Rethinking Point Cloud Filtering: A Non-Local Position Based Approach
Existing position based point cloud filtering methods can hardly preserve sharp geometric features. In this paper, we rethink point cloud filtering from a non-learning non-local non-normal perspective, and propose a novel position based approach for feature-preserving point cloud filtering. Unlike n...
Saved in:
Published in | Computer aided design Vol. 144; p. 103162 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.03.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4485 1879-2685 |
DOI | 10.1016/j.cad.2021.103162 |
Cover
Abstract | Existing position based point cloud filtering methods can hardly preserve sharp geometric features. In this paper, we rethink point cloud filtering from a non-learning non-local non-normal perspective, and propose a novel position based approach for feature-preserving point cloud filtering. Unlike normal based techniques, our method does not require the normal information. The core idea is to first design a similarity metric to search the non-local similar patches of a queried local patch. We then map the non-local similar patches into a canonical space and aggregate the non-local information. The aggregated outcome (i.e. coordinate) will be inversely mapped into the original space. Our method is simple yet effective. Extensive experiments validate our method, and show that it generally outperforms position based methods (deep learning and non-learning), and generates better or comparable outcomes to normal based techniques (deep learning and non-learning).
•A non-learning non-local non-normal approach for feature-preserving point cloud filtering.•A robust search algorithm for finding non-local similar patches.•An effective position update algorithm for fusing non-local similar information.•Two iteration schemes for flexible use. |
---|---|
AbstractList | Existing position based point cloud filtering methods can hardly preserve sharp geometric features. In this paper, we rethink point cloud filtering from a non-learning non-local non-normal perspective, and propose a novel position based approach for feature-preserving point cloud filtering. Unlike normal based techniques, our method does not require the normal information. The core idea is to first design a similarity metric to search the non-local similar patches of a queried local patch. We then map the non-local similar patches into a canonical space and aggregate the non-local information. The aggregated outcome (i.e. coordinate) will be inversely mapped into the original space. Our method is simple yet effective. Extensive experiments validate our method, and show that it generally outperforms position based methods (deep learning and non-learning), and generates better or comparable outcomes to normal based techniques (deep learning and non-learning). Existing position based point cloud filtering methods can hardly preserve sharp geometric features. In this paper, we rethink point cloud filtering from a non-learning non-local non-normal perspective, and propose a novel position based approach for feature-preserving point cloud filtering. Unlike normal based techniques, our method does not require the normal information. The core idea is to first design a similarity metric to search the non-local similar patches of a queried local patch. We then map the non-local similar patches into a canonical space and aggregate the non-local information. The aggregated outcome (i.e. coordinate) will be inversely mapped into the original space. Our method is simple yet effective. Extensive experiments validate our method, and show that it generally outperforms position based methods (deep learning and non-learning), and generates better or comparable outcomes to normal based techniques (deep learning and non-learning). •A non-learning non-local non-normal approach for feature-preserving point cloud filtering.•A robust search algorithm for finding non-local similar patches.•An effective position update algorithm for fusing non-local similar information.•Two iteration schemes for flexible use. |
ArticleNumber | 103162 |
Author | Wang, Meili Lu, Xuequan Jiang, Jincen Wang, Jinxi |
Author_xml | – sequence: 1 givenname: Jinxi surname: Wang fullname: Wang, Jinxi organization: College of Information Engineering, Northwest A&F University, Yangling 712100, China – sequence: 2 givenname: Jincen orcidid: 0000-0002-0150-4644 surname: Jiang fullname: Jiang, Jincen organization: College of Information Engineering, Northwest A&F University, Yangling 712100, China – sequence: 3 givenname: Xuequan orcidid: 0000-0003-0959-408X surname: Lu fullname: Lu, Xuequan email: xuequan.lu@deakin.edu.au organization: Deakin University, Australia – sequence: 4 givenname: Meili surname: Wang fullname: Wang, Meili email: wml@nwsuaf.edu.cn organization: College of Information Engineering, Northwest A&F University, Yangling 712100, China |
BookMark | eNp9kEFLAzEQhYNUsK3-AG8Lnrcm2WY3q6daWhWKiug5xGTWZl2TmqSC_94s68lDT8MM75vHexM0ss4CQucEzwgm5WU7U1LPKKYk7QUp6REaE17VOS05G6ExxgTn8zlnJ2gSQotxUhb1GK2eIW6N_TD2PXtyxsZs2bm9ztami-DT9SpbZA_O5hunZJckwUTjbHYjA-hssdt5J9X2FB03sgtw9jen6HW9elne5ZvH2_vlYpOrgrKYE82bEqguQXICwKqyZo2iXKumrnWB5bxiXDHJOKdvlDFCa1k3lEJRcQoNKaboYvibbL_2EKJo3d7bZCloWXBc8Rr3KjKolHcheGjEzptP6X8EwaJvS7QitSX6tsTQVmKqf4wyUfZRo5emO0heDySk4N8GvAjKgFWgjQcVhXbmAP0LhTGD6Q |
CitedBy_id | crossref_primary_10_1049_tje2_12344 crossref_primary_10_1016_j_cad_2024_103812 crossref_primary_10_1145_3609332 crossref_primary_10_1007_s41095_024_0423_3 crossref_primary_10_1016_j_asoc_2025_112835 crossref_primary_10_1109_TVCG_2023_3292464 crossref_primary_10_1049_ipr2_12955 crossref_primary_10_1109_TPAMI_2024_3355988 crossref_primary_10_1016_j_patcog_2024_111228 |
Cites_doi | 10.1090/S0025-5718-98-00974-0 10.1016/j.cviu.2013.11.009 10.1109/TSP.2020.2978617 10.1109/TVCG.2017.2725948 10.1145/3394171.3413727 10.1145/1618452.1618522 10.1109/TVCG.2003.1175093 10.1109/TVCG.2017.2719024 10.1145/1970392.1970395 10.1088/1361-6420/ab0e4b 10.1016/j.cad.2020.102857 10.1109/TIP.2007.901238 10.1016/j.cagd.2005.06.010 10.1145/2601097.2601172 10.1145/3355089.3356513 10.1007/978-3-030-01234-2_24 10.1109/TVCG.2019.2920817 10.1016/j.cad.2020.102860 10.1109/TIP.2019.2961429 10.1145/2421636.2421645 10.1016/j.cad.2013.02.003 10.1145/1857907.1857911 10.1201/b20190-24 10.1007/s10208-009-9045-5 10.1145/1276377.1276405 10.1109/JPROC.2018.2846606 10.1145/1015706.1015713 10.1109/CVPR.2018.00295 10.1145/3197517.3201288 10.1016/j.cagd.2015.03.011 10.1111/cgf.13753 10.1109/TGRS.2017.2706326 10.1109/CVPR.2017.60 10.1145/1073204.1073227 10.1109/TIP.2020.2969052 10.1137/090761793 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Mar 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2022 |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cad.2021.103162 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
ExternalDocumentID | 10_1016_j_cad_2021_103162 S0010448521001676 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS F28 FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-1d8f6e2d6ea81ee57695fc28dcf99d30a4758c5a5882b255129a9f22e3782ef13 |
IEDL.DBID | AIKHN |
ISSN | 0010-4485 |
IngestDate | Sun Jul 13 05:31:28 EDT 2025 Tue Jul 01 03:34:36 EDT 2025 Thu Apr 24 23:13:26 EDT 2025 Fri Feb 23 02:40:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-local Point cloud filtering RPCA Position based Feature-preserving |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-1d8f6e2d6ea81ee57695fc28dcf99d30a4758c5a5882b255129a9f22e3782ef13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0150-4644 0000-0003-0959-408X |
PQID | 2638078901 |
PQPubID | 2045267 |
ParticipantIDs | proquest_journals_2638078901 crossref_primary_10_1016_j_cad_2021_103162 crossref_citationtrail_10_1016_j_cad_2021_103162 elsevier_sciencedirect_doi_10_1016_j_cad_2021_103162 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer aided design |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Chen, Wei, Sun, Xie, Wang (b49) 2019; 26 Li, Li, Zhu, Fu, Heng (b24) 2020 Lipman, Cohen-Or, Levin, Tal-Ezer (b1) 2007; 26 Deschaud, Goulette (b36) 2010; 38 Rakotosaona, Barbera, Guerrero, Mitra, Ovsjanikov (b7) 2020; 39 Sun, Schaefer, Wang (b19) 2015; 35 Zeng, Cheung, Ng, Pang, Yang (b42) 2019; 29 Avron, Sharf, Greif, Cohen-Or (b18) 2010; 29 Lin, Chen, Ma (b52) 2010; 9 Sobral, Bouwmans, Zahzah (b45) 2016 Huang, Li, Zhang, Ascher, Cohen-Or (b2) 2009; 28 Huang, Wu, Gong, Cohen-Or, Ascher, Zhang (b17) 2013; 32 Yin, Huang, Cohen-Or, Zhang (b28) 2018; 37 Chen, Guo, Wang, Wang, Peng, He (b47) 2017; 55 Levin (b9) 1998; 67 Yifan, Serena, Wu, Öztireli, Sorkine-Hornung (b20) 2019; 38 Lau, Lai, Lui (b46) 2019; 35 Preiner, Mattausch, Arikan, Pajarola, Wimmer (b3) 2014; 33 Zhu, Fu, Jin, Wei, Qin, Heng (b34) 2016 Amenta, Kil (b13) 2004; 23 Sarkar, Bernard, Varanasi, Theobalt, Stricker (b41) 2018 Zhu L, Fu C-W, Brown MS, Heng P-A. A non-local low-rank framework for ultrasound speckle reduction. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 5650–8. Hermosilla P, Ritschel T, Ropinski T. Total denoising: Unsupervised learning of 3D point cloud cleaning. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. p. 52–60. Pistilli, Fracastoro, Valsesia, Magli (b30) 2020 Yu L, Li X, Fu C-W, Cohen-Or D, Heng P-A. Ec-net: an edge-aware point set consolidation network. In: Proceedings of the European conference on computer Vision; 2018. p. 386–402. Digne (b37) 2012 Lu, Wu, Chen, Yeung, Chen, Zwicker (b5) 2017; 24 Chandrasekaran, Sanghavi, Parrilo, Willsky (b50) 2009; 21 Öztireli, Guennebaud, Gross (b4) 2009 Hu, Gao, Cheung, Guo (b32) 2020; 68 Candès, Recht (b53) 2009; 9 Lu, Schaefer, Luo, Ma, He (b21) 2020 Luo S, Hu W. Differentiable manifold reconstruction for point cloud denoising. In: Proceedings of the 28th ACM international conference on multimedia; 2020. p. 1330–8. Bouwmans, Zahzah (b44) 2014; 122 Liu, Xiao, Zhong, Wang, Li, Zhang (b22) 2020; 127 Lu, Lu, Sun, Wang (b8) 2020; 125 Alexa, Behr, Cohen-Or, Fleishman, Levin, Silva (b11) 2001 Digne, Valette, Chaine (b40) 2017; 24 Lange, Polthier (b15) 2005; 22 Liao, Xiao, Jin, Fu (b16) 2013; 45 Fleishman, Cohen-Or, Silva (b14) 2005; 24 Wright J, Ganesh A, Rao S, Peng Y, Ma Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in neural information processing systems; 2009. p. 2080–8. Yuan, Yang (b54) 2009; 9 Rosman, Dubrovina, Kimmel (b38) 2013 Yu L, Li X, Fu C-W, Cohen-Or D, Heng P-A. Pu-net: Point cloud upsampling network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. p. 2790–9. Candès, Li, Ma, Wright (b55) 2011; 58 Dabov, Foi, Katkovnik, Egiazarian (b39) 2007; 16 Dinesh, Cheung, Bajić (b23) 2020; 29 Levin (b10) 2004 Roveri, Öztireli, Pandele, Gross (b25) 2018 Li, Zhu, Fu, Heng (b35) 2018 Mattei, Castrodad (b48) 2017 Alexa, Behr, Cohen-Or, Fleishman, Levin, Silva (b12) 2003; 9 Zhang, Lu, Qin, He (b6) 2020 Ma, Aybat (b51) 2018; 106 Yin (10.1016/j.cad.2021.103162_b28) 2018; 37 10.1016/j.cad.2021.103162_b43 Zhu (10.1016/j.cad.2021.103162_b34) 2016 Hu (10.1016/j.cad.2021.103162_b32) 2020; 68 Sobral (10.1016/j.cad.2021.103162_b45) 2016 Levin (10.1016/j.cad.2021.103162_b10) 2004 Preiner (10.1016/j.cad.2021.103162_b3) 2014; 33 Roveri (10.1016/j.cad.2021.103162_b25) 2018 Yifan (10.1016/j.cad.2021.103162_b20) 2019; 38 Digne (10.1016/j.cad.2021.103162_b37) 2012 Lu (10.1016/j.cad.2021.103162_b8) 2020; 125 Huang (10.1016/j.cad.2021.103162_b2) 2009; 28 Lu (10.1016/j.cad.2021.103162_b21) 2020 Lau (10.1016/j.cad.2021.103162_b46) 2019; 35 Alexa (10.1016/j.cad.2021.103162_b12) 2003; 9 10.1016/j.cad.2021.103162_b33 Liu (10.1016/j.cad.2021.103162_b22) 2020; 127 Digne (10.1016/j.cad.2021.103162_b40) 2017; 24 Chandrasekaran (10.1016/j.cad.2021.103162_b50) 2009; 21 Öztireli (10.1016/j.cad.2021.103162_b4) 2009 Sun (10.1016/j.cad.2021.103162_b19) 2015; 35 10.1016/j.cad.2021.103162_b31 Li (10.1016/j.cad.2021.103162_b24) 2020 Candès (10.1016/j.cad.2021.103162_b53) 2009; 9 Liao (10.1016/j.cad.2021.103162_b16) 2013; 45 Dabov (10.1016/j.cad.2021.103162_b39) 2007; 16 Bouwmans (10.1016/j.cad.2021.103162_b44) 2014; 122 Mattei (10.1016/j.cad.2021.103162_b48) 2017 Levin (10.1016/j.cad.2021.103162_b9) 1998; 67 10.1016/j.cad.2021.103162_b29 10.1016/j.cad.2021.103162_b26 Rakotosaona (10.1016/j.cad.2021.103162_b7) 2020; 39 Rosman (10.1016/j.cad.2021.103162_b38) 2013 Candès (10.1016/j.cad.2021.103162_b55) 2011; 58 10.1016/j.cad.2021.103162_b27 Dinesh (10.1016/j.cad.2021.103162_b23) 2020; 29 Zhang (10.1016/j.cad.2021.103162_b6) 2020 Avron (10.1016/j.cad.2021.103162_b18) 2010; 29 Yuan (10.1016/j.cad.2021.103162_b54) 2009; 9 Zeng (10.1016/j.cad.2021.103162_b42) 2019; 29 Huang (10.1016/j.cad.2021.103162_b17) 2013; 32 Li (10.1016/j.cad.2021.103162_b35) 2018 Alexa (10.1016/j.cad.2021.103162_b11) 2001 Lu (10.1016/j.cad.2021.103162_b5) 2017; 24 Amenta (10.1016/j.cad.2021.103162_b13) 2004; 23 Ma (10.1016/j.cad.2021.103162_b51) 2018; 106 Lange (10.1016/j.cad.2021.103162_b15) 2005; 22 Deschaud (10.1016/j.cad.2021.103162_b36) 2010; 38 Chen (10.1016/j.cad.2021.103162_b47) 2017; 55 Sarkar (10.1016/j.cad.2021.103162_b41) 2018 Fleishman (10.1016/j.cad.2021.103162_b14) 2005; 24 Pistilli (10.1016/j.cad.2021.103162_b30) 2020 Lipman (10.1016/j.cad.2021.103162_b1) 2007; 26 Lin (10.1016/j.cad.2021.103162_b52) 2010; 9 Chen (10.1016/j.cad.2021.103162_b49) 2019; 26 |
References_xml | – volume: 32 start-page: 1 year: 2013 end-page: 12 ident: b17 article-title: Edge-aware point set resampling publication-title: ACM Trans Graph – volume: 122 start-page: 22 year: 2014 end-page: 34 ident: b44 article-title: Robust PCA via principal component pursuit: A review for a comparative evaluation in video surveillance publication-title: Comput Vis Image Underst – start-page: 103 year: 2020 end-page: 118 ident: b30 article-title: Learning graph-convolutional representations for point cloud denoising publication-title: European conference on computer vision – start-page: 37 year: 2004 end-page: 49 ident: b10 article-title: Mesh-independent surface interpolation publication-title: Geometric modeling for scientific visualization – year: 2020 ident: b21 article-title: Low rank matrix approximation for 3D geometry filtering publication-title: IEEE Trans Vis Comput Graphics – volume: 125 year: 2020 ident: b8 article-title: Deep feature-preserving normal estimation for point cloud filtering publication-title: Comput Aided Des – volume: 35 year: 2019 ident: b46 article-title: Restoration of atmospheric turbulence-distorted images via RPCA and quasiconformal maps publication-title: Inverse Problems – volume: 106 start-page: 1411 year: 2018 end-page: 1426 ident: b51 article-title: Efficient optimization algorithms for robust principal component analysis and its variants publication-title: Proc IEEE – volume: 22 start-page: 680 year: 2005 end-page: 692 ident: b15 article-title: Anisotropic smoothing of point sets publication-title: Comput Aided Geom Design – reference: Hermosilla P, Ritschel T, Ropinski T. Total denoising: Unsupervised learning of 3D point cloud cleaning. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. p. 52–60. – volume: 39 year: 2020 ident: b7 article-title: PointcleanNet: Learning to denoise and remove outliers from dense point clouds publication-title: Comput Graph Forum – volume: 45 start-page: 861 year: 2013 end-page: 874 ident: b16 article-title: Efficient feature-preserving local projection operator for geometry reconstruction publication-title: Comput Aided Des – volume: 29 start-page: 1 year: 2010 end-page: 12 ident: b18 article-title: 1-Sparse reconstruction of sharp point set surfaces publication-title: ACM Trans Graph – start-page: 123 year: 2017 end-page: 137 ident: b48 article-title: Point cloud denoising via moving RPCA publication-title: Computer graphics forum, Vol. 36. no. 8 – volume: 23 start-page: 264 year: 2004 end-page: 270 ident: b13 article-title: Defining point-set surfaces publication-title: ACM Trans Graph – volume: 24 start-page: 2238 year: 2017 end-page: 2250 ident: b40 article-title: Sparse geometric representation through local shape probing publication-title: IEEE Trans Vis Comput Graphics – volume: 58 start-page: 1 year: 2011 end-page: 37 ident: b55 article-title: Robust principal component analysis publication-title: J ACM – volume: 38 start-page: 109 year: 2010 end-page: 114 ident: b36 article-title: Point cloud non local denoising using local surface descriptor similarity publication-title: IAPRS – start-page: 217 year: 2016 end-page: 226 ident: b34 article-title: Non-local sparse and low-rank regularization for structure-preserving image smoothing publication-title: Computer graphics forum, Vol. 35. no. 7 – volume: 29 start-page: 3474 year: 2019 end-page: 3489 ident: b42 article-title: 3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model publication-title: IEEE Trans Image Process – volume: 33 start-page: 1 year: 2014 end-page: 13 ident: b3 article-title: Continuous projection for fast L1 reconstruction publication-title: ACM Trans Graph – volume: 55 start-page: 5366 year: 2017 end-page: 5380 ident: b47 article-title: Denoising of hyperspectral images using nonconvex low rank matrix approximation publication-title: IEEE Trans Geosci Remote Sens – reference: Yu L, Li X, Fu C-W, Cohen-Or D, Heng P-A. Ec-net: an edge-aware point set consolidation network. In: Proceedings of the European conference on computer Vision; 2018. p. 386–402. – volume: 26 start-page: 22 year: 2007 ident: b1 article-title: Parameterization-free projection for geometry reconstruction publication-title: ACM Trans Graph – volume: 16 start-page: 2080 year: 2007 end-page: 2095 ident: b39 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans Image Process – volume: 26 start-page: 3255 year: 2019 end-page: 3270 ident: b49 article-title: Multi-patch collaborative point cloud denoising via low-rank recovery with graph constraint publication-title: IEEE Trans Vis Comput Graphics – start-page: 87 year: 2018 end-page: 99 ident: b25 article-title: Pointpronets: Consolidation of point clouds with convolutional neural networks publication-title: Computer graphics forum, Vol. 37. no. 2 – reference: Yu L, Li X, Fu C-W, Cohen-Or D, Heng P-A. Pu-net: Point cloud upsampling network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. p. 2790–9. – volume: 37 start-page: 1 year: 2018 end-page: 13 ident: b28 article-title: P2p-net: Bidirectional point displacement net for shape transform publication-title: ACM Trans Graph – volume: 9 start-page: 717 year: 2009 ident: b53 article-title: Exact matrix completion via convex optimization publication-title: Found Comput Math – year: 2016 ident: b45 article-title: Lrslibrary: Low-rank and sparse tools for background modeling and subtraction in videos publication-title: Robust Low-Rank Sparse Matrix Decompos: Appl Image Video Process – volume: 29 start-page: 4143 year: 2020 end-page: 4158 ident: b23 article-title: Point cloud denoising via feature graph laplacian regularization publication-title: IEEE Trans Image Process – start-page: 21 year: 2001 end-page: 29 ident: b11 article-title: Point set surfaces publication-title: Proceedings visualization 2001 – year: 2020 ident: b6 article-title: Pointfilter: Point cloud filtering via encoder-decoder modeling publication-title: IEEE Trans Vis Comput Graphics – volume: 35 start-page: 2 year: 2015 end-page: 15 ident: b19 article-title: Denoising point sets via L0 minimization publication-title: Comput Aided Geom Design – start-page: 1 year: 2013 end-page: 12 ident: b38 article-title: Patch-collaborative spectral point-cloud denoising publication-title: Computer graphics forum, Vol. 32. no. 8 – start-page: 444 year: 2018 end-page: 453 ident: b41 article-title: Structured low-rank matrix factorization for point-cloud denoising publication-title: 2018 International conference on 3D vision – reference: Zhu L, Fu C-W, Brown MS, Heng P-A. A non-local low-rank framework for ultrasound speckle reduction. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 5650–8. – volume: 67 start-page: 1517 year: 1998 end-page: 1531 ident: b9 article-title: The approximation power of moving least-squares publication-title: Math Comp – year: 2020 ident: b24 article-title: Dnf-net: A deep normal filtering network for mesh denoising publication-title: IEEE Trans Vis Comput Graphics – volume: 24 start-page: 2315 year: 2017 end-page: 2326 ident: b5 article-title: GPF: GMM-inspired feature-preserving point set filtering publication-title: IEEE Trans Vis Comput Graphics – volume: 9 year: 2009 ident: b54 article-title: Sparse and low rank matrix decomposition via alternating direction method publication-title: Pac J Optim – volume: 21 start-page: 572 year: 2009 end-page: 596 ident: b50 article-title: Rank-sparsity incoherence for matrix decomposition publication-title: SIAM J Optim – reference: Wright J, Ganesh A, Rao S, Peng Y, Ma Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in neural information processing systems; 2009. p. 2080–8. – volume: 127 year: 2020 ident: b22 article-title: A feature-preserving framework for point cloud denoising publication-title: Comput Aided Des – start-page: 73 year: 2012 end-page: 79 ident: b37 article-title: Similarity based filtering of point clouds publication-title: 2012 IEEE computer society conference on computer vision and pattern recognition workshops – volume: 28 start-page: 1 year: 2009 end-page: 7 ident: b2 article-title: Consolidation of unorganized point clouds for surface reconstruction publication-title: ACM Trans Graph – start-page: 155 year: 2018 end-page: 166 ident: b35 article-title: Non-local low-rank normal filtering for mesh denoising publication-title: Computer graphics forum, vol. 37. no. 7 – volume: 9 year: 2010 ident: b52 article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices publication-title: Math Program – volume: 24 start-page: 544 year: 2005 end-page: 552 ident: b14 article-title: Robust moving least-squares fitting with sharp features publication-title: ACM Trans Graph – start-page: 493 year: 2009 end-page: 501 ident: b4 article-title: Feature preserving point set surfaces based on non-linear kernel regression publication-title: Computer graphics Forum, Vol. 28. no. 2 – volume: 68 start-page: 2841 year: 2020 end-page: 2856 ident: b32 article-title: Feature graph learning for 3d point cloud denoising publication-title: IEEE Trans Signal Process – volume: 38 start-page: 1 year: 2019 end-page: 14 ident: b20 article-title: Differentiable surface splatting for point-based geometry processing publication-title: ACM Trans Graph – reference: Luo S, Hu W. Differentiable manifold reconstruction for point cloud denoising. In: Proceedings of the 28th ACM international conference on multimedia; 2020. p. 1330–8. – volume: 9 start-page: 3 year: 2003 end-page: 15 ident: b12 article-title: Computing and rendering point set surfaces publication-title: IEEE Trans Vis Comput Graphics – volume: 38 start-page: 109 issue: 3A year: 2010 ident: 10.1016/j.cad.2021.103162_b36 article-title: Point cloud non local denoising using local surface descriptor similarity publication-title: IAPRS – year: 2020 ident: 10.1016/j.cad.2021.103162_b24 article-title: Dnf-net: A deep normal filtering network for mesh denoising publication-title: IEEE Trans Vis Comput Graphics – volume: 67 start-page: 1517 issue: 224 year: 1998 ident: 10.1016/j.cad.2021.103162_b9 article-title: The approximation power of moving least-squares publication-title: Math Comp doi: 10.1090/S0025-5718-98-00974-0 – volume: 122 start-page: 22 year: 2014 ident: 10.1016/j.cad.2021.103162_b44 article-title: Robust PCA via principal component pursuit: A review for a comparative evaluation in video surveillance publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2013.11.009 – volume: 68 start-page: 2841 year: 2020 ident: 10.1016/j.cad.2021.103162_b32 article-title: Feature graph learning for 3d point cloud denoising publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2020.2978617 – volume: 24 start-page: 2315 issue: 8 year: 2017 ident: 10.1016/j.cad.2021.103162_b5 article-title: GPF: GMM-inspired feature-preserving point set filtering publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2017.2725948 – ident: 10.1016/j.cad.2021.103162_b31 doi: 10.1145/3394171.3413727 – ident: 10.1016/j.cad.2021.103162_b43 – volume: 28 start-page: 1 issue: 5 year: 2009 ident: 10.1016/j.cad.2021.103162_b2 article-title: Consolidation of unorganized point clouds for surface reconstruction publication-title: ACM Trans Graph doi: 10.1145/1618452.1618522 – volume: 9 start-page: 3 issue: 1 year: 2003 ident: 10.1016/j.cad.2021.103162_b12 article-title: Computing and rendering point set surfaces publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2003.1175093 – volume: 24 start-page: 2238 issue: 7 year: 2017 ident: 10.1016/j.cad.2021.103162_b40 article-title: Sparse geometric representation through local shape probing publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2017.2719024 – volume: 58 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.cad.2021.103162_b55 article-title: Robust principal component analysis publication-title: J ACM doi: 10.1145/1970392.1970395 – volume: 35 issue: 7 year: 2019 ident: 10.1016/j.cad.2021.103162_b46 article-title: Restoration of atmospheric turbulence-distorted images via RPCA and quasiconformal maps publication-title: Inverse Problems doi: 10.1088/1361-6420/ab0e4b – start-page: 444 year: 2018 ident: 10.1016/j.cad.2021.103162_b41 article-title: Structured low-rank matrix factorization for point-cloud denoising – start-page: 87 year: 2018 ident: 10.1016/j.cad.2021.103162_b25 article-title: Pointpronets: Consolidation of point clouds with convolutional neural networks – start-page: 493 year: 2009 ident: 10.1016/j.cad.2021.103162_b4 article-title: Feature preserving point set surfaces based on non-linear kernel regression – start-page: 37 year: 2004 ident: 10.1016/j.cad.2021.103162_b10 article-title: Mesh-independent surface interpolation – volume: 127 year: 2020 ident: 10.1016/j.cad.2021.103162_b22 article-title: A feature-preserving framework for point cloud denoising publication-title: Comput Aided Des doi: 10.1016/j.cad.2020.102857 – start-page: 155 year: 2018 ident: 10.1016/j.cad.2021.103162_b35 article-title: Non-local low-rank normal filtering for mesh denoising – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 10.1016/j.cad.2021.103162_b39 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2007.901238 – ident: 10.1016/j.cad.2021.103162_b29 – start-page: 1 year: 2013 ident: 10.1016/j.cad.2021.103162_b38 article-title: Patch-collaborative spectral point-cloud denoising – start-page: 217 year: 2016 ident: 10.1016/j.cad.2021.103162_b34 article-title: Non-local sparse and low-rank regularization for structure-preserving image smoothing – volume: 22 start-page: 680 issue: 7 year: 2005 ident: 10.1016/j.cad.2021.103162_b15 article-title: Anisotropic smoothing of point sets publication-title: Comput Aided Geom Design doi: 10.1016/j.cagd.2005.06.010 – volume: 33 start-page: 1 issue: 4 year: 2014 ident: 10.1016/j.cad.2021.103162_b3 article-title: Continuous projection for fast L1 reconstruction publication-title: ACM Trans Graph doi: 10.1145/2601097.2601172 – volume: 38 start-page: 1 issue: 6 year: 2019 ident: 10.1016/j.cad.2021.103162_b20 article-title: Differentiable surface splatting for point-based geometry processing publication-title: ACM Trans Graph doi: 10.1145/3355089.3356513 – ident: 10.1016/j.cad.2021.103162_b26 doi: 10.1007/978-3-030-01234-2_24 – volume: 26 start-page: 3255 issue: 11 year: 2019 ident: 10.1016/j.cad.2021.103162_b49 article-title: Multi-patch collaborative point cloud denoising via low-rank recovery with graph constraint publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2019.2920817 – volume: 125 year: 2020 ident: 10.1016/j.cad.2021.103162_b8 article-title: Deep feature-preserving normal estimation for point cloud filtering publication-title: Comput Aided Des doi: 10.1016/j.cad.2020.102860 – volume: 29 start-page: 3474 year: 2019 ident: 10.1016/j.cad.2021.103162_b42 article-title: 3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2961429 – volume: 32 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.cad.2021.103162_b17 article-title: Edge-aware point set resampling publication-title: ACM Trans Graph doi: 10.1145/2421636.2421645 – volume: 45 start-page: 861 issue: 5 year: 2013 ident: 10.1016/j.cad.2021.103162_b16 article-title: Efficient feature-preserving local projection operator for geometry reconstruction publication-title: Comput Aided Des doi: 10.1016/j.cad.2013.02.003 – volume: 29 start-page: 1 issue: 5 year: 2010 ident: 10.1016/j.cad.2021.103162_b18 article-title: ℓ1-Sparse reconstruction of sharp point set surfaces publication-title: ACM Trans Graph doi: 10.1145/1857907.1857911 – year: 2016 ident: 10.1016/j.cad.2021.103162_b45 article-title: Lrslibrary: Low-rank and sparse tools for background modeling and subtraction in videos publication-title: Robust Low-Rank Sparse Matrix Decompos: Appl Image Video Process doi: 10.1201/b20190-24 – volume: 9 start-page: 717 issue: 6 year: 2009 ident: 10.1016/j.cad.2021.103162_b53 article-title: Exact matrix completion via convex optimization publication-title: Found Comput Math doi: 10.1007/s10208-009-9045-5 – volume: 26 start-page: 22 issue: 3 year: 2007 ident: 10.1016/j.cad.2021.103162_b1 article-title: Parameterization-free projection for geometry reconstruction publication-title: ACM Trans Graph doi: 10.1145/1276377.1276405 – start-page: 123 year: 2017 ident: 10.1016/j.cad.2021.103162_b48 article-title: Point cloud denoising via moving RPCA – volume: 106 start-page: 1411 issue: 8 year: 2018 ident: 10.1016/j.cad.2021.103162_b51 article-title: Efficient optimization algorithms for robust principal component analysis and its variants publication-title: Proc IEEE doi: 10.1109/JPROC.2018.2846606 – volume: 23 start-page: 264 issue: 3 year: 2004 ident: 10.1016/j.cad.2021.103162_b13 article-title: Defining point-set surfaces publication-title: ACM Trans Graph doi: 10.1145/1015706.1015713 – ident: 10.1016/j.cad.2021.103162_b27 doi: 10.1109/CVPR.2018.00295 – start-page: 103 year: 2020 ident: 10.1016/j.cad.2021.103162_b30 article-title: Learning graph-convolutional representations for point cloud denoising – start-page: 73 year: 2012 ident: 10.1016/j.cad.2021.103162_b37 article-title: Similarity based filtering of point clouds – volume: 37 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.cad.2021.103162_b28 article-title: P2p-net: Bidirectional point displacement net for shape transform publication-title: ACM Trans Graph doi: 10.1145/3197517.3201288 – volume: 35 start-page: 2 year: 2015 ident: 10.1016/j.cad.2021.103162_b19 article-title: Denoising point sets via L0 minimization publication-title: Comput Aided Geom Design doi: 10.1016/j.cagd.2015.03.011 – volume: 39 issue: 1 year: 2020 ident: 10.1016/j.cad.2021.103162_b7 article-title: PointcleanNet: Learning to denoise and remove outliers from dense point clouds publication-title: Comput Graph Forum doi: 10.1111/cgf.13753 – volume: 55 start-page: 5366 issue: 9 year: 2017 ident: 10.1016/j.cad.2021.103162_b47 article-title: Denoising of hyperspectral images using nonconvex low rank matrix approximation publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2017.2706326 – start-page: 21 year: 2001 ident: 10.1016/j.cad.2021.103162_b11 article-title: Point set surfaces – ident: 10.1016/j.cad.2021.103162_b33 doi: 10.1109/CVPR.2017.60 – volume: 9 year: 2009 ident: 10.1016/j.cad.2021.103162_b54 article-title: Sparse and low rank matrix decomposition via alternating direction method publication-title: Pac J Optim – year: 2020 ident: 10.1016/j.cad.2021.103162_b6 article-title: Pointfilter: Point cloud filtering via encoder-decoder modeling publication-title: IEEE Trans Vis Comput Graphics – year: 2020 ident: 10.1016/j.cad.2021.103162_b21 article-title: Low rank matrix approximation for 3D geometry filtering publication-title: IEEE Trans Vis Comput Graphics – volume: 24 start-page: 544 issue: 3 year: 2005 ident: 10.1016/j.cad.2021.103162_b14 article-title: Robust moving least-squares fitting with sharp features publication-title: ACM Trans Graph doi: 10.1145/1073204.1073227 – volume: 29 start-page: 4143 year: 2020 ident: 10.1016/j.cad.2021.103162_b23 article-title: Point cloud denoising via feature graph laplacian regularization publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.2969052 – volume: 21 start-page: 572 issue: 2 year: 2009 ident: 10.1016/j.cad.2021.103162_b50 article-title: Rank-sparsity incoherence for matrix decomposition publication-title: SIAM J Optim doi: 10.1137/090761793 – volume: 9 year: 2010 ident: 10.1016/j.cad.2021.103162_b52 article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices publication-title: Math Program |
SSID | ssj0002139 |
Score | 2.425831 |
Snippet | Existing position based point cloud filtering methods can hardly preserve sharp geometric features. In this paper, we rethink point cloud filtering from a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103162 |
SubjectTerms | Deep learning Feature-preserving Filtration Non-local Point cloud filtering Position based RPCA |
Title | Rethinking Point Cloud Filtering: A Non-Local Position Based Approach |
URI | https://dx.doi.org/10.1016/j.cad.2021.103162 https://www.proquest.com/docview/2638078901 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60XvQgPrFaSw6ehLWbZBOz3mppqa8iouAt7OaBFdmKrld_u8lutqhgD15Dsixfkm9myMw3AEd5RghWuYoyTWmU6FhHguTu4uWnjOexobYSe76Z8PFDcvnIHpdg0NTC-LTKwP01p1dsHUZ6Ac3e63Tqa3xdKJEIZ3-qXHq-DCuEppy1YKV_cTWezAmZYFp7wY5y_ILmcbNK81KZ1wsl2FefY07-Mk-_iLqyPqMNWA9uI-rXf7YJS6bYgrVvYoLbMLwz5VPdCQHdzqZFiQYvsw-NRlP_IO5Gz1AfTWZFdO3Nl5tSZ2uhc2fHNOoHbfEdeBgN7wfjKDRJiBQlrIywFpYbornJBDbGhQ8ps4oIrWyaahpniYsIFMuY8HvAvH3PUkuIoc43MBbTXWgVs8LsAcKGn1rlRbhSlVjLRUq0SThPBeeWZaINcYONVEFB3DeyeJFNqtizdHBKD6es4WzD8XzJay2fsWhy0gAuf5wB6eh90bJOszkyXMB3SXitpB_j_f999QBWia90qNLNOtAq3z7MofM_yrwLyyefuBtO2RcuFtXx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HtSD-MRq1Rw8CWs3ySbNequlpWpbRFroLezmgStlW3R79beb7MMX6MFrmCzLl2RmQr75BoCLOMIYyVh6kSLEC5SvPI5je_DiNmWxr4nJxZ5HYzaYBnczOquBblUL42iVpe8vfHrurcuRVolma5kkrsbXXiUCbuNPzqVna2A9oKTteH1Xb588D4xIkQNbh-PMq6fNnOQlI6cWipGrPUcM_xacfrjpPPb0d8B2mTTCTvFfu6Cm0z2w9UVKcB_0HnX2VPRBgA-LJM1gd75YKdhP3HO4Hb2GHThepN7QBS9rUnC14I2NYgp2SmXxAzDt9ybdgVe2SPAkwTTzkOKGaayYjjjS2l4eQmok5kqaMFTEjwJ7H5A0otytAHXRPQoNxprYzEAbRA5BPV2k-ghApFnbSCfBFcrAGMZDrHTAWMgZMzTiDeBX2AhZ6oe7NhZzURHFnoWFUzg4RQFnA1x-TFkW4hl_GQcV4OLbDhDWuf81rVktjiiP36vArNDR99Hx_756DjYGk9FQDG_H9ydgE7uah5x41gT17GWlT20mksVn-U57B_IG1rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+Point+Cloud+Filtering%3A+A+Non-Local+Position+Based+Approach&rft.jtitle=Computer+aided+design&rft.au=Wang%2C+Jinxi&rft.au=Jiang%2C+Jincen&rft.au=Lu%2C+Xuequan&rft.au=Wang%2C+Meili&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=144&rft_id=info:doi/10.1016%2Fj.cad.2021.103162&rft.externalDocID=S0010448521001676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |