018.1499052
– ident: ref_31
– ident: ref_27
– ident: ref_2
– volume: 76
  start-page: 60
  year: 2001
  ident: ref_21
  article-title: A New Heuristic Optimization Algorithm: Harmony Search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 333
  start-page: 413
  year: 2007
  ident: ref_33
  article-title: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.09.014
– volume: 53
  start-page: 748
  year: 2017
  ident: ref_11
  article-title: Modeling Water Quantity and Sulfate Concentrations in the Devils Lake Watershed Using Coupled SWAT and CE-QUAL-W2
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12535
– volume: 18
  start-page: 352
  year: 2013
  ident: ref_23
  article-title: Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000608
– ident: ref_36
– ident: ref_19
– volume: 20
  start-page: 375
  year: 2016
  ident: ref_18
  article-title: Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-375-2016
– volume: 22
  start-page: 213
  year: 2006
  ident: ref_6
  article-title: Application of a 2-Dimensional Water Quality Model (CE-QUAL-W2) to the Turbidity Interflow in a Deep Reservoir (Lake Soyang, Korea)
  publication-title: Lake Reserv. Manag.
  doi: 10.1080/07438140609353898
– volume: 62
  start-page: 271
  year: 2014
  ident: ref_14
  article-title: Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2014.09.013
– volume: 524
  start-page: 733
  year: 2015
  ident: ref_32
  article-title: A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.03.027
SSID ssj0000498850
Score 2.2472444
Snippet CE-QUAL-W2 is widely used for simulating hydrodynamics and water quality of the aquatic environments. Currently, the model calibration is mainly based on trial...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2308
SubjectTerms Algorithms
Calibration
hydrodynamics
Hydrology
Improvisation
lakes
North Dakota
Optimization
Precipitation
Radiation
Simulation
water
Water quality
Water temperature
Title Automatic Calibration for CE-QUAL-W2 Model Using Improved Global-Best Harmony Search Algorithm
URI https://www.proquest.com/docview/2565720023
https://www.proquest.com/docview/2636746232
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ELnowfkYUSTUevDRsbdexkwECEmOIMRI5ufRrekCGMGL8731lAzExXnZZ06Xvda-_99HfQ-gqsAJgh04I9eEB-D8iihlOfOMZQaV2FHSu2mIg-kN-NwpGRcBtXpRVrmzi0lCbVLsYeYO6_JyrKGA30w_iuka57GrRQqOEKmCCm-B8VdrdwcPjOsoC-LfZDLycUoiBf9_49JkPR75rJ7l5EP22w8vDpbeHdgtUiFu5GvfRlp0coJ0NrsBD9NJaZOmSXxW7-1Qq1xwGzIk7XQLA9J48U-xam43xsg4A5_ECa3DO60_a8GHclzNYyRfOy4xxa_wKi8ze3o_QsNd96vRJ0RyBaEaDjFCjqRE6DF0-iqlEhYkRlgcqCCNPAw4DZBNoJVQUKI8noVKaK0ojYXxPU2XZMSpP0ok9QRg8ECk9oyRPPC6bXIbW1yyyANV8LmVSRdcrScW6YA53DSzGMXgQTqjxWqhVdLkeOs3pMv4aVFuJOy7-mHn8o98quli_hr3uEhhyYtMFjBFMhBzmoKf_T3GGtqmrPfHACrAaKmezhT0H8JCperFD6qh0O_K_AcrYxPI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB3RcKAcUClFTaHFrajUi4XX9nqzhwolISiUEFUVqJzY-mvhEBIKGyH-VH8j4-xuChLixmUva3mlt-PxG894HsB27BXSDptTHuED-X9KjXCSRo45xbUNLehCtcVQ9U_kj9P4dAH-1XdhQlll7RNnjtpNbDgj3-EhPxcqCsTu1V8aVKNCdrWW0CjN4tDf3WLIdvP9YA__71fO93vH3T6tVAWoFTwuKHeWO2WTJCRyhMlNkjvlZWziJGUWCQxSgtgaZdLYMJknxlhpOE-Vi5jlxguc9xUsSoGhTAMWO73hz1_zUx3k261WzMoWRkKkbOc2EhFSjCBf-XDje-z3Z5vZ_htYqVgoaZdmswoLfvwWlh_0JlyDs_a0mMz6uZJwf8uUlkKQ45JujyIRHtDfnAQptRGZ1R2Q8nzCO1LqCNAOfpj09TUid0fKsmbSHp0jqMXF5Ts4eRHY1qExnoz9eyAY8WjNnNEyZ1K3pE58ZEXqkRpGUuu8Cd9qpDJbdSoPghmjDCOWAGo2B7UJX-ZDr8r2HE8N2qzhzqoVepP9t6cmfJ6_xrUVEiZ67CdTHKOESiTOwT88P8UWLPWPjwbZ4GB4uAGveah7YeiBxCY0iuup_4jEpTCfKmsh8OelDfQeWocA4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BkCp6QC0UNSWlpqISFyte2-vNHqoqQKJQUISqonJi668th5CksFHEX-uv6zi7G0CqeuOyl7Vmpdln-41nPA9gP_YKaYfNKY_wgfw_pUY4SSPHnOLahhZ0odpiqAYX8utlfLkCf-q7MKGssl4TFwu1m9hwRt7mIT8XKgpEO6_KIs6P-1-mv2lQkAqZ1lpOo4TIqb-fY_h29_nkGP_1J877ve9HA1opDFAreFxQ7ix3yiZJSOoIk5skd8rL2MRJyiySGaQHsTXKpLFhMk-MsdJwnioXMcuNF2h3FdYSjIpYA9YOe8Pzb8sTHuTenU7MynZGQqSsPY9EhHQjSFk-3gSf7gGLja3_CjYqRkq6JYRew4ofb8LLR30Kt-CqOysmi96uJNzlMiVqCPJdctSjSIrP6A9OgqzaiCxqEEh5VuEdKTUF6CF-mAz0LXrunpQlzqQ7-oVOLa5v3sDFs7htGxrjydi_BYLRj9bMGS1zJnVH6sRHVqQeaWIktc6bcFB7KrNV1_IgnjHKMHoJTs2WTm3Cx-XQadmq41-DWrW7s2q23mUP2GrC3vI1zrOQPNFjP5nhGCVUItEGf_d_Ex_gBQIzOzsZnu7AOg8lMAwXI9GCRnE78--RwxRmtwILgZ_Pjc-_CGUFFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Calibration+for+CE-QUAL-W2+Model+Using+Improved+Global-Best+Harmony+Search+Algorithm&rft.jtitle=Water+%28Basel%29&rft.au=Shabani%2C+Afshin&rft.au=Zhang%2C+Xiaodong&rft.au=Chu%2C+Xuefeng&rft.au=Zheng%2C+Haochi&rft.date=2021-08-23&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=13&rft.issue=16&rft.spage=2308&rft_id=info:doi/10.3390%2Fw13162308&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon