A dual-functional metamaterial for integrated vibration isolation and energy harvesting
Enhancing vibration isolation with locally resonant metamaterials has attracted wide attention due to low-frequency band-gap. Moreover, nonlinear periodic structure could improve the range of targeted energy transfer. In this paper, we propose a dual-functional metamaterial for integrated low-freque...
Saved in:
Published in | Journal of sound and vibration Vol. 509; p. 116251 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
29.09.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0022-460X 1095-8568 |
DOI | 10.1016/j.jsv.2021.116251 |
Cover
Loading…
Abstract | Enhancing vibration isolation with locally resonant metamaterials has attracted wide attention due to low-frequency band-gap. Moreover, nonlinear periodic structure could improve the range of targeted energy transfer. In this paper, we propose a dual-functional metamaterial for integrated low-frequency vibration isolation and energy harvesting. A periodic array of nonlinear electrical energy harvesters, realized by implanting a rolling-ball with coils into a spherical magnetic cavity, is explored to isolate mechanical wave and simultaneously harvest electrical energy. The dynamical equation is established for a nonlinear dual-functional metamaterial beam under transverse excitation. The Extended Bloch's theorem is applied to give the dispersion relation. Numerical results obtained by finite element method supported the analytical results. Compared to the narrow band-gaps in metamaterials with spherical magnetic cavity, our numerical analysis demonstrates that a cavity mass arrayed beam with a periodic array of nonlinear energy harvesters has more and wider low-frequency band-gaps. Frequency response functions of output power are derived by using finite element analysis. The harvested power is considerable at the local resonant band-gap. Parameter study demonstrates that increasing the cell size and increasing cavity mass could improve elastic waves isolation performance at low frequencies; Increasing the mass of the rolling-ball in the resonator can significantly decrease the frequency of the local resonance band-gap. The existence of multiple band-gaps could be designed for dual-functional vibration attenuation and energy harvesting. Finally, an experimental rig is designed to validate the theoretical results. |
---|---|
AbstractList | Enhancing vibration isolation with locally resonant metamaterials has attracted wide attention due to low-frequency band-gap. Moreover, nonlinear periodic structure could improve the range of targeted energy transfer. In this paper, we propose a dual-functional metamaterial for integrated low-frequency vibration isolation and energy harvesting. A periodic array of nonlinear electrical energy harvesters, realized by implanting a rolling-ball with coils into a spherical magnetic cavity, is explored to isolate mechanical wave and simultaneously harvest electrical energy. The dynamical equation is established for a nonlinear dual-functional metamaterial beam under transverse excitation. The Extended Bloch's theorem is applied to give the dispersion relation. Numerical results obtained by finite element method supported the analytical results. Compared to the narrow band-gaps in metamaterials with spherical magnetic cavity, our numerical analysis demonstrates that a cavity mass arrayed beam with a periodic array of nonlinear energy harvesters has more and wider low-frequency band-gaps. Frequency response functions of output power are derived by using finite element analysis. The harvested power is considerable at the local resonant band-gap. Parameter study demonstrates that increasing the cell size and increasing cavity mass could improve elastic waves isolation performance at low frequencies; Increasing the mass of the rolling-ball in the resonator can significantly decrease the frequency of the local resonance band-gap. The existence of multiple band-gaps could be designed for dual-functional vibration attenuation and energy harvesting. Finally, an experimental rig is designed to validate the theoretical results. |
ArticleNumber | 116251 |
Author | Zhao, Long Ding, Hu Chen, Li-Qun Lu, Ze-Qi |
Author_xml | – sequence: 1 givenname: Ze-Qi surname: Lu fullname: Lu, Ze-Qi email: luzeqi@shu.edu.cn – sequence: 2 givenname: Long surname: Zhao fullname: Zhao, Long – sequence: 3 givenname: Hu surname: Ding fullname: Ding, Hu – sequence: 4 givenname: Li-Qun surname: Chen fullname: Chen, Li-Qun |
BookMark | eNp9kEtLAzEUhYNUsFV_gLsB11PzmEkzuCrFFxTcKLoLaeamZphmapIZ6L83dVy5KARycznfvTlnhiauc4DQDcFzggm_a-ZNGOYUUzInhNOSnKEpwVWZi5KLCZpiTGlecPx5gWYhNBjjqmDFFH0ss7pXbW56p6PtnGqzHUS1UxG8TQ_T-cy6CFufOnU22E0qki6zoWvHSrk6Awd-e8i-lB8gROu2V-jcqDbA9d99id4fH95Wz_n69elltVznmtEy5pSKEpMNKIIVrRRnBpQxYAQ2VOCCQ4mZEgUXeiOoTkeDoowKmvoFLGp2iW7HuXvfffdpt2y63icbQdKyrIoFqzhLqsWo0r4LwYOR2sbf30evbCsJlscUZSNTivKYohxTTCT5R-693Sl_OMncjwwk44MFL4O24DTU1oOOsu7sCfoHIrSNYw |
CitedBy_id | crossref_primary_10_1021_acsami_1c19718 crossref_primary_10_3390_coatings11121452 crossref_primary_10_1016_j_csite_2021_101718 crossref_primary_10_1016_j_energy_2022_124175 crossref_primary_10_1007_s00339_022_05566_1 crossref_primary_10_1016_j_engstruct_2022_115506 crossref_primary_10_1016_j_apm_2023_02_007 crossref_primary_10_1016_j_jclepro_2022_132897 crossref_primary_10_1007_s11431_021_1952_1 crossref_primary_10_1007_s00707_023_03553_y crossref_primary_10_1016_j_mtener_2023_101387 crossref_primary_10_1016_j_tws_2024_112328 crossref_primary_10_3390_pr9111930 crossref_primary_10_1155_2024_2811428 crossref_primary_10_1016_j_engstruct_2022_114382 crossref_primary_10_1016_j_paerosci_2023_100898 crossref_primary_10_1016_j_tws_2023_111071 crossref_primary_10_1016_j_apm_2024_06_031 crossref_primary_10_1016_j_csite_2021_101569 crossref_primary_10_1007_s00419_021_02074_1 crossref_primary_10_1080_15376494_2024_2311859 crossref_primary_10_1007_s11071_023_08943_4 crossref_primary_10_1007_s11665_024_09428_0 crossref_primary_10_1007_s10409_022_09013_x crossref_primary_10_1080_15376494_2025_2471948 crossref_primary_10_1016_j_energy_2024_130722 crossref_primary_10_3390_biomimetics9020074 crossref_primary_10_1088_1361_665X_ad3bfa crossref_primary_10_1016_j_eml_2024_102165 crossref_primary_10_1016_j_ymssp_2021_108775 crossref_primary_10_1007_s10483_024_3156_8 crossref_primary_10_1093_ijlct_ctae064 crossref_primary_10_1142_S175882512250079X crossref_primary_10_1080_15376494_2022_2029985 crossref_primary_10_1016_j_ymssp_2022_109324 crossref_primary_10_1016_j_ymssp_2022_109689 crossref_primary_10_3390_su15043421 crossref_primary_10_1016_j_ijmecsci_2023_108664 crossref_primary_10_1016_j_triboint_2024_109308 crossref_primary_10_1007_s11071_023_08808_w crossref_primary_10_1007_s11664_024_11575_y crossref_primary_10_1038_s41598_022_11029_7 crossref_primary_10_1016_j_micrna_2024_208025 crossref_primary_10_1007_s10483_024_3123_6 crossref_primary_10_1364_AO_484916 crossref_primary_10_1177_16878132241273539 crossref_primary_10_1080_15376494_2023_2292788 crossref_primary_10_1007_s00339_022_06339_6 crossref_primary_10_3390_app13127302 crossref_primary_10_1016_j_cnsns_2024_108588 crossref_primary_10_1016_j_optmat_2024_115140 crossref_primary_10_1016_j_ymssp_2022_109169 crossref_primary_10_1038_s41598_024_57639_1 crossref_primary_10_1016_j_est_2024_113385 crossref_primary_10_1016_j_nanoen_2022_107488 crossref_primary_10_1007_s10483_022_2868_5 crossref_primary_10_1016_j_jsv_2021_116588 crossref_primary_10_1063_5_0165984 crossref_primary_10_1007_s40684_022_00446_8 crossref_primary_10_1016_j_engstruct_2024_118480 crossref_primary_10_1007_s00339_022_06032_8 crossref_primary_10_1016_j_engstruct_2025_119640 crossref_primary_10_1007_s10483_021_2790_7 crossref_primary_10_1016_j_renene_2021_09_043 crossref_primary_10_1038_s41598_022_12106_7 crossref_primary_10_3390_app132413097 crossref_primary_10_1016_j_ijmecsci_2023_108170 crossref_primary_10_1080_15567036_2022_2039331 crossref_primary_10_1016_j_ijnonlinmec_2025_105037 crossref_primary_10_1016_j_tws_2024_111718 crossref_primary_10_1007_s00707_023_03843_5 crossref_primary_10_1016_j_tws_2024_111714 crossref_primary_10_1016_j_enconman_2022_116469 crossref_primary_10_1038_s41467_024_50926_5 crossref_primary_10_1016_j_engstruct_2022_114775 crossref_primary_10_1016_j_csite_2021_101510 crossref_primary_10_1121_10_0021877 crossref_primary_10_1016_j_csite_2021_101594 crossref_primary_10_1016_j_ijmecsci_2023_108448 crossref_primary_10_1088_1402_4896_ad59d1 crossref_primary_10_1038_s42005_022_00869_4 crossref_primary_10_1016_j_tws_2025_113001 crossref_primary_10_1016_j_jsv_2023_118215 crossref_primary_10_1016_j_ymssp_2024_111262 crossref_primary_10_1007_s11242_021_01691_2 crossref_primary_10_1016_j_nanoen_2023_108595 crossref_primary_10_1016_j_compstruct_2021_114936 crossref_primary_10_1016_j_ast_2024_108980 crossref_primary_10_1016_j_engstruct_2025_119912 crossref_primary_10_1007_s10409_023_23320_x crossref_primary_10_1016_j_ymssp_2022_109147 crossref_primary_10_1088_1361_665X_ad606a crossref_primary_10_1080_15376494_2022_2163727 crossref_primary_10_1016_j_enconman_2022_115466 crossref_primary_10_1007_s42417_023_01034_z crossref_primary_10_1080_15376494_2024_2301731 crossref_primary_10_1002_aenm_202300557 crossref_primary_10_1016_j_ijmecsci_2022_107760 crossref_primary_10_1186_s10033_024_01122_5 crossref_primary_10_1360_TB_2021_1310 crossref_primary_10_1016_j_aej_2021_11_022 crossref_primary_10_1007_s10854_024_12385_y crossref_primary_10_1016_j_ijnonlinmec_2024_104662 crossref_primary_10_1016_j_ijmecsci_2023_108590 crossref_primary_10_1080_00986445_2021_1990888 crossref_primary_10_1080_17455030_2021_1998726 crossref_primary_10_1007_s00707_022_03465_3 crossref_primary_10_3390_app13031795 crossref_primary_10_1016_j_ijnonlinmec_2022_104266 crossref_primary_10_1016_j_ymssp_2022_108836 crossref_primary_10_1007_s10483_024_3154_6 crossref_primary_10_1080_15376494_2024_2310204 crossref_primary_10_1063_5_0152525 crossref_primary_10_1142_S021798492550054X crossref_primary_10_1016_j_ymssp_2024_111324 crossref_primary_10_1016_j_jsv_2024_118577 crossref_primary_10_3390_act11050133 crossref_primary_10_3390_app142411549 crossref_primary_10_1080_15376494_2024_2304154 crossref_primary_10_1016_j_est_2024_110513 crossref_primary_10_1080_15376494_2024_2315602 crossref_primary_10_1007_s10483_024_3167_8 crossref_primary_10_1080_15376494_2024_2313152 crossref_primary_10_1016_j_petrol_2021_109734 crossref_primary_10_1016_j_ymssp_2022_109756 crossref_primary_10_1177_1045389X211026383 crossref_primary_10_1007_s40435_022_01102_4 crossref_primary_10_1007_s43452_021_00321_4 crossref_primary_10_1080_15376494_2023_2280997 crossref_primary_10_1016_j_ijnonlinmec_2023_104464 crossref_primary_10_1080_15376494_2024_2328752 crossref_primary_10_1088_1361_6463_acaed8 crossref_primary_10_1016_j_apenergy_2023_120908 crossref_primary_10_1016_j_apm_2021_08_002 crossref_primary_10_1088_1361_665X_acc36c crossref_primary_10_1016_j_apm_2025_116112 crossref_primary_10_1080_15376494_2024_2311235 crossref_primary_10_1007_s10562_024_04886_6 crossref_primary_10_1016_j_enconman_2023_117535 crossref_primary_10_1088_1361_6463_ad7b4c crossref_primary_10_1080_15376494_2024_2312448 crossref_primary_10_1115_1_4065751 crossref_primary_10_1007_s10483_024_3159_7 crossref_primary_10_1007_s42417_024_01673_w crossref_primary_10_1016_j_apenergy_2024_123124 crossref_primary_10_1016_j_apenergy_2024_123528 crossref_primary_10_1007_s11071_023_08404_y crossref_primary_10_1016_j_engstruct_2025_120028 crossref_primary_10_1364_OE_465062 crossref_primary_10_1016_j_ijmecsci_2022_107374 crossref_primary_10_1016_j_jsv_2023_117684 |
Cites_doi | 10.1016/j.ijmecsci.2013.12.013 10.1016/j.ymssp.2019.05.060 10.1016/j.physleta.2019.01.061 10.1016/j.ijmecsci.2018.11.029 10.1115/1.4025150 10.1016/j.ijnonlinmec.2014.12.008 10.1016/j.jsv.2020.115647 10.1088/0964-1726/22/6/065004 10.1177/1077546319889815 10.1063/1.4857635 10.1063/1.4974299 10.1016/j.physleta.2006.10.056 10.1121/1.4892870 10.1177/1045389X10375637 10.1016/j.jmps.2014.06.012 10.1016/j.physleta.2020.126253 10.1063/1.5099425 10.1023/A:1012967003477 10.1016/j.compstruct.2015.09.048 10.1063/1.4959251 10.1016/j.jsv.2018.09.053 10.1007/s11071-019-04812-1 10.1016/j.ymssp.2019.106357 10.1038/ncomms6510 10.1016/j.physleta.2016.09.055 10.1016/j.ijmecsci.2015.12.004 10.1088/1367-2630/18/8/083041 10.1126/sciadv.1501595 10.1088/1361-665X/aa6721 10.1016/j.physleta.2015.12.010 10.1038/natrevmats.2016.1 10.1063/1.5063949 10.1016/j.ijmecsci.2019.105229 10.1016/j.ijsolstr.2014.12.018 10.1126/science.289.5485.1734 10.1016/j.sna.2016.08.030 10.1016/j.compstruct.2019.04.047 10.1016/j.physleta.2018.10.042 10.1007/978-94-007-2069-5_4 10.1016/j.ymssp.2019.02.008 10.1016/j.jsv.2019.01.029 10.1115/1.3142882 10.1038/nature12608 10.1016/j.jsv.2020.115215 10.1063/PT.3.3198 10.1016/j.jmps.2017.05.009 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Sep 29, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Sep 29, 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.jsv.2021.116251 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1095-8568 |
ExternalDocumentID | 10_1016_j_jsv_2021_116251 S0022460X21003230 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFSI ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DM4 E.L EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JJJVA KOM LG5 M24 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSQ SST SSZ T5K TN5 XPP ZMT ~G- 29L 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHPGS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ H~9 IHE NDZJH R2- RIG SEW SMS SPG SSH T9H VOH WUQ ZY4 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c325t-228501bea10a29a63feaffef80f28046e503a8468cb82c82ccea232825034e7d3 |
IEDL.DBID | .~1 |
ISSN | 0022-460X |
IngestDate | Fri Jul 25 05:25:58 EDT 2025 Tue Jul 01 03:32:16 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Fri Feb 23 02:44:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dual-functional metamaterial Energy harvesting Vibration isolation Nonlinear vibration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-228501bea10a29a63feaffef80f28046e503a8468cb82c82ccea232825034e7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2559473963 |
PQPubID | 2047461 |
ParticipantIDs | proquest_journals_2559473963 crossref_citationtrail_10_1016_j_jsv_2021_116251 crossref_primary_10_1016_j_jsv_2021_116251 elsevier_sciencedirect_doi_10_1016_j_jsv_2021_116251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-29 |
PublicationDateYYYYMMDD | 2021-09-29 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of sound and vibration |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Kwon, Oh (bib0018) 2016; 249 Manevitch, Sigalov, Romeo, Bergman, Vakakis (bib0047) 2015; 10 Wen, Xiong, Hao, Li, Zhang (bib0029) 2020; 166 Ma, Sheng (bib0011) 2016; 2 Y.W. Zhang, C. Su, Z.Y. Ni, J. Zang, L.Q. Chen, 2019. A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control, Composite Structures. 221, 110875. https://doi.org/10.1016/j.compstruct.2019.04.047. Wierschem (bib0046) 2014 El-Borgi, Fernandes, Rajendran, Yazbeck, Boyd, Lagoudas (bib0034) 2020; 488 Wiercigroch (bib0053) 2009 K. Wang, J.X. Zhou, D.L Xu, H.J. Ouyang, Lower band gaps of transverse wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity, Mechanical Systems and Signal Processing. 124 (2019) 664–678. https://doi.org/10.1016/j.ymssp.2019.02.008. Kwon, Jo, Oh (bib0017) 2014; 42 Wang, Zhou, Wang, Ouyang, Xu (bib0037) 2019; 114 Donahue, Anzel, Bonanomi, Keller, Daraio (bib0049) 2014; 104 Wiercigroch, Najdecka, Vaziri (bib0052) 2011 Lu, Shao, Fang, Ding, Chen (bib0021) 2020; 26 Chen, Huang, Zhou, Hu, Sun (bib0026) 2014; 136 Pai, Peng, Jiang (bib0036) 2014; 79 Dong, Yao, Du, Zhao, Ding (bib0007) 2019; 383 Zhou, Wang, Xu, Ouyang (bib0040) 2017; 121 Nimmagadda, Matlack (bib0006) 2019; 439 Choi, Wereley (bib0019) 2009; 131 Zhu, Liu, Hu, Sun, Huang (bib0009) 2014; 5 Maldovan (bib0055) 2013; 503 Carrara, Cacan, Toussaint, Leamy, Ruzzene, Erturk (bib0014) 2013; 22 Cummer, Christensen, Alù (bib0012) 2016; 1 Li, Shen, Cao, Zhang, Meng (bib0001) 2018; 114 Wang, Li, Y.S (bib0031) 2016; 106 Lee, Park, Seo, Wan, Kim (bib0027) 2009; 21 Liu, Yu, Li, Zhao, Wen, Wen (bib0033) 2007; 362 Chen, Hu, Huang (bib0044) 2017; 105 Haberman, Guild (bib0013) 2016; 69 Miniaci, Krushynska, Bosia, Pugno (bib0015) 2016; 18 Guo, Cao, Xiao, Shen, Wen (bib0028) 2020; 384 Bukhari, Barry (bib0023) 2020; 473 Z. Zhang, T.J. Li, Z.W. Wang, Y.Q. Tang, Band gap characteristics of flexural wave of two-dimensional periodic frame structure composed of locally resonant composite beam, Mechanical Systems and Signal Processing. 131 (2019) 364–380. https://doi.org/10.1016/j.ymssp.2019.05.060. Zhou, Dou, Wang, Xu, Ouyang (bib0039) 2019; 96 Wang, Sheng, Qin (bib0042) 2016; 380 Kim, Yang (bib0004) 2014; 71 Davis, McDowell (bib0020) 2017; 26 Shim, Wang, Bertoldi (bib0008) 2015; 58 Sun, Du, Pai (bib0032) 2010; 21 Li, Gao, Huang (bib0050) 2010; 108 Gendelman (bib0045) 2001; 25 Geng, Cai, Li (bib0002) 2019; 125 Pelat, Gallot, Gautier (bib0030) 2019; 446 Manevitch, Sigalov, Romeo, Bergman, Vakakis (bib0048) 2014; 81 Liu, Zhang, Mao, Zhu, Yang, Chan, Sheng (bib0025) 2000; 289 Z.J. Wu, W.Y. Liu, F.M. Li, C.Z. Zhang, 2019. Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators, Mechanical Systems and Signal Processing. 134, 106357. https://doi.org/10.1016/j.ymssp.2019.106357. Y.Y. Chen, M.V. Barnhart, J.K. Chen, G.K. Hu, C.T. Sun, G.L. Huang, Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale, Composite Structures. 136 (2016) 358–371. https://doi.org/10.1016/j.compstruct.2015.09.048. Chen, Barnhart, Chen, Hu, Sun, Huang (bib0016) 2016; 136 Hobeck, Inman (bib0022) 2017 Li, Dou, Chen, Xu, Li, Zhang (bib0005) 2019; 383 Najdeck, Narayanan, Wiercigroch (bib0054) 2015; 71 Chuang, Zhang, Wang (bib0010) 2016; 380 Huang, Li, Chen, Bao (bib0035) 2019; 151 Shen, Li, Jiang, Ni, Huang (bib0051) 2016; 109 Zhou (10.1016/j.jsv.2021.116251_bib0039) 2019; 96 Sun (10.1016/j.jsv.2021.116251_bib0032) 2010; 21 Kwon (10.1016/j.jsv.2021.116251_bib0018) 2016; 249 Kim (10.1016/j.jsv.2021.116251_bib0004) 2014; 71 Nimmagadda (10.1016/j.jsv.2021.116251_bib0006) 2019; 439 Lu (10.1016/j.jsv.2021.116251_bib0021) 2020; 26 Pelat (10.1016/j.jsv.2021.116251_bib0030) 2019; 446 Gendelman (10.1016/j.jsv.2021.116251_bib0045) 2001; 25 Carrara (10.1016/j.jsv.2021.116251_bib0014) 2013; 22 Haberman (10.1016/j.jsv.2021.116251_bib0013) 2016; 69 Wierschem (10.1016/j.jsv.2021.116251_bib0046) 2014 Geng (10.1016/j.jsv.2021.116251_bib0002) 2019; 125 Chen (10.1016/j.jsv.2021.116251_bib0026) 2014; 136 Chen (10.1016/j.jsv.2021.116251_bib0044) 2017; 105 El-Borgi (10.1016/j.jsv.2021.116251_bib0034) 2020; 488 Najdeck (10.1016/j.jsv.2021.116251_bib0054) 2015; 71 Guo (10.1016/j.jsv.2021.116251_bib0028) 2020; 384 Liu (10.1016/j.jsv.2021.116251_bib0025) 2000; 289 Zhu (10.1016/j.jsv.2021.116251_bib0009) 2014; 5 10.1016/j.jsv.2021.116251_bib0041 Wiercigroch (10.1016/j.jsv.2021.116251_bib0053) 2009 Huang (10.1016/j.jsv.2021.116251_bib0035) 2019; 151 10.1016/j.jsv.2021.116251_bib0043 10.1016/j.jsv.2021.116251_bib0003 Pai (10.1016/j.jsv.2021.116251_bib0036) 2014; 79 Wiercigroch (10.1016/j.jsv.2021.116251_bib0052) 2011 10.1016/j.jsv.2021.116251_bib0038 Donahue (10.1016/j.jsv.2021.116251_bib0049) 2014; 104 Li (10.1016/j.jsv.2021.116251_bib0050) 2010; 108 Zhou (10.1016/j.jsv.2021.116251_bib0040) 2017; 121 Wang (10.1016/j.jsv.2021.116251_bib0031) 2016; 106 Chuang (10.1016/j.jsv.2021.116251_bib0010) 2016; 380 Shim (10.1016/j.jsv.2021.116251_bib0008) 2015; 58 Wang (10.1016/j.jsv.2021.116251_bib0042) 2016; 380 Cummer (10.1016/j.jsv.2021.116251_bib0012) 2016; 1 Manevitch (10.1016/j.jsv.2021.116251_bib0048) 2014; 81 Ma (10.1016/j.jsv.2021.116251_bib0011) 2016; 2 Li (10.1016/j.jsv.2021.116251_bib0005) 2019; 383 Wang (10.1016/j.jsv.2021.116251_bib0037) 2019; 114 Lee (10.1016/j.jsv.2021.116251_bib0027) 2009; 21 Shen (10.1016/j.jsv.2021.116251_bib0051) 2016; 109 Choi (10.1016/j.jsv.2021.116251_bib0019) 2009; 131 Davis (10.1016/j.jsv.2021.116251_bib0020) 2017; 26 Manevitch (10.1016/j.jsv.2021.116251_bib0047) 2015; 10 Liu (10.1016/j.jsv.2021.116251_bib0033) 2007; 362 Miniaci (10.1016/j.jsv.2021.116251_bib0015) 2016; 18 10.1016/j.jsv.2021.116251_bib0024 Maldovan (10.1016/j.jsv.2021.116251_bib0055) 2013; 503 Dong (10.1016/j.jsv.2021.116251_bib0007) 2019; 383 Kwon (10.1016/j.jsv.2021.116251_bib0017) 2014; 42 Wen (10.1016/j.jsv.2021.116251_bib0029) 2020; 166 Chen (10.1016/j.jsv.2021.116251_bib0016) 2016; 136 Bukhari (10.1016/j.jsv.2021.116251_bib0023) 2020; 473 Li (10.1016/j.jsv.2021.116251_bib0001) 2018; 114 Hobeck (10.1016/j.jsv.2021.116251_bib0022) 2017 |
References_xml | – volume: 488 year: 2020 ident: bib0034 article-title: Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments publication-title: J. Sound Vib. – volume: 105 start-page: 179 year: 2017 end-page: 198 ident: bib0044 article-title: A hybrid elastic metamaterial with negative mass density and tunable bending stiffness publication-title: J. Mech. Phys. Solids – reference: Y.Y. Chen, M.V. Barnhart, J.K. Chen, G.K. Hu, C.T. Sun, G.L. Huang, Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale, Composite Structures. 136 (2016) 358–371. https://doi.org/10.1016/j.compstruct.2015.09.048. – volume: 249 start-page: 172 year: 2016 end-page: 185 ident: bib0018 article-title: Experimental validation of satellite micro-jitter management strategy in energy harvesting and vibration isolation publication-title: Sensors Actuators A-Phys. – start-page: 35 year: 2011 end-page: 42 ident: bib0052 article-title: Nonlinear dynamics of pendulums system for energy harvesting publication-title: Vibr. Probl. ICOVP – volume: 42 start-page: 648 year: 2014 end-page: 653 ident: bib0017 article-title: Numerical investigation of complex system for electrical energy harvesting and vibration isolation publication-title: Int. J. Aeronaut. Space Sci. – reference: K. Wang, J.X. Zhou, D.L Xu, H.J. Ouyang, Lower band gaps of transverse wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity, Mechanical Systems and Signal Processing. 124 (2019) 664–678. https://doi.org/10.1016/j.ymssp.2019.02.008. – volume: 383 start-page: 283 year: 2019 end-page: 288 ident: bib0007 article-title: Research on bandgap property of a novel small size multi-band phononic crystal publication-title: Phys. Lett. A – volume: 2 year: 2016 ident: bib0011 article-title: Acoustic metamaterials: From local resonances to broad horizons publication-title: Sci. Adv. – volume: 69 start-page: 42 year: 2016 ident: bib0013 article-title: Acoustic metamaterials publication-title: Phys. Today – volume: 136 start-page: 358 year: 2016 end-page: 371 ident: bib0016 article-title: Dissipative elastic metamaterials for broadband wave mitigation at subwave-length scale publication-title: Compos. Struct. – volume: 446 start-page: 249 year: 2019 end-page: 262 ident: bib0030 article-title: On the control of the first Bragg band gap in periodic continuously corrugated beam for flexural vibration publication-title: J. Sound Vib. – year: 2014 ident: bib0046 article-title: Targeted energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures – reference: Z.J. Wu, W.Y. Liu, F.M. Li, C.Z. Zhang, 2019. Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators, Mechanical Systems and Signal Processing. 134, 106357. https://doi.org/10.1016/j.ymssp.2019.106357. – volume: 25 start-page: 237 year: 2001 end-page: 253 ident: bib0045 article-title: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators publication-title: Nonlinear Dyn. – volume: 289 start-page: 1734 year: 2000 ident: bib0025 article-title: Locally resonant sonic materials publication-title: Science – volume: 439 start-page: 29 year: 2019 end-page: 42 ident: bib0006 article-title: Thermally tunable band gaps in architected metamaterial structures publication-title: J. Sound Vib. – volume: 71 start-page: 33 year: 2014 end-page: 45 ident: bib0004 article-title: Wave propagation in single column woodpile phononic crystals: formation of tunable band gaps publication-title: J. Mech. Phys. Solids – volume: 380 start-page: 525 year: 2016 end-page: 529 ident: bib0042 article-title: Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators publication-title: Phys. Lett. A – volume: 81 year: 2014 ident: bib0048 article-title: Dynamics of a linear oscillator coupled to a bistable light attachment: Analytical study publication-title: J. Appl. Mech. – volume: 166 year: 2020 ident: bib0029 article-title: Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections publication-title: Int. J. Mech. Sci. – reference: Y.W. Zhang, C. Su, Z.Y. Ni, J. Zang, L.Q. Chen, 2019. A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control, Composite Structures. 221, 110875. https://doi.org/10.1016/j.compstruct.2019.04.047. – volume: 362 start-page: 344 year: 2007 end-page: 347 ident: bib0033 article-title: Design guidelines for flexural wave attenuation of slender beams with local resonators publication-title: Phys. Lett. A – volume: 114 year: 2018 ident: bib0001 article-title: Thermally triggered tunable vibration mitigation in Hoberman spherical lattice metamaterials publication-title: Appl. Phys. Lett. – volume: 384 year: 2020 ident: bib0028 article-title: Interplay of local resonances and Bragg band gaps in acoustic waveguides with periodic detuned resonators publication-title: Phys. Lett. A – year: 2009 ident: bib0053 article-title: A new concept of energy extraction from oscillations via pendulum systems publication-title: UK Patent Appl. – volume: 18 year: 2016 ident: bib0015 article-title: Large scale mechanical metamaterials as seismic shields publication-title: New J. Phys. – volume: 5 start-page: 5510 year: 2014 ident: bib0009 article-title: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial publication-title: Nat. Commun. – volume: 114 year: 2019 ident: bib0037 article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation publication-title: Appl. Phys. Lett. – volume: 26 start-page: 779 year: 2020 end-page: 789 ident: bib0021 article-title: Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate publication-title: J. Vib. Control – volume: 26 year: 2017 ident: bib0020 article-title: Combined Euler column vibration isolation and energy harvesting publication-title: Smart Mater. Struct. – volume: 22 year: 2013 ident: bib0014 article-title: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting publication-title: Smart Mater. Struct. – volume: 473 year: 2020 ident: bib0023 article-title: Simultaneous energy harvesting and vibration control in a nonlinear metastructure: A spectro-spatial analysis publication-title: J. Sound Vib. – volume: 79 start-page: 195 year: 2014 end-page: 205 ident: bib0036 article-title: Acoustic metamaterial beams based on multi-frequency vibration absorbers publication-title: Int. J. Mech. Sci. – volume: 96 start-page: 647 year: 2019 end-page: 665 ident: bib0039 article-title: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams publication-title: Nonlinear Dyn. – volume: 10 year: 2015 ident: bib0047 article-title: Dynamics of a linear oscillator coupled to a bistable light attachment: Numerical study publication-title: J. Comput. Nonlinear Dyn. – volume: 58 start-page: 52 year: 2015 end-page: 61 ident: bib0008 article-title: Harnessing instability-induced pattern transforma-tion to design tunable phononic crystals publication-title: Int. J. Solids Struct. – volume: 136 start-page: 969 year: 2014 end-page: 979 ident: bib0026 article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: mem- brane model publication-title: J. Acoust. Soc. Am. – volume: 71 start-page: 30 year: 2015 end-page: 38 ident: bib0054 article-title: Rotary motion of the parametric and planar pendulum under stochastic wave excitation publication-title: Int. J. Non Linear Mech. – volume: 21 start-page: 1085 year: 2010 ident: bib0032 article-title: Theory of Metamaterial Beams for Broadband Vibration Absorption publication-title: J. Intell. Mater. Syst. Struct. – year: 2017 ident: bib0022 article-title: Simultaneous passive broadband vibration suppression and energy harvesting with multifunctional metastructures. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring publication-title: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. 101720K – volume: 104 year: 2014 ident: bib0049 article-title: Experimental realization of a nonlinear acoustic lens with a tunable focus publication-title: Appl. Phys. Lett. – volume: 151 start-page: 300 year: 2019 end-page: 313 ident: bib0035 article-title: Tunable bandgaps in soft phononic plates with spring-mass-like resonators publication-title: Int. J. Mech. Sci. – volume: 121 year: 2017 ident: bib0040 article-title: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams publication-title: J. Appl. Phys. – volume: 108 year: 2010 ident: bib0050 article-title: A bifunctional cloak using transformation media publication-title: J. Appl. Phys. – volume: 125 year: 2019 ident: bib0002 article-title: Flexural wave manipulation and energy harvesting characteristics of a defect phononic crystal beam with thermal effects publication-title: J. Appl. Phys. – volume: 106 start-page: 357 year: 2016 end-page: 362 ident: bib0031 article-title: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain publication-title: Int. J. Mech. Sci. – volume: 131 year: 2009 ident: bib0019 article-title: Self-powered magnetorheological dampers publication-title: J. Acoust. Vibr. – volume: 21 year: 2009 ident: bib0027 article-title: Acoustic metamaterial with negative modulus publication-title: J. Phys. A – volume: 380 start-page: 3963 year: 2016 end-page: 3969 ident: bib0010 article-title: Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings publication-title: Phys. Lett. A – volume: 503 start-page: 209 year: 2013 end-page: 217 ident: bib0055 article-title: Sound and heat revolutions in phononics publication-title: Nature – volume: 1 start-page: 16001 year: 2016 ident: bib0012 article-title: Controlling sound with acoustic metamaterials publication-title: Nat. Rev. Mater. – reference: Z. Zhang, T.J. Li, Z.W. Wang, Y.Q. Tang, Band gap characteristics of flexural wave of two-dimensional periodic frame structure composed of locally resonant composite beam, Mechanical Systems and Signal Processing. 131 (2019) 364–380. https://doi.org/10.1016/j.ymssp.2019.05.060. – volume: 383 start-page: 1371 year: 2019 end-page: 1377 ident: bib0005 article-title: Designing a broad locally-resonant bandgap in a phononic crystals publication-title: Phys. Lett. A – volume: 109 year: 2016 ident: bib0051 article-title: Thermal cloak-concentrator publication-title: Appl. Phys. Lett. – volume: 79 start-page: 195 year: 2014 ident: 10.1016/j.jsv.2021.116251_bib0036 article-title: Acoustic metamaterial beams based on multi-frequency vibration absorbers publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2013.12.013 – ident: 10.1016/j.jsv.2021.116251_bib0043 doi: 10.1016/j.ymssp.2019.05.060 – volume: 383 start-page: 1371 year: 2019 ident: 10.1016/j.jsv.2021.116251_bib0005 article-title: Designing a broad locally-resonant bandgap in a phononic crystals publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2019.01.061 – volume: 42 start-page: 648 year: 2014 ident: 10.1016/j.jsv.2021.116251_bib0017 article-title: Numerical investigation of complex system for electrical energy harvesting and vibration isolation publication-title: Int. J. Aeronaut. Space Sci. – volume: 151 start-page: 300 year: 2019 ident: 10.1016/j.jsv.2021.116251_bib0035 article-title: Tunable bandgaps in soft phononic plates with spring-mass-like resonators publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.11.029 – volume: 81 year: 2014 ident: 10.1016/j.jsv.2021.116251_bib0048 article-title: Dynamics of a linear oscillator coupled to a bistable light attachment: Analytical study publication-title: J. Appl. Mech. doi: 10.1115/1.4025150 – volume: 71 start-page: 30 year: 2015 ident: 10.1016/j.jsv.2021.116251_bib0054 article-title: Rotary motion of the parametric and planar pendulum under stochastic wave excitation publication-title: Int. J. Non Linear Mech. doi: 10.1016/j.ijnonlinmec.2014.12.008 – volume: 488 year: 2020 ident: 10.1016/j.jsv.2021.116251_bib0034 article-title: Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115647 – volume: 22 year: 2013 ident: 10.1016/j.jsv.2021.116251_bib0014 article-title: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/6/065004 – volume: 26 start-page: 779 year: 2020 ident: 10.1016/j.jsv.2021.116251_bib0021 article-title: Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate publication-title: J. Vib. Control doi: 10.1177/1077546319889815 – volume: 104 year: 2014 ident: 10.1016/j.jsv.2021.116251_bib0049 article-title: Experimental realization of a nonlinear acoustic lens with a tunable focus publication-title: Appl. Phys. Lett. doi: 10.1063/1.4857635 – volume: 121 year: 2017 ident: 10.1016/j.jsv.2021.116251_bib0040 article-title: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams publication-title: J. Appl. Phys. doi: 10.1063/1.4974299 – volume: 362 start-page: 344 year: 2007 ident: 10.1016/j.jsv.2021.116251_bib0033 article-title: Design guidelines for flexural wave attenuation of slender beams with local resonators publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2006.10.056 – volume: 136 start-page: 969 year: 2014 ident: 10.1016/j.jsv.2021.116251_bib0026 article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: mem- brane model publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4892870 – volume: 21 start-page: 1085 year: 2010 ident: 10.1016/j.jsv.2021.116251_bib0032 article-title: Theory of Metamaterial Beams for Broadband Vibration Absorption publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X10375637 – volume: 71 start-page: 33 year: 2014 ident: 10.1016/j.jsv.2021.116251_bib0004 article-title: Wave propagation in single column woodpile phononic crystals: formation of tunable band gaps publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2014.06.012 – volume: 21 year: 2009 ident: 10.1016/j.jsv.2021.116251_bib0027 article-title: Acoustic metamaterial with negative modulus publication-title: J. Phys. A – volume: 384 year: 2020 ident: 10.1016/j.jsv.2021.116251_bib0028 article-title: Interplay of local resonances and Bragg band gaps in acoustic waveguides with periodic detuned resonators publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126253 – volume: 114 year: 2019 ident: 10.1016/j.jsv.2021.116251_bib0037 article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation publication-title: Appl. Phys. Lett. doi: 10.1063/1.5099425 – volume: 25 start-page: 237 year: 2001 ident: 10.1016/j.jsv.2021.116251_bib0045 article-title: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators publication-title: Nonlinear Dyn. doi: 10.1023/A:1012967003477 – ident: 10.1016/j.jsv.2021.116251_bib0003 doi: 10.1016/j.compstruct.2015.09.048 – volume: 10 year: 2015 ident: 10.1016/j.jsv.2021.116251_bib0047 article-title: Dynamics of a linear oscillator coupled to a bistable light attachment: Numerical study publication-title: J. Comput. Nonlinear Dyn. – year: 2014 ident: 10.1016/j.jsv.2021.116251_bib0046 – volume: 108 year: 2010 ident: 10.1016/j.jsv.2021.116251_bib0050 article-title: A bifunctional cloak using transformation media publication-title: J. Appl. Phys. – volume: 109 year: 2016 ident: 10.1016/j.jsv.2021.116251_bib0051 article-title: Thermal cloak-concentrator publication-title: Appl. Phys. Lett. doi: 10.1063/1.4959251 – year: 2017 ident: 10.1016/j.jsv.2021.116251_bib0022 article-title: Simultaneous passive broadband vibration suppression and energy harvesting with multifunctional metastructures. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring – year: 2009 ident: 10.1016/j.jsv.2021.116251_bib0053 article-title: A new concept of energy extraction from oscillations via pendulum systems publication-title: UK Patent Appl. – volume: 439 start-page: 29 year: 2019 ident: 10.1016/j.jsv.2021.116251_bib0006 article-title: Thermally tunable band gaps in architected metamaterial structures publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.09.053 – volume: 96 start-page: 647 year: 2019 ident: 10.1016/j.jsv.2021.116251_bib0039 article-title: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04812-1 – ident: 10.1016/j.jsv.2021.116251_bib0038 doi: 10.1016/j.ymssp.2019.106357 – volume: 5 start-page: 5510 year: 2014 ident: 10.1016/j.jsv.2021.116251_bib0009 article-title: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial publication-title: Nat. Commun. doi: 10.1038/ncomms6510 – volume: 380 start-page: 3963 year: 2016 ident: 10.1016/j.jsv.2021.116251_bib0010 article-title: Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2016.09.055 – volume: 106 start-page: 357 year: 2016 ident: 10.1016/j.jsv.2021.116251_bib0031 article-title: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2015.12.004 – volume: 18 year: 2016 ident: 10.1016/j.jsv.2021.116251_bib0015 article-title: Large scale mechanical metamaterials as seismic shields publication-title: New J. Phys. doi: 10.1088/1367-2630/18/8/083041 – volume: 136 start-page: 358 year: 2016 ident: 10.1016/j.jsv.2021.116251_bib0016 article-title: Dissipative elastic metamaterials for broadband wave mitigation at subwave-length scale publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.09.048 – volume: 2 year: 2016 ident: 10.1016/j.jsv.2021.116251_bib0011 article-title: Acoustic metamaterials: From local resonances to broad horizons publication-title: Sci. Adv. doi: 10.1126/sciadv.1501595 – volume: 26 year: 2017 ident: 10.1016/j.jsv.2021.116251_bib0020 article-title: Combined Euler column vibration isolation and energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa6721 – volume: 380 start-page: 525 year: 2016 ident: 10.1016/j.jsv.2021.116251_bib0042 article-title: Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.12.010 – volume: 1 start-page: 16001 year: 2016 ident: 10.1016/j.jsv.2021.116251_bib0012 article-title: Controlling sound with acoustic metamaterials publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.1 – volume: 125 year: 2019 ident: 10.1016/j.jsv.2021.116251_bib0002 article-title: Flexural wave manipulation and energy harvesting characteristics of a defect phononic crystal beam with thermal effects publication-title: J. Appl. Phys. doi: 10.1063/1.5063949 – volume: 166 year: 2020 ident: 10.1016/j.jsv.2021.116251_bib0029 article-title: Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.105229 – volume: 58 start-page: 52 year: 2015 ident: 10.1016/j.jsv.2021.116251_bib0008 article-title: Harnessing instability-induced pattern transforma-tion to design tunable phononic crystals publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.12.018 – volume: 289 start-page: 1734 year: 2000 ident: 10.1016/j.jsv.2021.116251_bib0025 article-title: Locally resonant sonic materials publication-title: Science doi: 10.1126/science.289.5485.1734 – volume: 249 start-page: 172 year: 2016 ident: 10.1016/j.jsv.2021.116251_bib0018 article-title: Experimental validation of satellite micro-jitter management strategy in energy harvesting and vibration isolation publication-title: Sensors Actuators A-Phys. doi: 10.1016/j.sna.2016.08.030 – ident: 10.1016/j.jsv.2021.116251_bib0024 doi: 10.1016/j.compstruct.2019.04.047 – volume: 383 start-page: 283 year: 2019 ident: 10.1016/j.jsv.2021.116251_bib0007 article-title: Research on bandgap property of a novel small size multi-band phononic crystal publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.10.042 – start-page: 35 year: 2011 ident: 10.1016/j.jsv.2021.116251_bib0052 article-title: Nonlinear dynamics of pendulums system for energy harvesting publication-title: Vibr. Probl. ICOVP doi: 10.1007/978-94-007-2069-5_4 – ident: 10.1016/j.jsv.2021.116251_bib0041 doi: 10.1016/j.ymssp.2019.02.008 – volume: 446 start-page: 249 year: 2019 ident: 10.1016/j.jsv.2021.116251_bib0030 article-title: On the control of the first Bragg band gap in periodic continuously corrugated beam for flexural vibration publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.01.029 – volume: 114 year: 2018 ident: 10.1016/j.jsv.2021.116251_bib0001 article-title: Thermally triggered tunable vibration mitigation in Hoberman spherical lattice metamaterials publication-title: Appl. Phys. Lett. – volume: 131 year: 2009 ident: 10.1016/j.jsv.2021.116251_bib0019 article-title: Self-powered magnetorheological dampers publication-title: J. Acoust. Vibr. doi: 10.1115/1.3142882 – volume: 503 start-page: 209 year: 2013 ident: 10.1016/j.jsv.2021.116251_bib0055 article-title: Sound and heat revolutions in phononics publication-title: Nature doi: 10.1038/nature12608 – volume: 473 year: 2020 ident: 10.1016/j.jsv.2021.116251_bib0023 article-title: Simultaneous energy harvesting and vibration control in a nonlinear metastructure: A spectro-spatial analysis publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115215 – volume: 69 start-page: 42 issue: 6 year: 2016 ident: 10.1016/j.jsv.2021.116251_bib0013 article-title: Acoustic metamaterials publication-title: Phys. Today doi: 10.1063/PT.3.3198 – volume: 105 start-page: 179 year: 2017 ident: 10.1016/j.jsv.2021.116251_bib0044 article-title: A hybrid elastic metamaterial with negative mass density and tunable bending stiffness publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.05.009 |
SSID | ssj0009434 |
Score | 2.6674805 |
Snippet | Enhancing vibration isolation with locally resonant metamaterials has attracted wide attention due to low-frequency band-gap. Moreover, nonlinear periodic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116251 |
SubjectTerms | Arrays Attenuation Band gap Coils Dual-functional metamaterial Elastic waves Energy gap Energy harvesting Energy transfer Finite element analysis Finite element method Frequency response functions Low frequencies Metamaterials Nonlinear systems Nonlinear vibration Numerical analysis Periodic structures Vibration Vibration analysis Vibration isolation |
Title | A dual-functional metamaterial for integrated vibration isolation and energy harvesting |
URI | https://dx.doi.org/10.1016/j.jsv.2021.116251 https://www.proquest.com/docview/2559473963 |
Volume | 509 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrFayx48CbGbfeRxLEWpij1Z7G3ZpBtt0Vja2KO_3ZlNUlGwByGHJOwuYTL59vuyM7OEXARxAjw55B7gr_Jk5FvPxFJ5qEWYyhCWcUX3YRgMRvJurMYN0q9zYTCsssL-EtMdWld3upU1u_PpFHN8sRgaG4NoYQKYNGawyxDD-q4-v8M8sP5ZXTEcW9crmy7Ga7ZcgUTkPgAH6AD_r7npF0q7qedmj-xWnJH2ysfaJw2bH5BtF7uZLg_JU49iQpWHU1T5Z4--2cIAFXXeRYGW0nVViAldoUDGdnQKfleemXxCrcsCpC9m4Spv5M9HZHRz_dgfeNV-CV4quCo8ziPF_MQanxkem0Bk1mSZzSKW8Qh0sFVMGOAbUZpEPIUjtQYIFWhEJqQNJ-KYNPP33J4QmiYwoxmTyShJpWDSxIlA8QIjJVmoghZhtaV0WhUTxz0tXnUdNTbTYFyNxtWlcVvkct1lXlbS2NRY1ubXP9xBA9Jv6tauX5WuvsWlRtEkQwFIc_q_Uc_IDl5hlAiP26RZLD7sOVCRIuk4X-uQrd7t_WD4BRXr3TQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MiehF_Ik_pubgSShLk3Rrj0Mc07mdNtwtJF2qG1rFTf9-32tTRUEPQg-lTUJ5ff3yfc17LwDnrcQiT26LAPE3ClQcusAkKgpIi_AoI1imFd3BsNUbq5tJNKnBZZULQ2GVHvtLTC_Q2l9pems2X2YzyvGlYmh8gqKFS2TSK7BK1alUHVY71_3e8Kv2rpKqKhpOHarFzSLMa754R5UoQsQOlALhb9PTD6AuZp_uFmx62sg65ZNtQ83lO7BWhG-mi1246zDKqQpolip_7rEntzTIRgsHY8hM2WdhiCl7J41M7dgMXa88M_mUuSIRkD2Y16L4Rn6_B-Pu1eiyF_gtE4JUimgZCBFHPLTOhNyIxLRk5kyWuSzmmYhRCruIS4OUI05tLFI8UmeQU6FM5FK59lTuQz1_zt0BsNTipGZMpmKbKsmVSawk_YIj2awdtQ6BV5bSqa8nTttaPOoqcGyu0biajKtL4x7CxWeXl7KYxl-NVWV-_c0jNIL9X90a1avS_nNcaNJNqi0RbI7-N-oZrPdGg1t9ez3sH8MG3aGgEZE0oL58fXMnyEyW9tR73ge2Dt_l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dual-functional+metamaterial+for+integrated+vibration+isolation+and+energy+harvesting&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Lu%2C+Ze-Qi&rft.au=Zhao%2C+Long&rft.au=Ding%2C+Hu&rft.au=Chen%2C+Li-Qun&rft.date=2021-09-29&rft.pub=Elsevier+Science+Ltd&rft.issn=0022-460X&rft.eissn=1095-8568&rft.volume=509&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jsv.2021.116251&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon |