Automatic Calibration for CE-QUAL-W2 Model Using Improved Global-Best Harmony Search Algorithm
CE-QUAL-W2 is widely used for simulating hydrodynamics and water quality of the aquatic environments. Currently, the model calibration is mainly based on trial and error, and therefore it is subject to the knowledge and experience of users. The Particle Swarm Optimization (PSO) algorithm has been te...
Saved in:
Published in | Water (Basel) Vol. 13; no. 16; p. 2308 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
23.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CE-QUAL-W2 is widely used for simulating hydrodynamics and water quality of the aquatic environments. Currently, the model calibration is mainly based on trial and error, and therefore it is subject to the knowledge and experience of users. The Particle Swarm Optimization (PSO) algorithm has been tested for automatic calibration of CE-QUAL-W2, but it has an issue of prematurely converging to a local optimum. In this study, we proposed an Improved Global-Best Harmony Search (IGHS) algorithm to automatically calibrate the CE-QUAL-W2 model to overcome these shortcomings. We tested the performance of the IGHS calibration method by simulating water temperature of Devils Lake, North Dakota, which agreed with field observations with R2 = 0.98, and RMSE = 1.23 and 0.77 °C for calibration (2008–2011) and validation (2011–2016) periods, respectively. The same comparison, but with the PSO-calibrated CE-QUAL-W2 model, produced R2 = 0.98 and Root Mean Squared Error (RMSE) = 1.33 and 0.91 °C. Between the two calibration methods, the CE-QUAL-W2 model calibrated by the IGHS method could lower the RMSE in water temperature simulation by approximately 7–15%. |
---|---|
AbstractList | CE-QUAL-W2 is widely used for simulating hydrodynamics and water quality of the aquatic environments. Currently, the model calibration is mainly based on trial and error, and therefore it is subject to the knowledge and experience of users. The Particle Swarm Optimization (PSO) algorithm has been tested for automatic calibration of CE-QUAL-W2, but it has an issue of prematurely converging to a local optimum. In this study, we proposed an Improved Global-Best Harmony Search (IGHS) algorithm to automatically calibrate the CE-QUAL-W2 model to overcome these shortcomings. We tested the performance of the IGHS calibration method by simulating water temperature of Devils Lake, North Dakota, which agreed with field observations with R² = 0.98, and RMSE = 1.23 and 0.77 °C for calibration (2008–2011) and validation (2011–2016) periods, respectively. The same comparison, but with the PSO-calibrated CE-QUAL-W2 model, produced R² = 0.98 and Root Mean Squared Error (RMSE) = 1.33 and 0.91 °C. Between the two calibration methods, the CE-QUAL-W2 model calibrated by the IGHS method could lower the RMSE in water temperature simulation by approximately 7–15%. CE-QUAL-W2 is widely used for simulating hydrodynamics and water quality of the aquatic environments. Currently, the model calibration is mainly based on trial and error, and therefore it is subject to the knowledge and experience of users. The Particle Swarm Optimization (PSO) algorithm has been tested for automatic calibration of CE-QUAL-W2, but it has an issue of prematurely converging to a local optimum. In this study, we proposed an Improved Global-Best Harmony Search (IGHS) algorithm to automatically calibrate the CE-QUAL-W2 model to overcome these shortcomings. We tested the performance of the IGHS calibration method by simulating water temperature of Devils Lake, North Dakota, which agreed with field observations with R2 = 0.98, and RMSE = 1.23 and 0.77 °C for calibration (2008–2011) and validation (2011–2016) periods, respectively. The same comparison, but with the PSO-calibrated CE-QUAL-W2 model, produced R2 = 0.98 and Root Mean Squared Error (RMSE) = 1.33 and 0.91 °C. Between the two calibration methods, the CE-QUAL-W2 model calibrated by the IGHS method could lower the RMSE in water temperature simulation by approximately 7–15%. |
Author | Zheng, Haochi Zhang, Xiaodong Shabani, Afshin Chu, Xuefeng |
Author_xml | – sequence: 1 givenname: Afshin orcidid: 0000-0002-6930-9503 surname: Shabani fullname: Shabani, Afshin – sequence: 2 givenname: Xiaodong orcidid: 0000-0002-2982-210X surname: Zhang fullname: Zhang, Xiaodong – sequence: 3 givenname: Xuefeng orcidid: 0000-0003-0322-0271 surname: Chu fullname: Chu, Xuefeng – sequence: 4 givenname: Haochi surname: Zheng fullname: Zheng, Haochi |
BookMark | eNptkF9LwzAUxYNMcM49-A0CvuhDXZp_XR9nmdtgIqLDN0uSpltH2sykVfbtjU5ExPtyz8Pvnns4p6DX2EYDcB6ja0JSNHqPScwxQeMj0McoIRGlNO790idg6P0WhaHpeMxQH7xMutbWoq0UzISppAvSNrC0DmbT6GE1WUbPGN7ZQhu48lWzhot65-ybLuDMWClMdKN9C-fC1bbZw0ctnNrAiVlbV7Wb-gwcl8J4PfzeA7C6nT5l82h5P1tkwVwRzNoIFwoXXCVJTBAispRJWXBNmWRJihSjCDHOlOQyZRLRMpFSUYlxyosYKSw1GYDLg2_I9tqFRHldeaWNEY22nc8xJzyhoRsc0Is_6NZ2rgnpchy-JBghTAJ1daCUs947XeY7V9XC7fMY5Z9l5z9lB3b0h1VV-9Vj60Rl_rn4AGE4gCA |
CitedBy_id | crossref_primary_10_1007_s40996_024_01719_9 crossref_primary_10_3390_w16101362 crossref_primary_10_3390_w15061013 crossref_primary_10_3390_w15081625 crossref_primary_10_1029_2023RG000816 |
Cites_doi | 10.1007/978-3-642-04317-8 10.1186/2196-4092-1-4 10.1007/s10666-006-9075-1 10.3133/ofr20161076 10.1007/s11269-011-9829-7 10.1038/s41598-019-54433-2 10.1007/s10898-007-9149-x 10.20944/preprints201810.0035.v1 10.1016/j.ejrh.2018.10.003 10.1038/s41597-019-0316-y 10.1111/1752-1688.12825 10.1109/ICSMC.2009.5346625 10.1016/j.jhydrol.2004.12.004 10.1007/s11269-013-0263-x 10.1007/s11269-017-1694-6 10.1016/j.eswa.2014.03.016 10.1080/00221686.2018.1499052 10.1177/003754970107600201 10.1016/j.jhydrol.2006.09.014 10.1111/1752-1688.12535 10.1061/(ASCE)HE.1943-5584.0000608 10.5194/hess-20-375-2016 10.1080/07438140609353898 10.1016/j.envsoft.2014.09.013 10.1016/j.jhydrol.2015.03.027 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
DOI | 10.3390/w13162308 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4441 |
ExternalDocumentID | 10_3390_w13162308 |
GeographicLocations | Iran United States--US Devils Lake North Dakota North Dakota |
GeographicLocations_xml | – name: Devils Lake North Dakota – name: Iran – name: United States--US – name: North Dakota |
GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c325t-2dc2d6c7713003bfb7fd6e45b5790c5400565cb6b95b04f7bbc4b2296d10c2be3 |
IEDL.DBID | BENPR |
ISSN | 2073-4441 |
IngestDate | Fri Jul 11 04:27:11 EDT 2025 Mon Jun 30 07:35:26 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 Tue Jul 01 00:23:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-2dc2d6c7713003bfb7fd6e45b5790c5400565cb6b95b04f7bbc4b2296d10c2be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6930-9503 0000-0003-0322-0271 0000-0002-2982-210X |
OpenAccessLink | https://www.proquest.com/docview/2565720023?pq-origsite=%requestingapplication% |
PQID | 2565720023 |
PQPubID | 2032318 |
ParticipantIDs | proquest_miscellaneous_2636746232 proquest_journals_2565720023 crossref_primary_10_3390_w13162308 crossref_citationtrail_10_3390_w13162308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210823 |
PublicationDateYYYYMMDD | 2021-08-23 |
PublicationDate_xml | – month: 08 year: 2021 text: 20210823 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Water (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Debele (ref_3) 2008; 13 Shabani (ref_11) 2017; 53 ref_36 ref_34 ref_10 ref_31 Noori (ref_7) 2018; 19 ref_19 Karaboga (ref_30) 2007; 39 Afshar (ref_16) 2011; 25 Shabani (ref_8) 2020; 56 Karahan (ref_23) 2013; 18 Yoo (ref_15) 2014; 1 Loganathan (ref_21) 2001; 76 Kim (ref_6) 2006; 22 Afshar (ref_12) 2013; 27 Noori (ref_35) 2019; 57 ref_25 Xiang (ref_24) 2014; 41 Maier (ref_14) 2014; 62 Chen (ref_18) 2016; 20 ref_22 Abbaspour (ref_32) 2015; 524 ref_20 Mahdavi (ref_29) 2007; 188 ref_1 ref_2 ref_28 ref_27 Tayfur (ref_13) 2017; 31 ref_26 Noori (ref_9) 2019; 9 Ostfeld (ref_17) 2005; 310 ref_4 Lindenschmidt (ref_5) 2019; 6 Abbaspour (ref_33) 2007; 333 |
References_xml | – ident: ref_22 doi: 10.1007/978-3-642-04317-8 – ident: ref_28 – volume: 1 start-page: 4 year: 2014 ident: ref_15 article-title: Meta-heuristic algorithms as tools for hydrological science publication-title: Geosci. Lett. doi: 10.1186/2196-4092-1-4 – volume: 13 start-page: 135 year: 2008 ident: ref_3 article-title: Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins publication-title: Environ. Modeling Assess. doi: 10.1007/s10666-006-9075-1 – ident: ref_10 doi: 10.3133/ofr20161076 – volume: 25 start-page: 2613 year: 2011 ident: ref_16 article-title: Particle Swarm Optimization for Automatic Calibration of Large Scale Water Quality Model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran publication-title: Water Resour. Manag. doi: 10.1007/s11269-011-9829-7 – ident: ref_26 – ident: ref_34 – volume: 9 start-page: 18524 year: 2019 ident: ref_9 article-title: ThSSim: A novel tool for simulation of reservoir thermal stratification publication-title: Sci. Rep. doi: 10.1038/s41598-019-54433-2 – volume: 188 start-page: 1567 year: 2007 ident: ref_29 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Appl. Math. Comput. – volume: 39 start-page: 459 year: 2007 ident: ref_30 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – ident: ref_4 doi: 10.20944/preprints201810.0035.v1 – volume: 19 start-page: 279 year: 2018 ident: ref_7 article-title: Temporal and depth variation of water quality due to thermal stratification in Karkheh Reservoir, Iran publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2018.10.003 – ident: ref_1 – volume: 6 start-page: 312 year: 2019 ident: ref_5 article-title: CE-QUAL-W2 model of dam outflow elevation impact on temperature, dissolved oxygen and nutrients in a reservoir publication-title: Sci. Data doi: 10.1038/s41597-019-0316-y – volume: 56 start-page: 297 year: 2020 ident: ref_8 article-title: Mitigating Impact of Devils Lake Flooding on the Sheyenne River Sulfate Concentration publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.12825 – ident: ref_20 doi: 10.1109/ICSMC.2009.5346625 – volume: 310 start-page: 122 year: 2005 ident: ref_17 article-title: A hybrid genetic—Instance based learning algorithm for CE-QUAL-W2 calibration publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.12.004 – volume: 27 start-page: 1931 year: 2013 ident: ref_12 article-title: Multiobjective Calibration of Reservoir Water Quality Modeling Using Multiobjective Particle Swarm Optimization (MOPSO) publication-title: Water Resour. Manag. doi: 10.1007/s11269-013-0263-x – volume: 31 start-page: 3205 year: 2017 ident: ref_13 article-title: Modern Optimization Methods in Water Resources Planning, Engineering and Management publication-title: Water Resour. Manag. doi: 10.1007/s11269-017-1694-6 – volume: 41 start-page: 5788 year: 2014 ident: ref_24 article-title: An improved global-best harmony search algorithm for faster optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.016 – ident: ref_25 – volume: 57 start-page: 561 year: 2019 ident: ref_35 article-title: A simple model for simulation of reservoir stratification publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2018.1499052 – ident: ref_31 – ident: ref_27 – ident: ref_2 – volume: 76 start-page: 60 year: 2001 ident: ref_21 article-title: A New Heuristic Optimization Algorithm: Harmony Search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 333 start-page: 413 year: 2007 ident: ref_33 article-title: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.09.014 – volume: 53 start-page: 748 year: 2017 ident: ref_11 article-title: Modeling Water Quantity and Sulfate Concentrations in the Devils Lake Watershed Using Coupled SWAT and CE-QUAL-W2 publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.12535 – volume: 18 start-page: 352 year: 2013 ident: ref_23 article-title: Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000608 – ident: ref_36 – ident: ref_19 – volume: 20 start-page: 375 year: 2016 ident: ref_18 article-title: Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-375-2016 – volume: 22 start-page: 213 year: 2006 ident: ref_6 article-title: Application of a 2-Dimensional Water Quality Model (CE-QUAL-W2) to the Turbidity Interflow in a Deep Reservoir (Lake Soyang, Korea) publication-title: Lake Reserv. Manag. doi: 10.1080/07438140609353898 – volume: 62 start-page: 271 year: 2014 ident: ref_14 article-title: Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.09.013 – volume: 524 start-page: 733 year: 2015 ident: ref_32 article-title: A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.03.027 |
SSID | ssj0000498850 |
Score | 2.2472444 |
Snippet | CE-QUAL-W2 is widely used for simulating hydrodynamics and water quality of the aquatic environments. Currently, the model calibration is mainly based on trial... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2308 |
SubjectTerms | Algorithms Calibration hydrodynamics Hydrology Improvisation lakes North Dakota Optimization Precipitation Radiation Simulation water Water quality Water temperature |
Title | Automatic Calibration for CE-QUAL-W2 Model Using Improved Global-Best Harmony Search Algorithm |
URI | https://www.proquest.com/docview/2565720023 https://www.proquest.com/docview/2636746232 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ELnowfkYUSTUevDRsbdexkwECEmOIMRI5ufRrekCGMGL8731lAzExXnZZ06Xvda-_99HfQ-gqsAJgh04I9eEB-D8iihlOfOMZQaV2FHSu2mIg-kN-NwpGRcBtXpRVrmzi0lCbVLsYeYO6_JyrKGA30w_iuka57GrRQqOEKmCCm-B8VdrdwcPjOsoC-LfZDLycUoiBf9_49JkPR75rJ7l5EP22w8vDpbeHdgtUiFu5GvfRlp0coJ0NrsBD9NJaZOmSXxW7-1Qq1xwGzIk7XQLA9J48U-xam43xsg4A5_ECa3DO60_a8GHclzNYyRfOy4xxa_wKi8ze3o_QsNd96vRJ0RyBaEaDjFCjqRE6DF0-iqlEhYkRlgcqCCNPAw4DZBNoJVQUKI8noVKaK0ojYXxPU2XZMSpP0ok9QRg8ECk9oyRPPC6bXIbW1yyyANV8LmVSRdcrScW6YA53DSzGMXgQTqjxWqhVdLkeOs3pMv4aVFuJOy7-mHn8o98quli_hr3uEhhyYtMFjBFMhBzmoKf_T3GGtqmrPfHACrAaKmezhT0H8JCperFD6qh0O_K_AcrYxPI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB3RcKAcUClFTaHFrajUi4XX9nqzhwolISiUEFUVqJzY-mvhEBIKGyH-VH8j4-xuChLixmUva3mlt-PxG894HsB27BXSDptTHuED-X9KjXCSRo45xbUNLehCtcVQ9U_kj9P4dAH-1XdhQlll7RNnjtpNbDgj3-EhPxcqCsTu1V8aVKNCdrWW0CjN4tDf3WLIdvP9YA__71fO93vH3T6tVAWoFTwuKHeWO2WTJCRyhMlNkjvlZWziJGUWCQxSgtgaZdLYMJknxlhpOE-Vi5jlxguc9xUsSoGhTAMWO73hz1_zUx3k261WzMoWRkKkbOc2EhFSjCBf-XDje-z3Z5vZ_htYqVgoaZdmswoLfvwWlh_0JlyDs_a0mMz6uZJwf8uUlkKQ45JujyIRHtDfnAQptRGZ1R2Q8nzCO1LqCNAOfpj09TUid0fKsmbSHp0jqMXF5Ts4eRHY1qExnoz9eyAY8WjNnNEyZ1K3pE58ZEXqkRpGUuu8Cd9qpDJbdSoPghmjDCOWAGo2B7UJX-ZDr8r2HE8N2qzhzqoVepP9t6cmfJ6_xrUVEiZ67CdTHKOESiTOwT88P8UWLPWPjwbZ4GB4uAGveah7YeiBxCY0iuup_4jEpTCfKmsh8OelDfQeWocA4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BkCp6QC0UNSWlpqISFyte2-vNHqoqQKJQUISqonJi668th5CksFHEX-uv6zi7G0CqeuOyl7Vmpdln-41nPA9gP_YKaYfNKY_wgfw_pUY4SSPHnOLahhZ0odpiqAYX8utlfLkCf-q7MKGssl4TFwu1m9hwRt7mIT8XKgpEO6_KIs6P-1-mv2lQkAqZ1lpOo4TIqb-fY_h29_nkGP_1J877ve9HA1opDFAreFxQ7ix3yiZJSOoIk5skd8rL2MRJyiySGaQHsTXKpLFhMk-MsdJwnioXMcuNF2h3FdYSjIpYA9YOe8Pzb8sTHuTenU7MynZGQqSsPY9EhHQjSFk-3gSf7gGLja3_CjYqRkq6JYRew4ofb8LLR30Kt-CqOysmi96uJNzlMiVqCPJdctSjSIrP6A9OgqzaiCxqEEh5VuEdKTUF6CF-mAz0LXrunpQlzqQ7-oVOLa5v3sDFs7htGxrjydi_BYLRj9bMGS1zJnVH6sRHVqQeaWIktc6bcFB7KrNV1_IgnjHKMHoJTs2WTm3Cx-XQadmq41-DWrW7s2q23mUP2GrC3vI1zrOQPNFjP5nhGCVUItEGf_d_Ex_gBQIzOzsZnu7AOg8lMAwXI9GCRnE78--RwxRmtwILgZ_Pjc-_CGUFFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Calibration+for+CE-QUAL-W2+Model+Using+Improved+Global-Best+Harmony+Search+Algorithm&rft.jtitle=Water+%28Basel%29&rft.au=Shabani%2C+Afshin&rft.au=Zhang%2C+Xiaodong&rft.au=Chu%2C+Xuefeng&rft.au=Zheng%2C+Haochi&rft.date=2021-08-23&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=13&rft.issue=16&rft.spage=2308&rft_id=info:doi/10.3390%2Fw13162308&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |