Fast growth of single-crystal covalent organic frameworks for laboratory x-ray diffraction

The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sourc...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 383; no. 6686; pp. 1014 - 1019
Main Authors Han, Jing, Feng, Jie, Kang, Jia, Chen, Jie-Min, Du, Xin-Yu, Ding, San-Yuan, Liang, Lin, Wang, Wei
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 01.03.2024
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.adk8680

Cover

Loading…
Abstract The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF 3 COOH/CF 3 CH 2 NH 2 protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level. The production of large crystals of porous covalent organic frameworks (COFs) usually requires slow growth over weeks to avoid precursor assembly that results in defects. Han et al . found that large imine-linked single-crystal COFs (15 to 100 micrometers) can be grown in 1 or 2 days using trifluoroacetic acid as a catalyst and trifluoroethylamine as an intermediate reactant that is displaced by the reactant amine. This approach grew a wide variety of large COF crystals with x-ray diffraction resolutions up to 0.8 angstroms. —Phil Szuromi A modulator-catalyst protocol enabled growth of large-sized single-crystal covalent organic frameworks within 1 to 2 days.
AbstractList Editor’s summaryThe production of large crystals of porous covalent organic frameworks (COFs) usually requires slow growth over weeks to avoid precursor assembly that results in defects. Han et al. found that large imine-linked single-crystal COFs (15 to 100 micrometers) can be grown in 1 or 2 days using trifluoroacetic acid as a catalyst and trifluoroethylamine as an intermediate reactant that is displaced by the reactant amine. This approach grew a wide variety of large COF crystals with x-ray diffraction resolutions up to 0.8 angstroms. —Phil Szuromi
The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF3COOH/CF3CH2NH2 protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level.The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF3COOH/CF3CH2NH2 protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level.
The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF 3 COOH/CF 3 CH 2 NH 2 protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level. The production of large crystals of porous covalent organic frameworks (COFs) usually requires slow growth over weeks to avoid precursor assembly that results in defects. Han et al . found that large imine-linked single-crystal COFs (15 to 100 micrometers) can be grown in 1 or 2 days using trifluoroacetic acid as a catalyst and trifluoroethylamine as an intermediate reactant that is displaced by the reactant amine. This approach grew a wide variety of large COF crystals with x-ray diffraction resolutions up to 0.8 angstroms. —Phil Szuromi A modulator-catalyst protocol enabled growth of large-sized single-crystal covalent organic frameworks within 1 to 2 days.
The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF COOH/CF CH NH protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level.
Author Feng, Jie
Wang, Wei
Kang, Jia
Du, Xin-Yu
Han, Jing
Ding, San-Yuan
Liang, Lin
Chen, Jie-Min
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0009-0001-3239-0299
  surname: Han
  fullname: Han, Jing
  organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0001-8047-3999
  surname: Feng
  fullname: Feng, Jie
  organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
– sequence: 3
  givenname: Jia
  orcidid: 0009-0002-4651-9732
  surname: Kang
  fullname: Kang, Jia
  organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
– sequence: 4
  givenname: Jie-Min
  surname: Chen
  fullname: Chen, Jie-Min
  organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
– sequence: 5
  givenname: Xin-Yu
  orcidid: 0009-0007-3885-7199
  surname: Du
  fullname: Du, Xin-Yu
  organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
– sequence: 6
  givenname: San-Yuan
  surname: Ding
  fullname: Ding, San-Yuan
  organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
– sequence: 7
  givenname: Lin
  orcidid: 0000-0002-4368-2297
  surname: Liang
  fullname: Liang, Lin
  organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China., Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
– sequence: 8
  givenname: Wei
  orcidid: 0000-0002-9263-7927
  surname: Wang
  fullname: Wang, Wei
  organization: State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38422145$$D View this record in MEDLINE/PubMed
BookMark eNp10TtPwzAUBWALFdHymNmQJRaWUL-S2iOqeElILLCwRDeOXQypXWyX0n9PKgpDJSYP_s7V1T2HaOCDNwidUnJJKavGSTvjtbmE9l1WkuyhESWqLBQjfIBGhPCqkGRSDtFhSm-E9H-KH6Ahl4IxKsoRermBlPEshlV-xcHi5PysM4WO65Shwzp8Qmd8xiHOwDuNbYS5WYX4nrANEXfQhAg5xDX-KiKscetsT3R2wR-jfQtdMifb9wg931w_Te-Kh8fb--nVQ6E5K3PBQAtowBopJpwobhrRTPrteCuEVopYsIK21NhWtUZKWraCEUVBVg1tSib4Ebr4mbuI4WNpUq7nLmnTdeBNWKaaKS7YRJTVhp7v0LewjL7fbqM4EbKqVK_OtmrZzE1bL6KbQ1zXv1frwfgH6BhSisb-EUrqTS_1tpd620ufKHcS2mXYXClHcN2_uW-QvZWf
CitedBy_id crossref_primary_10_1038_s41467_024_54235_9
crossref_primary_10_1021_jacs_4c05705
crossref_primary_10_1002_ange_202423220
crossref_primary_10_1021_jacs_4c18749
crossref_primary_10_1002_anie_202406418
crossref_primary_10_1002_ange_202419096
crossref_primary_10_1002_anie_202410097
crossref_primary_10_1002_adma_202412768
crossref_primary_10_1002_adfm_202400433
crossref_primary_10_1002_ange_202421555
crossref_primary_10_1016_j_cclet_2024_110294
crossref_primary_10_1039_D4SC07210C
crossref_primary_10_1021_jacs_5c00458
crossref_primary_10_1038_s44160_024_00719_x
crossref_primary_10_1002_anie_202421661
crossref_primary_10_1002_ange_202423055
crossref_primary_10_1021_jacs_4c14535
crossref_primary_10_1021_jacs_4c16678
crossref_primary_10_1007_s11426_025_2576_8
crossref_primary_10_1002_ange_202418394
crossref_primary_10_1002_anie_202500161
crossref_primary_10_1021_jacs_4c12757
crossref_primary_10_1002_aenm_202405045
crossref_primary_10_1016_j_xinn_2024_100764
crossref_primary_10_1002_anie_202501875
crossref_primary_10_1039_D4EE03704A
crossref_primary_10_1002_smll_202500573
crossref_primary_10_1039_D4CS00703D
crossref_primary_10_1038_s41467_024_55729_2
crossref_primary_10_1039_D4TA02312A
crossref_primary_10_1038_s41467_025_56750_9
crossref_primary_10_1002_ange_202421661
crossref_primary_10_1016_j_arabjc_2024_105987
crossref_primary_10_1039_D5SC00109A
crossref_primary_10_1016_j_cej_2024_154885
crossref_primary_10_1039_D4SC06300G
crossref_primary_10_1016_j_cej_2025_161210
crossref_primary_10_1021_acsanm_4c01275
crossref_primary_10_1002_ange_202501875
crossref_primary_10_1007_s11426_024_2048_x
crossref_primary_10_1021_acsmaterialslett_4c02470
crossref_primary_10_1021_jacs_4c04245
crossref_primary_10_1021_jacs_4c10071
crossref_primary_10_1038_s41557_024_01690_y
crossref_primary_10_1126_science_adr0936
crossref_primary_10_1016_j_memsci_2024_123354
crossref_primary_10_1021_jacs_4c13982
crossref_primary_10_1038_s41578_024_00740_8
crossref_primary_10_1002_chem_202404423
crossref_primary_10_1016_j_talo_2024_100320
crossref_primary_10_1002_ange_202410097
crossref_primary_10_1016_j_ensm_2024_103931
crossref_primary_10_1002_anie_202411018
crossref_primary_10_1021_jacs_4c16485
crossref_primary_10_1002_nadc_20254147860
crossref_primary_10_1021_jacs_4c13256
crossref_primary_10_1021_jacs_4c13377
crossref_primary_10_1016_j_ijbiomac_2024_137856
crossref_primary_10_1039_D4CC03708A
crossref_primary_10_1039_D4NR03204G
crossref_primary_10_1002_ange_202500161
crossref_primary_10_1002_adma_202411118
crossref_primary_10_1038_s44160_025_00741_7
crossref_primary_10_1021_jacs_5c00494
crossref_primary_10_1038_s41467_024_52487_z
crossref_primary_10_1021_jacs_4c14458
crossref_primary_10_1021_acsmaterialslett_4c01991
crossref_primary_10_1039_D4CC02454K
crossref_primary_10_1021_jacs_4c07255
crossref_primary_10_1021_acsami_4c19081
crossref_primary_10_1039_D4CE00420E
crossref_primary_10_1002_ange_202406418
crossref_primary_10_1002_smll_202502316
crossref_primary_10_1016_j_ccr_2025_216614
crossref_primary_10_1021_acsnano_4c13264
crossref_primary_10_1002_anie_202421555
crossref_primary_10_1021_jacs_4c04674
crossref_primary_10_1002_anie_202423055
crossref_primary_10_1021_jacs_4c09680
crossref_primary_10_1002_anie_202405027
crossref_primary_10_1038_s41467_025_58130_9
crossref_primary_10_1002_ange_202411018
crossref_primary_10_1002_anie_202418394
crossref_primary_10_1002_chem_202401481
crossref_primary_10_1039_D4CE01245C
crossref_primary_10_1016_j_cclet_2024_110590
crossref_primary_10_1016_j_ensm_2025_104052
crossref_primary_10_1039_D4SC07963A
crossref_primary_10_1002_anie_202423220
crossref_primary_10_1016_j_chempr_2024_102398
crossref_primary_10_1002_anie_202419096
crossref_primary_10_1002_ange_202405027
crossref_primary_10_1002_adfm_202409356
crossref_primary_10_1021_jacs_4c11880
crossref_primary_10_1016_j_apcatb_2024_124654
crossref_primary_10_1016_j_cclet_2024_110189
crossref_primary_10_1039_D4QO02211D
Cites_doi 10.1038/s41557-023-01181-6
10.1016/j.cej.2023.145405
10.1126/science.1120411
10.1002/anie.202007230
10.1107/S2053273314026370
10.1126/science.aat7679
10.1039/C2CS35072F
10.1038/s41557-018-0141-5
10.1126/science.aaf9135
10.1107/S2053229614024218
10.1038/s41467-020-15281-1
10.1016/j.ccr.2013.03.017
10.1021/jacs.8b03169
10.1021/jacs.3c01783
10.5772/2438
10.1126/science.1139915
10.1038/s41467-022-29086-x
10.1126/science.aan0202
10.1126/science.aar7883
10.1021/ja042469q
10.1023/A:1020672005348
10.1038/nature11990
10.1021/ja409033p
10.1126/science.aau1701
10.1038/s41586-022-04443-4
10.1038/s41467-021-24842-x
10.1039/D3NJ03345G
10.1126/science.aal1585
10.1021/ja8096256
10.1021/jacs.2c07166
10.1016/j.nanoen.2019.104233
10.1021/ja206846p
10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
10.1107/S0108767307043930
10.1021/ja308278w
10.1107/S2053229614024929
10.1107/S0021889808042726
10.1038/nchem.1730
10.1039/C4OB02110J
ContentType Journal Article
Copyright Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.adk8680
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1019
ExternalDocumentID 38422145
10_1126_science_adk8680
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.GJ
.GO
.HR
0-V
08G
0R~
0WA
123
186
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3EH
3R3
4.4
41~
42X
4R4
53G
5RE
66.
692
6OB
6TJ
79B
7X2
7X7
7XC
7~K
85S
88E
88I
8AF
8CJ
8F7
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AABCJ
AACGO
AADHG
AAFWJ
AAIKC
AAJYS
AAKAS
AAMNW
AANCE
AAWTO
AAYJJ
AAYOK
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABDPE
ABDQB
ABEFU
ABIVO
ABJCF
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABUWG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ACUHS
ADBBV
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
ADZCM
AEGBM
AENEX
AETEA
AEUPB
AEUYN
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFKRA
AFQFN
AFQQW
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
AJUXI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ARALO
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKF
BKNYI
BKSAR
BLC
BPHCQ
BVXVI
C2-
C45
C51
CCPQU
CITATION
CJNVE
CS3
D0S
D1I
D1J
D1K
DB2
DCCCD
DU5
DWQXO
D~A
EAU
EBS
EGS
EJD
EMOBN
EWM
EX3
F5P
FA8
FEDTE
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
HZ~
I.T
IAG
IAO
IBG
IEA
IEP
IER
IGS
IH2
IHR
INH
INR
IOF
IOV
IPC
IPO
IPSME
IPY
ISE
ISN
ITC
J5H
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
K6-
K9-
KB.
KCC
KQ8
L6V
L7B
LK5
LK8
LPU
LSO
LU7
M0K
M0P
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
MQT
MVM
N4W
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PQEDU
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
PZZ
QJJ
QS-
R05
RHI
RNS
RXW
RZL
SA0
SC5
SJFOW
SJN
SKT
TAE
TEORI
TN5
TWZ
UBW
UBY
UCV
UHB
UHU
UKHRP
UKR
UMD
UNMZH
UQL
USG
VOH
VVN
WH7
WI4
WOQ
WOW
X7L
X7M
XIH
XJF
XKJ
XOL
XZL
Y6R
YJ6
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YXB
YYP
YYQ
YZZ
ZCA
ZCG
ZE2
ZGI
ZVL
ZVM
ZXP
ZY4
~02
~G0
~H1
~KM
~ZZ
0B8
3V.
68V
88A
8P6
ABTAH
ANJGP
DOOOF
ESX
GX1
IGG
ISR
JSODD
M0L
NPM
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c325t-2ac4abafe8473093eb4b72213d44c990faf41d1efd9de8815d42091a86b1b5243
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 05:15:32 EDT 2025
Wed Aug 13 07:21:26 EDT 2025
Wed Feb 19 02:08:08 EST 2025
Thu Apr 24 22:55:40 EDT 2025
Tue Jul 01 03:14:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6686
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-2ac4abafe8473093eb4b72213d44c990faf41d1efd9de8815d42091a86b1b5243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8047-3999
0000-0002-9263-7927
0009-0001-3239-0299
0009-0002-4651-9732
0000-0002-4368-2297
0009-0007-3885-7199
PMID 38422145
PQID 2933048669
PQPubID 1256
PageCount 6
ParticipantIDs proquest_miscellaneous_2934274564
proquest_journals_2933048669
pubmed_primary_38422145
crossref_primary_10_1126_science_adk8680
crossref_citationtrail_10_1126_science_adk8680
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-00
2024-Mar
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2024
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
Pamplin B. R. (e_1_3_2_36_2) 1980
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_23_2
  doi: 10.1038/s41557-023-01181-6
– ident: e_1_3_2_35_2
  doi: 10.1016/j.cej.2023.145405
– ident: e_1_3_2_2_2
  doi: 10.1126/science.1120411
– ident: e_1_3_2_17_2
  doi: 10.1002/anie.202007230
– ident: e_1_3_2_39_2
  doi: 10.1107/S2053273314026370
– ident: e_1_3_2_14_2
  doi: 10.1126/science.aat7679
– ident: e_1_3_2_8_2
  doi: 10.1039/C2CS35072F
– volume-title: Crystal Growth
  year: 1980
  ident: e_1_3_2_36_2
– ident: e_1_3_2_10_2
  doi: 10.1038/s41557-018-0141-5
– ident: e_1_3_2_32_2
  doi: 10.1126/science.aaf9135
– ident: e_1_3_2_41_2
  doi: 10.1107/S2053229614024218
– ident: e_1_3_2_18_2
  doi: 10.1038/s41467-020-15281-1
– ident: e_1_3_2_29_2
  doi: 10.1016/j.ccr.2013.03.017
– ident: e_1_3_2_28_2
  doi: 10.1021/jacs.8b03169
– ident: e_1_3_2_22_2
  doi: 10.1021/jacs.3c01783
– ident: e_1_3_2_33_2
  doi: 10.5772/2438
– ident: e_1_3_2_37_2
– ident: e_1_3_2_3_2
  doi: 10.1126/science.1139915
– ident: e_1_3_2_20_2
  doi: 10.1038/s41467-022-29086-x
– ident: e_1_3_2_9_2
  doi: 10.1126/science.aan0202
– ident: e_1_3_2_16_2
  doi: 10.1126/science.aar7883
– ident: e_1_3_2_27_2
  doi: 10.1021/ja042469q
– ident: e_1_3_2_30_2
  doi: 10.1023/A:1020672005348
– ident: e_1_3_2_31_2
  doi: 10.1038/nature11990
– ident: e_1_3_2_12_2
  doi: 10.1021/ja409033p
– ident: e_1_3_2_15_2
  doi: 10.1126/science.aau1701
– ident: e_1_3_2_11_2
  doi: 10.1038/s41586-022-04443-4
– ident: e_1_3_2_19_2
  doi: 10.1038/s41467-021-24842-x
– ident: e_1_3_2_34_2
  doi: 10.1039/D3NJ03345G
– ident: e_1_3_2_4_2
  doi: 10.1126/science.aal1585
– ident: e_1_3_2_5_2
  doi: 10.1021/ja8096256
– ident: e_1_3_2_24_2
– ident: e_1_3_2_21_2
  doi: 10.1021/jacs.2c07166
– ident: e_1_3_2_43_2
  doi: 10.1016/j.nanoen.2019.104233
– ident: e_1_3_2_6_2
  doi: 10.1021/ja206846p
– ident: e_1_3_2_25_2
  doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
– ident: e_1_3_2_38_2
  doi: 10.1107/S0108767307043930
– ident: e_1_3_2_7_2
  doi: 10.1021/ja308278w
– ident: e_1_3_2_42_2
  doi: 10.1107/S2053229614024929
– ident: e_1_3_2_40_2
  doi: 10.1107/S0021889808042726
– ident: e_1_3_2_13_2
  doi: 10.1038/nchem.1730
– ident: e_1_3_2_26_2
  doi: 10.1039/C4OB02110J
SSID ssj0009593
Score 2.6794384
Snippet The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming...
Editor’s summaryThe production of large crystals of porous covalent organic frameworks (COFs) usually requires slow growth over weeks to avoid precursor...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1014
SubjectTerms Catalysts
Crystal defects
Crystal growth
Crystals
Single crystals
Trifluoroacetic acid
X-ray diffraction
Title Fast growth of single-crystal covalent organic frameworks for laboratory x-ray diffraction
URI https://www.ncbi.nlm.nih.gov/pubmed/38422145
https://www.proquest.com/docview/2933048669
https://www.proquest.com/docview/2934274564
Volume 383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReEBu3wkBG4mGocrU4jps8dkBVDcHTJk28RLZjs4mpRW0qUX4RP5PjW-qiVRq8RK0bO1G_zz7n2OeC0FtTWsPHCNJwqQmThSRSSUMUSGchmBhp6bx8v_DpBTu7LC57vd-J19KqlUP169a4kv9BFdoAVxsl-w_IdoNCA3wGfOEKCMP1ThhPxLIdfANDur2ySp81-280UYv1snVpP-BZ7qjfxVuqgYmOWC4HwyDgbw_Zf5KFWLtiKQsf6JDqrHH6gy7ane8kqHaOimPvThC9C0K3ZKth6jdbz6K0dBpo8Ai-7gj2ScSmjRNRDCG51uRzSBUedioo27hqxdU3JD_2sscvuCe2ViQ9ydMVOfe1bQL1OC_TJdYWF07ENXytbhcFSfFKPRTN95L7mlHbSbf_Eoadi6IzjiivwwB1GOAe2qdgkIAI2B-ffjid7EzwHNJIJQFa8R22NaAdZo1Tb84foYfBLsFjT7ID1NOzQ3TfVypdH6KDgOYSH4dE5e8eo6-Wf9jzD88N3uYfjvzDgX94wz8MnMEb_mHHP5zw7wm6mHw8fz8loVYHUTktWkKFYkIKo0HbsYfrWjI5ojTLG8YUaDxGGJY1mTZN1eiyzIqGUVBVRcllJgvK8qdobzaf6ecIV7Lgtg8TrGBSNDJvTF7qSlXW_h6xPhrG_69WIZG9radyU-_ArI-Ouw4_fA6X3bceRUDqMNGXNXWbfiXnVR-96X6GZdierYmZnq_cPYyObG6mPnrmgeyelZeM2oIAL-7-Hi_Rg80MOkJ77WKlX4H228rXgXh_AICOtiU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+growth+of+single-crystal+covalent+organic+frameworks+for+laboratory+x-ray+diffraction&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Han%2C+Jing&rft.au=Feng%2C+Jie&rft.au=Kang%2C+Jia&rft.au=Chen%2C+Jie-Min&rft.date=2024-03-01&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=383&rft.issue=6686&rft.spage=1014&rft.epage=1019&rft_id=info:doi/10.1126%2Fscience.adk8680&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_adk8680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon