Pion Boer–Mulders function using a contact interaction

A symmetry preserving treatment of a vector  ⊗  vector contact interaction (SCI) is used as the basis for calculations of the two pion transverse momentum dependent parton distribution functions (TMDs); namely, that for unpolarised valence degrees-of-freedom and the analogous Boer–Mulders (BM) funct...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 85; no. 1; pp. 115 - 14
Main Authors Cheng, Dan-Dan, Cui, Zhu-Fang, Ding, Minghui, Roberts, Craig D., Schmidt, Sebastian M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 30.01.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A symmetry preserving treatment of a vector  ⊗  vector contact interaction (SCI) is used as the basis for calculations of the two pion transverse momentum dependent parton distribution functions (TMDs); namely, that for unpolarised valence degrees-of-freedom and the analogous Boer–Mulders (BM) function. Amongst other things, the analysis enables the following themes to be addressed: the quark current mass dependence of pion TMDs; the impact of the gauge link model on the positivity constraint that bounds the BM function relative to the unpolarised TMD; the equivalence of direct diagrammatic and light-front wave function TMD calculations; and the size of the BM shift. Interpreted astutely, these SCI results enable one to draw insightful pictures of pion TMDs.
AbstractList A symmetry preserving treatment of a vector  ⊗  vector contact interaction (SCI) is used as the basis for calculations of the two pion transverse momentum dependent parton distribution functions (TMDs); namely, that for unpolarised valence degrees-of-freedom and the analogous Boer–Mulders (BM) function. Amongst other things, the analysis enables the following themes to be addressed: the quark current mass dependence of pion TMDs; the impact of the gauge link model on the positivity constraint that bounds the BM function relative to the unpolarised TMD; the equivalence of direct diagrammatic and light-front wave function TMD calculations; and the size of the BM shift. Interpreted astutely, these SCI results enable one to draw insightful pictures of pion TMDs.
A symmetry preserving treatment of a vector  $$\otimes $$ ⊗  vector contact interaction (SCI) is used as the basis for calculations of the two pion transverse momentum dependent parton distribution functions (TMDs); namely, that for unpolarised valence degrees-of-freedom and the analogous Boer–Mulders (BM) function. Amongst other things, the analysis enables the following themes to be addressed: the quark current mass dependence of pion TMDs; the impact of the gauge link model on the positivity constraint that bounds the BM function relative to the unpolarised TMD; the equivalence of direct diagrammatic and light-front wave function TMD calculations; and the size of the BM shift. Interpreted astutely, these SCI results enable one to draw insightful pictures of pion TMDs.
A symmetry preserving treatment of a vector ⊗ vector contact interaction (SCI) is used as the basis for calculations of the two pion transverse momentum dependent parton distribution functions (TMDs); namely, that for unpolarised valence degrees-of-freedom and the analogous Boer–Mulders (BM) function. Amongst other things, the analysis enables the following themes to be addressed: the quark current mass dependence of pion TMDs; the impact of the gauge link model on the positivity constraint that bounds the BM function relative to the unpolarised TMD; the equivalence of direct diagrammatic and light-front wave function TMD calculations; and the size of the BM shift. Interpreted astutely, these SCI results enable one to draw insightful pictures of pion TMDs.
Abstract A symmetry preserving treatment of a vector  $$\otimes $$ ⊗  vector contact interaction (SCI) is used as the basis for calculations of the two pion transverse momentum dependent parton distribution functions (TMDs); namely, that for unpolarised valence degrees-of-freedom and the analogous Boer–Mulders (BM) function. Amongst other things, the analysis enables the following themes to be addressed: the quark current mass dependence of pion TMDs; the impact of the gauge link model on the positivity constraint that bounds the BM function relative to the unpolarised TMD; the equivalence of direct diagrammatic and light-front wave function TMD calculations; and the size of the BM shift. Interpreted astutely, these SCI results enable one to draw insightful pictures of pion TMDs.
ArticleNumber 115
Author Cheng, Dan-Dan
Ding, Minghui
Roberts, Craig D.
Schmidt, Sebastian M.
Cui, Zhu-Fang
Author_xml – sequence: 1
  givenname: Dan-Dan
  orcidid: 0009-0009-6466-4483
  surname: Cheng
  fullname: Cheng, Dan-Dan
  organization: School of Physics, Nanjing University, Institute for Nonperturbative Physics, Nanjing University
– sequence: 2
  givenname: Zhu-Fang
  orcidid: 0000-0003-3890-0242
  surname: Cui
  fullname: Cui, Zhu-Fang
  email: phycui@nju.edu.cn
  organization: School of Physics, Nanjing University, Institute for Nonperturbative Physics, Nanjing University
– sequence: 3
  givenname: Minghui
  orcidid: 0000-0002-3690-1690
  surname: Ding
  fullname: Ding, Minghui
  organization: School of Physics, Nanjing University, Institute for Nonperturbative Physics, Nanjing University, Helmholtz-Zentrum Dresden-Rossendorf
– sequence: 4
  givenname: Craig D.
  orcidid: 0000-0002-2937-1361
  surname: Roberts
  fullname: Roberts, Craig D.
  email: cdroberts@nju.edu.cn
  organization: School of Physics, Nanjing University, Institute for Nonperturbative Physics, Nanjing University
– sequence: 5
  givenname: Sebastian M.
  orcidid: 0000-0002-8947-1532
  surname: Schmidt
  fullname: Schmidt, Sebastian M.
  organization: Helmholtz-Zentrum Dresden-Rossendorf, Technische Universiät Dresden
BookMark eNqFkE1OwzAQhS0EEqVwBiKxDh3_xHaWUPFTCQQLWFuOM6lSFbvYyYIdd-CGnIS0QcCO1YzezHsz-o7Ivg8eCTmlcE6pgBluVm6WKEDBcmBFTrnSLKd7ZEIFF7kc9P0__SE5SmkFAEyAnhD92AafXQaMn-8f9_26xpiypveu2-p9av0ys5kLvrOuy1rfYbS72TE5aOw64cl3nZLn66un-W1-93CzmF_c5Y6zosspghLKFcgcWlkxoTQXNauFsMgpNJy5mlcaBFalLJTSiKAbLZ1gVVlIwadkMebWwa7MJrYvNr6ZYFuzE0JcGhu71q3RUKdKrRooFNeitI2mlZW2ZAVKxSTwIetszNrE8Npj6swq9NEP7xtOJZWgJafDlhq3XAwpRWx-rlIwW-Rmi9yMyM2A3OyQm61Tj840OPwS42_-f9YvFnKIHg
Cites_doi 10.1103/PhysRevC.85.025205
10.1016/j.physletb.2023.137808
10.1016/j.physletb.2023.138074
10.1016/0370-2693(96)01158-6
10.1103/PhysRevLett.110.132001
10.1103/PhysRevD.93.054501
10.1007/BF02812722
10.1103/PhysRevD.104.094013
10.1016/j.physletb.2022.137130
10.3390/particles6010017
10.1140/epja/s10050-021-00658-7
10.1016/0370-2693(96)00372-3
10.1088/1674-1137/ac89d0
10.1016/j.physletb.2022.137078
10.1103/RevModPhys.81.1015
10.1103/PhysRevD.107.L031502
10.1007/s00601-024-01924-2
10.1088/1126-6708/2008/08/038
10.1007/s00601-022-01740-6
10.1103/PhysRevD.70.117504
10.1103/PhysRevD.97.034010
10.1016/j.physletb.2024.138534
10.1016/S0370-1573(97)00089-6
10.3390/particles6010004
10.1103/PhysRevD.22.2157
10.1103/PhysRevC.82.065202
10.1007/s11467-015-0525-6
10.1103/PhysRev.117.648
10.1007/JHEP06(2017)081
10.1016/0550-3213(77)90384-4
10.1103/PhysRevD.95.094004
10.1016/j.physletb.2005.04.002
10.1016/j.ppnp.2023.104081
10.1016/S0550-3213(00)00684-2
10.1007/s00601-020-01574-0
10.1140/epjc/s10052-020-08791-1
10.1103/PhysRevD.108.036021
10.1103/PhysRevC.81.065202
10.1103/PhysRevC.87.045207
10.1140/epjc/s10052-021-09898-9
10.1142/S0217751X92002544
10.1103/PhysRevD.29.2315
10.1016/j.physletb.2012.06.021
10.1016/0370-2693(80)90402-5
10.1016/j.ppnp.2021.103883
10.1088/1674-1137/44/8/083102
10.1140/epjc/s10052-020-08578-4
10.1103/PhysRevC.83.065206
10.1007/BF02744530
10.1088/0256-307X/40/9/091201
10.1103/PhysRevD.100.054005
10.1103/PhysRevD.70.094044
10.1103/PhysRevD.75.073008
10.1016/S0370-2693(97)01535-9
10.1103/PhysRevD.86.094023
10.1103/PhysRevD.110.030001
10.1007/JHEP11(2015)102
10.1038/scientificamerican0524-32
10.1103/PhysRevD.57.5780
10.1140/epjc/s10052-022-10844-6
10.1142/9789814503266_0001
10.1103/PhysRevLett.85.712
10.1103/PhysRevD.52.4736
10.1140/epja/s10050-021-00574-w
10.1140/epjc/s10052-024-12403-7
10.1103/PhysRevD.106.054031
10.1016/0370-2693(71)90576-4
10.1103/PhysRevD.103.014002
10.1140/epja/s10050-021-00427-6
10.1088/1361-6471/abf5c3
10.1007/s00601-022-01769-7
10.1140/epjc/s10052-024-13068-y
10.1103/PhysRevD.90.014050
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Jan 2025
DBID C6C
AAYXX
CITATION
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1140/epjc/s10052-025-13782-1
DatabaseName Springer Open Access Journals
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Databases
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 14
ExternalDocumentID oai_doaj_org_article_1c7987f0573849af81ba6a925e672603
10_1140_epjc_s10052_025_13782_1
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20220122
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 12135007
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5F
-5G
-A0
-BR
-~X
.86
0R~
199
29G
2JY
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AENEX
AFBBN
AFGXO
AFKRA
AFPKN
AFWTZ
AGWIL
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
MA-
NB0
O9-
O93
OK1
P62
P9T
PIMPY
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
S1Z
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
WK8
Z45
Z7Y
~8M
AAYXX
BGNMA
CITATION
M4Y
PHGZM
PHGZT
PQGLB
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c325t-1e0747c5e2cea6b247834d2d44ae310f32cd3b804eb965778ee08f86c42b95643
IEDL.DBID BENPR
ISSN 1434-6052
1434-6044
IngestDate Tue Aug 26 23:45:06 EDT 2025
Fri Jul 25 22:20:05 EDT 2025
Tue Aug 05 12:03:00 EDT 2025
Fri Feb 21 02:36:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-1e0747c5e2cea6b247834d2d44ae310f32cd3b804eb965778ee08f86c42b95643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3690-1690
0000-0002-2937-1361
0000-0003-3890-0242
0009-0009-6466-4483
0000-0002-8947-1532
OpenAccessLink https://www.proquest.com/docview/3161608631?pq-origsite=%requestingapplication%
PQID 3161608631
PQPubID 2034659
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_1c7987f0573849af81ba6a925e672603
proquest_journals_3161608631
crossref_primary_10_1140_epjc_s10052_025_13782_1
springer_journals_10_1140_epjc_s10052_025_13782_1
PublicationCentury 2000
PublicationDate 2025-01-30
PublicationDateYYYYMMDD 2025-01-30
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-30
  day: 30
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References 13782_CR60
P Maris (13782_CR4) 1998; 420
P-L Yin (13782_CR20) 2023; 40
G Altarelli (13782_CR69) 1977; 126
C Quintans (13782_CR12) 2022; 63
13782_CR21
W de Paula (13782_CR27) 2021; 103
S Noguera (13782_CR50) 2015; 11
D Binosi (13782_CR6) 2022; 63
13782_CR63
L Chang (13782_CR59) 2022; 829
Z-F Cui (13782_CR76) 2022; 46
SJ Brodsky (13782_CR13) 1998; 301
Z-F Cui (13782_CR58) 2020; 80
Z Wang (13782_CR25) 2017; 95
D Ebert (13782_CR74) 1996; 388
W Kou (13782_CR29) 2023; 108
Z Xing (13782_CR41) 2023; 107
K Raya (13782_CR9) 2024; 65
A Deur (13782_CR65) 2024; 134
GP Lepage (13782_CR51) 1980; 22
HLL Roberts (13782_CR32) 2011; 83
Z-B Kang (13782_CR56) 2012; 713
Z Lu (13782_CR23) 2012; 86
Z Lu (13782_CR48) 2004; 70
M Engelhardt (13782_CR55) 2016; 93
MN Ferreira (13782_CR8) 2023; 6
L Chang (13782_CR14) 2013; 110
LN Lipatov (13782_CR68) 1975; 20
M Ding (13782_CR7) 2023; 6
Y Yu (13782_CR62) 2024; 84
J-L Zhang (13782_CR19) 2021; 81
TD Lee (13782_CR43) 1956; 10
C Chen (13782_CR53) 2013; 87
CD Roberts (13782_CR75) 1992; 7
Z Zhu (13782_CR28) 2023; 839
HJ Munczek (13782_CR71) 1995; 52
A Bender (13782_CR72) 1996; 380
X Chen (13782_CR10) 2020; 61
JC Collins (13782_CR45) 1989; 5
YL Dokshitzer (13782_CR66) 1977; 46
Y Lu (13782_CR17) 2024; 850
S Navas (13782_CR77) 2024; 110
CD Roberts (13782_CR5) 2021; 120
LX Gutiérrez-Guerrero (13782_CR30) 2010; 81
DJ Wilson (13782_CR33) 2012; 85
M Diehl (13782_CR15) 2001; 596
G Grunberg (13782_CR64) 1984; 29
Z Lu (13782_CR52) 2007; 75
HY Xing (13782_CR42) 2024; 84
HLL Roberts (13782_CR31) 2010; 82
Y Nambu (13782_CR3) 2009; 81
B Pasquini (13782_CR24) 2014; 90
A Bacchetta (13782_CR34) 2000; 85
Z-N Xu (13782_CR70) 2021; 81
P Cheng (13782_CR61) 2023; 844
Y Lu (13782_CR44) 2021; 57
Y Nambu (13782_CR1) 1960; 117
M Ahmady (13782_CR26) 2019; 100
Z-F Cui (13782_CR46) 2020; 44
P Cheng (13782_CR39) 2022; 106
13782_CR54
D Boer (13782_CR22) 1998; 57
RK Ellis (13782_CR57) 1991
VN Gribov (13782_CR67) 1971; 37
J Arrington (13782_CR11) 2021; 48
H-Y Xing (13782_CR40) 2022; 82
J Goldstone (13782_CR2) 1961; 19
ZF Cui (13782_CR16) 2022; 58
S Meissner (13782_CR18) 2008; 08
F Gao (13782_CR73) 2018; 97
K Raya (13782_CR37) 2021; 57
Z Lu (13782_CR35) 2016; 11
13782_CR47
Z Lu (13782_CR49) 2005; 615
A Bacchetta (13782_CR36) 2004; 70
LX Gutiérrez-Guerrero (13782_CR38) 2021; 104
References_xml – volume: 85
  year: 2012
  ident: 13782_CR33
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.025205
– volume: 839
  year: 2023
  ident: 13782_CR28
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2023.137808
– volume: 844
  year: 2023
  ident: 13782_CR61
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2023.138074
– volume: 388
  start-page: 154
  year: 1996
  ident: 13782_CR74
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(96)01158-6
– ident: 13782_CR54
– volume: 110
  year: 2013
  ident: 13782_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.132001
– volume: 93
  issue: 5
  year: 2016
  ident: 13782_CR55
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.054501
– volume: 19
  start-page: 154
  year: 1961
  ident: 13782_CR2
  publication-title: Nuovo Cim.
  doi: 10.1007/BF02812722
– volume: 104
  issue: 9
  year: 2021
  ident: 13782_CR38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.094013
– volume: 20
  start-page: 94
  year: 1975
  ident: 13782_CR68
  publication-title: Sov. J. Nucl. Phys.
– volume-title: QCD and Collider Physics
  year: 1991
  ident: 13782_CR57
– ident: 13782_CR60
  doi: 10.1016/j.physletb.2022.137130
– volume: 6
  start-page: 312
  issue: 1
  year: 2023
  ident: 13782_CR8
  publication-title: Particles
  doi: 10.3390/particles6010017
– volume: 58
  start-page: 10
  issue: 1
  year: 2022
  ident: 13782_CR16
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/s10050-021-00658-7
– volume: 46
  start-page: 641
  year: 1977
  ident: 13782_CR66
  publication-title: Sov. Phys. JETP
– volume: 380
  start-page: 7
  year: 1996
  ident: 13782_CR72
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(96)00372-3
– volume: 46
  issue: 12
  year: 2022
  ident: 13782_CR76
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/ac89d0
– volume: 829
  year: 2022
  ident: 13782_CR59
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137078
– volume: 81
  start-page: 1015
  year: 2009
  ident: 13782_CR3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.1015
– volume: 107
  start-page: L031502
  issue: 3
  year: 2023
  ident: 13782_CR41
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.L031502
– volume: 65
  start-page: 60
  issue: 2
  year: 2024
  ident: 13782_CR9
  publication-title: Few Body Syst.
  doi: 10.1007/s00601-024-01924-2
– volume: 08
  start-page: 038
  year: 2008
  ident: 13782_CR18
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/08/038
– volume: 63
  start-page: 42
  issue: 2
  year: 2022
  ident: 13782_CR6
  publication-title: Few Body Syst.
  doi: 10.1007/s00601-022-01740-6
– volume: 70
  year: 2004
  ident: 13782_CR36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.70.117504
– volume: 97
  year: 2018
  ident: 13782_CR73
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.034010
– volume: 850
  year: 2024
  ident: 13782_CR17
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2024.138534
– volume: 301
  start-page: 299
  year: 1998
  ident: 13782_CR13
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(97)00089-6
– volume: 6
  start-page: 57
  issue: 1
  year: 2023
  ident: 13782_CR7
  publication-title: Particles
  doi: 10.3390/particles6010004
– volume: 22
  start-page: 2157
  year: 1980
  ident: 13782_CR51
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.22.2157
– volume: 82
  year: 2010
  ident: 13782_CR31
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.82.065202
– volume: 11
  issue: 1
  year: 2016
  ident: 13782_CR35
  publication-title: Front. Phys. (Beijing)
  doi: 10.1007/s11467-015-0525-6
– volume: 117
  start-page: 648
  year: 1960
  ident: 13782_CR1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.117.648
– ident: 13782_CR21
  doi: 10.1007/JHEP06(2017)081
– volume: 126
  start-page: 298
  year: 1977
  ident: 13782_CR69
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(77)90384-4
– volume: 95
  issue: 9
  year: 2017
  ident: 13782_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.094004
– volume: 615
  start-page: 200
  year: 2005
  ident: 13782_CR49
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2005.04.002
– volume: 134
  year: 2024
  ident: 13782_CR65
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2023.104081
– volume: 596
  start-page: 33
  year: 2001
  ident: 13782_CR15
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(00)00684-2
– volume: 61
  start-page: 43
  year: 2020
  ident: 13782_CR10
  publication-title: Few Body Syst.
  doi: 10.1007/s00601-020-01574-0
– volume: 81
  start-page: 6
  issue: 1
  year: 2021
  ident: 13782_CR19
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08791-1
– volume: 108
  issue: 3
  year: 2023
  ident: 13782_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.036021
– volume: 81
  year: 2010
  ident: 13782_CR30
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.81.065202
– volume: 87
  year: 2013
  ident: 13782_CR53
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.87.045207
– volume: 81
  start-page: 1105
  issue: 12
  year: 2021
  ident: 13782_CR70
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09898-9
– volume: 7
  start-page: 5607
  year: 1992
  ident: 13782_CR75
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X92002544
– volume: 29
  start-page: 2315
  year: 1984
  ident: 13782_CR64
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.29.2315
– volume: 713
  start-page: 273
  year: 2012
  ident: 13782_CR56
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.06.021
– ident: 13782_CR63
  doi: 10.1016/0370-2693(80)90402-5
– volume: 120
  year: 2021
  ident: 13782_CR5
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2021.103883
– volume: 44
  year: 2020
  ident: 13782_CR46
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/44/8/083102
– volume: 80
  start-page: 1064
  year: 2020
  ident: 13782_CR58
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08578-4
– volume: 83
  year: 2011
  ident: 13782_CR32
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.83.065206
– volume: 10
  start-page: 749
  year: 1956
  ident: 13782_CR43
  publication-title: Nuovo Cim.
  doi: 10.1007/BF02744530
– volume: 40
  issue: 9
  year: 2023
  ident: 13782_CR20
  publication-title: Chin. Phys. Lett. Express
  doi: 10.1088/0256-307X/40/9/091201
– volume: 100
  issue: 5
  year: 2019
  ident: 13782_CR26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.054005
– volume: 70
  year: 2004
  ident: 13782_CR48
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.70.094044
– volume: 75
  year: 2007
  ident: 13782_CR52
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.75.073008
– volume: 420
  start-page: 267
  year: 1998
  ident: 13782_CR4
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(97)01535-9
– volume: 86
  year: 2012
  ident: 13782_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.094023
– volume: 110
  issue: 3
  year: 2024
  ident: 13782_CR77
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.110.030001
– volume: 11
  start-page: 102
  year: 2015
  ident: 13782_CR50
  publication-title: JHEP
  doi: 10.1007/JHEP11(2015)102
– ident: 13782_CR47
  doi: 10.1038/scientificamerican0524-32
– volume: 57
  start-page: 5780
  year: 1998
  ident: 13782_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.57.5780
– volume: 82
  start-page: 889
  issue: 10
  year: 2022
  ident: 13782_CR40
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10844-6
– volume: 5
  start-page: 1
  year: 1989
  ident: 13782_CR45
  publication-title: Adv. Ser. Direct. High Energy Phys.
  doi: 10.1142/9789814503266_0001
– volume: 85
  start-page: 712
  year: 2000
  ident: 13782_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.712
– volume: 52
  start-page: 4736
  year: 1995
  ident: 13782_CR71
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.52.4736
– volume: 57
  start-page: 266
  issue: 9
  year: 2021
  ident: 13782_CR37
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/s10050-021-00574-w
– volume: 84
  start-page: 82
  issue: 1
  year: 2024
  ident: 13782_CR42
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-024-12403-7
– volume: 106
  issue: 5
  year: 2022
  ident: 13782_CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.054031
– volume: 37
  start-page: 78
  year: 1971
  ident: 13782_CR67
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(71)90576-4
– volume: 103
  issue: 1
  year: 2021
  ident: 13782_CR27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.014002
– volume: 57
  start-page: 115
  issue: 4
  year: 2021
  ident: 13782_CR44
  publication-title: Eur. Phys. J. A (Lett)
  doi: 10.1140/epja/s10050-021-00427-6
– volume: 48
  year: 2021
  ident: 13782_CR11
  publication-title: J. Phys. G
  doi: 10.1088/1361-6471/abf5c3
– volume: 63
  start-page: 72
  issue: 4
  year: 2022
  ident: 13782_CR12
  publication-title: Few Body Syst.
  doi: 10.1007/s00601-022-01769-7
– volume: 84
  start-page: 739
  issue: 7
  year: 2024
  ident: 13782_CR62
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-024-13068-y
– volume: 90
  issue: 1
  year: 2014
  ident: 13782_CR24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.014050
SSID ssj0002408
Score 2.452707
Snippet A symmetry preserving treatment of a vector  ⊗  vector contact interaction (SCI) is used as the basis for calculations of the two pion transverse momentum...
A symmetry preserving treatment of a vector  $$\otimes $$ ⊗  vector contact interaction (SCI) is used as the basis for calculations of the two pion transverse...
A symmetry preserving treatment of a vector ⊗ vector contact interaction (SCI) is used as the basis for calculations of the two pion transverse momentum...
Abstract A symmetry preserving treatment of a vector  $$\otimes $$ ⊗  vector contact interaction (SCI) is used as the basis for calculations of the two pion...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 115
SubjectTerms Astronomy
Astrophysics and Cosmology
Distribution functions
Elementary Particles
Hadrons
Heavy Ions
Impact analysis
Light
Mathematical analysis
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Partons
Physics
Physics and Astronomy
Pions
Quantum Field Theories
Quantum Field Theory
Quarks
Regular Article - Theoretical Physics
String Theory
Transverse momentum
Wave functions
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJSQWxFMUCvLAGjV-JhkpoqqQQAxU6mbZjoPE0FZtuvMf-If8Eu6chNfShTWOZOs72_ddcvcdIdcQcpVeC5cUrlIJ3H4hcQoOnha6KkudFd7HBNlHPZnK-5ma_Wj1hTlhjTxwA9yQ-QzC4gp1-3JZ2ApoltW24CroDLh41PkEn9cFU-0djMJdbTYXRBDDsHz1WC2XKp5g_1YmwDEm7JcvipL9v3jmn1-j0eOMD8h-SxXpTbPEQ7IT5kdkN6Zs-vUxyZ8AUjpahNXH2_vDBrttrym6KYSaYj77C7UUU9GtrynKQqyaIoYTMh3fPd9OkrYPQuIFV3XCAqrcexW4D1Y7LrE5RslLKW0AdlYJ7kvh8lQGV2iVZXkIaV7l2kvuIPyR4pT05ot5OCO0qIAeKOakt1zCYMFcZfPMljykPg2-T9IOEbNs5C5MU7qcGgTRNCAaANFEEA3rkxEi9_U66lXHB2BF01rRbLNinww63E17iNZGABvVEHIJmIN1tvge3rKu8_9Y1wXZ47hhUvxINyC9erUJl8BCancVN9wnA1zVtg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrFaJQevoZt9JTnaYhFB8WCht2V3syt4aEub3v0P_kN_iTN5VOtBwVvIZkn49jHfZGe-IeQaXK7CKW7j3AYZw-7nYyth4SmuQlGoNHeuCpB9VHcTcT-V0w4ZtLkw38_vgfsP_OLVYZ4blSzGyqsJB5MWg7uzI-ESazWM1Giz9aJeVxPE9UvnLRNUKfVv0csfJ6KVoRkfkP2GIUY39ZAeko6fHZHdKlLTrY5J9gRIRsO5X368vT-sscj2KkLrhAhHGMb-EpkII9CNKyNUg1jWuQsnZDK-fR7dxU35g9hxJss48Shu76RnzhtlmcCaGAUrhDAeSFngzBXcZlR4myuZppn3NAuZcoJZ8HoEPyXd2Xzmz0iUB2AFMrHCGSagMU9sMFlqCuapo971CG0R0Yta5ULXGctUI4i6BlEDiLoCUSc9MkTkNo-jTHV1A0ZPN7NeJy7NszSg6GImchOAIxtlcia9SsGR4j3Sb3HXzdpZaQ4kVIGnxeEdSTsWX81_fNf5P_pckD2G84Pir7g-6ZbLtb8ErlHaq2p-fQKYsssJ
  priority: 102
  providerName: Springer Nature
Title Pion Boer–Mulders function using a contact interaction
URI https://link.springer.com/article/10.1140/epjc/s10052-025-13782-1
https://www.proquest.com/docview/3161608631
https://doaj.org/article/1c7987f0573849af81ba6a925e672603
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LaxsxEB4ah0IvpemDuk3NHnoV0eq12lOJTdwQaAilhtyEpNUGerBd27n3P-Qf5pd0RisnpIf2ItiVWJZP0sw30jwAPqPJ1UUjA2tDrxlKv8SCxo1npOm7zjRtjNlB9tKcL9TFtb4uB27b4la5l4lZUHerSGfkJxKpiUH-Lesv61-MqkbR7WopoXEAhyiCrR3B4fTs8ur7gyymBF45vkgqZrhSxcMLrYqTtP4ZKYKOa8GopmstUVmy-ol-ymn8n3DPv65Lsxaav4KXhT5Wp8N8H8GztHwNz7MbZ9y-AXuFMFfTVdrc_777dksVuLcVqS6CvyIf95vKV-Se7uOuolQRmyGw4S0s5mc_Zues1EZgUQq9Y3WizPdRJxGTN0EoKpjRiU4pn5Cx9VLETgbLVQqt0U1jU-K2tyYqEdAkUvIdjJarZXoPVdsjZdB1UNELhZ1tHXpvG9-JxCNPcQx8j4hbDykw3BDOzB2B6AYQHYLoMoiuHsOUkHsYTjms84vV5saVLeHq2LS26Skjo1Wt75FAe-NboZNp0MqSYzje4-7Kxtq6x2Uwhno_F4_d__mvD__-5Ed4IWgpcDqSO4bRbnObPiHn2IUJHNj510lZXvg0E4paM5tkKx7bhTj9A9Uu1hM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQvqLzEQgs-wNGq41eSA0IUWLb0IQ6t1JuxHacSh93t7laIG_-B_8GP4pcw4yStygFOvcaRFX0znvnGmQfASwy5mmhV4HVoDUfrl3gwePCssm3T2LKOMSfIHtnJif50ak7X4NdQC0NplYNNzIa6mUW6I99RSE0s8m9VvJmfc5oaRX9XhxEanVrsp-_fMGRbvt57j_J9JeX4w_G7Ce-nCvCopFnxIlHP-GiSjMnbIDWNmmhko7VPyHVaJWOjQiV0CrU1ZVmlJKq2slHLgMGEVrjvLbitFXpyqkwff7y0_NQuLFczKc2t0LrPJ8MYZifNv0aq1xNGcpogWyh0zby45g3z0IBrTPevn7PZ54034V5PVtnbTrvuw1qaPoA7OWk0Lh9C9RmFynZnafH7x8_DC5r3vWTkKEnYjDLqz5hnlAzv44pRY4pFV0bxCE5uBLPHsD6dTdMTYHWLBMUUQUcvNS7WRWh9VfpGJhFFiiMQAyJu3jXccF3xtHAEoutAdAiiyyC6YgS7hNzl69QxOz-YLc5cfwBdEcu6Klvq_1jp2rdI1731tTTJlhjTqRFsDbi7_hgv3ZXSjaAYZHG1_J_vevrvLV_A3cnx4YE72DvafwYbktRC0GXgFqyvFhdpG9nOKjzPKsbgy03r9B81oQxJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVCAuiF81pYAPcLTitb3e3QNChDZqKUQRolJvxvbalTgkaZIKceMdeBsehydhZn9alQOcel2vLOubsecbe34AXqLLVQejPK98yjmefpH7HDeeUSbVtSmqEJoA2ak5PNHvT_PTLfjV58JQWGV_JjYHdb0IdEc-UkhNDPJvlY1SFxYx25-8WZ5z6iBFL619O41WRY7j92_ovq1fH-2jrF9JOTn4_O6Qdx0GeFAy3_AsUv34kEcZojNeamo7UctaaxeR9yQlQ618KXT0lcmLooxRlKk0QUuPjoVWOO8t2C7IKxrA9vhgOvt0aQeoeFiT26Q0N0LrLroMPZpRXH4NlL0ncsmpn2ym0FDz7JptbFoIXOO9fz3VNhZwch_uddSVvW117QFsxflDuN2EkIb1IyhnKGI2XsTV7x8_P15Q9-81I7NJomcUX3_GHKPQeBc2jMpUrNqkisdwciOoPYHBfDGPO8CqhHQlz7wOTmocrDKfXFm4WkYRRAxDED0idtmW37BtKrWwBKJtQbQIom1AtNkQxoTc5e9UP7v5sFid2W472iwUVVkkqgZZ6solJO_OuErm0RTo4akh7PW4225Tr-2VCg4h62VxNfyfde3-e8oXcAf12X44mh4_hbuStELQzeAeDDari_gMqc_GP-90jMGXm1brP1-4Eds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pion+Boer%E2%80%93Mulders+function+using+a+contact+interaction&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.date=2025-01-30&rft.pub=Springer+Nature+B.V&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=85&rft.issue=1&rft.spage=115&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-025-13782-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon