Membrane lipid remodeling and autophagy to cope with phosphorus deficiency in the dinoflagellate Prorocentrum shikokuense
Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphoru...
Saved in:
Published in | Chemosphere (Oxford) Vol. 349; p. 140844 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.
[Display omitted]
•P. shikokuense effectively modulates cellular P resources under P deficiency.•P. shikokuense spares and recycles phospholipids under P deficiency.•PC and PE increase whereas DGCC decreases in content under P deficiency.•P. shikokuense triggers autophagy under P deficiency. |
---|---|
AbstractList | Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates. Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates. Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates. [Display omitted] •P. shikokuense effectively modulates cellular P resources under P deficiency.•P. shikokuense spares and recycles phospholipids under P deficiency.•PC and PE increase whereas DGCC decreases in content under P deficiency.•P. shikokuense triggers autophagy under P deficiency. |
ArticleNumber | 140844 |
Author | Tan, Jin-Zhou Li, Da-Wei Li, Zhuo-Fan Ou, Lin-Jian |
Author_xml | – sequence: 1 givenname: Da-Wei orcidid: 0000-0002-1452-0264 surname: Li fullname: Li, Da-Wei organization: College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China – sequence: 2 givenname: Jin-Zhou surname: Tan fullname: Tan, Jin-Zhou organization: College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China – sequence: 3 givenname: Zhuo-Fan surname: Li fullname: Li, Zhuo-Fan organization: College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China – sequence: 4 givenname: Lin-Jian orcidid: 0000-0002-2891-8265 surname: Ou fullname: Ou, Lin-Jian email: torangeou@jnu.edu.cn organization: College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38042419$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKeFV0BmxyaD_5I6K4RGUJBa0UVZW459M_E0sYPtFM3b4-kUhNi08uJuvnOu7zln6MQHDwi9o2RNCW0-7NZmgCmkeYAIa0YYX1NBpBAv0IrKi7airJUnaEWIqKum5vUpOktpR0gR1-0rdMolEUzQdoX21zB1UXvAo5udxbH4Whid32LtLdZLDvOgt3ucAzZhBvzL5QHPw2F5iEvCFnpnHHizx87jPAC2zod-1FsYR50B38QQgwGf4zLhNLi7cLeAT_Aavez1mODN4zxHP758vt18ra6-X37bfLqqDGd1rhht-roz1pQzqZG1bITgXOiWNqwn1DYdXAhoKeFCdIQYBo3RoraSdLJhvOXn6P3Rd47h5wIpq8klc_ich7AkxYkor6T0NMpk20hKS94FffuILt0EVs3RTTru1Z9kC9AeARNDShH6vwgl6tCi2ql_WlSHFtWxxaL9-J_WuKyzCyVE7cZnOWyODlCSvXcQVXooCayLYLKywT3D5TdqD8Ho |
CitedBy_id | crossref_primary_10_3390_md22080356 crossref_primary_10_1126_sciadv_ads7789 crossref_primary_10_1016_j_marenvres_2024_106378 crossref_primary_10_3390_horticulturae10050506 |
Cites_doi | 10.1080/15548627.2015.1034407 10.1016/j.scitotenv.2016.09.092 10.1038/nature20772 10.1098/rstb.2016.0406 10.1016/j.tplants.2018.02.010 10.1016/j.phytochem.2016.02.007 10.1146/annurev-marine-010213-135046 10.1128/AEM.02592-12 10.1104/pp.18.01379 10.1073/pnas.1916738117 10.1038/nature07659 10.1146/annurev-arplant-042811-105441 10.1038/s42003-021-02927-z 10.1093/jxb/eru535 10.1105/tpc.114.134205 10.3389/fpls.2016.00524 10.1002/lno.10439 10.1016/j.pbi.2017.05.001 10.1093/jxb/ert306 10.1093/jxb/eru039 10.1104/pp.109.152520 10.1105/tpc.112.101535 10.1038/nrm2708 10.1038/s41598-018-35310-w 10.3390/cells8111426 10.3389/fmicb.2019.00590 10.1007/s10021-016-9970-5 10.3390/ijms21186946 10.1007/s13238-020-00793-9 10.1104/pp.114.252395 10.1016/j.hal.2022.102207 10.1128/AEM.02034-17 10.1038/ismej.2017.81 10.15252/embj.2020104705 10.1016/j.chroma.2015.01.035 10.1104/pp.17.00621 10.1111/nph.14179 10.1093/jxb/eri152 10.1016/j.marchem.2021.103935 10.1111/jpy.12365 10.1038/ismej.2010.192 10.1111/nph.13940 10.3109/10408418409105902 10.1111/j.1461-0248.2007.01113.x 10.1016/j.hal.2020.101787 10.1016/S0003-2670(00)88444-5 10.1007/s13238-011-1104-4 10.1016/j.hal.2021.101979 10.1016/j.jmb.2016.11.027 10.1016/j.hal.2023.102532 10.1007/s00248-019-01399-3 10.1016/B978-0-12-398264-3.00002-4 10.4319/lo.1980.25.4.0754 10.1016/j.bbabio.2013.09.007 10.1093/jxb/eraa082 10.1016/j.scitotenv.2019.07.291 10.1016/j.cell.2019.12.005 10.1186/1471-2164-14-563 10.1128/aem.00867-23 10.1074/jbc.273.7.3963 10.1128/AEM.01425-19 10.4319/lo.2012.57.4.0959 10.1038/s43247-021-00178-8 10.4319/lo.1997.42.5_part_2.1137 10.1007/978-981-15-0602-4_16 10.1016/j.bbagen.2021.129916 10.3389/fpls.2014.00301 10.1016/j.mimet.2009.01.001 10.1111/fwb.12321 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2023.140844 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | 38042419 10_1016_j_chemosphere_2023_140844 S0045653523031144 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEFWE AEGFY AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSH SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c325t-216f5bcdc2021c858644334a9162f01d6be74e910344b00c2e6ca45d80b862393 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Wed Jul 02 04:54:57 EDT 2025 Fri Jul 11 01:34:57 EDT 2025 Mon Jul 21 05:56:09 EDT 2025 Thu Apr 24 22:52:42 EDT 2025 Tue Jul 01 02:09:07 EDT 2025 Sun Apr 06 06:54:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Prorocentrum shikokuense Cellular phosphorus metabolism Harmful algal blooms Autophagy Dinoflagellate Membrane lipid |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-216f5bcdc2021c858644334a9162f01d6be74e910344b00c2e6ca45d80b862393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2891-8265 0000-0002-1452-0264 |
PMID | 38042419 |
PQID | 2896811023 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3040406539 proquest_miscellaneous_2896811023 pubmed_primary_38042419 crossref_primary_10_1016_j_chemosphere_2023_140844 crossref_citationtrail_10_1016_j_chemosphere_2023_140844 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2023_140844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 2024-Feb 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cañavate, Armada, Ríos, Hachero-Cruzado (bib10) 2016; 124 Anesi, Obertegger, Hansen, Sukenik, Flaim, Guella (bib3) 2016; 7 Pérez-Pérez, Florencio, Crespo (bib54) 2010; 152 Simms, Cizdziel, Chomczynski (bib65) 1993; 15 Zhou, Zhang, Li, Tan, Wang (bib77) 2017; 574 Laakso, Sperling, Johnston, Knoll (bib29) 2020; 117 Han, Yu, Wang, Liu (bib21) 2011; 2 Schoffelen, Mohr, Ferdelman, Littmann, Duerschlag, Zubkov (bib60) 2018; 8 Sakamoto, Lim, Lu, Dai, Orlova, Iwataki (bib59) 2021; 102 Jin, Liu, Ren (bib25) 2021; 231 Wawrzyńska, Lewandowska, Hawkesford, Sirko (bib71) 2005; 56 Anesi, Guella (bib2) 2015; 1384 Elser, Bracken, Cleland, Gruner, Harpole, Hillebrand (bib16) 2007; 10 Lin, Litaker, Sunda (bib31) 2016; 52 Yang, Zhou, Ma (bib72) 2019; 1206 Shemi, Ben-Dor, Vardi (bib62) 2015; 11 Abida, Dolch, Meï, Villanova, Conte, Block (bib1) 2015; 167 Avin-Wittenberg, Bajdzienko, Wittenberg, Alseekh, Tohge, Bock (bib5) 2015; 27 Martin, Van Mooy, Heithoff, Dyhrman (bib36) 2011; 5 Moon, Lee, Lim, Lee, Dai, Choi (bib42) 2021; 9999 Van Mooy, Fredricks, Pedler, Dyhrman, Karl, Koblížek (bib69) 2009; 458 Liu, Xiao, Landry, Chiang, Wang, Huang (bib32) 2016; 19 Nakatogawa, Suzuki, Kamada, Ohsumi (bib46) 2009; 10 Brembu, Mühlroth, Alipanah, Bones (bib8) 2017; 372 Lu, Ou, Dai, Cui, Dong, Wang (bib35) 2022; 114 Zhang, He, Wu, Zhang, Xie, Li (bib74) 2019; 85 Karl (bib27) 2014; 6 Murphy, Riley (bib43) 1962; 27 Hunter, Brandsma, Dymond, Koster, Moore, Postle (bib24) 2018; 84 Cañavate, Armada, Hachero–Cruzado (bib11) 2017; 213 Noda, Ohsumi (bib48) 1998; 273 Liu, Bassham (bib33) 2012; 63 Shemi, Schatz, Fredricks, Van Mooy, Porat, Vardi (bib63) 2016; 211 Shi, Lin, Li, Li, Palenik, Lin (bib64) 2017; 11 Zhang, Yuan, Chen, Lin, Wang (bib75) 2019; 692 Oishi, Otaki, Iijima, Kumagai, Aoki, Tsuzuki (bib49) 2022; 5 Solórzano, Sharp (bib67) 1980; 25 Schütter, Giavalisco, Brodesser, Graef (bib61) 2020; 180 Zhang, Lin, Shi, Lin, Luo, Li, Lin (bib76) 2019; 10 Gross, Martin, Simpson, Abraham-Juarez, Wang, Visel (bib18) 2013; 14 Huang, Zhuang, Xiong, Li, Ou (bib22) 2023 Naumann, Müller, Sakhonwasee, Wieghaus, Hause, Heisters (bib47) 2019; 179 Ren, Liu, Gong (bib58) 2014; 5 Mühlroth, Winge, El Assimi, Jouhet, Maréchal, Hohmann-Marriott (bib44) 2017; 175 Reinhard, Planavsky, Gill, Ozaki, Robbins, Lyons (bib57) 2017; 541 Broda, Millar, Van Aken (bib9) 2018; 23 Pant, Burgos, Pant, Cuadros-Inostroza, Willmitzer, Scheible (bib52) 2015; 66 Avila-Ospina, Moison, Yoshimoto, Masclaux-Daubresse (bib4) 2014; 65 Cembella, Antia, Harrison (bib12) 1984; 11 Peng, Feng, Wang, Miao (bib53) 2019; 1864 Qin, Shi, Gao, Dai, Ou, Guan (bib55) 2021; 103 Chen, Shinozaki, Luo, Pottier, Havé, Marmagne (bib13) 2019; 8 Flaim, Obertegger, Anesi, Guella (bib17) 2014; 59 Masclaux-Daubresse, Chen, Havé (bib39) 2017; 39 Masclaux-Daubresse, d'Andrea, Bouchez, Cacas (bib40) 2020; 71 Merchant, Helmann (bib41) 2012; 60 Sunda, Price, Morel (bib68) 2005 Vlahakis, Debnath (bib70) 2017; 429 Onishi, Yamano, Sato, Matsuda, Okamoto (bib50) 2021; 40 Yorimitsu, Klionsky (bib73) 2005; 12 Chen, Zhang, Song, Sommerfeld, Hu (bib14) 2009; 77 Liu, Burgos, Deng, Srivastava, Howell, Bassham (bib34) 2012; 24 Raven (bib56) 2013; 64 Hallegraeff, Anderson, Belin, Bottein, Bresnan, Chinain (bib20) 2021; 2 Grosse, van Breugel, Brussaard, Boschker (bib19) 2017; 62 Hulatt, Smolina, Dowle, Kopp, Vasanth, Hoarau (bib23) 2020; 21 Jin, Chen, Tan, Lin, Ou (bib26) 2023; 129 Li, Tong, Fu, Chen, Zhang, Chen (bib30) 2021; 12 Dyhrman (bib15) 2016 Smayda (bib66) 1997; 42 Martin, Van Mooy (bib37) 2013; 79 Boudière, Michaud, Petroutsos, Rébeillé, Falconet, Bastien (bib6) 2014; 1837 Brandsma, Hopmans, Brussaard, Witte, Schouten, Sinninghe Damsté (bib7) 2012; 57 Nakamura, Hagihara, Izumi (bib45) 2021; 1865 Ou, Qin, Shi, Feng, Zhang, Lu (bib51) 2020; 79 Mühlroth (10.1016/j.chemosphere.2023.140844_bib44) 2017; 175 Simms (10.1016/j.chemosphere.2023.140844_bib65) 1993; 15 Nakatogawa (10.1016/j.chemosphere.2023.140844_bib46) 2009; 10 Zhou (10.1016/j.chemosphere.2023.140844_bib77) 2017; 574 Liu (10.1016/j.chemosphere.2023.140844_bib34) 2012; 24 Shemi (10.1016/j.chemosphere.2023.140844_bib62) 2015; 11 Raven (10.1016/j.chemosphere.2023.140844_bib56) 2013; 64 Cembella (10.1016/j.chemosphere.2023.140844_bib12) 1984; 11 Anesi (10.1016/j.chemosphere.2023.140844_bib2) 2015; 1384 Martin (10.1016/j.chemosphere.2023.140844_bib36) 2011; 5 Cañavate (10.1016/j.chemosphere.2023.140844_bib11) 2017; 213 Flaim (10.1016/j.chemosphere.2023.140844_bib17) 2014; 59 Masclaux-Daubresse (10.1016/j.chemosphere.2023.140844_bib40) 2020; 71 Avila-Ospina (10.1016/j.chemosphere.2023.140844_bib4) 2014; 65 Grosse (10.1016/j.chemosphere.2023.140844_bib19) 2017; 62 Martin (10.1016/j.chemosphere.2023.140844_bib37) 2013; 79 Naumann (10.1016/j.chemosphere.2023.140844_bib47) 2019; 179 Boudière (10.1016/j.chemosphere.2023.140844_bib6) 2014; 1837 Sunda (10.1016/j.chemosphere.2023.140844_bib68) 2005 Lin (10.1016/j.chemosphere.2023.140844_bib31) 2016; 52 Brembu (10.1016/j.chemosphere.2023.140844_bib8) 2017; 372 Smayda (10.1016/j.chemosphere.2023.140844_bib66) 1997; 42 Pérez-Pérez (10.1016/j.chemosphere.2023.140844_bib54) 2010; 152 Han (10.1016/j.chemosphere.2023.140844_bib21) 2011; 2 Wawrzyńska (10.1016/j.chemosphere.2023.140844_bib71) 2005; 56 Murphy (10.1016/j.chemosphere.2023.140844_bib43) 1962; 27 Jin (10.1016/j.chemosphere.2023.140844_bib26) 2023; 129 Masclaux-Daubresse (10.1016/j.chemosphere.2023.140844_bib39) 2017; 39 Brandsma (10.1016/j.chemosphere.2023.140844_bib7) 2012; 57 Merchant (10.1016/j.chemosphere.2023.140844_bib41) 2012; 60 Shi (10.1016/j.chemosphere.2023.140844_bib64) 2017; 11 Huang (10.1016/j.chemosphere.2023.140844_bib22) 2023 Van Mooy (10.1016/j.chemosphere.2023.140844_bib69) 2009; 458 Chen (10.1016/j.chemosphere.2023.140844_bib14) 2009; 77 Laakso (10.1016/j.chemosphere.2023.140844_bib29) 2020; 117 Ou (10.1016/j.chemosphere.2023.140844_bib51) 2020; 79 Broda (10.1016/j.chemosphere.2023.140844_bib9) 2018; 23 Onishi (10.1016/j.chemosphere.2023.140844_bib50) 2021; 40 Vlahakis (10.1016/j.chemosphere.2023.140844_bib70) 2017; 429 Peng (10.1016/j.chemosphere.2023.140844_bib53) 2019; 1864 Elser (10.1016/j.chemosphere.2023.140844_bib16) 2007; 10 Nakamura (10.1016/j.chemosphere.2023.140844_bib45) 2021; 1865 Yang (10.1016/j.chemosphere.2023.140844_bib72) 2019; 1206 Reinhard (10.1016/j.chemosphere.2023.140844_bib57) 2017; 541 Karl (10.1016/j.chemosphere.2023.140844_bib27) 2014; 6 Dyhrman (10.1016/j.chemosphere.2023.140844_bib15) 2016 Sakamoto (10.1016/j.chemosphere.2023.140844_bib59) 2021; 102 Zhang (10.1016/j.chemosphere.2023.140844_bib76) 2019; 10 Lu (10.1016/j.chemosphere.2023.140844_bib35) 2022; 114 Zhang (10.1016/j.chemosphere.2023.140844_bib75) 2019; 692 Noda (10.1016/j.chemosphere.2023.140844_bib48) 1998; 273 Yorimitsu (10.1016/j.chemosphere.2023.140844_bib73) 2005; 12 Jin (10.1016/j.chemosphere.2023.140844_bib25) 2021; 231 Zhang (10.1016/j.chemosphere.2023.140844_bib74) 2019; 85 Gross (10.1016/j.chemosphere.2023.140844_bib18) 2013; 14 Chen (10.1016/j.chemosphere.2023.140844_bib13) 2019; 8 Anesi (10.1016/j.chemosphere.2023.140844_bib3) 2016; 7 Liu (10.1016/j.chemosphere.2023.140844_bib33) 2012; 63 Shemi (10.1016/j.chemosphere.2023.140844_bib63) 2016; 211 Li (10.1016/j.chemosphere.2023.140844_bib30) 2021; 12 Qin (10.1016/j.chemosphere.2023.140844_bib55) 2021; 103 Hulatt (10.1016/j.chemosphere.2023.140844_bib23) 2020; 21 Moon (10.1016/j.chemosphere.2023.140844_bib42) 2021; 9999 Cañavate (10.1016/j.chemosphere.2023.140844_bib10) 2016; 124 Pant (10.1016/j.chemosphere.2023.140844_bib52) 2015; 66 Avin-Wittenberg (10.1016/j.chemosphere.2023.140844_bib5) 2015; 27 Ren (10.1016/j.chemosphere.2023.140844_bib58) 2014; 5 Oishi (10.1016/j.chemosphere.2023.140844_bib49) 2022; 5 Hallegraeff (10.1016/j.chemosphere.2023.140844_bib20) 2021; 2 Hunter (10.1016/j.chemosphere.2023.140844_bib24) 2018; 84 Abida (10.1016/j.chemosphere.2023.140844_bib1) 2015; 167 Schoffelen (10.1016/j.chemosphere.2023.140844_bib60) 2018; 8 Solórzano (10.1016/j.chemosphere.2023.140844_bib67) 1980; 25 Schütter (10.1016/j.chemosphere.2023.140844_bib61) 2020; 180 Liu (10.1016/j.chemosphere.2023.140844_bib32) 2016; 19 |
References_xml | – volume: 11 start-page: 701 year: 2015 end-page: 715 ident: bib62 article-title: Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes publication-title: Autophagy – volume: 42 start-page: 1137 year: 1997 end-page: 1153 ident: bib66 article-title: Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea publication-title: Limnol. Oceanogr. – volume: 458 start-page: 69 year: 2009 end-page: 72 ident: bib69 article-title: Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity publication-title: Nature – volume: 5 start-page: 19 year: 2022 ident: bib49 article-title: Diacylglyceryl-N,N,N-trimethylhomoserine-dependent lipid remodeling in a green alga, Chlorella kessleri publication-title: Commun. Biol. – volume: 211 start-page: 886 year: 2016 end-page: 898 ident: bib63 article-title: Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi publication-title: New Phytol. – volume: 40 year: 2021 ident: bib50 article-title: Molecular mechanisms and physiological functions of mitophagy publication-title: EMBO J. – volume: 65 start-page: 3799 year: 2014 end-page: 3811 ident: bib4 article-title: Autophagy, plant senescence, and nutrient recycling publication-title: J. Exp. Bot. – volume: 9999 start-page: 1 year: 2021 end-page: 11 ident: bib42 article-title: Anthropogenic nitrogen is changing the East China and Yellow Seas from being N deficient to being P deficient publication-title: Limnol. Oceanogr. – volume: 39 start-page: 8 year: 2017 end-page: 17 ident: bib39 article-title: Regulation of nutrient recycling via autophagy publication-title: Curr. Opin. Plant Biol. – volume: 25 start-page: 754 year: 1980 end-page: 758 ident: bib67 article-title: Determination of total dissolved phosphorus and particulate phosphorus in natural waters publication-title: Limnol. Oceanogr. – volume: 1864 year: 2019 ident: bib53 article-title: Adaptation of Synechococcus sp. PCC 7942 to phosphate starvation by glycolipid accumulation and membrane lipid remodeling publication-title: Biochim. Biophys. Acta, Mol. Cell Biol. Lipids – volume: 10 start-page: 590 year: 2019 ident: bib76 article-title: Metatranscripomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom publication-title: Front. Microbiol. – volume: 15 start-page: 532 year: 1993 end-page: 535 ident: bib65 article-title: TRIzol: a new reagent for optimal single-step isolation of RNA publication-title: Focus – volume: 213 start-page: 700 year: 2017 end-page: 713 ident: bib11 article-title: Interspecific variability in phosphorus–induced lipid remodeling among marine eukaryotic phytoplankton publication-title: New Phytol. – volume: 71 start-page: 2854 year: 2020 end-page: 2861 ident: bib40 article-title: Reserve lipids and plant autophagy publication-title: J. Exp. Bot. – volume: 57 start-page: 959 year: 2012 end-page: 973 ident: bib7 article-title: Spatial distribution of intact polar lipids in North Sea surface waters: relationship with environmental conditions and microbial community composition publication-title: Limnol. Oceanogr. – volume: 21 start-page: 6946 year: 2020 ident: bib23 article-title: Proteomic and transcriptomic patterns during lipid remodeling in Nannochloropsis gaditana publication-title: Int. J. Mol. Sci. – volume: 179 start-page: 460 year: 2019 end-page: 476 ident: bib47 article-title: The local phosphate deficiency response activates endoplasmic reticulum stress-dependent autophagy publication-title: Plant Physiol. – volume: 180 start-page: 135 year: 2020 end-page: 149 ident: bib61 article-title: Local fatty acid channeling into phospholipid synthesis drives phagophore expansion during autophagy publication-title: Cell – volume: 1865 year: 2021 ident: bib45 article-title: Mitophagy in plants publication-title: Biochim. Biophys. Acta, Gen. Subj. – volume: 1384 start-page: 44 year: 2015 end-page: 52 ident: bib2 article-title: A fast liquid chromatography-mass spectrometry methodology for membrane lipid profiling through hydrophilic interaction liquid chromatography publication-title: J. Chromatogr. A – volume: 12 start-page: 1542 year: 2005 end-page: 1552 ident: bib73 article-title: Autophagy: molecular machinery for self-eating publication-title: Nature – volume: 10 start-page: 1135 year: 2007 end-page: 1142 ident: bib16 article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems publication-title: Ecol. Lett. – volume: 64 start-page: 4023 year: 2013 end-page: 4046 ident: bib56 article-title: The evolution of autotrophy in relation to phosphorus requirement publication-title: J. Exp. Bot. – volume: 23 start-page: 434 year: 2018 end-page: 450 ident: bib9 article-title: Mitophagy: a mechanism for plant growth and survival publication-title: Trends Plant Sci. – volume: 14 start-page: 563 year: 2013 ident: bib18 article-title: De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana publication-title: BMC Genom. – volume: 114 year: 2022 ident: bib35 article-title: An overview of Prorocentrum donghaiense blooms in China: species identification, occurrences, ecological consequences, and factors regulating prevalence publication-title: Harmful Algae – start-page: 35 year: 2005 end-page: 64 ident: bib68 article-title: Trace metal ion buffers and their use in culture studies publication-title: Algal Culturing Techniques – volume: 56 start-page: 1575 year: 2005 end-page: 1590 ident: bib71 article-title: Using a suppression subtractive library-based approach to identify tobacco genes regulated in response to short-term sulphur deficit publication-title: J. Exp. Bot. – volume: 103 year: 2021 ident: bib55 article-title: Alkaline phosphatase activity during a phosphate replete dinoflagellate bloom caused by Prorocentrum obtusidens publication-title: Harmful Algae – volume: 84 year: 2018 ident: bib24 article-title: Lipidomics of Thalassiosira pseudonana under phosphorus stress reveal underlying phospholipid substitution dynamics and novel diglycosylceramide substitutes publication-title: Appl. Environ. Microbiol. – volume: 66 start-page: 1907 year: 2015 end-page: 1918 ident: bib52 article-title: The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation publication-title: J. Exp. Bot. – year: 2023 ident: bib22 article-title: Efficient modulation of cellular phosphorus components in response to phosphorus deficiency in the dinoflagellate Karenia mikimotoi publication-title: Appl. Environ. Microbiol. – volume: 574 start-page: 499 year: 2017 end-page: 508 ident: bib77 article-title: Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea publication-title: Sci. Total Environ. – volume: 152 start-page: 1874 year: 2010 end-page: 1888 ident: bib54 article-title: Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii publication-title: Plant Physiol. – volume: 27 start-page: 306 year: 2015 end-page: 322 ident: bib5 article-title: Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation publication-title: Plant Cell – volume: 2 start-page: 117 year: 2021 ident: bib20 article-title: Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts publication-title: Commun. Earth & Environ. – volume: 12 start-page: 520 year: 2021 end-page: 544 ident: bib30 article-title: Lipids and membrane-associated proteins in autophagy publication-title: Protein Cell – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: bib43 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chim. Acta – volume: 79 start-page: 459 year: 2020 end-page: 471 ident: bib51 article-title: Alkaline phosphatase activities and regulation in three harmful Prorocentrum species from the coastal waters of East China Sea publication-title: Microb. Ecol. – volume: 6 start-page: 279 year: 2014 end-page: 337 ident: bib27 article-title: Microbially mediated transformations of phosphorus in the sea: new views of an old cycle publication-title: Ann. Rev. Mar. Sci – volume: 60 start-page: 91 year: 2012 end-page: 210 ident: bib41 article-title: Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation publication-title: Adv. Microb. Physiol. – volume: 117 start-page: 11961 year: 2020 end-page: 11967 ident: bib29 article-title: Ediacaran reorganization of the marine phosphorus cycle publication-title: Proc. Natl. Acad. Sci. USA – volume: 129 year: 2023 ident: bib26 article-title: Variation in intracellular polyphosphate and associated gene expression in response to different phosphorus conditions in the dinoflagellate Karenia mikimotoi publication-title: Harmful Algae – start-page: 155 year: 2016 end-page: 183 ident: bib15 article-title: Nutrient and their acquisition: phosphorus physiology in microalgae publication-title: The Physiology of Microalgae, Developments in Applied Phycology 6 – volume: 24 start-page: 4635 year: 2012 end-page: 4651 ident: bib34 article-title: Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis publication-title: Plant Cell – volume: 273 start-page: 3963 year: 1998 end-page: 3966 ident: bib48 article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast publication-title: J. Biol. Chem. – volume: 541 start-page: 386 year: 2017 end-page: 389 ident: bib57 article-title: Evolution of the global phosphorus cycle publication-title: Nature – volume: 77 start-page: 41 year: 2009 end-page: 47 ident: bib14 article-title: A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae publication-title: J. Microbiol. Methods – volume: 5 start-page: 1057 year: 2011 end-page: 1060 ident: bib36 article-title: Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana publication-title: ISME J. – volume: 11 start-page: 2209 year: 2017 end-page: 2218 ident: bib64 article-title: Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate publication-title: ISME J. – volume: 2 start-page: 784 year: 2011 end-page: 791 ident: bib21 article-title: Role of plant autophagy in stress response publication-title: Protein Cell – volume: 19 start-page: 832 year: 2016 end-page: 849 ident: bib32 article-title: Responses of phytoplankton communities to environmental variability in the East China Sea publication-title: Ecosystems – volume: 429 start-page: 515 year: 2017 end-page: 530 ident: bib70 article-title: The interconnections between autophagy and integrin-mediated cell adhesion publication-title: J. Mol. Biol. – volume: 231 year: 2021 ident: bib25 article-title: Phosphorus utilization by phytoplankton in the Yellow Sea during spring bloom: cell surface adsorption and intracellular accumulation publication-title: Mar. Chem. – volume: 8 year: 2018 ident: bib60 article-title: Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth publication-title: Sci. Rep. – volume: 59 start-page: 985 year: 2014 end-page: 997 ident: bib17 article-title: Temperature–induced changes in lipid biomarkers and mycosporine–like amino acids in the psychrophilic dinoflagellate Peridinium aciculiferum publication-title: Freshw. Biol. – volume: 10 start-page: 458 year: 2009 end-page: 467 ident: bib46 article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast publication-title: Nat. Rev. Mol. Cell Biol. – volume: 1206 start-page: 329 year: 2019 end-page: 357 ident: bib72 article-title: Autophagy and energy metabolism publication-title: Adv. Exp. Med. Biol. – volume: 85 year: 2019 ident: bib74 article-title: Functional differences in the blooming phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense revealed by comparative metaproteomics publication-title: Appl. Environ. Microbiol. – volume: 5 start-page: 301 year: 2014 ident: bib58 article-title: Functions of autophagy in plant carbon and nitrogen metabolism publication-title: Front. Plant Sci. – volume: 62 start-page: 490 year: 2017 end-page: 506 ident: bib19 article-title: A biosynthesis view on nutrient stress in coastal phytoplankton publication-title: Limnol. Oceanogr. – volume: 124 start-page: 68 year: 2016 end-page: 78 ident: bib10 article-title: Exploring occurrence and molecular diversity of betaine lipids across taxonomy of marine microalgae publication-title: Phytochemistry – volume: 63 start-page: 215 year: 2012 end-page: 237 ident: bib33 article-title: Autophagy: pathways for self-eating in plant cells publication-title: Annu. Rev. Plant Biol. – volume: 102 year: 2021 ident: bib59 article-title: Harmful algal blooms and associated fisheries damage in East Asia: current status and trends in China, Japan, Korea and Russia publication-title: Harmful Algae – volume: 692 start-page: 1037 year: 2019 end-page: 1047 ident: bib75 article-title: Transcriptomic response to changing ambient phosphorus in the marine dinoflagellate Prorocentrum donghaiense publication-title: Sci. Total Environ. – volume: 7 start-page: 524 year: 2016 ident: bib3 article-title: Comparative analysis of membrane lipids in psychrophilic and mesophilic freshwater dinoflagellates publication-title: Front. Plant Sci. – volume: 11 start-page: 13 year: 1984 end-page: 81 ident: bib12 article-title: The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 2 publication-title: CRC Crit. Rev. Microbiol. – volume: 8 start-page: 1426 year: 2019 ident: bib13 article-title: Autophagy and nutrients management in plants publication-title: Cells – volume: 1837 start-page: 470 year: 2014 end-page: 480 ident: bib6 article-title: Glycerolipids in photosynthesis: composition, synthesis and trafficking publication-title: Biochim. Biophys. Acta – volume: 167 start-page: 118 year: 2015 end-page: 136 ident: bib1 article-title: Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum publication-title: Plant Physiol. – volume: 52 start-page: 10 year: 2016 end-page: 36 ident: bib31 article-title: Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton publication-title: J. Phycol. – volume: 79 start-page: 273 year: 2013 end-page: 281 ident: bib37 article-title: Fluorometric quantification of polyphosphate in environmental plankton samples: extraction protocols, matrix effects, and nucleic acid interference publication-title: Appl. Environ. Microbiol. – volume: 175 start-page: 1543 year: 2017 end-page: 1559 ident: bib44 article-title: Mechanisms of phosphorus acquisition and lipid class remodeling under P limitation in a marine microalga publication-title: Plant Physiol. – volume: 372 year: 2017 ident: bib8 article-title: The effects of phosphorus limitation on carbon metabolism in diatoms publication-title: Phil. Trans. Biol. Sci. – volume: 11 start-page: 701 issue: 4 year: 2015 ident: 10.1016/j.chemosphere.2023.140844_bib62 article-title: Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes publication-title: Autophagy doi: 10.1080/15548627.2015.1034407 – volume: 574 start-page: 499 year: 2017 ident: 10.1016/j.chemosphere.2023.140844_bib77 article-title: Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.09.092 – volume: 541 start-page: 386 year: 2017 ident: 10.1016/j.chemosphere.2023.140844_bib57 article-title: Evolution of the global phosphorus cycle publication-title: Nature doi: 10.1038/nature20772 – volume: 372 issue: 1728 year: 2017 ident: 10.1016/j.chemosphere.2023.140844_bib8 article-title: The effects of phosphorus limitation on carbon metabolism in diatoms publication-title: Phil. Trans. Biol. Sci. doi: 10.1098/rstb.2016.0406 – volume: 23 start-page: 434 issue: 5 year: 2018 ident: 10.1016/j.chemosphere.2023.140844_bib9 article-title: Mitophagy: a mechanism for plant growth and survival publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2018.02.010 – volume: 124 start-page: 68 year: 2016 ident: 10.1016/j.chemosphere.2023.140844_bib10 article-title: Exploring occurrence and molecular diversity of betaine lipids across taxonomy of marine microalgae publication-title: Phytochemistry doi: 10.1016/j.phytochem.2016.02.007 – volume: 6 start-page: 279 year: 2014 ident: 10.1016/j.chemosphere.2023.140844_bib27 article-title: Microbially mediated transformations of phosphorus in the sea: new views of an old cycle publication-title: Ann. Rev. Mar. Sci doi: 10.1146/annurev-marine-010213-135046 – volume: 79 start-page: 273 issue: 1 year: 2013 ident: 10.1016/j.chemosphere.2023.140844_bib37 article-title: Fluorometric quantification of polyphosphate in environmental plankton samples: extraction protocols, matrix effects, and nucleic acid interference publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02592-12 – volume: 179 start-page: 460 issue: 2 year: 2019 ident: 10.1016/j.chemosphere.2023.140844_bib47 article-title: The local phosphate deficiency response activates endoplasmic reticulum stress-dependent autophagy publication-title: Plant Physiol. doi: 10.1104/pp.18.01379 – start-page: 155 year: 2016 ident: 10.1016/j.chemosphere.2023.140844_bib15 article-title: Nutrient and their acquisition: phosphorus physiology in microalgae – volume: 117 start-page: 11961 issue: 22 year: 2020 ident: 10.1016/j.chemosphere.2023.140844_bib29 article-title: Ediacaran reorganization of the marine phosphorus cycle publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1916738117 – volume: 458 start-page: 69 issue: 7234 year: 2009 ident: 10.1016/j.chemosphere.2023.140844_bib69 article-title: Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity publication-title: Nature doi: 10.1038/nature07659 – volume: 63 start-page: 215 year: 2012 ident: 10.1016/j.chemosphere.2023.140844_bib33 article-title: Autophagy: pathways for self-eating in plant cells publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042811-105441 – volume: 5 start-page: 19 issue: 1 year: 2022 ident: 10.1016/j.chemosphere.2023.140844_bib49 article-title: Diacylglyceryl-N,N,N-trimethylhomoserine-dependent lipid remodeling in a green alga, Chlorella kessleri publication-title: Commun. Biol. doi: 10.1038/s42003-021-02927-z – volume: 66 start-page: 1907 issue: 7 year: 2015 ident: 10.1016/j.chemosphere.2023.140844_bib52 article-title: The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru535 – volume: 27 start-page: 306 issue: 2 year: 2015 ident: 10.1016/j.chemosphere.2023.140844_bib5 article-title: Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation publication-title: Plant Cell doi: 10.1105/tpc.114.134205 – volume: 7 start-page: 524 year: 2016 ident: 10.1016/j.chemosphere.2023.140844_bib3 article-title: Comparative analysis of membrane lipids in psychrophilic and mesophilic freshwater dinoflagellates publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00524 – volume: 62 start-page: 490 year: 2017 ident: 10.1016/j.chemosphere.2023.140844_bib19 article-title: A biosynthesis view on nutrient stress in coastal phytoplankton publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10439 – volume: 39 start-page: 8 year: 2017 ident: 10.1016/j.chemosphere.2023.140844_bib39 article-title: Regulation of nutrient recycling via autophagy publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.05.001 – volume: 64 start-page: 4023 issue: 13 year: 2013 ident: 10.1016/j.chemosphere.2023.140844_bib56 article-title: The evolution of autotrophy in relation to phosphorus requirement publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert306 – volume: 65 start-page: 3799 issue: 14 year: 2014 ident: 10.1016/j.chemosphere.2023.140844_bib4 article-title: Autophagy, plant senescence, and nutrient recycling publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru039 – volume: 152 start-page: 1874 year: 2010 ident: 10.1016/j.chemosphere.2023.140844_bib54 article-title: Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii publication-title: Plant Physiol. doi: 10.1104/pp.109.152520 – volume: 24 start-page: 4635 issue: 11 year: 2012 ident: 10.1016/j.chemosphere.2023.140844_bib34 article-title: Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.101535 – start-page: 35 year: 2005 ident: 10.1016/j.chemosphere.2023.140844_bib68 article-title: Trace metal ion buffers and their use in culture studies – volume: 10 start-page: 458 issue: 7 year: 2009 ident: 10.1016/j.chemosphere.2023.140844_bib46 article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2708 – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.chemosphere.2023.140844_bib60 article-title: Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth publication-title: Sci. Rep. doi: 10.1038/s41598-018-35310-w – volume: 8 start-page: 1426 issue: 11 year: 2019 ident: 10.1016/j.chemosphere.2023.140844_bib13 article-title: Autophagy and nutrients management in plants publication-title: Cells doi: 10.3390/cells8111426 – volume: 10 start-page: 590 year: 2019 ident: 10.1016/j.chemosphere.2023.140844_bib76 article-title: Metatranscripomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00590 – volume: 19 start-page: 832 year: 2016 ident: 10.1016/j.chemosphere.2023.140844_bib32 article-title: Responses of phytoplankton communities to environmental variability in the East China Sea publication-title: Ecosystems doi: 10.1007/s10021-016-9970-5 – volume: 21 start-page: 6946 issue: 18 year: 2020 ident: 10.1016/j.chemosphere.2023.140844_bib23 article-title: Proteomic and transcriptomic patterns during lipid remodeling in Nannochloropsis gaditana publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21186946 – volume: 12 start-page: 520 issue: 7 year: 2021 ident: 10.1016/j.chemosphere.2023.140844_bib30 article-title: Lipids and membrane-associated proteins in autophagy publication-title: Protein Cell doi: 10.1007/s13238-020-00793-9 – volume: 167 start-page: 118 issue: 1 year: 2015 ident: 10.1016/j.chemosphere.2023.140844_bib1 article-title: Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum publication-title: Plant Physiol. doi: 10.1104/pp.114.252395 – volume: 114 year: 2022 ident: 10.1016/j.chemosphere.2023.140844_bib35 article-title: An overview of Prorocentrum donghaiense blooms in China: species identification, occurrences, ecological consequences, and factors regulating prevalence publication-title: Harmful Algae doi: 10.1016/j.hal.2022.102207 – volume: 84 issue: 6 year: 2018 ident: 10.1016/j.chemosphere.2023.140844_bib24 article-title: Lipidomics of Thalassiosira pseudonana under phosphorus stress reveal underlying phospholipid substitution dynamics and novel diglycosylceramide substitutes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02034-17 – volume: 11 start-page: 2209 issue: 10 year: 2017 ident: 10.1016/j.chemosphere.2023.140844_bib64 article-title: Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate publication-title: ISME J. doi: 10.1038/ismej.2017.81 – volume: 40 issue: 3 year: 2021 ident: 10.1016/j.chemosphere.2023.140844_bib50 article-title: Molecular mechanisms and physiological functions of mitophagy publication-title: EMBO J. doi: 10.15252/embj.2020104705 – volume: 1384 start-page: 44 year: 2015 ident: 10.1016/j.chemosphere.2023.140844_bib2 article-title: A fast liquid chromatography-mass spectrometry methodology for membrane lipid profiling through hydrophilic interaction liquid chromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2015.01.035 – volume: 175 start-page: 1543 issue: 4 year: 2017 ident: 10.1016/j.chemosphere.2023.140844_bib44 article-title: Mechanisms of phosphorus acquisition and lipid class remodeling under P limitation in a marine microalga publication-title: Plant Physiol. doi: 10.1104/pp.17.00621 – volume: 213 start-page: 700 year: 2017 ident: 10.1016/j.chemosphere.2023.140844_bib11 article-title: Interspecific variability in phosphorus–induced lipid remodeling among marine eukaryotic phytoplankton publication-title: New Phytol. doi: 10.1111/nph.14179 – volume: 56 start-page: 1575 year: 2005 ident: 10.1016/j.chemosphere.2023.140844_bib71 article-title: Using a suppression subtractive library-based approach to identify tobacco genes regulated in response to short-term sulphur deficit publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri152 – volume: 231 year: 2021 ident: 10.1016/j.chemosphere.2023.140844_bib25 article-title: Phosphorus utilization by phytoplankton in the Yellow Sea during spring bloom: cell surface adsorption and intracellular accumulation publication-title: Mar. Chem. doi: 10.1016/j.marchem.2021.103935 – volume: 52 start-page: 10 issue: 1 year: 2016 ident: 10.1016/j.chemosphere.2023.140844_bib31 article-title: Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton publication-title: J. Phycol. doi: 10.1111/jpy.12365 – volume: 5 start-page: 1057 issue: 6 year: 2011 ident: 10.1016/j.chemosphere.2023.140844_bib36 article-title: Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana publication-title: ISME J. doi: 10.1038/ismej.2010.192 – volume: 211 start-page: 886 issue: 3 year: 2016 ident: 10.1016/j.chemosphere.2023.140844_bib63 article-title: Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi publication-title: New Phytol. doi: 10.1111/nph.13940 – volume: 11 start-page: 13 issue: 1 year: 1984 ident: 10.1016/j.chemosphere.2023.140844_bib12 article-title: The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 2 publication-title: CRC Crit. Rev. Microbiol. doi: 10.3109/10408418409105902 – volume: 10 start-page: 1135 issue: 12 year: 2007 ident: 10.1016/j.chemosphere.2023.140844_bib16 article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01113.x – volume: 102 year: 2021 ident: 10.1016/j.chemosphere.2023.140844_bib59 article-title: Harmful algal blooms and associated fisheries damage in East Asia: current status and trends in China, Japan, Korea and Russia publication-title: Harmful Algae doi: 10.1016/j.hal.2020.101787 – volume: 15 start-page: 532 issue: 4 year: 1993 ident: 10.1016/j.chemosphere.2023.140844_bib65 article-title: TRIzol: a new reagent for optimal single-step isolation of RNA publication-title: Focus – volume: 27 start-page: 31 year: 1962 ident: 10.1016/j.chemosphere.2023.140844_bib43 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 2 start-page: 784 year: 2011 ident: 10.1016/j.chemosphere.2023.140844_bib21 article-title: Role of plant autophagy in stress response publication-title: Protein Cell doi: 10.1007/s13238-011-1104-4 – volume: 103 year: 2021 ident: 10.1016/j.chemosphere.2023.140844_bib55 article-title: Alkaline phosphatase activity during a phosphate replete dinoflagellate bloom caused by Prorocentrum obtusidens publication-title: Harmful Algae doi: 10.1016/j.hal.2021.101979 – volume: 429 start-page: 515 issue: 4 year: 2017 ident: 10.1016/j.chemosphere.2023.140844_bib70 article-title: The interconnections between autophagy and integrin-mediated cell adhesion publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.11.027 – volume: 129 year: 2023 ident: 10.1016/j.chemosphere.2023.140844_bib26 article-title: Variation in intracellular polyphosphate and associated gene expression in response to different phosphorus conditions in the dinoflagellate Karenia mikimotoi publication-title: Harmful Algae doi: 10.1016/j.hal.2023.102532 – volume: 79 start-page: 459 year: 2020 ident: 10.1016/j.chemosphere.2023.140844_bib51 article-title: Alkaline phosphatase activities and regulation in three harmful Prorocentrum species from the coastal waters of East China Sea publication-title: Microb. Ecol. doi: 10.1007/s00248-019-01399-3 – volume: 60 start-page: 91 year: 2012 ident: 10.1016/j.chemosphere.2023.140844_bib41 article-title: Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation publication-title: Adv. Microb. Physiol. doi: 10.1016/B978-0-12-398264-3.00002-4 – volume: 12 start-page: 1542 year: 2005 ident: 10.1016/j.chemosphere.2023.140844_bib73 article-title: Autophagy: molecular machinery for self-eating publication-title: Nature – volume: 25 start-page: 754 issue: 4 year: 1980 ident: 10.1016/j.chemosphere.2023.140844_bib67 article-title: Determination of total dissolved phosphorus and particulate phosphorus in natural waters publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1980.25.4.0754 – volume: 1837 start-page: 470 year: 2014 ident: 10.1016/j.chemosphere.2023.140844_bib6 article-title: Glycerolipids in photosynthesis: composition, synthesis and trafficking publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2013.09.007 – volume: 71 start-page: 2854 issue: 10 year: 2020 ident: 10.1016/j.chemosphere.2023.140844_bib40 article-title: Reserve lipids and plant autophagy publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa082 – volume: 692 start-page: 1037 year: 2019 ident: 10.1016/j.chemosphere.2023.140844_bib75 article-title: Transcriptomic response to changing ambient phosphorus in the marine dinoflagellate Prorocentrum donghaiense publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.291 – volume: 180 start-page: 135 issue: 1 year: 2020 ident: 10.1016/j.chemosphere.2023.140844_bib61 article-title: Local fatty acid channeling into phospholipid synthesis drives phagophore expansion during autophagy publication-title: Cell doi: 10.1016/j.cell.2019.12.005 – volume: 1864 issue: 12 year: 2019 ident: 10.1016/j.chemosphere.2023.140844_bib53 article-title: Adaptation of Synechococcus sp. PCC 7942 to phosphate starvation by glycolipid accumulation and membrane lipid remodeling publication-title: Biochim. Biophys. Acta, Mol. Cell Biol. Lipids – volume: 14 start-page: 563 year: 2013 ident: 10.1016/j.chemosphere.2023.140844_bib18 article-title: De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana publication-title: BMC Genom. doi: 10.1186/1471-2164-14-563 – year: 2023 ident: 10.1016/j.chemosphere.2023.140844_bib22 article-title: Efficient modulation of cellular phosphorus components in response to phosphorus deficiency in the dinoflagellate Karenia mikimotoi publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.00867-23 – volume: 273 start-page: 3963 issue: 7 year: 1998 ident: 10.1016/j.chemosphere.2023.140844_bib48 article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.7.3963 – volume: 85 year: 2019 ident: 10.1016/j.chemosphere.2023.140844_bib74 article-title: Functional differences in the blooming phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense revealed by comparative metaproteomics publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01425-19 – volume: 57 start-page: 959 issue: 4 year: 2012 ident: 10.1016/j.chemosphere.2023.140844_bib7 article-title: Spatial distribution of intact polar lipids in North Sea surface waters: relationship with environmental conditions and microbial community composition publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2012.57.4.0959 – volume: 2 start-page: 117 issue: 1 year: 2021 ident: 10.1016/j.chemosphere.2023.140844_bib20 article-title: Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts publication-title: Commun. Earth & Environ. doi: 10.1038/s43247-021-00178-8 – volume: 42 start-page: 1137 year: 1997 ident: 10.1016/j.chemosphere.2023.140844_bib66 article-title: Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1997.42.5_part_2.1137 – volume: 1206 start-page: 329 year: 2019 ident: 10.1016/j.chemosphere.2023.140844_bib72 article-title: Autophagy and energy metabolism publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-15-0602-4_16 – volume: 9999 start-page: 1 year: 2021 ident: 10.1016/j.chemosphere.2023.140844_bib42 article-title: Anthropogenic nitrogen is changing the East China and Yellow Seas from being N deficient to being P deficient publication-title: Limnol. Oceanogr. – volume: 1865 issue: 8 year: 2021 ident: 10.1016/j.chemosphere.2023.140844_bib45 article-title: Mitophagy in plants publication-title: Biochim. Biophys. Acta, Gen. Subj. doi: 10.1016/j.bbagen.2021.129916 – volume: 5 start-page: 301 year: 2014 ident: 10.1016/j.chemosphere.2023.140844_bib58 article-title: Functions of autophagy in plant carbon and nitrogen metabolism publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00301 – volume: 77 start-page: 41 issue: 1 year: 2009 ident: 10.1016/j.chemosphere.2023.140844_bib14 article-title: A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2009.01.001 – volume: 59 start-page: 985 year: 2014 ident: 10.1016/j.chemosphere.2023.140844_bib17 article-title: Temperature–induced changes in lipid biomarkers and mycosporine–like amino acids in the psychrophilic dinoflagellate Peridinium aciculiferum publication-title: Freshw. Biol. doi: 10.1111/fwb.12321 |
SSID | ssj0001659 |
Score | 2.4367414 |
Snippet | Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 140844 |
SubjectTerms | acclimation Autophagy betaine Cellular phosphorus metabolism class Dinoflagellate Harmful algal blooms Membrane lipid metabolism phosphatidylcholines phosphatidylethanolamines phosphorus poisonous algae Prorocentrum Prorocentrum shikokuense transcriptomics |
Title | Membrane lipid remodeling and autophagy to cope with phosphorus deficiency in the dinoflagellate Prorocentrum shikokuense |
URI | https://dx.doi.org/10.1016/j.chemosphere.2023.140844 https://www.ncbi.nlm.nih.gov/pubmed/38042419 https://www.proquest.com/docview/2896811023 https://www.proquest.com/docview/3040406539 |
Volume | 349 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhpY9LadPX9hEU6NWNbD1Whl7CkrBtSeihgdyELY0bN7v2smsf9tLf3hk_kvawEOjRRgKhGc18I818w9hHkKkurDVRblIMULyAyCapidIgTEgKCbLjLTi_MPNL9fVKX-2x2VgLQ2mVg-3vbXpnrYc_x8NuHq_Kkmp8CY1IutaUiOqJE1SpKWn5p993aR6x0T0EVjqi0Y_Y0V2OF-7Lst5Q_T4xZiYS7YawSu3yUbswaOeLzp6xpwOI5Cf9Op-zPagO2OPZ2LvtgD087cioty_Y9hyWGBBXwBflqgx8DV3vG3RYPKsCz1oiFsh-bnlTcypQ4XQxy1fXtN563W54AOKYoAJNXlYc4SJHb1cXC7RDqEEN8O_rmpxg1azbJd9clzf1TYuxMbxkl2enP2bzaGi3EHmZ6CZKYlPo3AePOxF7qy1CJSlVhgAyKUQcTA5TBQgvpFJ4WH0CxmdKBytyDItkKl-x_aqu4A3jFnwqBAQdBPU2zrOiMFOhvPRGpeDNhNlxg50fuMipJcbCjUlnv9xfsnEkG9fLZsKS26mrnpDjPpM-j1J0_2iXQ8dxn-lHo-QdCpKeVFBudbtxGK4aGxP9xe4xEu2k6iiAJ-x1rza3K5eWnp7j9O3_LfAde4Jfqs8mf8_2UeLwAcFSkx92p-GQPTj58m1-8QepyhX- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa6FFt3GbbulT1VYFejtvWoDOxSBC3StQl2aIHeBFuSW6-JHSTxIf9-pB_ZdghQYFfbBAhRIj_K5EeAb54nMtdaBZlKMEGxoQ90nKggcaFycc49b3gLJlM1vhE_buXtHoz6Xhgqq-x8f-vTG2_dPTnuVvN4URTU40tohNO1JkdUL57APrFTyQHsn15cjqdbhxwp2aJgIQMSeAZHf8q8cGnm1Ypa-Ik0M-boOkItxK4wtQuGNuHo_CW86HAkO21VfQV7vjyEg1E_vu0Qnp41fNSb17CZ-DnmxKVns2JROLb0zfgbjFksLR1La-IWSO82bF0x6lFhdDfLFvekb7WsV8x5opmgHk1WlAwRI8OAV-UzdEW4idae_VxWFAfL9bKes9V98VA91Jge-zdwc352PRoH3cSFwPJYroM4UrnMrLO4EpHVUiNa4lykiCHjPIycyvyJ8IgwuBB4Xm3slU2FdDrMMDPiCX8Lg7Iq_Xtg2tskDL2TLqTxxlma5-okFJZbJRJv1RB0v8DGdnTkNBVjZvq6s1_mL9sYso1pbTOEeCu6aDk5HiP0vbei-WeDGYwdjxE_6i1v0JD0VwXtVtUrgxmr0hExYOz-hqOrFA0L8BDetdtmqznX9Pc5Sj78n4Jf4WB8PbkyVxfTy4_wHN-Itrj8EwzQ-v4zYqd19qU7G78BGoAYrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane+lipid+remodeling+and+autophagy+to+cope+with+phosphorus+deficiency+in+the+dinoflagellate+Prorocentrum+shikokuense&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Li%2C+Da-Wei&rft.au=Tan%2C+Jin-Zhou&rft.au=Li%2C+Zhuo-Fan&rft.au=Ou%2C+Lin-Jian&rft.date=2024-02-01&rft.eissn=1879-1298&rft.volume=349&rft.spage=140844&rft_id=info:doi/10.1016%2Fj.chemosphere.2023.140844&rft_id=info%3Apmid%2F38042419&rft.externalDocID=38042419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |