Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework
Abstract Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs’ distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.07.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs’ distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs. |
---|---|
AbstractList | Abstract
Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs’ distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs. Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs' distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs.Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs' distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs. Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs’ distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs. |
Author | He, Wenjia Su, Ran Wei, Leyi Malik, Adeel Manavalan, Balachandran Cui, Lizhen |
Author_xml | – sequence: 1 givenname: Leyi orcidid: 0000-0003-1444-190X surname: Wei fullname: Wei, Leyi email: weileyi@sdu.edu.cn – sequence: 2 givenname: Wenjia surname: He fullname: He, Wenjia email: 201800301005@mail.sdu.edu.cn – sequence: 3 givenname: Adeel surname: Malik fullname: Malik, Adeel email: adeel@procarb.org – sequence: 4 givenname: Ran surname: Su fullname: Su, Ran email: ran.su@tju.edu.cn – sequence: 5 givenname: Lizhen surname: Cui fullname: Cui, Lizhen email: clz@sdu.edu.cn – sequence: 6 givenname: Balachandran orcidid: 0000-0003-0697-9419 surname: Manavalan fullname: Manavalan, Balachandran email: bala@ajou.ac.kr |
BookMark | eNp9kc1q3TAQhUVJoUnaVV9AUCiB4ka_lu8yXNImEMgmezOSpaBc2VIlmSZP0VeOje8q0KxmRuebAZ1zhk6mOFmEvlLyk5Idv9ReX2oNwJT8gE6pUKoRRIqTtW9VI0XLP6GzUp4IYUR19BT928cxzRWqjxMEnLIdvFkHDNOA_VRtXt42HUeHjQ2hKcka77zB2abgzVHM_tFPuPhqC3Y5jnicQ_UpWGznA-SXuAr6BdvnFKKvfnrEpYI5rI3LMNq_MR8-o48OQrFfjvUcPfy6ftjfNHf3v2_3V3eN4UzWhmk22EFxJyRIQji03EkqgTFBqKKdGhjRbdcZEGAH10lwoHSr2LDTpGv5ObrYzqYc_8y21H70Zf0bTDbOpWdCdoQrTuiCfnuDPsU5L2YtlNwRInin2ELRjTI5lpKt643fXKsZfOgp6deE-iWh_pjQsvPjzU7Kflyc-g_9faPjnN4FXwH2H6a0 |
CitedBy_id | crossref_primary_10_1016_j_ymeth_2021_12_001 crossref_primary_10_1021_acs_jcim_4c01034 crossref_primary_10_1007_s11704_021_1015_3 crossref_primary_10_1016_j_ab_2024_115648 crossref_primary_10_1016_j_ymeth_2025_03_007 crossref_primary_10_1186_s44342_024_00026_z crossref_primary_10_1093_bib_bbab376 crossref_primary_10_3390_ijms252413674 crossref_primary_10_1093_bioinformatics_btab560 crossref_primary_10_1093_bib_bbad432 crossref_primary_10_1016_j_heliyon_2023_e23187 crossref_primary_10_1155_2021_6627650 crossref_primary_10_1186_s12915_025_02148_4 crossref_primary_10_1016_j_csbj_2022_08_053 crossref_primary_10_1093_bib_bbab252 crossref_primary_10_1093_bioinformatics_btad664 crossref_primary_10_1186_s12967_021_03084_x crossref_primary_10_1093_bib_bbab172 crossref_primary_10_1016_j_csbj_2022_07_043 crossref_primary_10_1016_j_jmb_2022_167549 crossref_primary_10_3389_fgene_2021_745224 crossref_primary_10_1016_j_ymeth_2024_05_004 crossref_primary_10_3389_fcell_2021_803608 crossref_primary_10_3389_fmicb_2023_1170785 crossref_primary_10_2174_1389202923666220214122506 crossref_primary_10_1093_bib_bbab244 crossref_primary_10_1093_bib_bbab486 crossref_primary_10_1093_bib_bbab245 crossref_primary_10_1093_bib_bbab242 crossref_primary_10_3390_ijms25189844 crossref_primary_10_1186_s12859_025_06033_3 crossref_primary_10_1016_j_compbiomed_2022_105577 crossref_primary_10_1080_1062936X_2021_1895884 crossref_primary_10_3390_ijms23179518 crossref_primary_10_1093_bib_bbaa304 crossref_primary_10_1371_journal_pcbi_1012544 crossref_primary_10_1093_bib_bbab556 crossref_primary_10_3389_fmed_2025_1529335 crossref_primary_10_1016_j_ijbiomac_2025_142255 crossref_primary_10_3934_mbe_2023954 crossref_primary_10_1049_syb2_12104 crossref_primary_10_3389_fgene_2022_1092822 crossref_primary_10_1016_j_ijbiomac_2023_125774 crossref_primary_10_1093_bib_bbad170 crossref_primary_10_1016_j_compbiomed_2024_108166 crossref_primary_10_1093_bioinformatics_btac715 crossref_primary_10_2174_1566523221666210622164133 crossref_primary_10_1109_TAI_2022_3187060 crossref_primary_10_1093_bib_bbac001 crossref_primary_10_1093_bib_bbac243 crossref_primary_10_1371_journal_pcbi_1011370 crossref_primary_10_1016_j_ymeth_2024_08_003 crossref_primary_10_1016_j_compbiomed_2022_105605 crossref_primary_10_1016_j_csbj_2021_12_014 crossref_primary_10_1016_j_jmb_2024_168853 crossref_primary_10_1093_bib_bbac240 crossref_primary_10_1093_bib_bbad251 crossref_primary_10_1109_JBHI_2024_3349584 crossref_primary_10_1016_j_ijbiomac_2024_133085 crossref_primary_10_1186_s12859_022_04821_9 crossref_primary_10_1007_s11432_024_4147_8 crossref_primary_10_1016_j_jmb_2022_167604 crossref_primary_10_3934_mbe_2021382 crossref_primary_10_1016_j_ymthe_2022_05_001 crossref_primary_10_1016_j_ijbiomac_2023_123622 crossref_primary_10_1016_j_gene_2021_145643 crossref_primary_10_1109_TCBB_2023_3272400 crossref_primary_10_1093_gpbjnl_qzae076 crossref_primary_10_3389_fgene_2023_1294159 crossref_primary_10_3389_fgene_2022_984068 crossref_primary_10_3390_ijms22052704 crossref_primary_10_34133_research_0019 crossref_primary_10_1016_j_ymeth_2022_01_004 crossref_primary_10_1186_s12915_024_02030_9 crossref_primary_10_1016_j_csbj_2022_01_019 crossref_primary_10_1007_s12539_024_00640_z crossref_primary_10_1155_2022_7493834 crossref_primary_10_3389_fcell_2021_664669 crossref_primary_10_3389_fgene_2022_887894 crossref_primary_10_3390_app11156894 crossref_primary_10_1016_j_compbiomed_2022_105911 crossref_primary_10_1016_j_compbiomed_2024_108859 crossref_primary_10_3390_ijms22042120 crossref_primary_10_1093_bioinformatics_btaf088 crossref_primary_10_2174_0929867328666210920103140 crossref_primary_10_2174_0929867328666210804090224 crossref_primary_10_3934_mbe_2022166 crossref_primary_10_1016_j_csbj_2021_07_013 crossref_primary_10_1016_j_compbiomed_2023_107355 crossref_primary_10_3934_mbe_2022362 crossref_primary_10_1109_JBHI_2024_3377362 crossref_primary_10_3389_fmed_2023_1281880 crossref_primary_10_3390_app11167731 crossref_primary_10_1016_j_ymeth_2024_09_017 |
Cites_doi | 10.1109/TCYB.2017.2779450 10.2174/1574893614666181212102749 10.2174/1574893612666170221152848 10.1007/s00438-019-01600-9 10.1093/bioinformatics/btz734 10.1093/bioinformatics/bty1047 10.1016/j.omtn.2019.08.011 10.2174/1574893613666181113131415 10.1109/TCBB.2017.2666141 10.2174/1574893611666160628074537 10.1002/med.21658 10.1016/j.compbiomed.2020.103899 10.1093/bioinformatics/bts151 10.1016/j.csbj.2019.06.024 10.1128/MMBR.00029-06 10.1109/TCBB.2018.2858756 10.3389/fgene.2019.01077 10.1109/ACCESS.2020.2983105 10.1093/bib/bbz088 10.1101/597070 10.3390/cells8111332 10.1016/j.scitotenv.2017.12.152 10.1016/j.gpb.2019.08.002 10.1146/annurev.bi.41.070172.001505 10.18632/oncotarget.11975 10.1016/j.isci.2020.100991 10.1016/j.chemolab.2014.12.011 10.18632/oncotarget.23099 10.1093/bib/bby124 10.2174/1574893609666140820224436 10.1093/bib/bbz177 10.1093/bioinformatics/bty451 10.1109/TCYB.2019.2938895 10.1093/bib/bbv033 10.1093/bib/bbaa125 10.1038/srep34817 10.1093/bioinformatics/btaa131 10.1093/bioinformatics/btaa155 10.3934/mbe.2019123 10.1093/bib/bbaa049 10.1016/j.ijbiomac.2019.12.009 10.1093/bioinformatics/btaa160 10.1186/s12864-019-6413-7 10.1093/bioinformatics/bty943 10.2174/1574893611666160727160757 10.1093/bioinformatics/bty995 10.1109/TCBB.2013.146 10.1093/bioinformatics/bty827 10.1016/j.jtbi.2019.110098 10.1093/bioinformatics/btz762 10.2174/2468422806666160618091522 10.2174/1574893608999140109121259 10.1093/bib/bbz123 10.1146/annurev.biochem.69.1.497 10.1093/bioinformatics/btz629 10.1093/bioinformatics/btz694 10.1093/bioinformatics/btz408 10.1093/bib/bbaa017 10.1016/j.molcel.2015.07.004 10.2174/1574893614666191202152328 10.1016/j.omtn.2019.04.019 10.1016/j.biosystems.2017.12.005 10.2174/1574893612666170125124538 10.1093/bib/bbaa124 10.1145/2939672.2939785 10.1016/j.omtn.2019.05.028 10.1016/j.csbj.2020.04.015 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbaa275 |
DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 10_1093_bib_bbaa275 10.1093/bib/bbaa275 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c325t-2b2ded73f45a5003a63f515a224017187d20b688ca4aedf85afa7b672d9b0863 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Jul 10 22:04:46 EDT 2025 Tue Jul 01 10:43:17 EDT 2025 Tue Jul 01 03:39:31 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Wed Aug 28 03:20:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | model interpretability eXtreme Gradient Boosting feature extraction stacking strategy origin of replication site |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-2b2ded73f45a5003a63f515a224017187d20b688ca4aedf85afa7b672d9b0863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0697-9419 0000-0003-1444-190X |
PQID | 2590043872 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2458037301 proquest_journals_2590043872 crossref_citationtrail_10_1093_bib_bbaa275 crossref_primary_10_1093_bib_bbaa275 oup_primary_10_1093_bib_bbaa275 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Dao (2021072112311424600_ref22) 2019; 35 Guo (2021072112311424600_ref49) 2017; 12 Yang (2021072112311424600_ref19) 2020; 21 Lai (2021072112311424600_ref56) 2019; 17 Hasan (2021072112311424600_ref31) 2020 Yu (2021072112311424600_ref40) 2020; 36 Yuan (2021072112311424600_ref46) 2017; 12 Basith (2021072112311424600_ref53) 2020 Li (2021072112311424600_ref21) 2015; 141 Wang (2021072112311424600_ref64) 2019; 35 Xu (2021072112311424600_ref78) 2019; 49 Chen (2021072112311424600_ref33) 2016 Gao (2021072112311424600_ref6) 2008 Wang (2021072112311424600_ref35) 2020; 13 Hasan (2021072112311424600_ref41) 2020; 36 Fu (2021072112311424600_ref65) 2020; 36 Qiang (2021072112311424600_ref60) 2020; 21 Sperlea (2021072112311424600_ref8) 2019 Liu (2021072112311424600_ref32) 2020; 36 Lundberg (2021072112311424600_ref16) 2018 Feng (2021072112311424600_ref47) 2019; 35 Chicco (2021072112311424600_ref70) 2020; 21 Wei (2021072112311424600_ref59) 2018; 34 Zhang (2021072112311424600_ref68) 2020; 36 Klein (2021072112311424600_ref1) 1972; 41 Elbasir (2021072112311424600_ref36) 2020; 36 Hong (2021072112311424600_ref51) 2020; 36 Su (2021072112311424600_ref44) 2020; 21 Zeng (2021072112311424600_ref69) 2016; 17 Xie (2021072112311424600_ref74) 2020 Barry (2021072112311424600_ref2) 2007; 70 Manavalan (2021072112311424600_ref42) 2019; 17 Hasan (2021072112311424600_ref45) 2020; 15 Ao (2021072112311424600_ref57) 2020 Dao (2021072112311424600_ref9) 2020 Li (2021072112311424600_ref72) 2020 Liu (2021072112311424600_ref39) 2020; 295 Wei (2021072112311424600_ref62) 2014; 11 Lin (2021072112311424600_ref20) 2019; 16 Li (2021072112311424600_ref38) 2019; 10 Manavalan (2021072112311424600_ref29) 2018; 9 Su (2021072112311424600_ref52) 2020; 21 Liu (2021072112311424600_ref37) 2020 Rao (2021072112311424600_ref73) 2019 Manavalan (2021072112311424600_ref43) 2019; 35 Zhang (2021072112311424600_ref13) 2019; 14 Hasan (2021072112311424600_ref30) 2020; 157 Manavalan (2021072112311424600_ref27) 2019; 16 Zhang (2021072112311424600_ref12) 2016 Singh (2021072112311424600_ref11) 2018 Basith (2021072112311424600_ref24) 2019; 18 Chen (2021072112311424600_ref34) 2020; 123 Manavalan (2021072112311424600_ref23) 2019; 8 Tan (2021072112311424600_ref55) 2019; 16 Wei (2021072112311424600_ref28) 2019; 35 Long (2021072112311424600_ref75) 2017; 12 Yu (2021072112311424600_ref76) 2018; 13 (2021072112311424600_ref5) 2013 Rodriguez-Galiano (2021072112311424600_ref67) 2018; 624 Lv (2021072112311424600_ref25) 2020; 23 Gao (2021072112311424600_ref17) 2012; 28 Luo (2021072112311424600_ref7) 2014 Song (2021072112311424600_ref50) 2017; 12 Huo (2021072112311424600_ref63) 2020; 486 Yang (2021072112311424600_ref54) 2019; 14 Zhang (2021072112311424600_ref18) 2020 Zhao (2021072112311424600_ref14) 2016; 6 Wei (2021072112311424600_ref58) 2014; 9 Li (2021072112311424600_ref71) 2020 Zou (2021072112311424600_ref48) 2016; 15 Wang (2021072112311424600_ref66) 2016; 11 Su (2021072112311424600_ref61) 2018; 16 Liu (2021072112311424600_ref10) 2018 Kunkel (2021072112311424600_ref4) 2006; 69 (2021072112311424600_ref15) 2017 Dao (2021072112311424600_ref26) 2020; 18 Zeng (2021072112311424600_ref77) 2020; 50 (2021072112311424600_ref3) 2015; 59 |
References_xml | – volume: 49 start-page: 517 year: 2019 ident: 2021072112311424600_ref78 article-title: MOEA/HD: a multiobjective evolutionary algorithm based on hierarchical decomposition publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2779450 – volume: 14 start-page: 190 year: 2019 ident: 2021072112311424600_ref13 article-title: A review on the recent developments of sequence-based protein feature extraction methods publication-title: Curr Bioinform doi: 10.2174/1574893614666181212102749 – volume: 12 start-page: 233 year: 2017 ident: 2021072112311424600_ref75 article-title: Deep convolutional neural networks for predicting hydroxyproline in proteins publication-title: Curr Bioinform doi: 10.2174/1574893612666170221152848 – volume: 295 start-page: 13 year: 2020 ident: 2021072112311424600_ref39 article-title: XG-PseU: an eXtreme Gradient Boosting based method for identifying pseudouridine sites publication-title: Mol Genet Genomics doi: 10.1007/s00438-019-01600-9 – volume: 13 start-page: 1 year: 2020 ident: 2021072112311424600_ref35 article-title: SulSite-GTB: identification of protein S-sulfenylation sites by fusing multiple feature information and gradient tree boosting publication-title: Neural Comput Applic – volume: 36 start-page: 1074 year: 2020 ident: 2021072112311424600_ref40 article-title: SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme Gradient Boosting publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz734 – volume: 35 start-page: 2757 year: 2019 ident: 2021072112311424600_ref43 article-title: mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1047 – volume: 18 start-page: 131 year: 2019 ident: 2021072112311424600_ref24 article-title: SDM6A: a web-based integrative machine-learning framework for predicting 6mA sites in the rice genome publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.08.011 – volume: 14 start-page: 234 year: 2019 ident: 2021072112311424600_ref54 article-title: A brief survey of machine learning methods in protein sub-golgi localization publication-title: Curr Bioinform doi: 10.2174/1574893613666181113131415 – volume: 16 start-page: 1316 year: 2019 ident: 2021072112311424600_ref20 article-title: Identifying Sigma70 promoters with novel pseudo nucleotide composition publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2666141 – start-page: 1 year: 2020 ident: 2021072112311424600_ref31 article-title: i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation publication-title: Plant Mol Biol – volume: 12 start-page: 52 year: 2017 ident: 2021072112311424600_ref46 article-title: Using quadratic discriminant analysis to predict protein secondary structure based on chemical shifts publication-title: Curr Bioinform doi: 10.2174/1574893611666160628074537 – year: 2020 ident: 2021072112311424600_ref53 article-title: Machine intelligence in peptide therapeutics: a next-generation tool for rapid disease screening publication-title: Med Res Rev doi: 10.1002/med.21658 – volume: 123 year: 2020 ident: 2021072112311424600_ref34 article-title: Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103899 – volume: 28 start-page: 1551 year: 2012 ident: 2021072112311424600_ref17 article-title: DeOri: a database of eukaryotic DNA replication origins publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts151 – volume: 17 start-page: 972 year: 2019 ident: 2021072112311424600_ref42 article-title: AtbPpred: a robust sequence-based prediction of anti-tubercular peptides using extremely randomized trees publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2019.06.024 – volume: 70 start-page: 876 year: 2007 ident: 2021072112311424600_ref2 article-title: DNA replication in the archaea publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00029-06 – volume: 16 start-page: 1231 year: 2018 ident: 2021072112311424600_ref61 article-title: Developing a multi-dose computational model for drug-induced hepatotoxicity prediction based on toxicogenomics data publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2018.2858756 – volume: 10 start-page: 1077 year: 2019 ident: 2021072112311424600_ref38 article-title: Gene expression value prediction based on XGBoost algorithm publication-title: Front Genet doi: 10.3389/fgene.2019.01077 – start-page: 1 year: 2020 ident: 2021072112311424600_ref57 article-title: Identifying G-protein coupled receptors using mixed-feature extraction methods and machine learning methods publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2983105 – year: 2019 ident: 2021072112311424600_ref73 article-title: ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides publication-title: Brief Bioinform doi: 10.1093/bib/bbz088 – start-page: 1–6 volume-title: BMC bioinformatics year: 2008 ident: 2021072112311424600_ref6 article-title: Ori-Finder: a web-based system for finding oriC s in unannotated bacterial genomes – year: 2019 ident: 2021072112311424600_ref8 article-title: γBOriS: identification of origins of replication in Gammaproteobacteria using motif-based publication-title: BioRxiv doi: 10.1101/597070 – volume: 8 year: 2019 ident: 2021072112311424600_ref23 article-title: 4mCpred-EL: an ensemble learning framework for identification of DNA N(4)-methylcytosine sites in the mouse genome publication-title: Cells doi: 10.3390/cells8111332 – volume: 624 start-page: 661 year: 2018 ident: 2021072112311424600_ref67 article-title: Feature selection approaches for predictive modelling of groundwater nitrate pollution: an evaluation of filters, embedded and wrapper methods publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.12.152 – year: 2020 ident: 2021072112311424600_ref72 article-title: Procleave: predicting protease-specific substrate cleavage sites by combining sequence and structural information publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2019.08.002 – volume: 41 start-page: 301 year: 1972 ident: 2021072112311424600_ref1 article-title: DNA replication publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.41.070172.001505 – volume-title: Oncotarget year: 2016 ident: 2021072112311424600_ref12 article-title: iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition doi: 10.18632/oncotarget.11975 – volume: 23 start-page: 100991 year: 2020 ident: 2021072112311424600_ref25 article-title: iDNA-MS: an integrated computational tool for detecting DNA modification sites in multiple genomes publication-title: iScience doi: 10.1016/j.isci.2020.100991 – volume: 141 start-page: 100 year: 2015 ident: 2021072112311424600_ref21 article-title: iORI-PseKNC: a predictor for identifying origin of replication with pseudo k-tuple nucleotide composition publication-title: Chemom Intel Lab Syst doi: 10.1016/j.chemolab.2014.12.011 – volume: 9 start-page: 1944 year: 2018 ident: 2021072112311424600_ref29 article-title: DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest publication-title: Oncotarget doi: 10.18632/oncotarget.23099 – volume: 21 start-page: 408 year: 2020 ident: 2021072112311424600_ref52 article-title: Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools publication-title: Brief Bioinform doi: 10.1093/bib/bby124 – volume: 11 start-page: 590 year: 2016 ident: 2021072112311424600_ref66 article-title: A classification method for microarrays based on diversity publication-title: Curr Bioinform doi: 10.2174/1574893609666140820224436 – year: 2020 ident: 2021072112311424600_ref18 article-title: Design powerful predictor for mRNA subcellular location prediction in Homo sapiens publication-title: Brief Bioinform doi: 10.1093/bib/bbz177 – volume: 34 start-page: 4007 year: 2018 ident: 2021072112311424600_ref59 article-title: ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty451 – volume: 50 start-page: 2502 year: 2020 ident: 2021072112311424600_ref77 article-title: A consensus community-based particle swarm optimization for dynamic community detection publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2938895 – volume: 17 start-page: 193 year: 2016 ident: 2021072112311424600_ref69 article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks publication-title: Brief Bioinform doi: 10.1093/bib/bbv033 – year: 2020 ident: 2021072112311424600_ref74 article-title: DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy publication-title: Brief Bioinform doi: 10.1093/bib/bbaa125 – volume: 6 start-page: 34817 year: 2016 ident: 2021072112311424600_ref14 article-title: Prediction of phosphothreonine sites in human proteins by fusing different features publication-title: Sci Rep doi: 10.1038/srep34817 – volume: 21 start-page: 408 year: 2020 ident: 2021072112311424600_ref44 article-title: Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools publication-title: Brief Bioinform doi: 10.1093/bib/bby124 – volume: 21 start-page: 11 year: 2020 ident: 2021072112311424600_ref60 article-title: CPPred-FL: a sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning publication-title: Brief Bioinform – volume: 36 start-page: 3028 year: 2020 ident: 2021072112311424600_ref65 article-title: StackCPPred: a stacking and pairwise energy content-based prediction of cell-penetrating peptides and their uptake efficiency publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa131 – start-page: 25–54 volume-title: Annu Rev Biochem year: 2013 ident: 2021072112311424600_ref5 article-title: Mechanisms for initiating cellular DNA replication – volume: 36 start-page: 3336 year: 2020 ident: 2021072112311424600_ref32 article-title: iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa155 – start-page: 482 volume-title: Front in microbiology year: 2014 ident: 2021072112311424600_ref7 article-title: Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes – volume: 16 start-page: 2466 year: 2019 ident: 2021072112311424600_ref55 article-title: Identification of hormone binding proteins based on machine learning methods publication-title: Math Biosci Eng doi: 10.3934/mbe.2019123 – year: 2020 ident: 2021072112311424600_ref71 article-title: Computational prediction and interpretation of both general and specific types of promoters in Escherichia coli by exploiting a stacked ensemble-learning framework publication-title: Brief Bioinform doi: 10.1093/bib/bbaa049 – volume-title: Advances in neural information processing systems year: 2017 ident: 2021072112311424600_ref15 article-title: A unified approach to interpreting model predictions – volume: 157 start-page: 752 year: 2020 ident: 2021072112311424600_ref30 article-title: i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the Rosaceae genome publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.12.009 – volume: 36 start-page: 3350 year: 2020 ident: 2021072112311424600_ref41 article-title: HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa160 – volume: 21 start-page: 6 year: 2020 ident: 2021072112311424600_ref70 article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics doi: 10.1186/s12864-019-6413-7 – volume: 35 start-page: 2075 year: 2019 ident: 2021072112311424600_ref22 article-title: Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty943 – volume: 12 start-page: 147 year: 2017 ident: 2021072112311424600_ref49 article-title: ExomeHMM: a hidden Markov model for detecting copy number variation using whole-exome sequencing data publication-title: Curr Bioinform doi: 10.2174/1574893611666160727160757 – volume: 35 start-page: 2395 year: 2019 ident: 2021072112311424600_ref64 article-title: Protein–protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty995 – volume: 11 start-page: 192 year: 2014 ident: 2021072112311424600_ref62 article-title: Improved and promising identification of human microRNAs by incorporating a high-quality negative set publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2013.146 – volume: 35 start-page: 1469 year: 2019 ident: 2021072112311424600_ref47 article-title: iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty827 – volume: 486 year: 2020 ident: 2021072112311424600_ref63 article-title: SGL-SVM: a novel method for tumor classification via support vector machine with sparse group Lasso publication-title: J Theor Biol doi: 10.1016/j.jtbi.2019.110098 – volume: 36 start-page: 1429 year: 2020 ident: 2021072112311424600_ref36 article-title: BCrystal: an interpretable sequence-based protein crystallization predictor publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz762 – volume: 12 start-page: 480 year: 2017 ident: 2021072112311424600_ref50 article-title: MetalExplorer, a bioinformatics tool for the improved prediction of eight types of metal-binding sites using a random forest algorithm with two-step feature selection publication-title: Curr Bioinform doi: 10.2174/2468422806666160618091522 – volume: 9 start-page: 2 year: 2014 ident: 2021072112311424600_ref58 article-title: A 2-layer web server for enzyme and multifunctional enzyme identification publication-title: Curr Bioinform doi: 10.2174/1574893608999140109121259 – volume: 21 year: 2020 ident: 2021072112311424600_ref19 article-title: A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae publication-title: Brief Bioinform doi: 10.1093/bib/bbz123 – volume: 15 start-page: 55 year: 2016 ident: 2021072112311424600_ref48 article-title: Similarity computation strategies in the microRNA-disease network: a survey publication-title: Brief Funct Genomics – volume: 69 start-page: 497 year: 2006 ident: 2021072112311424600_ref4 article-title: DNA replication fidelity publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.69.1.497 – volume: 36 start-page: 704 year: 2020 ident: 2021072112311424600_ref68 article-title: PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz629 – volume: 36 start-page: 1037 year: 2020 ident: 2021072112311424600_ref51 article-title: Identifying enhancer–promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz694 – volume-title: Bioinformatics year: 2018 ident: 2021072112311424600_ref10 article-title: iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC – year: 2018 ident: 2021072112311424600_ref16 article-title: Consistent individualized feature attribution for tree ensembles – volume: 35 start-page: 4930 year: 2019 ident: 2021072112311424600_ref28 article-title: Iterative feature representations improve N4-methylcytosine site prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz408 – volume-title: Brief Bioinform year: 2020 ident: 2021072112311424600_ref9 article-title: A computational platform to identify origins of replication sites in eukaryotes doi: 10.1093/bib/bbaa017 – volume: 59 start-page: 139 year: 2015 ident: 2021072112311424600_ref3 article-title: Reconsidering DNA polymerases at the replication fork in eukaryotes publication-title: Mol cell doi: 10.1016/j.molcel.2015.07.004 – volume: 15 start-page: 235 year: 2020 ident: 2021072112311424600_ref45 article-title: Citrullination site prediction by incorporating sequence coupled effects into PseAAC and resolving data imbalance issue publication-title: Curr Bioinform doi: 10.2174/1574893614666191202152328 – volume: 16 start-page: 733 year: 2019 ident: 2021072112311424600_ref27 article-title: Meta-4mCpred: a sequence-based meta-predictor for accurate DNA 4mC site prediction using effective feature representation publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.04.019 – volume-title: Biosystems year: 2018 ident: 2021072112311424600_ref11 article-title: Prediction of replication sites in Saccharomyces cerevisiae genome using DNA segment properties: Multi-view ensemble learning (MEL) approach doi: 10.1016/j.biosystems.2017.12.005 – volume: 13 start-page: 253 year: 2018 ident: 2021072112311424600_ref76 article-title: Drug and nondrug classification based on deep learning with various feature selection strategies publication-title: Curr Bioinform doi: 10.2174/1574893612666170125124538 – year: 2020 ident: 2021072112311424600_ref37 article-title: DeepTorrent: a deep learning-based approach for predicting DNA N4-methylcytosine sites publication-title: Brief Bioinform doi: 10.1093/bib/bbaa124 – start-page: 785 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2021072112311424600_ref33 doi: 10.1145/2939672.2939785 – volume: 17 start-page: 337 year: 2019 ident: 2021072112311424600_ref56 article-title: iProEP: a computational predictor for predicting promoter publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.05.028 – volume: 18 start-page: 1084 year: 2020 ident: 2021072112311424600_ref26 article-title: Computational identification of N6-methyladenosine sites in multiple tissues of mammals publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2020.04.015 |
SSID | ssj0020781 |
Score | 2.6043527 |
Snippet | Abstract
Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication... Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process.... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Cell culture Computer applications Deoxyribonucleic acid DNA DNA biosynthesis Eukaryotes Learning algorithms Machine learning Nucleic acids Physicochemical properties Prediction models Replication Replication origins Training |
Title | Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework |
URI | https://www.proquest.com/docview/2590043872 https://www.proquest.com/docview/2458037301 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRf-J0aoQ9CWE1SZv0UcQxBPVlwt5K0lxhKN3otof9Ff7L5ta0MBn6WHL9Qa_pXXLfdx8hfR_CjABjWGy0ZLIQglkbAdO5f2zB8wgkspFf35LRh3yZxJMAkF3sKOGnYmCndmCtMVwhl9yHX2yRP36ftOsq7FdTk4gUw-7ugYb369ytwLNFZmv-vpuQMjwihyEXpI-1847JHpQnZL9Wh1yfku9acSHs1tF5hTUVPKB-9U-nW2hBOiso7sEzZE4i-odW0Famaa1-RbFQvKBIKKENjpDC6tNU6xkO2DUFRORNEQlNfdaY4za6tw_wrTMyHj6Pn0Ys6CewXPB4ybjlDpwShYxR90CYRBQ-fTEYxR98TFKORzbROjfSgCt0bAqjbKK4S61f6Yhz0ilnJVwQqlIHhVAR8NT5ixUp5BZcwo01Wkkdd8l9826zPPQWR4mLr6yucYvMOyILjuiSfms8r1tq7Da79U7626LXODALM2-RcZRBlUIr3iV37bCfM-gEU8Js5W1krCOB_7bLf29yRQ44wlg2CN0e6SyrFVz7PGRpbzZf4Q9s7ODV |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+prediction+and+interpretation+of+cell-specific+replication+origin+sites+from+multiple+eukaryotes+by+exploiting+stacking+framework&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wei%2C+Leyi&rft.au=He%2C+Wenjia&rft.au=Malik%2C+Adeel&rft.au=Su%2C+Ran&rft.date=2021-07-01&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa275&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |