A dual-functional metamaterial for integrated vibration isolation and energy harvesting

Enhancing vibration isolation with locally resonant metamaterials has attracted wide attention due to low-frequency band-gap. Moreover, nonlinear periodic structure could improve the range of targeted energy transfer. In this paper, we propose a dual-functional metamaterial for integrated low-freque...

Full description

Saved in:
Bibliographic Details
Published inJournal of sound and vibration Vol. 509; p. 116251
Main Authors Lu, Ze-Qi, Zhao, Long, Ding, Hu, Chen, Li-Qun
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 29.09.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0022-460X
1095-8568
DOI10.1016/j.jsv.2021.116251

Cover

Loading…
Abstract Enhancing vibration isolation with locally resonant metamaterials has attracted wide attention due to low-frequency band-gap. Moreover, nonlinear periodic structure could improve the range of targeted energy transfer. In this paper, we propose a dual-functional metamaterial for integrated low-frequency vibration isolation and energy harvesting. A periodic array of nonlinear electrical energy harvesters, realized by implanting a rolling-ball with coils into a spherical magnetic cavity, is explored to isolate mechanical wave and simultaneously harvest electrical energy. The dynamical equation is established for a nonlinear dual-functional metamaterial beam under transverse excitation. The Extended Bloch's theorem is applied to give the dispersion relation. Numerical results obtained by finite element method supported the analytical results. Compared to the narrow band-gaps in metamaterials with spherical magnetic cavity, our numerical analysis demonstrates that a cavity mass arrayed beam with a periodic array of nonlinear energy harvesters has more and wider low-frequency band-gaps. Frequency response functions of output power are derived by using finite element analysis. The harvested power is considerable at the local resonant band-gap. Parameter study demonstrates that increasing the cell size and increasing cavity mass could improve elastic waves isolation performance at low frequencies; Increasing the mass of the rolling-ball in the resonator can significantly decrease the frequency of the local resonance band-gap. The existence of multiple band-gaps could be designed for dual-functional vibration attenuation and energy harvesting. Finally, an experimental rig is designed to validate the theoretical results.
AbstractList Enhancing vibration isolation with locally resonant metamaterials has attracted wide attention due to low-frequency band-gap. Moreover, nonlinear periodic structure could improve the range of targeted energy transfer. In this paper, we propose a dual-functional metamaterial for integrated low-frequency vibration isolation and energy harvesting. A periodic array of nonlinear electrical energy harvesters, realized by implanting a rolling-ball with coils into a spherical magnetic cavity, is explored to isolate mechanical wave and simultaneously harvest electrical energy. The dynamical equation is established for a nonlinear dual-functional metamaterial beam under transverse excitation. The Extended Bloch's theorem is applied to give the dispersion relation. Numerical results obtained by finite element method supported the analytical results. Compared to the narrow band-gaps in metamaterials with spherical magnetic cavity, our numerical analysis demonstrates that a cavity mass arrayed beam with a periodic array of nonlinear energy harvesters has more and wider low-frequency band-gaps. Frequency response functions of output power are derived by using finite element analysis. The harvested power is considerable at the local resonant band-gap. Parameter study demonstrates that increasing the cell size and increasing cavity mass could improve elastic waves isolation performance at low frequencies; Increasing the mass of the rolling-ball in the resonator can significantly decrease the frequency of the local resonance band-gap. The existence of multiple band-gaps could be designed for dual-functional vibration attenuation and energy harvesting. Finally, an experimental rig is designed to validate the theoretical results.
ArticleNumber 116251
Author Zhao, Long
Ding, Hu
Chen, Li-Qun
Lu, Ze-Qi
Author_xml – sequence: 1
  givenname: Ze-Qi
  surname: Lu
  fullname: Lu, Ze-Qi
  email: luzeqi@shu.edu.cn
– sequence: 2
  givenname: Long
  surname: Zhao
  fullname: Zhao, Long
– sequence: 3
  givenname: Hu
  surname: Ding
  fullname: Ding, Hu
– sequence: 4
  givenname: Li-Qun
  surname: Chen
  fullname: Chen, Li-Qun
BookMark eNp9kEtLAzEUhYNUsFV_gLsB11PzmEkzuCrFFxTcKLoLaeamZphmapIZ6L83dVy5KARycznfvTlnhiauc4DQDcFzggm_a-ZNGOYUUzInhNOSnKEpwVWZi5KLCZpiTGlecPx5gWYhNBjjqmDFFH0ss7pXbW56p6PtnGqzHUS1UxG8TQ_T-cy6CFufOnU22E0qki6zoWvHSrk6Awd-e8i-lB8gROu2V-jcqDbA9d99id4fH95Wz_n69elltVznmtEy5pSKEpMNKIIVrRRnBpQxYAQ2VOCCQ4mZEgUXeiOoTkeDoowKmvoFLGp2iW7HuXvfffdpt2y63icbQdKyrIoFqzhLqsWo0r4LwYOR2sbf30evbCsJlscUZSNTivKYohxTTCT5R-693Sl_OMncjwwk44MFL4O24DTU1oOOsu7sCfoHIrSNYw
CitedBy_id crossref_primary_10_1021_acsami_1c19718
crossref_primary_10_3390_coatings11121452
crossref_primary_10_1016_j_csite_2021_101718
crossref_primary_10_1016_j_energy_2022_124175
crossref_primary_10_1007_s00339_022_05566_1
crossref_primary_10_1016_j_engstruct_2022_115506
crossref_primary_10_1016_j_apm_2023_02_007
crossref_primary_10_1016_j_jclepro_2022_132897
crossref_primary_10_1007_s11431_021_1952_1
crossref_primary_10_1007_s00707_023_03553_y
crossref_primary_10_1016_j_mtener_2023_101387
crossref_primary_10_1016_j_tws_2024_112328
crossref_primary_10_3390_pr9111930
crossref_primary_10_1155_2024_2811428
crossref_primary_10_1016_j_engstruct_2022_114382
crossref_primary_10_1016_j_paerosci_2023_100898
crossref_primary_10_1016_j_tws_2023_111071
crossref_primary_10_1016_j_apm_2024_06_031
crossref_primary_10_1016_j_csite_2021_101569
crossref_primary_10_1007_s00419_021_02074_1
crossref_primary_10_1080_15376494_2024_2311859
crossref_primary_10_1007_s11071_023_08943_4
crossref_primary_10_1007_s11665_024_09428_0
crossref_primary_10_1007_s10409_022_09013_x
crossref_primary_10_1080_15376494_2025_2471948
crossref_primary_10_1016_j_energy_2024_130722
crossref_primary_10_3390_biomimetics9020074
crossref_primary_10_1088_1361_665X_ad3bfa
crossref_primary_10_1016_j_eml_2024_102165
crossref_primary_10_1016_j_ymssp_2021_108775
crossref_primary_10_1007_s10483_024_3156_8
crossref_primary_10_1093_ijlct_ctae064
crossref_primary_10_1142_S175882512250079X
crossref_primary_10_1080_15376494_2022_2029985
crossref_primary_10_1016_j_ymssp_2022_109324
crossref_primary_10_1016_j_ymssp_2022_109689
crossref_primary_10_3390_su15043421
crossref_primary_10_1016_j_ijmecsci_2023_108664
crossref_primary_10_1016_j_triboint_2024_109308
crossref_primary_10_1007_s11071_023_08808_w
crossref_primary_10_1007_s11664_024_11575_y
crossref_primary_10_1038_s41598_022_11029_7
crossref_primary_10_1016_j_micrna_2024_208025
crossref_primary_10_1007_s10483_024_3123_6
crossref_primary_10_1364_AO_484916
crossref_primary_10_1177_16878132241273539
crossref_primary_10_1080_15376494_2023_2292788
crossref_primary_10_1007_s00339_022_06339_6
crossref_primary_10_3390_app13127302
crossref_primary_10_1016_j_cnsns_2024_108588
crossref_primary_10_1016_j_optmat_2024_115140
crossref_primary_10_1016_j_ymssp_2022_109169
crossref_primary_10_1038_s41598_024_57639_1
crossref_primary_10_1016_j_est_2024_113385
crossref_primary_10_1016_j_nanoen_2022_107488
crossref_primary_10_1007_s10483_022_2868_5
crossref_primary_10_1016_j_jsv_2021_116588
crossref_primary_10_1063_5_0165984
crossref_primary_10_1007_s40684_022_00446_8
crossref_primary_10_1016_j_engstruct_2024_118480
crossref_primary_10_1007_s00339_022_06032_8
crossref_primary_10_1016_j_engstruct_2025_119640
crossref_primary_10_1007_s10483_021_2790_7
crossref_primary_10_1016_j_renene_2021_09_043
crossref_primary_10_1038_s41598_022_12106_7
crossref_primary_10_3390_app132413097
crossref_primary_10_1016_j_ijmecsci_2023_108170
crossref_primary_10_1080_15567036_2022_2039331
crossref_primary_10_1016_j_ijnonlinmec_2025_105037
crossref_primary_10_1016_j_tws_2024_111718
crossref_primary_10_1007_s00707_023_03843_5
crossref_primary_10_1016_j_tws_2024_111714
crossref_primary_10_1016_j_enconman_2022_116469
crossref_primary_10_1038_s41467_024_50926_5
crossref_primary_10_1016_j_engstruct_2022_114775
crossref_primary_10_1016_j_csite_2021_101510
crossref_primary_10_1121_10_0021877
crossref_primary_10_1016_j_csite_2021_101594
crossref_primary_10_1016_j_ijmecsci_2023_108448
crossref_primary_10_1088_1402_4896_ad59d1
crossref_primary_10_1038_s42005_022_00869_4
crossref_primary_10_1016_j_tws_2025_113001
crossref_primary_10_1016_j_jsv_2023_118215
crossref_primary_10_1016_j_ymssp_2024_111262
crossref_primary_10_1007_s11242_021_01691_2
crossref_primary_10_1016_j_nanoen_2023_108595
crossref_primary_10_1016_j_compstruct_2021_114936
crossref_primary_10_1016_j_ast_2024_108980
crossref_primary_10_1016_j_engstruct_2025_119912
crossref_primary_10_1007_s10409_023_23320_x
crossref_primary_10_1016_j_ymssp_2022_109147
crossref_primary_10_1088_1361_665X_ad606a
crossref_primary_10_1080_15376494_2022_2163727
crossref_primary_10_1016_j_enconman_2022_115466
crossref_primary_10_1007_s42417_023_01034_z
crossref_primary_10_1080_15376494_2024_2301731
crossref_primary_10_1002_aenm_202300557
crossref_primary_10_1016_j_ijmecsci_2022_107760
crossref_primary_10_1186_s10033_024_01122_5
crossref_primary_10_1360_TB_2021_1310
crossref_primary_10_1016_j_aej_2021_11_022
crossref_primary_10_1007_s10854_024_12385_y
crossref_primary_10_1016_j_ijnonlinmec_2024_104662
crossref_primary_10_1016_j_ijmecsci_2023_108590
crossref_primary_10_1080_00986445_2021_1990888
crossref_primary_10_1080_17455030_2021_1998726
crossref_primary_10_1007_s00707_022_03465_3
crossref_primary_10_3390_app13031795
crossref_primary_10_1016_j_ijnonlinmec_2022_104266
crossref_primary_10_1016_j_ymssp_2022_108836
crossref_primary_10_1007_s10483_024_3154_6
crossref_primary_10_1080_15376494_2024_2310204
crossref_primary_10_1063_5_0152525
crossref_primary_10_1142_S021798492550054X
crossref_primary_10_1016_j_ymssp_2024_111324
crossref_primary_10_1016_j_jsv_2024_118577
crossref_primary_10_3390_act11050133
crossref_primary_10_3390_app142411549
crossref_primary_10_1080_15376494_2024_2304154
crossref_primary_10_1016_j_est_2024_110513
crossref_primary_10_1080_15376494_2024_2315602
crossref_primary_10_1007_s10483_024_3167_8
crossref_primary_10_1080_15376494_2024_2313152
crossref_primary_10_1016_j_petrol_2021_109734
crossref_primary_10_1016_j_ymssp_2022_109756
crossref_primary_10_1177_1045389X211026383
crossref_primary_10_1007_s40435_022_01102_4
crossref_primary_10_1007_s43452_021_00321_4
crossref_primary_10_1080_15376494_2023_2280997
crossref_primary_10_1016_j_ijnonlinmec_2023_104464
crossref_primary_10_1080_15376494_2024_2328752
crossref_primary_10_1088_1361_6463_acaed8
crossref_primary_10_1016_j_apenergy_2023_120908
crossref_primary_10_1016_j_apm_2021_08_002
crossref_primary_10_1088_1361_665X_acc36c
crossref_primary_10_1016_j_apm_2025_116112
crossref_primary_10_1080_15376494_2024_2311235
crossref_primary_10_1007_s10562_024_04886_6
crossref_primary_10_1016_j_enconman_2023_117535
crossref_primary_10_1088_1361_6463_ad7b4c
crossref_primary_10_1080_15376494_2024_2312448
crossref_primary_10_1115_1_4065751
crossref_primary_10_1007_s10483_024_3159_7
crossref_primary_10_1007_s42417_024_01673_w
crossref_primary_10_1016_j_apenergy_2024_123124
crossref_primary_10_1016_j_apenergy_2024_123528
crossref_primary_10_1007_s11071_023_08404_y
crossref_primary_10_1016_j_engstruct_2025_120028
crossref_primary_10_1364_OE_465062
crossref_primary_10_1016_j_ijmecsci_2022_107374
crossref_primary_10_1016_j_jsv_2023_117684
Cites_doi 10.1016/j.ijmecsci.2013.12.013
10.1016/j.ymssp.2019.05.060
10.1016/j.physleta.2019.01.061
10.1016/j.ijmecsci.2018.11.029
10.1115/1.4025150
10.1016/j.ijnonlinmec.2014.12.008
10.1016/j.jsv.2020.115647
10.1088/0964-1726/22/6/065004
10.1177/1077546319889815
10.1063/1.4857635
10.1063/1.4974299
10.1016/j.physleta.2006.10.056
10.1121/1.4892870
10.1177/1045389X10375637
10.1016/j.jmps.2014.06.012
10.1016/j.physleta.2020.126253
10.1063/1.5099425
10.1023/A:1012967003477
10.1016/j.compstruct.2015.09.048
10.1063/1.4959251
10.1016/j.jsv.2018.09.053
10.1007/s11071-019-04812-1
10.1016/j.ymssp.2019.106357
10.1038/ncomms6510
10.1016/j.physleta.2016.09.055
10.1016/j.ijmecsci.2015.12.004
10.1088/1367-2630/18/8/083041
10.1126/sciadv.1501595
10.1088/1361-665X/aa6721
10.1016/j.physleta.2015.12.010
10.1038/natrevmats.2016.1
10.1063/1.5063949
10.1016/j.ijmecsci.2019.105229
10.1016/j.ijsolstr.2014.12.018
10.1126/science.289.5485.1734
10.1016/j.sna.2016.08.030
10.1016/j.compstruct.2019.04.047
10.1016/j.physleta.2018.10.042
10.1007/978-94-007-2069-5_4
10.1016/j.ymssp.2019.02.008
10.1016/j.jsv.2019.01.029
10.1115/1.3142882
10.1038/nature12608
10.1016/j.jsv.2020.115215
10.1063/PT.3.3198
10.1016/j.jmps.2017.05.009
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Sep 29, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Sep 29, 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.jsv.2021.116251
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1095-8568
ExternalDocumentID 10_1016_j_jsv_2021_116251
S0022460X21003230
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
E.L
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JJJVA
KOM
LG5
M24
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSQ
SST
SSZ
T5K
TN5
XPP
ZMT
~G-
29L
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHPGS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
H~9
IHE
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
T9H
VOH
WUQ
ZY4
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c325t-228501bea10a29a63feaffef80f28046e503a8468cb82c82ccea232825034e7d3
IEDL.DBID .~1
ISSN 0022-460X
IngestDate Fri Jul 25 05:25:58 EDT 2025
Tue Jul 01 03:32:16 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Fri Feb 23 02:44:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dual-functional metamaterial
Energy harvesting
Vibration isolation
Nonlinear vibration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-228501bea10a29a63feaffef80f28046e503a8468cb82c82ccea232825034e7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2559473963
PQPubID 2047461
ParticipantIDs proquest_journals_2559473963
crossref_citationtrail_10_1016_j_jsv_2021_116251
crossref_primary_10_1016_j_jsv_2021_116251
elsevier_sciencedirect_doi_10_1016_j_jsv_2021_116251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-29
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-29
  day: 29
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of sound and vibration
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Kwon, Oh (bib0018) 2016; 249
Manevitch, Sigalov, Romeo, Bergman, Vakakis (bib0047) 2015; 10
Wen, Xiong, Hao, Li, Zhang (bib0029) 2020; 166
Ma, Sheng (bib0011) 2016; 2
Y.W. Zhang, C. Su, Z.Y. Ni, J. Zang, L.Q. Chen, 2019. A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control, Composite Structures. 221, 110875. https://doi.org/10.1016/j.compstruct.2019.04.047.
Wierschem (bib0046) 2014
El-Borgi, Fernandes, Rajendran, Yazbeck, Boyd, Lagoudas (bib0034) 2020; 488
Wiercigroch (bib0053) 2009
K. Wang, J.X. Zhou, D.L Xu, H.J. Ouyang, Lower band gaps of transverse wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity, Mechanical Systems and Signal Processing. 124 (2019) 664–678. https://doi.org/10.1016/j.ymssp.2019.02.008.
Kwon, Jo, Oh (bib0017) 2014; 42
Wang, Zhou, Wang, Ouyang, Xu (bib0037) 2019; 114
Donahue, Anzel, Bonanomi, Keller, Daraio (bib0049) 2014; 104
Wiercigroch, Najdecka, Vaziri (bib0052) 2011
Lu, Shao, Fang, Ding, Chen (bib0021) 2020; 26
Chen, Huang, Zhou, Hu, Sun (bib0026) 2014; 136
Pai, Peng, Jiang (bib0036) 2014; 79
Dong, Yao, Du, Zhao, Ding (bib0007) 2019; 383
Zhou, Wang, Xu, Ouyang (bib0040) 2017; 121
Nimmagadda, Matlack (bib0006) 2019; 439
Choi, Wereley (bib0019) 2009; 131
Zhu, Liu, Hu, Sun, Huang (bib0009) 2014; 5
Maldovan (bib0055) 2013; 503
Carrara, Cacan, Toussaint, Leamy, Ruzzene, Erturk (bib0014) 2013; 22
Cummer, Christensen, Alù (bib0012) 2016; 1
Li, Shen, Cao, Zhang, Meng (bib0001) 2018; 114
Wang, Li, Y.S (bib0031) 2016; 106
Lee, Park, Seo, Wan, Kim (bib0027) 2009; 21
Liu, Yu, Li, Zhao, Wen, Wen (bib0033) 2007; 362
Chen, Hu, Huang (bib0044) 2017; 105
Haberman, Guild (bib0013) 2016; 69
Miniaci, Krushynska, Bosia, Pugno (bib0015) 2016; 18
Guo, Cao, Xiao, Shen, Wen (bib0028) 2020; 384
Bukhari, Barry (bib0023) 2020; 473
Z. Zhang, T.J. Li, Z.W. Wang, Y.Q. Tang, Band gap characteristics of flexural wave of two-dimensional periodic frame structure composed of locally resonant composite beam, Mechanical Systems and Signal Processing. 131 (2019) 364–380. https://doi.org/10.1016/j.ymssp.2019.05.060.
Zhou, Dou, Wang, Xu, Ouyang (bib0039) 2019; 96
Wang, Sheng, Qin (bib0042) 2016; 380
Kim, Yang (bib0004) 2014; 71
Davis, McDowell (bib0020) 2017; 26
Shim, Wang, Bertoldi (bib0008) 2015; 58
Sun, Du, Pai (bib0032) 2010; 21
Li, Gao, Huang (bib0050) 2010; 108
Gendelman (bib0045) 2001; 25
Geng, Cai, Li (bib0002) 2019; 125
Pelat, Gallot, Gautier (bib0030) 2019; 446
Manevitch, Sigalov, Romeo, Bergman, Vakakis (bib0048) 2014; 81
Liu, Zhang, Mao, Zhu, Yang, Chan, Sheng (bib0025) 2000; 289
Z.J. Wu, W.Y. Liu, F.M. Li, C.Z. Zhang, 2019. Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators, Mechanical Systems and Signal Processing. 134, 106357. https://doi.org/10.1016/j.ymssp.2019.106357.
Y.Y. Chen, M.V. Barnhart, J.K. Chen, G.K. Hu, C.T. Sun, G.L. Huang, Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale, Composite Structures. 136 (2016) 358–371. https://doi.org/10.1016/j.compstruct.2015.09.048.
Chen, Barnhart, Chen, Hu, Sun, Huang (bib0016) 2016; 136
Hobeck, Inman (bib0022) 2017
Li, Dou, Chen, Xu, Li, Zhang (bib0005) 2019; 383
Najdeck, Narayanan, Wiercigroch (bib0054) 2015; 71
Chuang, Zhang, Wang (bib0010) 2016; 380
Huang, Li, Chen, Bao (bib0035) 2019; 151
Shen, Li, Jiang, Ni, Huang (bib0051) 2016; 109
Zhou (10.1016/j.jsv.2021.116251_bib0039) 2019; 96
Sun (10.1016/j.jsv.2021.116251_bib0032) 2010; 21
Kwon (10.1016/j.jsv.2021.116251_bib0018) 2016; 249
Kim (10.1016/j.jsv.2021.116251_bib0004) 2014; 71
Nimmagadda (10.1016/j.jsv.2021.116251_bib0006) 2019; 439
Lu (10.1016/j.jsv.2021.116251_bib0021) 2020; 26
Pelat (10.1016/j.jsv.2021.116251_bib0030) 2019; 446
Gendelman (10.1016/j.jsv.2021.116251_bib0045) 2001; 25
Carrara (10.1016/j.jsv.2021.116251_bib0014) 2013; 22
Haberman (10.1016/j.jsv.2021.116251_bib0013) 2016; 69
Wierschem (10.1016/j.jsv.2021.116251_bib0046) 2014
Geng (10.1016/j.jsv.2021.116251_bib0002) 2019; 125
Chen (10.1016/j.jsv.2021.116251_bib0026) 2014; 136
Chen (10.1016/j.jsv.2021.116251_bib0044) 2017; 105
El-Borgi (10.1016/j.jsv.2021.116251_bib0034) 2020; 488
Najdeck (10.1016/j.jsv.2021.116251_bib0054) 2015; 71
Guo (10.1016/j.jsv.2021.116251_bib0028) 2020; 384
Liu (10.1016/j.jsv.2021.116251_bib0025) 2000; 289
Zhu (10.1016/j.jsv.2021.116251_bib0009) 2014; 5
10.1016/j.jsv.2021.116251_bib0041
Wiercigroch (10.1016/j.jsv.2021.116251_bib0053) 2009
Huang (10.1016/j.jsv.2021.116251_bib0035) 2019; 151
10.1016/j.jsv.2021.116251_bib0043
10.1016/j.jsv.2021.116251_bib0003
Pai (10.1016/j.jsv.2021.116251_bib0036) 2014; 79
Wiercigroch (10.1016/j.jsv.2021.116251_bib0052) 2011
10.1016/j.jsv.2021.116251_bib0038
Donahue (10.1016/j.jsv.2021.116251_bib0049) 2014; 104
Li (10.1016/j.jsv.2021.116251_bib0050) 2010; 108
Zhou (10.1016/j.jsv.2021.116251_bib0040) 2017; 121
Wang (10.1016/j.jsv.2021.116251_bib0031) 2016; 106
Chuang (10.1016/j.jsv.2021.116251_bib0010) 2016; 380
Shim (10.1016/j.jsv.2021.116251_bib0008) 2015; 58
Wang (10.1016/j.jsv.2021.116251_bib0042) 2016; 380
Cummer (10.1016/j.jsv.2021.116251_bib0012) 2016; 1
Manevitch (10.1016/j.jsv.2021.116251_bib0048) 2014; 81
Ma (10.1016/j.jsv.2021.116251_bib0011) 2016; 2
Li (10.1016/j.jsv.2021.116251_bib0005) 2019; 383
Wang (10.1016/j.jsv.2021.116251_bib0037) 2019; 114
Lee (10.1016/j.jsv.2021.116251_bib0027) 2009; 21
Shen (10.1016/j.jsv.2021.116251_bib0051) 2016; 109
Choi (10.1016/j.jsv.2021.116251_bib0019) 2009; 131
Davis (10.1016/j.jsv.2021.116251_bib0020) 2017; 26
Manevitch (10.1016/j.jsv.2021.116251_bib0047) 2015; 10
Liu (10.1016/j.jsv.2021.116251_bib0033) 2007; 362
Miniaci (10.1016/j.jsv.2021.116251_bib0015) 2016; 18
10.1016/j.jsv.2021.116251_bib0024
Maldovan (10.1016/j.jsv.2021.116251_bib0055) 2013; 503
Dong (10.1016/j.jsv.2021.116251_bib0007) 2019; 383
Kwon (10.1016/j.jsv.2021.116251_bib0017) 2014; 42
Wen (10.1016/j.jsv.2021.116251_bib0029) 2020; 166
Chen (10.1016/j.jsv.2021.116251_bib0016) 2016; 136
Bukhari (10.1016/j.jsv.2021.116251_bib0023) 2020; 473
Li (10.1016/j.jsv.2021.116251_bib0001) 2018; 114
Hobeck (10.1016/j.jsv.2021.116251_bib0022) 2017
References_xml – volume: 488
  year: 2020
  ident: bib0034
  article-title: Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments
  publication-title: J. Sound Vib.
– volume: 105
  start-page: 179
  year: 2017
  end-page: 198
  ident: bib0044
  article-title: A hybrid elastic metamaterial with negative mass density and tunable bending stiffness
  publication-title: J. Mech. Phys. Solids
– reference: Y.Y. Chen, M.V. Barnhart, J.K. Chen, G.K. Hu, C.T. Sun, G.L. Huang, Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale, Composite Structures. 136 (2016) 358–371. https://doi.org/10.1016/j.compstruct.2015.09.048.
– volume: 249
  start-page: 172
  year: 2016
  end-page: 185
  ident: bib0018
  article-title: Experimental validation of satellite micro-jitter management strategy in energy harvesting and vibration isolation
  publication-title: Sensors Actuators A-Phys.
– start-page: 35
  year: 2011
  end-page: 42
  ident: bib0052
  article-title: Nonlinear dynamics of pendulums system for energy harvesting
  publication-title: Vibr. Probl. ICOVP
– volume: 42
  start-page: 648
  year: 2014
  end-page: 653
  ident: bib0017
  article-title: Numerical investigation of complex system for electrical energy harvesting and vibration isolation
  publication-title: Int. J. Aeronaut. Space Sci.
– reference: K. Wang, J.X. Zhou, D.L Xu, H.J. Ouyang, Lower band gaps of transverse wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity, Mechanical Systems and Signal Processing. 124 (2019) 664–678. https://doi.org/10.1016/j.ymssp.2019.02.008.
– volume: 383
  start-page: 283
  year: 2019
  end-page: 288
  ident: bib0007
  article-title: Research on bandgap property of a novel small size multi-band phononic crystal
  publication-title: Phys. Lett. A
– volume: 2
  year: 2016
  ident: bib0011
  article-title: Acoustic metamaterials: From local resonances to broad horizons
  publication-title: Sci. Adv.
– volume: 69
  start-page: 42
  year: 2016
  ident: bib0013
  article-title: Acoustic metamaterials
  publication-title: Phys. Today
– volume: 136
  start-page: 358
  year: 2016
  end-page: 371
  ident: bib0016
  article-title: Dissipative elastic metamaterials for broadband wave mitigation at subwave-length scale
  publication-title: Compos. Struct.
– volume: 446
  start-page: 249
  year: 2019
  end-page: 262
  ident: bib0030
  article-title: On the control of the first Bragg band gap in periodic continuously corrugated beam for flexural vibration
  publication-title: J. Sound Vib.
– year: 2014
  ident: bib0046
  article-title: Targeted energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures
– reference: Z.J. Wu, W.Y. Liu, F.M. Li, C.Z. Zhang, 2019. Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators, Mechanical Systems and Signal Processing. 134, 106357. https://doi.org/10.1016/j.ymssp.2019.106357.
– volume: 25
  start-page: 237
  year: 2001
  end-page: 253
  ident: bib0045
  article-title: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators
  publication-title: Nonlinear Dyn.
– volume: 289
  start-page: 1734
  year: 2000
  ident: bib0025
  article-title: Locally resonant sonic materials
  publication-title: Science
– volume: 439
  start-page: 29
  year: 2019
  end-page: 42
  ident: bib0006
  article-title: Thermally tunable band gaps in architected metamaterial structures
  publication-title: J. Sound Vib.
– volume: 71
  start-page: 33
  year: 2014
  end-page: 45
  ident: bib0004
  article-title: Wave propagation in single column woodpile phononic crystals: formation of tunable band gaps
  publication-title: J. Mech. Phys. Solids
– volume: 380
  start-page: 525
  year: 2016
  end-page: 529
  ident: bib0042
  article-title: Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators
  publication-title: Phys. Lett. A
– volume: 81
  year: 2014
  ident: bib0048
  article-title: Dynamics of a linear oscillator coupled to a bistable light attachment: Analytical study
  publication-title: J. Appl. Mech.
– volume: 166
  year: 2020
  ident: bib0029
  article-title: Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections
  publication-title: Int. J. Mech. Sci.
– reference: Y.W. Zhang, C. Su, Z.Y. Ni, J. Zang, L.Q. Chen, 2019. A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control, Composite Structures. 221, 110875. https://doi.org/10.1016/j.compstruct.2019.04.047.
– volume: 362
  start-page: 344
  year: 2007
  end-page: 347
  ident: bib0033
  article-title: Design guidelines for flexural wave attenuation of slender beams with local resonators
  publication-title: Phys. Lett. A
– volume: 114
  year: 2018
  ident: bib0001
  article-title: Thermally triggered tunable vibration mitigation in Hoberman spherical lattice metamaterials
  publication-title: Appl. Phys. Lett.
– volume: 384
  year: 2020
  ident: bib0028
  article-title: Interplay of local resonances and Bragg band gaps in acoustic waveguides with periodic detuned resonators
  publication-title: Phys. Lett. A
– year: 2009
  ident: bib0053
  article-title: A new concept of energy extraction from oscillations via pendulum systems
  publication-title: UK Patent Appl.
– volume: 18
  year: 2016
  ident: bib0015
  article-title: Large scale mechanical metamaterials as seismic shields
  publication-title: New J. Phys.
– volume: 5
  start-page: 5510
  year: 2014
  ident: bib0009
  article-title: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial
  publication-title: Nat. Commun.
– volume: 114
  year: 2019
  ident: bib0037
  article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 779
  year: 2020
  end-page: 789
  ident: bib0021
  article-title: Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate
  publication-title: J. Vib. Control
– volume: 26
  year: 2017
  ident: bib0020
  article-title: Combined Euler column vibration isolation and energy harvesting
  publication-title: Smart Mater. Struct.
– volume: 22
  year: 2013
  ident: bib0014
  article-title: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting
  publication-title: Smart Mater. Struct.
– volume: 473
  year: 2020
  ident: bib0023
  article-title: Simultaneous energy harvesting and vibration control in a nonlinear metastructure: A spectro-spatial analysis
  publication-title: J. Sound Vib.
– volume: 79
  start-page: 195
  year: 2014
  end-page: 205
  ident: bib0036
  article-title: Acoustic metamaterial beams based on multi-frequency vibration absorbers
  publication-title: Int. J. Mech. Sci.
– volume: 96
  start-page: 647
  year: 2019
  end-page: 665
  ident: bib0039
  article-title: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams
  publication-title: Nonlinear Dyn.
– volume: 10
  year: 2015
  ident: bib0047
  article-title: Dynamics of a linear oscillator coupled to a bistable light attachment: Numerical study
  publication-title: J. Comput. Nonlinear Dyn.
– volume: 58
  start-page: 52
  year: 2015
  end-page: 61
  ident: bib0008
  article-title: Harnessing instability-induced pattern transforma-tion to design tunable phononic crystals
  publication-title: Int. J. Solids Struct.
– volume: 136
  start-page: 969
  year: 2014
  end-page: 979
  ident: bib0026
  article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: mem- brane model
  publication-title: J. Acoust. Soc. Am.
– volume: 71
  start-page: 30
  year: 2015
  end-page: 38
  ident: bib0054
  article-title: Rotary motion of the parametric and planar pendulum under stochastic wave excitation
  publication-title: Int. J. Non Linear Mech.
– volume: 21
  start-page: 1085
  year: 2010
  ident: bib0032
  article-title: Theory of Metamaterial Beams for Broadband Vibration Absorption
  publication-title: J. Intell. Mater. Syst. Struct.
– year: 2017
  ident: bib0022
  article-title: Simultaneous passive broadband vibration suppression and energy harvesting with multifunctional metastructures. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring
  publication-title: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. 101720K
– volume: 104
  year: 2014
  ident: bib0049
  article-title: Experimental realization of a nonlinear acoustic lens with a tunable focus
  publication-title: Appl. Phys. Lett.
– volume: 151
  start-page: 300
  year: 2019
  end-page: 313
  ident: bib0035
  article-title: Tunable bandgaps in soft phononic plates with spring-mass-like resonators
  publication-title: Int. J. Mech. Sci.
– volume: 121
  year: 2017
  ident: bib0040
  article-title: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams
  publication-title: J. Appl. Phys.
– volume: 108
  year: 2010
  ident: bib0050
  article-title: A bifunctional cloak using transformation media
  publication-title: J. Appl. Phys.
– volume: 125
  year: 2019
  ident: bib0002
  article-title: Flexural wave manipulation and energy harvesting characteristics of a defect phononic crystal beam with thermal effects
  publication-title: J. Appl. Phys.
– volume: 106
  start-page: 357
  year: 2016
  end-page: 362
  ident: bib0031
  article-title: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain
  publication-title: Int. J. Mech. Sci.
– volume: 131
  year: 2009
  ident: bib0019
  article-title: Self-powered magnetorheological dampers
  publication-title: J. Acoust. Vibr.
– volume: 21
  year: 2009
  ident: bib0027
  article-title: Acoustic metamaterial with negative modulus
  publication-title: J. Phys. A
– volume: 380
  start-page: 3963
  year: 2016
  end-page: 3969
  ident: bib0010
  article-title: Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings
  publication-title: Phys. Lett. A
– volume: 503
  start-page: 209
  year: 2013
  end-page: 217
  ident: bib0055
  article-title: Sound and heat revolutions in phononics
  publication-title: Nature
– volume: 1
  start-page: 16001
  year: 2016
  ident: bib0012
  article-title: Controlling sound with acoustic metamaterials
  publication-title: Nat. Rev. Mater.
– reference: Z. Zhang, T.J. Li, Z.W. Wang, Y.Q. Tang, Band gap characteristics of flexural wave of two-dimensional periodic frame structure composed of locally resonant composite beam, Mechanical Systems and Signal Processing. 131 (2019) 364–380. https://doi.org/10.1016/j.ymssp.2019.05.060.
– volume: 383
  start-page: 1371
  year: 2019
  end-page: 1377
  ident: bib0005
  article-title: Designing a broad locally-resonant bandgap in a phononic crystals
  publication-title: Phys. Lett. A
– volume: 109
  year: 2016
  ident: bib0051
  article-title: Thermal cloak-concentrator
  publication-title: Appl. Phys. Lett.
– volume: 79
  start-page: 195
  year: 2014
  ident: 10.1016/j.jsv.2021.116251_bib0036
  article-title: Acoustic metamaterial beams based on multi-frequency vibration absorbers
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2013.12.013
– ident: 10.1016/j.jsv.2021.116251_bib0043
  doi: 10.1016/j.ymssp.2019.05.060
– volume: 383
  start-page: 1371
  year: 2019
  ident: 10.1016/j.jsv.2021.116251_bib0005
  article-title: Designing a broad locally-resonant bandgap in a phononic crystals
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2019.01.061
– volume: 42
  start-page: 648
  year: 2014
  ident: 10.1016/j.jsv.2021.116251_bib0017
  article-title: Numerical investigation of complex system for electrical energy harvesting and vibration isolation
  publication-title: Int. J. Aeronaut. Space Sci.
– volume: 151
  start-page: 300
  year: 2019
  ident: 10.1016/j.jsv.2021.116251_bib0035
  article-title: Tunable bandgaps in soft phononic plates with spring-mass-like resonators
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2018.11.029
– volume: 81
  year: 2014
  ident: 10.1016/j.jsv.2021.116251_bib0048
  article-title: Dynamics of a linear oscillator coupled to a bistable light attachment: Analytical study
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4025150
– volume: 71
  start-page: 30
  year: 2015
  ident: 10.1016/j.jsv.2021.116251_bib0054
  article-title: Rotary motion of the parametric and planar pendulum under stochastic wave excitation
  publication-title: Int. J. Non Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2014.12.008
– volume: 488
  year: 2020
  ident: 10.1016/j.jsv.2021.116251_bib0034
  article-title: Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115647
– volume: 22
  year: 2013
  ident: 10.1016/j.jsv.2021.116251_bib0014
  article-title: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/6/065004
– volume: 26
  start-page: 779
  year: 2020
  ident: 10.1016/j.jsv.2021.116251_bib0021
  article-title: Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate
  publication-title: J. Vib. Control
  doi: 10.1177/1077546319889815
– volume: 104
  year: 2014
  ident: 10.1016/j.jsv.2021.116251_bib0049
  article-title: Experimental realization of a nonlinear acoustic lens with a tunable focus
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4857635
– volume: 121
  year: 2017
  ident: 10.1016/j.jsv.2021.116251_bib0040
  article-title: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4974299
– volume: 362
  start-page: 344
  year: 2007
  ident: 10.1016/j.jsv.2021.116251_bib0033
  article-title: Design guidelines for flexural wave attenuation of slender beams with local resonators
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2006.10.056
– volume: 136
  start-page: 969
  year: 2014
  ident: 10.1016/j.jsv.2021.116251_bib0026
  article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: mem- brane model
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4892870
– volume: 21
  start-page: 1085
  year: 2010
  ident: 10.1016/j.jsv.2021.116251_bib0032
  article-title: Theory of Metamaterial Beams for Broadband Vibration Absorption
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X10375637
– volume: 71
  start-page: 33
  year: 2014
  ident: 10.1016/j.jsv.2021.116251_bib0004
  article-title: Wave propagation in single column woodpile phononic crystals: formation of tunable band gaps
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2014.06.012
– volume: 21
  year: 2009
  ident: 10.1016/j.jsv.2021.116251_bib0027
  article-title: Acoustic metamaterial with negative modulus
  publication-title: J. Phys. A
– volume: 384
  year: 2020
  ident: 10.1016/j.jsv.2021.116251_bib0028
  article-title: Interplay of local resonances and Bragg band gaps in acoustic waveguides with periodic detuned resonators
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2020.126253
– volume: 114
  year: 2019
  ident: 10.1016/j.jsv.2021.116251_bib0037
  article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5099425
– volume: 25
  start-page: 237
  year: 2001
  ident: 10.1016/j.jsv.2021.116251_bib0045
  article-title: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1012967003477
– ident: 10.1016/j.jsv.2021.116251_bib0003
  doi: 10.1016/j.compstruct.2015.09.048
– volume: 10
  year: 2015
  ident: 10.1016/j.jsv.2021.116251_bib0047
  article-title: Dynamics of a linear oscillator coupled to a bistable light attachment: Numerical study
  publication-title: J. Comput. Nonlinear Dyn.
– year: 2014
  ident: 10.1016/j.jsv.2021.116251_bib0046
– volume: 108
  year: 2010
  ident: 10.1016/j.jsv.2021.116251_bib0050
  article-title: A bifunctional cloak using transformation media
  publication-title: J. Appl. Phys.
– volume: 109
  year: 2016
  ident: 10.1016/j.jsv.2021.116251_bib0051
  article-title: Thermal cloak-concentrator
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4959251
– year: 2017
  ident: 10.1016/j.jsv.2021.116251_bib0022
  article-title: Simultaneous passive broadband vibration suppression and energy harvesting with multifunctional metastructures. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring
– year: 2009
  ident: 10.1016/j.jsv.2021.116251_bib0053
  article-title: A new concept of energy extraction from oscillations via pendulum systems
  publication-title: UK Patent Appl.
– volume: 439
  start-page: 29
  year: 2019
  ident: 10.1016/j.jsv.2021.116251_bib0006
  article-title: Thermally tunable band gaps in architected metamaterial structures
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.09.053
– volume: 96
  start-page: 647
  year: 2019
  ident: 10.1016/j.jsv.2021.116251_bib0039
  article-title: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04812-1
– ident: 10.1016/j.jsv.2021.116251_bib0038
  doi: 10.1016/j.ymssp.2019.106357
– volume: 5
  start-page: 5510
  year: 2014
  ident: 10.1016/j.jsv.2021.116251_bib0009
  article-title: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6510
– volume: 380
  start-page: 3963
  year: 2016
  ident: 10.1016/j.jsv.2021.116251_bib0010
  article-title: Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2016.09.055
– volume: 106
  start-page: 357
  year: 2016
  ident: 10.1016/j.jsv.2021.116251_bib0031
  article-title: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2015.12.004
– volume: 18
  year: 2016
  ident: 10.1016/j.jsv.2021.116251_bib0015
  article-title: Large scale mechanical metamaterials as seismic shields
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/8/083041
– volume: 136
  start-page: 358
  year: 2016
  ident: 10.1016/j.jsv.2021.116251_bib0016
  article-title: Dissipative elastic metamaterials for broadband wave mitigation at subwave-length scale
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.09.048
– volume: 2
  year: 2016
  ident: 10.1016/j.jsv.2021.116251_bib0011
  article-title: Acoustic metamaterials: From local resonances to broad horizons
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501595
– volume: 26
  year: 2017
  ident: 10.1016/j.jsv.2021.116251_bib0020
  article-title: Combined Euler column vibration isolation and energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa6721
– volume: 380
  start-page: 525
  year: 2016
  ident: 10.1016/j.jsv.2021.116251_bib0042
  article-title: Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2015.12.010
– volume: 1
  start-page: 16001
  year: 2016
  ident: 10.1016/j.jsv.2021.116251_bib0012
  article-title: Controlling sound with acoustic metamaterials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.1
– volume: 125
  year: 2019
  ident: 10.1016/j.jsv.2021.116251_bib0002
  article-title: Flexural wave manipulation and energy harvesting characteristics of a defect phononic crystal beam with thermal effects
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5063949
– volume: 166
  year: 2020
  ident: 10.1016/j.jsv.2021.116251_bib0029
  article-title: Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.105229
– volume: 58
  start-page: 52
  year: 2015
  ident: 10.1016/j.jsv.2021.116251_bib0008
  article-title: Harnessing instability-induced pattern transforma-tion to design tunable phononic crystals
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2014.12.018
– volume: 289
  start-page: 1734
  year: 2000
  ident: 10.1016/j.jsv.2021.116251_bib0025
  article-title: Locally resonant sonic materials
  publication-title: Science
  doi: 10.1126/science.289.5485.1734
– volume: 249
  start-page: 172
  year: 2016
  ident: 10.1016/j.jsv.2021.116251_bib0018
  article-title: Experimental validation of satellite micro-jitter management strategy in energy harvesting and vibration isolation
  publication-title: Sensors Actuators A-Phys.
  doi: 10.1016/j.sna.2016.08.030
– ident: 10.1016/j.jsv.2021.116251_bib0024
  doi: 10.1016/j.compstruct.2019.04.047
– volume: 383
  start-page: 283
  year: 2019
  ident: 10.1016/j.jsv.2021.116251_bib0007
  article-title: Research on bandgap property of a novel small size multi-band phononic crystal
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.10.042
– start-page: 35
  year: 2011
  ident: 10.1016/j.jsv.2021.116251_bib0052
  article-title: Nonlinear dynamics of pendulums system for energy harvesting
  publication-title: Vibr. Probl. ICOVP
  doi: 10.1007/978-94-007-2069-5_4
– ident: 10.1016/j.jsv.2021.116251_bib0041
  doi: 10.1016/j.ymssp.2019.02.008
– volume: 446
  start-page: 249
  year: 2019
  ident: 10.1016/j.jsv.2021.116251_bib0030
  article-title: On the control of the first Bragg band gap in periodic continuously corrugated beam for flexural vibration
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.01.029
– volume: 114
  year: 2018
  ident: 10.1016/j.jsv.2021.116251_bib0001
  article-title: Thermally triggered tunable vibration mitigation in Hoberman spherical lattice metamaterials
  publication-title: Appl. Phys. Lett.
– volume: 131
  year: 2009
  ident: 10.1016/j.jsv.2021.116251_bib0019
  article-title: Self-powered magnetorheological dampers
  publication-title: J. Acoust. Vibr.
  doi: 10.1115/1.3142882
– volume: 503
  start-page: 209
  year: 2013
  ident: 10.1016/j.jsv.2021.116251_bib0055
  article-title: Sound and heat revolutions in phononics
  publication-title: Nature
  doi: 10.1038/nature12608
– volume: 473
  year: 2020
  ident: 10.1016/j.jsv.2021.116251_bib0023
  article-title: Simultaneous energy harvesting and vibration control in a nonlinear metastructure: A spectro-spatial analysis
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115215
– volume: 69
  start-page: 42
  issue: 6
  year: 2016
  ident: 10.1016/j.jsv.2021.116251_bib0013
  article-title: Acoustic metamaterials
  publication-title: Phys. Today
  doi: 10.1063/PT.3.3198
– volume: 105
  start-page: 179
  year: 2017
  ident: 10.1016/j.jsv.2021.116251_bib0044
  article-title: A hybrid elastic metamaterial with negative mass density and tunable bending stiffness
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.05.009
SSID ssj0009434
Score 2.6674805
Snippet Enhancing vibration isolation with locally resonant metamaterials has attracted wide attention due to low-frequency band-gap. Moreover, nonlinear periodic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116251
SubjectTerms Arrays
Attenuation
Band gap
Coils
Dual-functional metamaterial
Elastic waves
Energy gap
Energy harvesting
Energy transfer
Finite element analysis
Finite element method
Frequency response functions
Low frequencies
Metamaterials
Nonlinear systems
Nonlinear vibration
Numerical analysis
Periodic structures
Vibration
Vibration analysis
Vibration isolation
Title A dual-functional metamaterial for integrated vibration isolation and energy harvesting
URI https://dx.doi.org/10.1016/j.jsv.2021.116251
https://www.proquest.com/docview/2559473963
Volume 509
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrFayx48CbGbfeRxLEWpij1Z7G3ZpBtt0Vja2KO_3ZlNUlGwByGHJOwuYTL59vuyM7OEXARxAjw55B7gr_Jk5FvPxFJ5qEWYyhCWcUX3YRgMRvJurMYN0q9zYTCsssL-EtMdWld3upU1u_PpFHN8sRgaG4NoYQKYNGawyxDD-q4-v8M8sP5ZXTEcW9crmy7Ga7ZcgUTkPgAH6AD_r7npF0q7qedmj-xWnJH2ysfaJw2bH5BtF7uZLg_JU49iQpWHU1T5Z4--2cIAFXXeRYGW0nVViAldoUDGdnQKfleemXxCrcsCpC9m4Spv5M9HZHRz_dgfeNV-CV4quCo8ziPF_MQanxkem0Bk1mSZzSKW8Qh0sFVMGOAbUZpEPIUjtQYIFWhEJqQNJ-KYNPP33J4QmiYwoxmTyShJpWDSxIlA8QIjJVmoghZhtaV0WhUTxz0tXnUdNTbTYFyNxtWlcVvkct1lXlbS2NRY1ubXP9xBA9Jv6tauX5WuvsWlRtEkQwFIc_q_Uc_IDl5hlAiP26RZLD7sOVCRIuk4X-uQrd7t_WD4BRXr3TQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MiehF_Ik_pubgSShLk3Rrj0Mc07mdNtwtJF2qG1rFTf9-32tTRUEPQg-lTUJ5ff3yfc17LwDnrcQiT26LAPE3ClQcusAkKgpIi_AoI1imFd3BsNUbq5tJNKnBZZULQ2GVHvtLTC_Q2l9pems2X2YzyvGlYmh8gqKFS2TSK7BK1alUHVY71_3e8Kv2rpKqKhpOHarFzSLMa754R5UoQsQOlALhb9PTD6AuZp_uFmx62sg65ZNtQ83lO7BWhG-mi1246zDKqQpolip_7rEntzTIRgsHY8hM2WdhiCl7J41M7dgMXa88M_mUuSIRkD2Y16L4Rn6_B-Pu1eiyF_gtE4JUimgZCBFHPLTOhNyIxLRk5kyWuSzmmYhRCruIS4OUI05tLFI8UmeQU6FM5FK59lTuQz1_zt0BsNTipGZMpmKbKsmVSawk_YIj2awdtQ6BV5bSqa8nTttaPOoqcGyu0biajKtL4x7CxWeXl7KYxl-NVWV-_c0jNIL9X90a1avS_nNcaNJNqi0RbI7-N-oZrPdGg1t9ez3sH8MG3aGgEZE0oL58fXMnyEyW9tR73ge2Dt_l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dual-functional+metamaterial+for+integrated+vibration+isolation+and+energy+harvesting&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Lu%2C+Ze-Qi&rft.au=Zhao%2C+Long&rft.au=Ding%2C+Hu&rft.au=Chen%2C+Li-Qun&rft.date=2021-09-29&rft.pub=Elsevier+Science+Ltd&rft.issn=0022-460X&rft.eissn=1095-8568&rft.volume=509&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jsv.2021.116251&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon