Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework

Abstract Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs’ distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 4
Main Authors Wei, Leyi, He, Wenjia, Malik, Adeel, Su, Ran, Cui, Lizhen, Manavalan, Balachandran
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.07.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs’ distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs.
AbstractList Abstract Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs’ distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs.
Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs' distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs.Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs' distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs.
Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs’ distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs.
Author He, Wenjia
Su, Ran
Wei, Leyi
Malik, Adeel
Manavalan, Balachandran
Cui, Lizhen
Author_xml – sequence: 1
  givenname: Leyi
  orcidid: 0000-0003-1444-190X
  surname: Wei
  fullname: Wei, Leyi
  email: weileyi@sdu.edu.cn
– sequence: 2
  givenname: Wenjia
  surname: He
  fullname: He, Wenjia
  email: 201800301005@mail.sdu.edu.cn
– sequence: 3
  givenname: Adeel
  surname: Malik
  fullname: Malik, Adeel
  email: adeel@procarb.org
– sequence: 4
  givenname: Ran
  surname: Su
  fullname: Su, Ran
  email: ran.su@tju.edu.cn
– sequence: 5
  givenname: Lizhen
  surname: Cui
  fullname: Cui, Lizhen
  email: clz@sdu.edu.cn
– sequence: 6
  givenname: Balachandran
  orcidid: 0000-0003-0697-9419
  surname: Manavalan
  fullname: Manavalan, Balachandran
  email: bala@ajou.ac.kr
BookMark eNp9kc1q3TAQhUVJoUnaVV9AUCiB4ka_lu8yXNImEMgmezOSpaBc2VIlmSZP0VeOje8q0KxmRuebAZ1zhk6mOFmEvlLyk5Idv9ReX2oNwJT8gE6pUKoRRIqTtW9VI0XLP6GzUp4IYUR19BT928cxzRWqjxMEnLIdvFkHDNOA_VRtXt42HUeHjQ2hKcka77zB2abgzVHM_tFPuPhqC3Y5jnicQ_UpWGznA-SXuAr6BdvnFKKvfnrEpYI5rI3LMNq_MR8-o48OQrFfjvUcPfy6ftjfNHf3v2_3V3eN4UzWhmk22EFxJyRIQji03EkqgTFBqKKdGhjRbdcZEGAH10lwoHSr2LDTpGv5ObrYzqYc_8y21H70Zf0bTDbOpWdCdoQrTuiCfnuDPsU5L2YtlNwRInin2ELRjTI5lpKt643fXKsZfOgp6deE-iWh_pjQsvPjzU7Kflyc-g_9faPjnN4FXwH2H6a0
CitedBy_id crossref_primary_10_1016_j_ymeth_2021_12_001
crossref_primary_10_1021_acs_jcim_4c01034
crossref_primary_10_1007_s11704_021_1015_3
crossref_primary_10_1016_j_ab_2024_115648
crossref_primary_10_1016_j_ymeth_2025_03_007
crossref_primary_10_1186_s44342_024_00026_z
crossref_primary_10_1093_bib_bbab376
crossref_primary_10_3390_ijms252413674
crossref_primary_10_1093_bioinformatics_btab560
crossref_primary_10_1093_bib_bbad432
crossref_primary_10_1016_j_heliyon_2023_e23187
crossref_primary_10_1155_2021_6627650
crossref_primary_10_1186_s12915_025_02148_4
crossref_primary_10_1016_j_csbj_2022_08_053
crossref_primary_10_1093_bib_bbab252
crossref_primary_10_1093_bioinformatics_btad664
crossref_primary_10_1186_s12967_021_03084_x
crossref_primary_10_1093_bib_bbab172
crossref_primary_10_1016_j_csbj_2022_07_043
crossref_primary_10_1016_j_jmb_2022_167549
crossref_primary_10_3389_fgene_2021_745224
crossref_primary_10_1016_j_ymeth_2024_05_004
crossref_primary_10_3389_fcell_2021_803608
crossref_primary_10_3389_fmicb_2023_1170785
crossref_primary_10_2174_1389202923666220214122506
crossref_primary_10_1093_bib_bbab244
crossref_primary_10_1093_bib_bbab486
crossref_primary_10_1093_bib_bbab245
crossref_primary_10_1093_bib_bbab242
crossref_primary_10_3390_ijms25189844
crossref_primary_10_1186_s12859_025_06033_3
crossref_primary_10_1016_j_compbiomed_2022_105577
crossref_primary_10_1080_1062936X_2021_1895884
crossref_primary_10_3390_ijms23179518
crossref_primary_10_1093_bib_bbaa304
crossref_primary_10_1371_journal_pcbi_1012544
crossref_primary_10_1093_bib_bbab556
crossref_primary_10_3389_fmed_2025_1529335
crossref_primary_10_1016_j_ijbiomac_2025_142255
crossref_primary_10_3934_mbe_2023954
crossref_primary_10_1049_syb2_12104
crossref_primary_10_3389_fgene_2022_1092822
crossref_primary_10_1016_j_ijbiomac_2023_125774
crossref_primary_10_1093_bib_bbad170
crossref_primary_10_1016_j_compbiomed_2024_108166
crossref_primary_10_1093_bioinformatics_btac715
crossref_primary_10_2174_1566523221666210622164133
crossref_primary_10_1109_TAI_2022_3187060
crossref_primary_10_1093_bib_bbac001
crossref_primary_10_1093_bib_bbac243
crossref_primary_10_1371_journal_pcbi_1011370
crossref_primary_10_1016_j_ymeth_2024_08_003
crossref_primary_10_1016_j_compbiomed_2022_105605
crossref_primary_10_1016_j_csbj_2021_12_014
crossref_primary_10_1016_j_jmb_2024_168853
crossref_primary_10_1093_bib_bbac240
crossref_primary_10_1093_bib_bbad251
crossref_primary_10_1109_JBHI_2024_3349584
crossref_primary_10_1016_j_ijbiomac_2024_133085
crossref_primary_10_1186_s12859_022_04821_9
crossref_primary_10_1007_s11432_024_4147_8
crossref_primary_10_1016_j_jmb_2022_167604
crossref_primary_10_3934_mbe_2021382
crossref_primary_10_1016_j_ymthe_2022_05_001
crossref_primary_10_1016_j_ijbiomac_2023_123622
crossref_primary_10_1016_j_gene_2021_145643
crossref_primary_10_1109_TCBB_2023_3272400
crossref_primary_10_1093_gpbjnl_qzae076
crossref_primary_10_3389_fgene_2023_1294159
crossref_primary_10_3389_fgene_2022_984068
crossref_primary_10_3390_ijms22052704
crossref_primary_10_34133_research_0019
crossref_primary_10_1016_j_ymeth_2022_01_004
crossref_primary_10_1186_s12915_024_02030_9
crossref_primary_10_1016_j_csbj_2022_01_019
crossref_primary_10_1007_s12539_024_00640_z
crossref_primary_10_1155_2022_7493834
crossref_primary_10_3389_fcell_2021_664669
crossref_primary_10_3389_fgene_2022_887894
crossref_primary_10_3390_app11156894
crossref_primary_10_1016_j_compbiomed_2022_105911
crossref_primary_10_1016_j_compbiomed_2024_108859
crossref_primary_10_3390_ijms22042120
crossref_primary_10_1093_bioinformatics_btaf088
crossref_primary_10_2174_0929867328666210920103140
crossref_primary_10_2174_0929867328666210804090224
crossref_primary_10_3934_mbe_2022166
crossref_primary_10_1016_j_csbj_2021_07_013
crossref_primary_10_1016_j_compbiomed_2023_107355
crossref_primary_10_3934_mbe_2022362
crossref_primary_10_1109_JBHI_2024_3377362
crossref_primary_10_3389_fmed_2023_1281880
crossref_primary_10_3390_app11167731
crossref_primary_10_1016_j_ymeth_2024_09_017
Cites_doi 10.1109/TCYB.2017.2779450
10.2174/1574893614666181212102749
10.2174/1574893612666170221152848
10.1007/s00438-019-01600-9
10.1093/bioinformatics/btz734
10.1093/bioinformatics/bty1047
10.1016/j.omtn.2019.08.011
10.2174/1574893613666181113131415
10.1109/TCBB.2017.2666141
10.2174/1574893611666160628074537
10.1002/med.21658
10.1016/j.compbiomed.2020.103899
10.1093/bioinformatics/bts151
10.1016/j.csbj.2019.06.024
10.1128/MMBR.00029-06
10.1109/TCBB.2018.2858756
10.3389/fgene.2019.01077
10.1109/ACCESS.2020.2983105
10.1093/bib/bbz088
10.1101/597070
10.3390/cells8111332
10.1016/j.scitotenv.2017.12.152
10.1016/j.gpb.2019.08.002
10.1146/annurev.bi.41.070172.001505
10.18632/oncotarget.11975
10.1016/j.isci.2020.100991
10.1016/j.chemolab.2014.12.011
10.18632/oncotarget.23099
10.1093/bib/bby124
10.2174/1574893609666140820224436
10.1093/bib/bbz177
10.1093/bioinformatics/bty451
10.1109/TCYB.2019.2938895
10.1093/bib/bbv033
10.1093/bib/bbaa125
10.1038/srep34817
10.1093/bioinformatics/btaa131
10.1093/bioinformatics/btaa155
10.3934/mbe.2019123
10.1093/bib/bbaa049
10.1016/j.ijbiomac.2019.12.009
10.1093/bioinformatics/btaa160
10.1186/s12864-019-6413-7
10.1093/bioinformatics/bty943
10.2174/1574893611666160727160757
10.1093/bioinformatics/bty995
10.1109/TCBB.2013.146
10.1093/bioinformatics/bty827
10.1016/j.jtbi.2019.110098
10.1093/bioinformatics/btz762
10.2174/2468422806666160618091522
10.2174/1574893608999140109121259
10.1093/bib/bbz123
10.1146/annurev.biochem.69.1.497
10.1093/bioinformatics/btz629
10.1093/bioinformatics/btz694
10.1093/bioinformatics/btz408
10.1093/bib/bbaa017
10.1016/j.molcel.2015.07.004
10.2174/1574893614666191202152328
10.1016/j.omtn.2019.04.019
10.1016/j.biosystems.2017.12.005
10.2174/1574893612666170125124538
10.1093/bib/bbaa124
10.1145/2939672.2939785
10.1016/j.omtn.2019.05.028
10.1016/j.csbj.2020.04.015
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbaa275
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 10_1093_bib_bbaa275
10.1093/bib/bbaa275
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c325t-2b2ded73f45a5003a63f515a224017187d20b688ca4aedf85afa7b672d9b0863
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Jul 10 22:04:46 EDT 2025
Tue Jul 01 10:43:17 EDT 2025
Tue Jul 01 03:39:31 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Wed Aug 28 03:20:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords model interpretability
eXtreme Gradient Boosting
feature extraction
stacking strategy
origin of replication site
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-2b2ded73f45a5003a63f515a224017187d20b688ca4aedf85afa7b672d9b0863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0697-9419
0000-0003-1444-190X
PQID 2590043872
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2458037301
proquest_journals_2590043872
crossref_citationtrail_10_1093_bib_bbaa275
crossref_primary_10_1093_bib_bbaa275
oup_primary_10_1093_bib_bbaa275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Dao (2021072112311424600_ref22) 2019; 35
Guo (2021072112311424600_ref49) 2017; 12
Yang (2021072112311424600_ref19) 2020; 21
Lai (2021072112311424600_ref56) 2019; 17
Hasan (2021072112311424600_ref31) 2020
Yu (2021072112311424600_ref40) 2020; 36
Yuan (2021072112311424600_ref46) 2017; 12
Basith (2021072112311424600_ref53) 2020
Li (2021072112311424600_ref21) 2015; 141
Wang (2021072112311424600_ref64) 2019; 35
Xu (2021072112311424600_ref78) 2019; 49
Chen (2021072112311424600_ref33) 2016
Gao (2021072112311424600_ref6) 2008
Wang (2021072112311424600_ref35) 2020; 13
Hasan (2021072112311424600_ref41) 2020; 36
Fu (2021072112311424600_ref65) 2020; 36
Qiang (2021072112311424600_ref60) 2020; 21
Sperlea (2021072112311424600_ref8) 2019
Liu (2021072112311424600_ref32) 2020; 36
Lundberg (2021072112311424600_ref16) 2018
Feng (2021072112311424600_ref47) 2019; 35
Chicco (2021072112311424600_ref70) 2020; 21
Wei (2021072112311424600_ref59) 2018; 34
Zhang (2021072112311424600_ref68) 2020; 36
Klein (2021072112311424600_ref1) 1972; 41
Elbasir (2021072112311424600_ref36) 2020; 36
Hong (2021072112311424600_ref51) 2020; 36
Su (2021072112311424600_ref44) 2020; 21
Zeng (2021072112311424600_ref69) 2016; 17
Xie (2021072112311424600_ref74) 2020
Barry (2021072112311424600_ref2) 2007; 70
Manavalan (2021072112311424600_ref42) 2019; 17
Hasan (2021072112311424600_ref45) 2020; 15
Ao (2021072112311424600_ref57) 2020
Dao (2021072112311424600_ref9) 2020
Li (2021072112311424600_ref72) 2020
Liu (2021072112311424600_ref39) 2020; 295
Wei (2021072112311424600_ref62) 2014; 11
Lin (2021072112311424600_ref20) 2019; 16
Li (2021072112311424600_ref38) 2019; 10
Manavalan (2021072112311424600_ref29) 2018; 9
Su (2021072112311424600_ref52) 2020; 21
Liu (2021072112311424600_ref37) 2020
Rao (2021072112311424600_ref73) 2019
Manavalan (2021072112311424600_ref43) 2019; 35
Zhang (2021072112311424600_ref13) 2019; 14
Hasan (2021072112311424600_ref30) 2020; 157
Manavalan (2021072112311424600_ref27) 2019; 16
Zhang (2021072112311424600_ref12) 2016
Singh (2021072112311424600_ref11) 2018
Basith (2021072112311424600_ref24) 2019; 18
Chen (2021072112311424600_ref34) 2020; 123
Manavalan (2021072112311424600_ref23) 2019; 8
Tan (2021072112311424600_ref55) 2019; 16
Wei (2021072112311424600_ref28) 2019; 35
Long (2021072112311424600_ref75) 2017; 12
Yu (2021072112311424600_ref76) 2018; 13
(2021072112311424600_ref5) 2013
Rodriguez-Galiano (2021072112311424600_ref67) 2018; 624
Lv (2021072112311424600_ref25) 2020; 23
Gao (2021072112311424600_ref17) 2012; 28
Luo (2021072112311424600_ref7) 2014
Song (2021072112311424600_ref50) 2017; 12
Huo (2021072112311424600_ref63) 2020; 486
Yang (2021072112311424600_ref54) 2019; 14
Zhang (2021072112311424600_ref18) 2020
Zhao (2021072112311424600_ref14) 2016; 6
Wei (2021072112311424600_ref58) 2014; 9
Li (2021072112311424600_ref71) 2020
Zou (2021072112311424600_ref48) 2016; 15
Wang (2021072112311424600_ref66) 2016; 11
Su (2021072112311424600_ref61) 2018; 16
Liu (2021072112311424600_ref10) 2018
Kunkel (2021072112311424600_ref4) 2006; 69
(2021072112311424600_ref15) 2017
Dao (2021072112311424600_ref26) 2020; 18
Zeng (2021072112311424600_ref77) 2020; 50
(2021072112311424600_ref3) 2015; 59
References_xml – volume: 49
  start-page: 517
  year: 2019
  ident: 2021072112311424600_ref78
  article-title: MOEA/HD: a multiobjective evolutionary algorithm based on hierarchical decomposition
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2779450
– volume: 14
  start-page: 190
  year: 2019
  ident: 2021072112311424600_ref13
  article-title: A review on the recent developments of sequence-based protein feature extraction methods
  publication-title: Curr Bioinform
  doi: 10.2174/1574893614666181212102749
– volume: 12
  start-page: 233
  year: 2017
  ident: 2021072112311424600_ref75
  article-title: Deep convolutional neural networks for predicting hydroxyproline in proteins
  publication-title: Curr Bioinform
  doi: 10.2174/1574893612666170221152848
– volume: 295
  start-page: 13
  year: 2020
  ident: 2021072112311424600_ref39
  article-title: XG-PseU: an eXtreme Gradient Boosting based method for identifying pseudouridine sites
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-019-01600-9
– volume: 13
  start-page: 1
  year: 2020
  ident: 2021072112311424600_ref35
  article-title: SulSite-GTB: identification of protein S-sulfenylation sites by fusing multiple feature information and gradient tree boosting
  publication-title: Neural Comput Applic
– volume: 36
  start-page: 1074
  year: 2020
  ident: 2021072112311424600_ref40
  article-title: SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme Gradient Boosting
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz734
– volume: 35
  start-page: 2757
  year: 2019
  ident: 2021072112311424600_ref43
  article-title: mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1047
– volume: 18
  start-page: 131
  year: 2019
  ident: 2021072112311424600_ref24
  article-title: SDM6A: a web-based integrative machine-learning framework for predicting 6mA sites in the rice genome
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.08.011
– volume: 14
  start-page: 234
  year: 2019
  ident: 2021072112311424600_ref54
  article-title: A brief survey of machine learning methods in protein sub-golgi localization
  publication-title: Curr Bioinform
  doi: 10.2174/1574893613666181113131415
– volume: 16
  start-page: 1316
  year: 2019
  ident: 2021072112311424600_ref20
  article-title: Identifying Sigma70 promoters with novel pseudo nucleotide composition
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2666141
– start-page: 1
  year: 2020
  ident: 2021072112311424600_ref31
  article-title: i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation
  publication-title: Plant Mol Biol
– volume: 12
  start-page: 52
  year: 2017
  ident: 2021072112311424600_ref46
  article-title: Using quadratic discriminant analysis to predict protein secondary structure based on chemical shifts
  publication-title: Curr Bioinform
  doi: 10.2174/1574893611666160628074537
– year: 2020
  ident: 2021072112311424600_ref53
  article-title: Machine intelligence in peptide therapeutics: a next-generation tool for rapid disease screening
  publication-title: Med Res Rev
  doi: 10.1002/med.21658
– volume: 123
  year: 2020
  ident: 2021072112311424600_ref34
  article-title: Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103899
– volume: 28
  start-page: 1551
  year: 2012
  ident: 2021072112311424600_ref17
  article-title: DeOri: a database of eukaryotic DNA replication origins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts151
– volume: 17
  start-page: 972
  year: 2019
  ident: 2021072112311424600_ref42
  article-title: AtbPpred: a robust sequence-based prediction of anti-tubercular peptides using extremely randomized trees
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2019.06.024
– volume: 70
  start-page: 876
  year: 2007
  ident: 2021072112311424600_ref2
  article-title: DNA replication in the archaea
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00029-06
– volume: 16
  start-page: 1231
  year: 2018
  ident: 2021072112311424600_ref61
  article-title: Developing a multi-dose computational model for drug-induced hepatotoxicity prediction based on toxicogenomics data
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2018.2858756
– volume: 10
  start-page: 1077
  year: 2019
  ident: 2021072112311424600_ref38
  article-title: Gene expression value prediction based on XGBoost algorithm
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.01077
– start-page: 1
  year: 2020
  ident: 2021072112311424600_ref57
  article-title: Identifying G-protein coupled receptors using mixed-feature extraction methods and machine learning methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983105
– year: 2019
  ident: 2021072112311424600_ref73
  article-title: ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz088
– start-page: 1–6
  volume-title: BMC bioinformatics
  year: 2008
  ident: 2021072112311424600_ref6
  article-title: Ori-Finder: a web-based system for finding oriC s in unannotated bacterial genomes
– year: 2019
  ident: 2021072112311424600_ref8
  article-title: γBOriS: identification of origins of replication in Gammaproteobacteria using motif-based
  publication-title: BioRxiv
  doi: 10.1101/597070
– volume: 8
  year: 2019
  ident: 2021072112311424600_ref23
  article-title: 4mCpred-EL: an ensemble learning framework for identification of DNA N(4)-methylcytosine sites in the mouse genome
  publication-title: Cells
  doi: 10.3390/cells8111332
– volume: 624
  start-page: 661
  year: 2018
  ident: 2021072112311424600_ref67
  article-title: Feature selection approaches for predictive modelling of groundwater nitrate pollution: an evaluation of filters, embedded and wrapper methods
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.12.152
– year: 2020
  ident: 2021072112311424600_ref72
  article-title: Procleave: predicting protease-specific substrate cleavage sites by combining sequence and structural information
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2019.08.002
– volume: 41
  start-page: 301
  year: 1972
  ident: 2021072112311424600_ref1
  article-title: DNA replication
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.41.070172.001505
– volume-title: Oncotarget
  year: 2016
  ident: 2021072112311424600_ref12
  article-title: iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition
  doi: 10.18632/oncotarget.11975
– volume: 23
  start-page: 100991
  year: 2020
  ident: 2021072112311424600_ref25
  article-title: iDNA-MS: an integrated computational tool for detecting DNA modification sites in multiple genomes
  publication-title: iScience
  doi: 10.1016/j.isci.2020.100991
– volume: 141
  start-page: 100
  year: 2015
  ident: 2021072112311424600_ref21
  article-title: iORI-PseKNC: a predictor for identifying origin of replication with pseudo k-tuple nucleotide composition
  publication-title: Chemom Intel Lab Syst
  doi: 10.1016/j.chemolab.2014.12.011
– volume: 9
  start-page: 1944
  year: 2018
  ident: 2021072112311424600_ref29
  article-title: DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23099
– volume: 21
  start-page: 408
  year: 2020
  ident: 2021072112311424600_ref52
  article-title: Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby124
– volume: 11
  start-page: 590
  year: 2016
  ident: 2021072112311424600_ref66
  article-title: A classification method for microarrays based on diversity
  publication-title: Curr Bioinform
  doi: 10.2174/1574893609666140820224436
– year: 2020
  ident: 2021072112311424600_ref18
  article-title: Design powerful predictor for mRNA subcellular location prediction in Homo sapiens
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz177
– volume: 34
  start-page: 4007
  year: 2018
  ident: 2021072112311424600_ref59
  article-title: ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty451
– volume: 50
  start-page: 2502
  year: 2020
  ident: 2021072112311424600_ref77
  article-title: A consensus community-based particle swarm optimization for dynamic community detection
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2938895
– volume: 17
  start-page: 193
  year: 2016
  ident: 2021072112311424600_ref69
  article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv033
– year: 2020
  ident: 2021072112311424600_ref74
  article-title: DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa125
– volume: 6
  start-page: 34817
  year: 2016
  ident: 2021072112311424600_ref14
  article-title: Prediction of phosphothreonine sites in human proteins by fusing different features
  publication-title: Sci Rep
  doi: 10.1038/srep34817
– volume: 21
  start-page: 408
  year: 2020
  ident: 2021072112311424600_ref44
  article-title: Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby124
– volume: 21
  start-page: 11
  year: 2020
  ident: 2021072112311424600_ref60
  article-title: CPPred-FL: a sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning
  publication-title: Brief Bioinform
– volume: 36
  start-page: 3028
  year: 2020
  ident: 2021072112311424600_ref65
  article-title: StackCPPred: a stacking and pairwise energy content-based prediction of cell-penetrating peptides and their uptake efficiency
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa131
– start-page: 25–54
  volume-title: Annu Rev Biochem
  year: 2013
  ident: 2021072112311424600_ref5
  article-title: Mechanisms for initiating cellular DNA replication
– volume: 36
  start-page: 3336
  year: 2020
  ident: 2021072112311424600_ref32
  article-title: iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa155
– start-page: 482
  volume-title: Front in microbiology
  year: 2014
  ident: 2021072112311424600_ref7
  article-title: Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes
– volume: 16
  start-page: 2466
  year: 2019
  ident: 2021072112311424600_ref55
  article-title: Identification of hormone binding proteins based on machine learning methods
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2019123
– year: 2020
  ident: 2021072112311424600_ref71
  article-title: Computational prediction and interpretation of both general and specific types of promoters in Escherichia coli by exploiting a stacked ensemble-learning framework
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa049
– volume-title: Advances in neural information processing systems
  year: 2017
  ident: 2021072112311424600_ref15
  article-title: A unified approach to interpreting model predictions
– volume: 157
  start-page: 752
  year: 2020
  ident: 2021072112311424600_ref30
  article-title: i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the Rosaceae genome
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.12.009
– volume: 36
  start-page: 3350
  year: 2020
  ident: 2021072112311424600_ref41
  article-title: HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa160
– volume: 21
  start-page: 6
  year: 2020
  ident: 2021072112311424600_ref70
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– volume: 35
  start-page: 2075
  year: 2019
  ident: 2021072112311424600_ref22
  article-title: Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty943
– volume: 12
  start-page: 147
  year: 2017
  ident: 2021072112311424600_ref49
  article-title: ExomeHMM: a hidden Markov model for detecting copy number variation using whole-exome sequencing data
  publication-title: Curr Bioinform
  doi: 10.2174/1574893611666160727160757
– volume: 35
  start-page: 2395
  year: 2019
  ident: 2021072112311424600_ref64
  article-title: Protein–protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty995
– volume: 11
  start-page: 192
  year: 2014
  ident: 2021072112311424600_ref62
  article-title: Improved and promising identification of human microRNAs by incorporating a high-quality negative set
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2013.146
– volume: 35
  start-page: 1469
  year: 2019
  ident: 2021072112311424600_ref47
  article-title: iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty827
– volume: 486
  year: 2020
  ident: 2021072112311424600_ref63
  article-title: SGL-SVM: a novel method for tumor classification via support vector machine with sparse group Lasso
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2019.110098
– volume: 36
  start-page: 1429
  year: 2020
  ident: 2021072112311424600_ref36
  article-title: BCrystal: an interpretable sequence-based protein crystallization predictor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz762
– volume: 12
  start-page: 480
  year: 2017
  ident: 2021072112311424600_ref50
  article-title: MetalExplorer, a bioinformatics tool for the improved prediction of eight types of metal-binding sites using a random forest algorithm with two-step feature selection
  publication-title: Curr Bioinform
  doi: 10.2174/2468422806666160618091522
– volume: 9
  start-page: 2
  year: 2014
  ident: 2021072112311424600_ref58
  article-title: A 2-layer web server for enzyme and multifunctional enzyme identification
  publication-title: Curr Bioinform
  doi: 10.2174/1574893608999140109121259
– volume: 21
  year: 2020
  ident: 2021072112311424600_ref19
  article-title: A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz123
– volume: 15
  start-page: 55
  year: 2016
  ident: 2021072112311424600_ref48
  article-title: Similarity computation strategies in the microRNA-disease network: a survey
  publication-title: Brief Funct Genomics
– volume: 69
  start-page: 497
  year: 2006
  ident: 2021072112311424600_ref4
  article-title: DNA replication fidelity
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.69.1.497
– volume: 36
  start-page: 704
  year: 2020
  ident: 2021072112311424600_ref68
  article-title: PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz629
– volume: 36
  start-page: 1037
  year: 2020
  ident: 2021072112311424600_ref51
  article-title: Identifying enhancer–promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz694
– volume-title: Bioinformatics
  year: 2018
  ident: 2021072112311424600_ref10
  article-title: iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC
– year: 2018
  ident: 2021072112311424600_ref16
  article-title: Consistent individualized feature attribution for tree ensembles
– volume: 35
  start-page: 4930
  year: 2019
  ident: 2021072112311424600_ref28
  article-title: Iterative feature representations improve N4-methylcytosine site prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz408
– volume-title: Brief Bioinform
  year: 2020
  ident: 2021072112311424600_ref9
  article-title: A computational platform to identify origins of replication sites in eukaryotes
  doi: 10.1093/bib/bbaa017
– volume: 59
  start-page: 139
  year: 2015
  ident: 2021072112311424600_ref3
  article-title: Reconsidering DNA polymerases at the replication fork in eukaryotes
  publication-title: Mol cell
  doi: 10.1016/j.molcel.2015.07.004
– volume: 15
  start-page: 235
  year: 2020
  ident: 2021072112311424600_ref45
  article-title: Citrullination site prediction by incorporating sequence coupled effects into PseAAC and resolving data imbalance issue
  publication-title: Curr Bioinform
  doi: 10.2174/1574893614666191202152328
– volume: 16
  start-page: 733
  year: 2019
  ident: 2021072112311424600_ref27
  article-title: Meta-4mCpred: a sequence-based meta-predictor for accurate DNA 4mC site prediction using effective feature representation
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.04.019
– volume-title: Biosystems
  year: 2018
  ident: 2021072112311424600_ref11
  article-title: Prediction of replication sites in Saccharomyces cerevisiae genome using DNA segment properties: Multi-view ensemble learning (MEL) approach
  doi: 10.1016/j.biosystems.2017.12.005
– volume: 13
  start-page: 253
  year: 2018
  ident: 2021072112311424600_ref76
  article-title: Drug and nondrug classification based on deep learning with various feature selection strategies
  publication-title: Curr Bioinform
  doi: 10.2174/1574893612666170125124538
– year: 2020
  ident: 2021072112311424600_ref37
  article-title: DeepTorrent: a deep learning-based approach for predicting DNA N4-methylcytosine sites
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa124
– start-page: 785
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2021072112311424600_ref33
  doi: 10.1145/2939672.2939785
– volume: 17
  start-page: 337
  year: 2019
  ident: 2021072112311424600_ref56
  article-title: iProEP: a computational predictor for predicting promoter
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.05.028
– volume: 18
  start-page: 1084
  year: 2020
  ident: 2021072112311424600_ref26
  article-title: Computational identification of N6-methyladenosine sites in multiple tissues of mammals
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2020.04.015
SSID ssj0020781
Score 2.6043527
Snippet Abstract Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication...
Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process....
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Cell culture
Computer applications
Deoxyribonucleic acid
DNA
DNA biosynthesis
Eukaryotes
Learning algorithms
Machine learning
Nucleic acids
Physicochemical properties
Prediction models
Replication
Replication origins
Training
Title Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework
URI https://www.proquest.com/docview/2590043872
https://www.proquest.com/docview/2458037301
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRf-J0aoQ9CWE1SZv0UcQxBPVlwt5K0lxhKN3otof9Ff7L5ta0MBn6WHL9Qa_pXXLfdx8hfR_CjABjWGy0ZLIQglkbAdO5f2zB8wgkspFf35LRh3yZxJMAkF3sKOGnYmCndmCtMVwhl9yHX2yRP36ftOsq7FdTk4gUw-7ugYb369ytwLNFZmv-vpuQMjwihyEXpI-1847JHpQnZL9Wh1yfku9acSHs1tF5hTUVPKB-9U-nW2hBOiso7sEzZE4i-odW0Famaa1-RbFQvKBIKKENjpDC6tNU6xkO2DUFRORNEQlNfdaY4za6tw_wrTMyHj6Pn0Ys6CewXPB4ybjlDpwShYxR90CYRBQ-fTEYxR98TFKORzbROjfSgCt0bAqjbKK4S61f6Yhz0ilnJVwQqlIHhVAR8NT5ixUp5BZcwo01Wkkdd8l9826zPPQWR4mLr6yucYvMOyILjuiSfms8r1tq7Da79U7626LXODALM2-RcZRBlUIr3iV37bCfM-gEU8Js5W1krCOB_7bLf29yRQ44wlg2CN0e6SyrFVz7PGRpbzZf4Q9s7ODV
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+prediction+and+interpretation+of+cell-specific+replication+origin+sites+from+multiple+eukaryotes+by+exploiting+stacking+framework&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wei%2C+Leyi&rft.au=He%2C+Wenjia&rft.au=Malik%2C+Adeel&rft.au=Su%2C+Ran&rft.date=2021-07-01&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa275&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon