Fast growth of single-crystal covalent organic frameworks for laboratory x-ray diffraction
The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sourc...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 383; no. 6686; pp. 1014 - 1019 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.adk8680 |
Cover
Loading…
Abstract | The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF
3
COOH/CF
3
CH
2
NH
2
protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level.
The production of large crystals of porous covalent organic frameworks (COFs) usually requires slow growth over weeks to avoid precursor assembly that results in defects. Han
et al
. found that large imine-linked single-crystal COFs (15 to 100 micrometers) can be grown in 1 or 2 days using trifluoroacetic acid as a catalyst and trifluoroethylamine as an intermediate reactant that is displaced by the reactant amine. This approach grew a wide variety of large COF crystals with x-ray diffraction resolutions up to 0.8 angstroms. —Phil Szuromi
A modulator-catalyst protocol enabled growth of large-sized single-crystal covalent organic frameworks within 1 to 2 days. |
---|---|
AbstractList | Editor’s summaryThe production of large crystals of porous covalent organic frameworks (COFs) usually requires slow growth over weeks to avoid precursor assembly that results in defects. Han et al. found that large imine-linked single-crystal COFs (15 to 100 micrometers) can be grown in 1 or 2 days using trifluoroacetic acid as a catalyst and trifluoroethylamine as an intermediate reactant that is displaced by the reactant amine. This approach grew a wide variety of large COF crystals with x-ray diffraction resolutions up to 0.8 angstroms. —Phil Szuromi The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF3COOH/CF3CH2NH2 protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level.The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF3COOH/CF3CH2NH2 protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level. The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF 3 COOH/CF 3 CH 2 NH 2 protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level. The production of large crystals of porous covalent organic frameworks (COFs) usually requires slow growth over weeks to avoid precursor assembly that results in defects. Han et al . found that large imine-linked single-crystal COFs (15 to 100 micrometers) can be grown in 1 or 2 days using trifluoroacetic acid as a catalyst and trifluoroethylamine as an intermediate reactant that is displaced by the reactant amine. This approach grew a wide variety of large COF crystals with x-ray diffraction resolutions up to 0.8 angstroms. —Phil Szuromi A modulator-catalyst protocol enabled growth of large-sized single-crystal covalent organic frameworks within 1 to 2 days. The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF COOH/CF CH NH protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level. |
Author | Feng, Jie Wang, Wei Kang, Jia Du, Xin-Yu Han, Jing Ding, San-Yuan Liang, Lin Chen, Jie-Min |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0009-0001-3239-0299 surname: Han fullname: Han, Jing organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China – sequence: 2 givenname: Jie orcidid: 0000-0001-8047-3999 surname: Feng fullname: Feng, Jie organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China – sequence: 3 givenname: Jia orcidid: 0009-0002-4651-9732 surname: Kang fullname: Kang, Jia organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China – sequence: 4 givenname: Jie-Min surname: Chen fullname: Chen, Jie-Min organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China – sequence: 5 givenname: Xin-Yu orcidid: 0009-0007-3885-7199 surname: Du fullname: Du, Xin-Yu organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China – sequence: 6 givenname: San-Yuan surname: Ding fullname: Ding, San-Yuan organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China – sequence: 7 givenname: Lin orcidid: 0000-0002-4368-2297 surname: Liang fullname: Liang, Lin organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China., Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China – sequence: 8 givenname: Wei orcidid: 0000-0002-9263-7927 surname: Wang fullname: Wang, Wei organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38422145$$D View this record in MEDLINE/PubMed |
BookMark | eNp10TtPwzAUBWALFdHymNmQJRaWUL-S2iOqeElILLCwRDeOXQypXWyX0n9PKgpDJSYP_s7V1T2HaOCDNwidUnJJKavGSTvjtbmE9l1WkuyhESWqLBQjfIBGhPCqkGRSDtFhSm-E9H-KH6Ahl4IxKsoRermBlPEshlV-xcHi5PysM4WO65Shwzp8Qmd8xiHOwDuNbYS5WYX4nrANEXfQhAg5xDX-KiKscetsT3R2wR-jfQtdMifb9wg931w_Te-Kh8fb--nVQ6E5K3PBQAtowBopJpwobhrRTPrteCuEVopYsIK21NhWtUZKWraCEUVBVg1tSib4Ebr4mbuI4WNpUq7nLmnTdeBNWKaaKS7YRJTVhp7v0LewjL7fbqM4EbKqVK_OtmrZzE1bL6KbQ1zXv1frwfgH6BhSisb-EUrqTS_1tpd620ufKHcS2mXYXClHcN2_uW-QvZWf |
CitedBy_id | crossref_primary_10_1038_s41467_024_54235_9 crossref_primary_10_1021_jacs_4c05705 crossref_primary_10_1002_ange_202423220 crossref_primary_10_1021_jacs_4c18749 crossref_primary_10_1002_anie_202406418 crossref_primary_10_1002_ange_202419096 crossref_primary_10_1002_anie_202410097 crossref_primary_10_1002_adma_202412768 crossref_primary_10_1002_adfm_202400433 crossref_primary_10_1002_ange_202421555 crossref_primary_10_1016_j_cclet_2024_110294 crossref_primary_10_1039_D4SC07210C crossref_primary_10_1021_jacs_5c00458 crossref_primary_10_1038_s44160_024_00719_x crossref_primary_10_1002_anie_202421661 crossref_primary_10_1002_ange_202423055 crossref_primary_10_1021_jacs_4c14535 crossref_primary_10_1021_jacs_4c16678 crossref_primary_10_1007_s11426_025_2576_8 crossref_primary_10_1002_ange_202418394 crossref_primary_10_1002_anie_202500161 crossref_primary_10_1021_jacs_4c12757 crossref_primary_10_1002_aenm_202405045 crossref_primary_10_1016_j_xinn_2024_100764 crossref_primary_10_1002_anie_202501875 crossref_primary_10_1039_D4EE03704A crossref_primary_10_1002_smll_202500573 crossref_primary_10_1039_D4CS00703D crossref_primary_10_1038_s41467_024_55729_2 crossref_primary_10_1039_D4TA02312A crossref_primary_10_1038_s41467_025_56750_9 crossref_primary_10_1002_ange_202421661 crossref_primary_10_1016_j_arabjc_2024_105987 crossref_primary_10_1039_D5SC00109A crossref_primary_10_1016_j_cej_2024_154885 crossref_primary_10_1039_D4SC06300G crossref_primary_10_1016_j_cej_2025_161210 crossref_primary_10_1021_acsanm_4c01275 crossref_primary_10_1002_ange_202501875 crossref_primary_10_1007_s11426_024_2048_x crossref_primary_10_1021_acsmaterialslett_4c02470 crossref_primary_10_1021_jacs_4c04245 crossref_primary_10_1021_jacs_4c10071 crossref_primary_10_1038_s41557_024_01690_y crossref_primary_10_1126_science_adr0936 crossref_primary_10_1016_j_memsci_2024_123354 crossref_primary_10_1021_jacs_4c13982 crossref_primary_10_1038_s41578_024_00740_8 crossref_primary_10_1002_chem_202404423 crossref_primary_10_1016_j_talo_2024_100320 crossref_primary_10_1002_ange_202410097 crossref_primary_10_1016_j_ensm_2024_103931 crossref_primary_10_1002_anie_202411018 crossref_primary_10_1021_jacs_4c16485 crossref_primary_10_1002_nadc_20254147860 crossref_primary_10_1021_jacs_4c13256 crossref_primary_10_1021_jacs_4c13377 crossref_primary_10_1016_j_ijbiomac_2024_137856 crossref_primary_10_1039_D4CC03708A crossref_primary_10_1039_D4NR03204G crossref_primary_10_1002_ange_202500161 crossref_primary_10_1002_adma_202411118 crossref_primary_10_1038_s44160_025_00741_7 crossref_primary_10_1021_jacs_5c00494 crossref_primary_10_1038_s41467_024_52487_z crossref_primary_10_1021_jacs_4c14458 crossref_primary_10_1021_acsmaterialslett_4c01991 crossref_primary_10_1039_D4CC02454K crossref_primary_10_1021_jacs_4c07255 crossref_primary_10_1021_acsami_4c19081 crossref_primary_10_1039_D4CE00420E crossref_primary_10_1002_ange_202406418 crossref_primary_10_1002_smll_202502316 crossref_primary_10_1016_j_ccr_2025_216614 crossref_primary_10_1021_acsnano_4c13264 crossref_primary_10_1002_anie_202421555 crossref_primary_10_1021_jacs_4c04674 crossref_primary_10_1002_anie_202423055 crossref_primary_10_1021_jacs_4c09680 crossref_primary_10_1002_anie_202405027 crossref_primary_10_1038_s41467_025_58130_9 crossref_primary_10_1002_ange_202411018 crossref_primary_10_1002_anie_202418394 crossref_primary_10_1002_chem_202401481 crossref_primary_10_1039_D4CE01245C crossref_primary_10_1016_j_cclet_2024_110590 crossref_primary_10_1016_j_ensm_2025_104052 crossref_primary_10_1039_D4SC07963A crossref_primary_10_1002_anie_202423220 crossref_primary_10_1016_j_chempr_2024_102398 crossref_primary_10_1002_anie_202419096 crossref_primary_10_1002_ange_202405027 crossref_primary_10_1002_adfm_202409356 crossref_primary_10_1021_jacs_4c11880 crossref_primary_10_1016_j_apcatb_2024_124654 crossref_primary_10_1016_j_cclet_2024_110189 crossref_primary_10_1039_D4QO02211D |
Cites_doi | 10.1038/s41557-023-01181-6 10.1016/j.cej.2023.145405 10.1126/science.1120411 10.1002/anie.202007230 10.1107/S2053273314026370 10.1126/science.aat7679 10.1039/C2CS35072F 10.1038/s41557-018-0141-5 10.1126/science.aaf9135 10.1107/S2053229614024218 10.1038/s41467-020-15281-1 10.1016/j.ccr.2013.03.017 10.1021/jacs.8b03169 10.1021/jacs.3c01783 10.5772/2438 10.1126/science.1139915 10.1038/s41467-022-29086-x 10.1126/science.aan0202 10.1126/science.aar7883 10.1021/ja042469q 10.1023/A:1020672005348 10.1038/nature11990 10.1021/ja409033p 10.1126/science.aau1701 10.1038/s41586-022-04443-4 10.1038/s41467-021-24842-x 10.1039/D3NJ03345G 10.1126/science.aal1585 10.1021/ja8096256 10.1021/jacs.2c07166 10.1016/j.nanoen.2019.104233 10.1021/ja206846p 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E 10.1107/S0108767307043930 10.1021/ja308278w 10.1107/S2053229614024929 10.1107/S0021889808042726 10.1038/nchem.1730 10.1039/C4OB02110J |
ContentType | Journal Article |
Copyright | Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.adk8680 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1019 |
ExternalDocumentID | 38422145 10_1126_science_adk8680 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .GJ .GO .HR 0-V 08G 0R~ 0WA 123 186 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3EH 3R3 4.4 41~ 42X 4R4 53G 5RE 66. 692 6OB 6TJ 79B 7X2 7X7 7XC 7~K 85S 88E 88I 8AF 8CJ 8F7 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AABCJ AACGO AADHG AAFWJ AAIKC AAJYS AAKAS AAMNW AANCE AAWTO AAYJJ AAYOK AAYXX ABBHK ABCQX ABDBF ABDEX ABDPE ABDQB ABEFU ABIVO ABJCF ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABUWG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQAM ACQOY ACTDY ACUHS ADBBV ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL ADZCM AEGBM AENEX AETEA AEUPB AEUYN AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFKRA AFQFN AFQQW AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS AJUXI ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ARALO ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKF BKNYI BKSAR BLC BPHCQ BVXVI C2- C45 C51 CCPQU CITATION CJNVE CS3 D0S D1I D1J D1K DB2 DCCCD DU5 DWQXO D~A EAU EBS EGS EJD EMOBN EWM EX3 F5P FA8 FEDTE FYUFA GICCO GNUQQ GUQSH HCIFZ HGD HMCUK HQ3 HTVGU HVGLF HZ~ I.T IAG IAO IBG IEA IEP IER IGS IH2 IHR INH INR IOF IOV IPC IPO IPSME IPY ISE ISN ITC J5H J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O K6- K9- KB. KCC KQ8 L6V L7B LK5 LK8 LPU LSO LU7 M0K M0P M0R M1P M2O M2P M2Q M7P M7R M7S MQT MVM N4W N9A NEJ NHB O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PHGZM PHGZT PQEDU PQQKQ PROAC PSQYO PTHSS PV9 PYCSY PZZ QJJ QS- R05 RHI RNS RXW RZL SA0 SC5 SJFOW SJN SKT TAE TEORI TN5 TWZ UBW UBY UCV UHB UHU UKHRP UKR UMD UNMZH UQL USG VOH VVN WH7 WI4 WOQ WOW X7L X7M XIH XJF XKJ XOL XZL Y6R YJ6 YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YXB YYP YYQ YZZ ZCA ZCG ZE2 ZGI ZVL ZVM ZXP ZY4 ~02 ~G0 ~H1 ~KM ~ZZ 0B8 3V. 68V 88A 8P6 ABTAH ANJGP DOOOF ESX GX1 IGG ISR JSODD M0L NPM PKN RHF UIG VQA YCJ YIF YIN ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c325t-2ac4abafe8473093eb4b72213d44c990faf41d1efd9de8815d42091a86b1b5243 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 05:15:32 EDT 2025 Wed Aug 13 07:21:26 EDT 2025 Wed Feb 19 02:08:08 EST 2025 Thu Apr 24 22:55:40 EDT 2025 Tue Jul 01 03:14:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6686 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-2ac4abafe8473093eb4b72213d44c990faf41d1efd9de8815d42091a86b1b5243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8047-3999 0000-0002-9263-7927 0009-0001-3239-0299 0009-0002-4651-9732 0000-0002-4368-2297 0009-0007-3885-7199 |
PMID | 38422145 |
PQID | 2933048669 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2934274564 proquest_journals_2933048669 pubmed_primary_38422145 crossref_primary_10_1126_science_adk8680 crossref_citationtrail_10_1126_science_adk8680 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-00 2024-Mar 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2024 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 Pamplin B. R. (e_1_3_2_36_2) 1980 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_23_2 doi: 10.1038/s41557-023-01181-6 – ident: e_1_3_2_35_2 doi: 10.1016/j.cej.2023.145405 – ident: e_1_3_2_2_2 doi: 10.1126/science.1120411 – ident: e_1_3_2_17_2 doi: 10.1002/anie.202007230 – ident: e_1_3_2_39_2 doi: 10.1107/S2053273314026370 – ident: e_1_3_2_14_2 doi: 10.1126/science.aat7679 – ident: e_1_3_2_8_2 doi: 10.1039/C2CS35072F – volume-title: Crystal Growth year: 1980 ident: e_1_3_2_36_2 – ident: e_1_3_2_10_2 doi: 10.1038/s41557-018-0141-5 – ident: e_1_3_2_32_2 doi: 10.1126/science.aaf9135 – ident: e_1_3_2_41_2 doi: 10.1107/S2053229614024218 – ident: e_1_3_2_18_2 doi: 10.1038/s41467-020-15281-1 – ident: e_1_3_2_29_2 doi: 10.1016/j.ccr.2013.03.017 – ident: e_1_3_2_28_2 doi: 10.1021/jacs.8b03169 – ident: e_1_3_2_22_2 doi: 10.1021/jacs.3c01783 – ident: e_1_3_2_33_2 doi: 10.5772/2438 – ident: e_1_3_2_37_2 – ident: e_1_3_2_3_2 doi: 10.1126/science.1139915 – ident: e_1_3_2_20_2 doi: 10.1038/s41467-022-29086-x – ident: e_1_3_2_9_2 doi: 10.1126/science.aan0202 – ident: e_1_3_2_16_2 doi: 10.1126/science.aar7883 – ident: e_1_3_2_27_2 doi: 10.1021/ja042469q – ident: e_1_3_2_30_2 doi: 10.1023/A:1020672005348 – ident: e_1_3_2_31_2 doi: 10.1038/nature11990 – ident: e_1_3_2_12_2 doi: 10.1021/ja409033p – ident: e_1_3_2_15_2 doi: 10.1126/science.aau1701 – ident: e_1_3_2_11_2 doi: 10.1038/s41586-022-04443-4 – ident: e_1_3_2_19_2 doi: 10.1038/s41467-021-24842-x – ident: e_1_3_2_34_2 doi: 10.1039/D3NJ03345G – ident: e_1_3_2_4_2 doi: 10.1126/science.aal1585 – ident: e_1_3_2_5_2 doi: 10.1021/ja8096256 – ident: e_1_3_2_24_2 – ident: e_1_3_2_21_2 doi: 10.1021/jacs.2c07166 – ident: e_1_3_2_43_2 doi: 10.1016/j.nanoen.2019.104233 – ident: e_1_3_2_6_2 doi: 10.1021/ja206846p – ident: e_1_3_2_25_2 doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E – ident: e_1_3_2_38_2 doi: 10.1107/S0108767307043930 – ident: e_1_3_2_7_2 doi: 10.1021/ja308278w – ident: e_1_3_2_42_2 doi: 10.1107/S2053229614024929 – ident: e_1_3_2_40_2 doi: 10.1107/S0021889808042726 – ident: e_1_3_2_13_2 doi: 10.1038/nchem.1730 – ident: e_1_3_2_26_2 doi: 10.1039/C4OB02110J |
SSID | ssj0009593 |
Score | 2.6794384 |
Snippet | The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming... Editor’s summaryThe production of large crystals of porous covalent organic frameworks (COFs) usually requires slow growth over weeks to avoid precursor... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1014 |
SubjectTerms | Catalysts Crystal defects Crystal growth Crystals Single crystals Trifluoroacetic acid X-ray diffraction |
Title | Fast growth of single-crystal covalent organic frameworks for laboratory x-ray diffraction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38422145 https://www.proquest.com/docview/2933048669 https://www.proquest.com/docview/2934274564 |
Volume | 383 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReEBu3wkBG4mGocrU4jps8dkBVDcHTJk28RLZjs4mpRW0qUX4RP5PjW-qiVRq8RK0bO1G_zz7n2OeC0FtTWsPHCNJwqQmThSRSSUMUSGchmBhp6bx8v_DpBTu7LC57vd-J19KqlUP169a4kv9BFdoAVxsl-w_IdoNCA3wGfOEKCMP1ThhPxLIdfANDur2ySp81-280UYv1snVpP-BZ7qjfxVuqgYmOWC4HwyDgbw_Zf5KFWLtiKQsf6JDqrHH6gy7ane8kqHaOimPvThC9C0K3ZKth6jdbz6K0dBpo8Ai-7gj2ScSmjRNRDCG51uRzSBUedioo27hqxdU3JD_2sscvuCe2ViQ9ydMVOfe1bQL1OC_TJdYWF07ENXytbhcFSfFKPRTN95L7mlHbSbf_Eoadi6IzjiivwwB1GOAe2qdgkIAI2B-ffjid7EzwHNJIJQFa8R22NaAdZo1Tb84foYfBLsFjT7ID1NOzQ3TfVypdH6KDgOYSH4dE5e8eo6-Wf9jzD88N3uYfjvzDgX94wz8MnMEb_mHHP5zw7wm6mHw8fz8loVYHUTktWkKFYkIKo0HbsYfrWjI5ojTLG8YUaDxGGJY1mTZN1eiyzIqGUVBVRcllJgvK8qdobzaf6ecIV7Lgtg8TrGBSNDJvTF7qSlXW_h6xPhrG_69WIZG9radyU-_ArI-Ouw4_fA6X3bceRUDqMNGXNXWbfiXnVR-96X6GZdierYmZnq_cPYyObG6mPnrmgeyelZeM2oIAL-7-Hi_Rg80MOkJ77WKlX4H228rXgXh_AICOtiU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+growth+of+single-crystal+covalent+organic+frameworks+for+laboratory+x-ray+diffraction&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Han%2C+Jing&rft.au=Feng%2C+Jie&rft.au=Kang%2C+Jia&rft.au=Chen%2C+Jie-Min&rft.date=2024-03-01&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=383&rft.issue=6686&rft.spage=1014&rft.epage=1019&rft_id=info:doi/10.1126%2Fscience.adk8680&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_adk8680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |