Rethinking Point Cloud Filtering: A Non-Local Position Based Approach

Existing position based point cloud filtering methods can hardly preserve sharp geometric features. In this paper, we rethink point cloud filtering from a non-learning non-local non-normal perspective, and propose a novel position based approach for feature-preserving point cloud filtering. Unlike n...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 144; p. 103162
Main Authors Wang, Jinxi, Jiang, Jincen, Lu, Xuequan, Wang, Meili
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.03.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0010-4485
1879-2685
DOI10.1016/j.cad.2021.103162

Cover

Abstract Existing position based point cloud filtering methods can hardly preserve sharp geometric features. In this paper, we rethink point cloud filtering from a non-learning non-local non-normal perspective, and propose a novel position based approach for feature-preserving point cloud filtering. Unlike normal based techniques, our method does not require the normal information. The core idea is to first design a similarity metric to search the non-local similar patches of a queried local patch. We then map the non-local similar patches into a canonical space and aggregate the non-local information. The aggregated outcome (i.e. coordinate) will be inversely mapped into the original space. Our method is simple yet effective. Extensive experiments validate our method, and show that it generally outperforms position based methods (deep learning and non-learning), and generates better or comparable outcomes to normal based techniques (deep learning and non-learning). •A non-learning non-local non-normal approach for feature-preserving point cloud filtering.•A robust search algorithm for finding non-local similar patches.•An effective position update algorithm for fusing non-local similar information.•Two iteration schemes for flexible use.
AbstractList Existing position based point cloud filtering methods can hardly preserve sharp geometric features. In this paper, we rethink point cloud filtering from a non-learning non-local non-normal perspective, and propose a novel position based approach for feature-preserving point cloud filtering. Unlike normal based techniques, our method does not require the normal information. The core idea is to first design a similarity metric to search the non-local similar patches of a queried local patch. We then map the non-local similar patches into a canonical space and aggregate the non-local information. The aggregated outcome (i.e. coordinate) will be inversely mapped into the original space. Our method is simple yet effective. Extensive experiments validate our method, and show that it generally outperforms position based methods (deep learning and non-learning), and generates better or comparable outcomes to normal based techniques (deep learning and non-learning).
Existing position based point cloud filtering methods can hardly preserve sharp geometric features. In this paper, we rethink point cloud filtering from a non-learning non-local non-normal perspective, and propose a novel position based approach for feature-preserving point cloud filtering. Unlike normal based techniques, our method does not require the normal information. The core idea is to first design a similarity metric to search the non-local similar patches of a queried local patch. We then map the non-local similar patches into a canonical space and aggregate the non-local information. The aggregated outcome (i.e. coordinate) will be inversely mapped into the original space. Our method is simple yet effective. Extensive experiments validate our method, and show that it generally outperforms position based methods (deep learning and non-learning), and generates better or comparable outcomes to normal based techniques (deep learning and non-learning). •A non-learning non-local non-normal approach for feature-preserving point cloud filtering.•A robust search algorithm for finding non-local similar patches.•An effective position update algorithm for fusing non-local similar information.•Two iteration schemes for flexible use.
ArticleNumber 103162
Author Wang, Meili
Lu, Xuequan
Jiang, Jincen
Wang, Jinxi
Author_xml – sequence: 1
  givenname: Jinxi
  surname: Wang
  fullname: Wang, Jinxi
  organization: College of Information Engineering, Northwest A&F University, Yangling 712100, China
– sequence: 2
  givenname: Jincen
  orcidid: 0000-0002-0150-4644
  surname: Jiang
  fullname: Jiang, Jincen
  organization: College of Information Engineering, Northwest A&F University, Yangling 712100, China
– sequence: 3
  givenname: Xuequan
  orcidid: 0000-0003-0959-408X
  surname: Lu
  fullname: Lu, Xuequan
  email: xuequan.lu@deakin.edu.au
  organization: Deakin University, Australia
– sequence: 4
  givenname: Meili
  surname: Wang
  fullname: Wang, Meili
  email: wml@nwsuaf.edu.cn
  organization: College of Information Engineering, Northwest A&F University, Yangling 712100, China
BookMark eNp9kEFLAzEQhYNUsK3-AG8Lnrcm2WY3q6daWhWKiug5xGTWZl2TmqSC_94s68lDT8MM75vHexM0ss4CQucEzwgm5WU7U1LPKKYk7QUp6REaE17VOS05G6ExxgTn8zlnJ2gSQotxUhb1GK2eIW6N_TD2PXtyxsZs2bm9ztami-DT9SpbZA_O5hunZJckwUTjbHYjA-hssdt5J9X2FB03sgtw9jen6HW9elne5ZvH2_vlYpOrgrKYE82bEqguQXICwKqyZo2iXKumrnWB5bxiXDHJOKdvlDFCa1k3lEJRcQoNKaboYvibbL_2EKJo3d7bZCloWXBc8Rr3KjKolHcheGjEzptP6X8EwaJvS7QitSX6tsTQVmKqf4wyUfZRo5emO0heDySk4N8GvAjKgFWgjQcVhXbmAP0LhTGD6Q
CitedBy_id crossref_primary_10_1049_tje2_12344
crossref_primary_10_1016_j_cad_2024_103812
crossref_primary_10_1145_3609332
crossref_primary_10_1007_s41095_024_0423_3
crossref_primary_10_1016_j_asoc_2025_112835
crossref_primary_10_1109_TVCG_2023_3292464
crossref_primary_10_1049_ipr2_12955
crossref_primary_10_1109_TPAMI_2024_3355988
crossref_primary_10_1016_j_patcog_2024_111228
Cites_doi 10.1090/S0025-5718-98-00974-0
10.1016/j.cviu.2013.11.009
10.1109/TSP.2020.2978617
10.1109/TVCG.2017.2725948
10.1145/3394171.3413727
10.1145/1618452.1618522
10.1109/TVCG.2003.1175093
10.1109/TVCG.2017.2719024
10.1145/1970392.1970395
10.1088/1361-6420/ab0e4b
10.1016/j.cad.2020.102857
10.1109/TIP.2007.901238
10.1016/j.cagd.2005.06.010
10.1145/2601097.2601172
10.1145/3355089.3356513
10.1007/978-3-030-01234-2_24
10.1109/TVCG.2019.2920817
10.1016/j.cad.2020.102860
10.1109/TIP.2019.2961429
10.1145/2421636.2421645
10.1016/j.cad.2013.02.003
10.1145/1857907.1857911
10.1201/b20190-24
10.1007/s10208-009-9045-5
10.1145/1276377.1276405
10.1109/JPROC.2018.2846606
10.1145/1015706.1015713
10.1109/CVPR.2018.00295
10.1145/3197517.3201288
10.1016/j.cagd.2015.03.011
10.1111/cgf.13753
10.1109/TGRS.2017.2706326
10.1109/CVPR.2017.60
10.1145/1073204.1073227
10.1109/TIP.2020.2969052
10.1137/090761793
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Mar 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2022
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cad.2021.103162
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
ExternalDocumentID 10_1016_j_cad_2021_103162
S0010448521001676
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-1d8f6e2d6ea81ee57695fc28dcf99d30a4758c5a5882b255129a9f22e3782ef13
IEDL.DBID AIKHN
ISSN 0010-4485
IngestDate Sun Jul 13 05:31:28 EDT 2025
Tue Jul 01 03:34:36 EDT 2025
Thu Apr 24 23:13:26 EDT 2025
Fri Feb 23 02:40:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-local
Point cloud filtering
RPCA
Position based
Feature-preserving
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-1d8f6e2d6ea81ee57695fc28dcf99d30a4758c5a5882b255129a9f22e3782ef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0150-4644
0000-0003-0959-408X
PQID 2638078901
PQPubID 2045267
ParticipantIDs proquest_journals_2638078901
crossref_primary_10_1016_j_cad_2021_103162
crossref_citationtrail_10_1016_j_cad_2021_103162
elsevier_sciencedirect_doi_10_1016_j_cad_2021_103162
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer aided design
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chen, Wei, Sun, Xie, Wang (b49) 2019; 26
Li, Li, Zhu, Fu, Heng (b24) 2020
Lipman, Cohen-Or, Levin, Tal-Ezer (b1) 2007; 26
Deschaud, Goulette (b36) 2010; 38
Rakotosaona, Barbera, Guerrero, Mitra, Ovsjanikov (b7) 2020; 39
Sun, Schaefer, Wang (b19) 2015; 35
Zeng, Cheung, Ng, Pang, Yang (b42) 2019; 29
Avron, Sharf, Greif, Cohen-Or (b18) 2010; 29
Lin, Chen, Ma (b52) 2010; 9
Sobral, Bouwmans, Zahzah (b45) 2016
Huang, Li, Zhang, Ascher, Cohen-Or (b2) 2009; 28
Huang, Wu, Gong, Cohen-Or, Ascher, Zhang (b17) 2013; 32
Yin, Huang, Cohen-Or, Zhang (b28) 2018; 37
Chen, Guo, Wang, Wang, Peng, He (b47) 2017; 55
Levin (b9) 1998; 67
Yifan, Serena, Wu, Öztireli, Sorkine-Hornung (b20) 2019; 38
Lau, Lai, Lui (b46) 2019; 35
Preiner, Mattausch, Arikan, Pajarola, Wimmer (b3) 2014; 33
Zhu, Fu, Jin, Wei, Qin, Heng (b34) 2016
Amenta, Kil (b13) 2004; 23
Sarkar, Bernard, Varanasi, Theobalt, Stricker (b41) 2018
Zhu L, Fu C-W, Brown MS, Heng P-A. A non-local low-rank framework for ultrasound speckle reduction. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 5650–8.
Hermosilla P, Ritschel T, Ropinski T. Total denoising: Unsupervised learning of 3D point cloud cleaning. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. p. 52–60.
Pistilli, Fracastoro, Valsesia, Magli (b30) 2020
Yu L, Li X, Fu C-W, Cohen-Or D, Heng P-A. Ec-net: an edge-aware point set consolidation network. In: Proceedings of the European conference on computer Vision; 2018. p. 386–402.
Digne (b37) 2012
Lu, Wu, Chen, Yeung, Chen, Zwicker (b5) 2017; 24
Chandrasekaran, Sanghavi, Parrilo, Willsky (b50) 2009; 21
Öztireli, Guennebaud, Gross (b4) 2009
Hu, Gao, Cheung, Guo (b32) 2020; 68
Candès, Recht (b53) 2009; 9
Lu, Schaefer, Luo, Ma, He (b21) 2020
Luo S, Hu W. Differentiable manifold reconstruction for point cloud denoising. In: Proceedings of the 28th ACM international conference on multimedia; 2020. p. 1330–8.
Bouwmans, Zahzah (b44) 2014; 122
Liu, Xiao, Zhong, Wang, Li, Zhang (b22) 2020; 127
Lu, Lu, Sun, Wang (b8) 2020; 125
Alexa, Behr, Cohen-Or, Fleishman, Levin, Silva (b11) 2001
Digne, Valette, Chaine (b40) 2017; 24
Lange, Polthier (b15) 2005; 22
Liao, Xiao, Jin, Fu (b16) 2013; 45
Fleishman, Cohen-Or, Silva (b14) 2005; 24
Wright J, Ganesh A, Rao S, Peng Y, Ma Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in neural information processing systems; 2009. p. 2080–8.
Yuan, Yang (b54) 2009; 9
Rosman, Dubrovina, Kimmel (b38) 2013
Yu L, Li X, Fu C-W, Cohen-Or D, Heng P-A. Pu-net: Point cloud upsampling network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. p. 2790–9.
Candès, Li, Ma, Wright (b55) 2011; 58
Dabov, Foi, Katkovnik, Egiazarian (b39) 2007; 16
Dinesh, Cheung, Bajić (b23) 2020; 29
Levin (b10) 2004
Roveri, Öztireli, Pandele, Gross (b25) 2018
Li, Zhu, Fu, Heng (b35) 2018
Mattei, Castrodad (b48) 2017
Alexa, Behr, Cohen-Or, Fleishman, Levin, Silva (b12) 2003; 9
Zhang, Lu, Qin, He (b6) 2020
Ma, Aybat (b51) 2018; 106
Yin (10.1016/j.cad.2021.103162_b28) 2018; 37
10.1016/j.cad.2021.103162_b43
Zhu (10.1016/j.cad.2021.103162_b34) 2016
Hu (10.1016/j.cad.2021.103162_b32) 2020; 68
Sobral (10.1016/j.cad.2021.103162_b45) 2016
Levin (10.1016/j.cad.2021.103162_b10) 2004
Preiner (10.1016/j.cad.2021.103162_b3) 2014; 33
Roveri (10.1016/j.cad.2021.103162_b25) 2018
Yifan (10.1016/j.cad.2021.103162_b20) 2019; 38
Digne (10.1016/j.cad.2021.103162_b37) 2012
Lu (10.1016/j.cad.2021.103162_b8) 2020; 125
Huang (10.1016/j.cad.2021.103162_b2) 2009; 28
Lu (10.1016/j.cad.2021.103162_b21) 2020
Lau (10.1016/j.cad.2021.103162_b46) 2019; 35
Alexa (10.1016/j.cad.2021.103162_b12) 2003; 9
10.1016/j.cad.2021.103162_b33
Liu (10.1016/j.cad.2021.103162_b22) 2020; 127
Digne (10.1016/j.cad.2021.103162_b40) 2017; 24
Chandrasekaran (10.1016/j.cad.2021.103162_b50) 2009; 21
Öztireli (10.1016/j.cad.2021.103162_b4) 2009
Sun (10.1016/j.cad.2021.103162_b19) 2015; 35
10.1016/j.cad.2021.103162_b31
Li (10.1016/j.cad.2021.103162_b24) 2020
Candès (10.1016/j.cad.2021.103162_b53) 2009; 9
Liao (10.1016/j.cad.2021.103162_b16) 2013; 45
Dabov (10.1016/j.cad.2021.103162_b39) 2007; 16
Bouwmans (10.1016/j.cad.2021.103162_b44) 2014; 122
Mattei (10.1016/j.cad.2021.103162_b48) 2017
Levin (10.1016/j.cad.2021.103162_b9) 1998; 67
10.1016/j.cad.2021.103162_b29
10.1016/j.cad.2021.103162_b26
Rakotosaona (10.1016/j.cad.2021.103162_b7) 2020; 39
Rosman (10.1016/j.cad.2021.103162_b38) 2013
Candès (10.1016/j.cad.2021.103162_b55) 2011; 58
10.1016/j.cad.2021.103162_b27
Dinesh (10.1016/j.cad.2021.103162_b23) 2020; 29
Zhang (10.1016/j.cad.2021.103162_b6) 2020
Avron (10.1016/j.cad.2021.103162_b18) 2010; 29
Yuan (10.1016/j.cad.2021.103162_b54) 2009; 9
Zeng (10.1016/j.cad.2021.103162_b42) 2019; 29
Huang (10.1016/j.cad.2021.103162_b17) 2013; 32
Li (10.1016/j.cad.2021.103162_b35) 2018
Alexa (10.1016/j.cad.2021.103162_b11) 2001
Lu (10.1016/j.cad.2021.103162_b5) 2017; 24
Amenta (10.1016/j.cad.2021.103162_b13) 2004; 23
Ma (10.1016/j.cad.2021.103162_b51) 2018; 106
Lange (10.1016/j.cad.2021.103162_b15) 2005; 22
Deschaud (10.1016/j.cad.2021.103162_b36) 2010; 38
Chen (10.1016/j.cad.2021.103162_b47) 2017; 55
Sarkar (10.1016/j.cad.2021.103162_b41) 2018
Fleishman (10.1016/j.cad.2021.103162_b14) 2005; 24
Pistilli (10.1016/j.cad.2021.103162_b30) 2020
Lipman (10.1016/j.cad.2021.103162_b1) 2007; 26
Lin (10.1016/j.cad.2021.103162_b52) 2010; 9
Chen (10.1016/j.cad.2021.103162_b49) 2019; 26
References_xml – volume: 32
  start-page: 1
  year: 2013
  end-page: 12
  ident: b17
  article-title: Edge-aware point set resampling
  publication-title: ACM Trans Graph
– volume: 122
  start-page: 22
  year: 2014
  end-page: 34
  ident: b44
  article-title: Robust PCA via principal component pursuit: A review for a comparative evaluation in video surveillance
  publication-title: Comput Vis Image Underst
– start-page: 103
  year: 2020
  end-page: 118
  ident: b30
  article-title: Learning graph-convolutional representations for point cloud denoising
  publication-title: European conference on computer vision
– start-page: 37
  year: 2004
  end-page: 49
  ident: b10
  article-title: Mesh-independent surface interpolation
  publication-title: Geometric modeling for scientific visualization
– year: 2020
  ident: b21
  article-title: Low rank matrix approximation for 3D geometry filtering
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 125
  year: 2020
  ident: b8
  article-title: Deep feature-preserving normal estimation for point cloud filtering
  publication-title: Comput Aided Des
– volume: 35
  year: 2019
  ident: b46
  article-title: Restoration of atmospheric turbulence-distorted images via RPCA and quasiconformal maps
  publication-title: Inverse Problems
– volume: 106
  start-page: 1411
  year: 2018
  end-page: 1426
  ident: b51
  article-title: Efficient optimization algorithms for robust principal component analysis and its variants
  publication-title: Proc IEEE
– volume: 22
  start-page: 680
  year: 2005
  end-page: 692
  ident: b15
  article-title: Anisotropic smoothing of point sets
  publication-title: Comput Aided Geom Design
– reference: Hermosilla P, Ritschel T, Ropinski T. Total denoising: Unsupervised learning of 3D point cloud cleaning. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. p. 52–60.
– volume: 39
  year: 2020
  ident: b7
  article-title: PointcleanNet: Learning to denoise and remove outliers from dense point clouds
  publication-title: Comput Graph Forum
– volume: 45
  start-page: 861
  year: 2013
  end-page: 874
  ident: b16
  article-title: Efficient feature-preserving local projection operator for geometry reconstruction
  publication-title: Comput Aided Des
– volume: 29
  start-page: 1
  year: 2010
  end-page: 12
  ident: b18
  article-title: 1-Sparse reconstruction of sharp point set surfaces
  publication-title: ACM Trans Graph
– start-page: 123
  year: 2017
  end-page: 137
  ident: b48
  article-title: Point cloud denoising via moving RPCA
  publication-title: Computer graphics forum, Vol. 36. no. 8
– volume: 23
  start-page: 264
  year: 2004
  end-page: 270
  ident: b13
  article-title: Defining point-set surfaces
  publication-title: ACM Trans Graph
– volume: 24
  start-page: 2238
  year: 2017
  end-page: 2250
  ident: b40
  article-title: Sparse geometric representation through local shape probing
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 58
  start-page: 1
  year: 2011
  end-page: 37
  ident: b55
  article-title: Robust principal component analysis
  publication-title: J ACM
– volume: 38
  start-page: 109
  year: 2010
  end-page: 114
  ident: b36
  article-title: Point cloud non local denoising using local surface descriptor similarity
  publication-title: IAPRS
– start-page: 217
  year: 2016
  end-page: 226
  ident: b34
  article-title: Non-local sparse and low-rank regularization for structure-preserving image smoothing
  publication-title: Computer graphics forum, Vol. 35. no. 7
– volume: 29
  start-page: 3474
  year: 2019
  end-page: 3489
  ident: b42
  article-title: 3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model
  publication-title: IEEE Trans Image Process
– volume: 33
  start-page: 1
  year: 2014
  end-page: 13
  ident: b3
  article-title: Continuous projection for fast L1 reconstruction
  publication-title: ACM Trans Graph
– volume: 55
  start-page: 5366
  year: 2017
  end-page: 5380
  ident: b47
  article-title: Denoising of hyperspectral images using nonconvex low rank matrix approximation
  publication-title: IEEE Trans Geosci Remote Sens
– reference: Yu L, Li X, Fu C-W, Cohen-Or D, Heng P-A. Ec-net: an edge-aware point set consolidation network. In: Proceedings of the European conference on computer Vision; 2018. p. 386–402.
– volume: 26
  start-page: 22
  year: 2007
  ident: b1
  article-title: Parameterization-free projection for geometry reconstruction
  publication-title: ACM Trans Graph
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: b39
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans Image Process
– volume: 26
  start-page: 3255
  year: 2019
  end-page: 3270
  ident: b49
  article-title: Multi-patch collaborative point cloud denoising via low-rank recovery with graph constraint
  publication-title: IEEE Trans Vis Comput Graphics
– start-page: 87
  year: 2018
  end-page: 99
  ident: b25
  article-title: Pointpronets: Consolidation of point clouds with convolutional neural networks
  publication-title: Computer graphics forum, Vol. 37. no. 2
– reference: Yu L, Li X, Fu C-W, Cohen-Or D, Heng P-A. Pu-net: Point cloud upsampling network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. p. 2790–9.
– volume: 37
  start-page: 1
  year: 2018
  end-page: 13
  ident: b28
  article-title: P2p-net: Bidirectional point displacement net for shape transform
  publication-title: ACM Trans Graph
– volume: 9
  start-page: 717
  year: 2009
  ident: b53
  article-title: Exact matrix completion via convex optimization
  publication-title: Found Comput Math
– year: 2016
  ident: b45
  article-title: Lrslibrary: Low-rank and sparse tools for background modeling and subtraction in videos
  publication-title: Robust Low-Rank Sparse Matrix Decompos: Appl Image Video Process
– volume: 29
  start-page: 4143
  year: 2020
  end-page: 4158
  ident: b23
  article-title: Point cloud denoising via feature graph laplacian regularization
  publication-title: IEEE Trans Image Process
– start-page: 21
  year: 2001
  end-page: 29
  ident: b11
  article-title: Point set surfaces
  publication-title: Proceedings visualization 2001
– year: 2020
  ident: b6
  article-title: Pointfilter: Point cloud filtering via encoder-decoder modeling
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 35
  start-page: 2
  year: 2015
  end-page: 15
  ident: b19
  article-title: Denoising point sets via L0 minimization
  publication-title: Comput Aided Geom Design
– start-page: 1
  year: 2013
  end-page: 12
  ident: b38
  article-title: Patch-collaborative spectral point-cloud denoising
  publication-title: Computer graphics forum, Vol. 32. no. 8
– start-page: 444
  year: 2018
  end-page: 453
  ident: b41
  article-title: Structured low-rank matrix factorization for point-cloud denoising
  publication-title: 2018 International conference on 3D vision
– reference: Zhu L, Fu C-W, Brown MS, Heng P-A. A non-local low-rank framework for ultrasound speckle reduction. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 5650–8.
– volume: 67
  start-page: 1517
  year: 1998
  end-page: 1531
  ident: b9
  article-title: The approximation power of moving least-squares
  publication-title: Math Comp
– year: 2020
  ident: b24
  article-title: Dnf-net: A deep normal filtering network for mesh denoising
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 24
  start-page: 2315
  year: 2017
  end-page: 2326
  ident: b5
  article-title: GPF: GMM-inspired feature-preserving point set filtering
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 9
  year: 2009
  ident: b54
  article-title: Sparse and low rank matrix decomposition via alternating direction method
  publication-title: Pac J Optim
– volume: 21
  start-page: 572
  year: 2009
  end-page: 596
  ident: b50
  article-title: Rank-sparsity incoherence for matrix decomposition
  publication-title: SIAM J Optim
– reference: Wright J, Ganesh A, Rao S, Peng Y, Ma Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in neural information processing systems; 2009. p. 2080–8.
– volume: 127
  year: 2020
  ident: b22
  article-title: A feature-preserving framework for point cloud denoising
  publication-title: Comput Aided Des
– start-page: 73
  year: 2012
  end-page: 79
  ident: b37
  article-title: Similarity based filtering of point clouds
  publication-title: 2012 IEEE computer society conference on computer vision and pattern recognition workshops
– volume: 28
  start-page: 1
  year: 2009
  end-page: 7
  ident: b2
  article-title: Consolidation of unorganized point clouds for surface reconstruction
  publication-title: ACM Trans Graph
– start-page: 155
  year: 2018
  end-page: 166
  ident: b35
  article-title: Non-local low-rank normal filtering for mesh denoising
  publication-title: Computer graphics forum, vol. 37. no. 7
– volume: 9
  year: 2010
  ident: b52
  article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
  publication-title: Math Program
– volume: 24
  start-page: 544
  year: 2005
  end-page: 552
  ident: b14
  article-title: Robust moving least-squares fitting with sharp features
  publication-title: ACM Trans Graph
– start-page: 493
  year: 2009
  end-page: 501
  ident: b4
  article-title: Feature preserving point set surfaces based on non-linear kernel regression
  publication-title: Computer graphics Forum, Vol. 28. no. 2
– volume: 68
  start-page: 2841
  year: 2020
  end-page: 2856
  ident: b32
  article-title: Feature graph learning for 3d point cloud denoising
  publication-title: IEEE Trans Signal Process
– volume: 38
  start-page: 1
  year: 2019
  end-page: 14
  ident: b20
  article-title: Differentiable surface splatting for point-based geometry processing
  publication-title: ACM Trans Graph
– reference: Luo S, Hu W. Differentiable manifold reconstruction for point cloud denoising. In: Proceedings of the 28th ACM international conference on multimedia; 2020. p. 1330–8.
– volume: 9
  start-page: 3
  year: 2003
  end-page: 15
  ident: b12
  article-title: Computing and rendering point set surfaces
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 38
  start-page: 109
  issue: 3A
  year: 2010
  ident: 10.1016/j.cad.2021.103162_b36
  article-title: Point cloud non local denoising using local surface descriptor similarity
  publication-title: IAPRS
– year: 2020
  ident: 10.1016/j.cad.2021.103162_b24
  article-title: Dnf-net: A deep normal filtering network for mesh denoising
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 67
  start-page: 1517
  issue: 224
  year: 1998
  ident: 10.1016/j.cad.2021.103162_b9
  article-title: The approximation power of moving least-squares
  publication-title: Math Comp
  doi: 10.1090/S0025-5718-98-00974-0
– volume: 122
  start-page: 22
  year: 2014
  ident: 10.1016/j.cad.2021.103162_b44
  article-title: Robust PCA via principal component pursuit: A review for a comparative evaluation in video surveillance
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2013.11.009
– volume: 68
  start-page: 2841
  year: 2020
  ident: 10.1016/j.cad.2021.103162_b32
  article-title: Feature graph learning for 3d point cloud denoising
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2020.2978617
– volume: 24
  start-page: 2315
  issue: 8
  year: 2017
  ident: 10.1016/j.cad.2021.103162_b5
  article-title: GPF: GMM-inspired feature-preserving point set filtering
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2017.2725948
– ident: 10.1016/j.cad.2021.103162_b31
  doi: 10.1145/3394171.3413727
– ident: 10.1016/j.cad.2021.103162_b43
– volume: 28
  start-page: 1
  issue: 5
  year: 2009
  ident: 10.1016/j.cad.2021.103162_b2
  article-title: Consolidation of unorganized point clouds for surface reconstruction
  publication-title: ACM Trans Graph
  doi: 10.1145/1618452.1618522
– volume: 9
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.cad.2021.103162_b12
  article-title: Computing and rendering point set surfaces
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2003.1175093
– volume: 24
  start-page: 2238
  issue: 7
  year: 2017
  ident: 10.1016/j.cad.2021.103162_b40
  article-title: Sparse geometric representation through local shape probing
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2017.2719024
– volume: 58
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.cad.2021.103162_b55
  article-title: Robust principal component analysis
  publication-title: J ACM
  doi: 10.1145/1970392.1970395
– volume: 35
  issue: 7
  year: 2019
  ident: 10.1016/j.cad.2021.103162_b46
  article-title: Restoration of atmospheric turbulence-distorted images via RPCA and quasiconformal maps
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/ab0e4b
– start-page: 444
  year: 2018
  ident: 10.1016/j.cad.2021.103162_b41
  article-title: Structured low-rank matrix factorization for point-cloud denoising
– start-page: 87
  year: 2018
  ident: 10.1016/j.cad.2021.103162_b25
  article-title: Pointpronets: Consolidation of point clouds with convolutional neural networks
– start-page: 493
  year: 2009
  ident: 10.1016/j.cad.2021.103162_b4
  article-title: Feature preserving point set surfaces based on non-linear kernel regression
– start-page: 37
  year: 2004
  ident: 10.1016/j.cad.2021.103162_b10
  article-title: Mesh-independent surface interpolation
– volume: 127
  year: 2020
  ident: 10.1016/j.cad.2021.103162_b22
  article-title: A feature-preserving framework for point cloud denoising
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2020.102857
– start-page: 155
  year: 2018
  ident: 10.1016/j.cad.2021.103162_b35
  article-title: Non-local low-rank normal filtering for mesh denoising
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 10.1016/j.cad.2021.103162_b39
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2007.901238
– ident: 10.1016/j.cad.2021.103162_b29
– start-page: 1
  year: 2013
  ident: 10.1016/j.cad.2021.103162_b38
  article-title: Patch-collaborative spectral point-cloud denoising
– start-page: 217
  year: 2016
  ident: 10.1016/j.cad.2021.103162_b34
  article-title: Non-local sparse and low-rank regularization for structure-preserving image smoothing
– volume: 22
  start-page: 680
  issue: 7
  year: 2005
  ident: 10.1016/j.cad.2021.103162_b15
  article-title: Anisotropic smoothing of point sets
  publication-title: Comput Aided Geom Design
  doi: 10.1016/j.cagd.2005.06.010
– volume: 33
  start-page: 1
  issue: 4
  year: 2014
  ident: 10.1016/j.cad.2021.103162_b3
  article-title: Continuous projection for fast L1 reconstruction
  publication-title: ACM Trans Graph
  doi: 10.1145/2601097.2601172
– volume: 38
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.cad.2021.103162_b20
  article-title: Differentiable surface splatting for point-based geometry processing
  publication-title: ACM Trans Graph
  doi: 10.1145/3355089.3356513
– ident: 10.1016/j.cad.2021.103162_b26
  doi: 10.1007/978-3-030-01234-2_24
– volume: 26
  start-page: 3255
  issue: 11
  year: 2019
  ident: 10.1016/j.cad.2021.103162_b49
  article-title: Multi-patch collaborative point cloud denoising via low-rank recovery with graph constraint
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2019.2920817
– volume: 125
  year: 2020
  ident: 10.1016/j.cad.2021.103162_b8
  article-title: Deep feature-preserving normal estimation for point cloud filtering
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2020.102860
– volume: 29
  start-page: 3474
  year: 2019
  ident: 10.1016/j.cad.2021.103162_b42
  article-title: 3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2961429
– volume: 32
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.cad.2021.103162_b17
  article-title: Edge-aware point set resampling
  publication-title: ACM Trans Graph
  doi: 10.1145/2421636.2421645
– volume: 45
  start-page: 861
  issue: 5
  year: 2013
  ident: 10.1016/j.cad.2021.103162_b16
  article-title: Efficient feature-preserving local projection operator for geometry reconstruction
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2013.02.003
– volume: 29
  start-page: 1
  issue: 5
  year: 2010
  ident: 10.1016/j.cad.2021.103162_b18
  article-title: ℓ1-Sparse reconstruction of sharp point set surfaces
  publication-title: ACM Trans Graph
  doi: 10.1145/1857907.1857911
– year: 2016
  ident: 10.1016/j.cad.2021.103162_b45
  article-title: Lrslibrary: Low-rank and sparse tools for background modeling and subtraction in videos
  publication-title: Robust Low-Rank Sparse Matrix Decompos: Appl Image Video Process
  doi: 10.1201/b20190-24
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  ident: 10.1016/j.cad.2021.103162_b53
  article-title: Exact matrix completion via convex optimization
  publication-title: Found Comput Math
  doi: 10.1007/s10208-009-9045-5
– volume: 26
  start-page: 22
  issue: 3
  year: 2007
  ident: 10.1016/j.cad.2021.103162_b1
  article-title: Parameterization-free projection for geometry reconstruction
  publication-title: ACM Trans Graph
  doi: 10.1145/1276377.1276405
– start-page: 123
  year: 2017
  ident: 10.1016/j.cad.2021.103162_b48
  article-title: Point cloud denoising via moving RPCA
– volume: 106
  start-page: 1411
  issue: 8
  year: 2018
  ident: 10.1016/j.cad.2021.103162_b51
  article-title: Efficient optimization algorithms for robust principal component analysis and its variants
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2018.2846606
– volume: 23
  start-page: 264
  issue: 3
  year: 2004
  ident: 10.1016/j.cad.2021.103162_b13
  article-title: Defining point-set surfaces
  publication-title: ACM Trans Graph
  doi: 10.1145/1015706.1015713
– ident: 10.1016/j.cad.2021.103162_b27
  doi: 10.1109/CVPR.2018.00295
– start-page: 103
  year: 2020
  ident: 10.1016/j.cad.2021.103162_b30
  article-title: Learning graph-convolutional representations for point cloud denoising
– start-page: 73
  year: 2012
  ident: 10.1016/j.cad.2021.103162_b37
  article-title: Similarity based filtering of point clouds
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.cad.2021.103162_b28
  article-title: P2p-net: Bidirectional point displacement net for shape transform
  publication-title: ACM Trans Graph
  doi: 10.1145/3197517.3201288
– volume: 35
  start-page: 2
  year: 2015
  ident: 10.1016/j.cad.2021.103162_b19
  article-title: Denoising point sets via L0 minimization
  publication-title: Comput Aided Geom Design
  doi: 10.1016/j.cagd.2015.03.011
– volume: 39
  issue: 1
  year: 2020
  ident: 10.1016/j.cad.2021.103162_b7
  article-title: PointcleanNet: Learning to denoise and remove outliers from dense point clouds
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.13753
– volume: 55
  start-page: 5366
  issue: 9
  year: 2017
  ident: 10.1016/j.cad.2021.103162_b47
  article-title: Denoising of hyperspectral images using nonconvex low rank matrix approximation
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2706326
– start-page: 21
  year: 2001
  ident: 10.1016/j.cad.2021.103162_b11
  article-title: Point set surfaces
– ident: 10.1016/j.cad.2021.103162_b33
  doi: 10.1109/CVPR.2017.60
– volume: 9
  year: 2009
  ident: 10.1016/j.cad.2021.103162_b54
  article-title: Sparse and low rank matrix decomposition via alternating direction method
  publication-title: Pac J Optim
– year: 2020
  ident: 10.1016/j.cad.2021.103162_b6
  article-title: Pointfilter: Point cloud filtering via encoder-decoder modeling
  publication-title: IEEE Trans Vis Comput Graphics
– year: 2020
  ident: 10.1016/j.cad.2021.103162_b21
  article-title: Low rank matrix approximation for 3D geometry filtering
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 24
  start-page: 544
  issue: 3
  year: 2005
  ident: 10.1016/j.cad.2021.103162_b14
  article-title: Robust moving least-squares fitting with sharp features
  publication-title: ACM Trans Graph
  doi: 10.1145/1073204.1073227
– volume: 29
  start-page: 4143
  year: 2020
  ident: 10.1016/j.cad.2021.103162_b23
  article-title: Point cloud denoising via feature graph laplacian regularization
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.2969052
– volume: 21
  start-page: 572
  issue: 2
  year: 2009
  ident: 10.1016/j.cad.2021.103162_b50
  article-title: Rank-sparsity incoherence for matrix decomposition
  publication-title: SIAM J Optim
  doi: 10.1137/090761793
– volume: 9
  year: 2010
  ident: 10.1016/j.cad.2021.103162_b52
  article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
  publication-title: Math Program
SSID ssj0002139
Score 2.425831
Snippet Existing position based point cloud filtering methods can hardly preserve sharp geometric features. In this paper, we rethink point cloud filtering from a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103162
SubjectTerms Deep learning
Feature-preserving
Filtration
Non-local
Point cloud filtering
Position based
RPCA
Title Rethinking Point Cloud Filtering: A Non-Local Position Based Approach
URI https://dx.doi.org/10.1016/j.cad.2021.103162
https://www.proquest.com/docview/2638078901
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60XvQgPrFaSw6ehLWbZBOz3mppqa8iouAt7OaBFdmKrld_u8lutqhgD15Dsixfkm9myMw3AEd5RghWuYoyTWmU6FhHguTu4uWnjOexobYSe76Z8PFDcvnIHpdg0NTC-LTKwP01p1dsHUZ6Ac3e63Tqa3xdKJEIZ3-qXHq-DCuEppy1YKV_cTWezAmZYFp7wY5y_ILmcbNK81KZ1wsl2FefY07-Mk-_iLqyPqMNWA9uI-rXf7YJS6bYgrVvYoLbMLwz5VPdCQHdzqZFiQYvsw-NRlP_IO5Gz1AfTWZFdO3Nl5tSZ2uhc2fHNOoHbfEdeBgN7wfjKDRJiBQlrIywFpYbornJBDbGhQ8ps4oIrWyaahpniYsIFMuY8HvAvH3PUkuIoc43MBbTXWgVs8LsAcKGn1rlRbhSlVjLRUq0SThPBeeWZaINcYONVEFB3DeyeJFNqtizdHBKD6es4WzD8XzJay2fsWhy0gAuf5wB6eh90bJOszkyXMB3SXitpB_j_f999QBWia90qNLNOtAq3z7MofM_yrwLyyefuBtO2RcuFtXx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HtSD-MRq1Rw8CWs3ySbNequlpWpbRFroLezmgStlW3R79beb7MMX6MFrmCzLl2RmQr75BoCLOMIYyVh6kSLEC5SvPI5je_DiNmWxr4nJxZ5HYzaYBnczOquBblUL42iVpe8vfHrurcuRVolma5kkrsbXXiUCbuNPzqVna2A9oKTteH1Xb588D4xIkQNbh-PMq6fNnOQlI6cWipGrPUcM_xacfrjpPPb0d8B2mTTCTvFfu6Cm0z2w9UVKcB_0HnX2VPRBgA-LJM1gd75YKdhP3HO4Hb2GHThepN7QBS9rUnC14I2NYgp2SmXxAzDt9ybdgVe2SPAkwTTzkOKGaayYjjjS2l4eQmok5kqaMFTEjwJ7H5A0otytAHXRPQoNxprYzEAbRA5BPV2k-ghApFnbSCfBFcrAGMZDrHTAWMgZMzTiDeBX2AhZ6oe7NhZzURHFnoWFUzg4RQFnA1x-TFkW4hl_GQcV4OLbDhDWuf81rVktjiiP36vArNDR99Hx_756DjYGk9FQDG_H9ydgE7uah5x41gT17GWlT20mksVn-U57B_IG1rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+Point+Cloud+Filtering%3A+A+Non-Local+Position+Based+Approach&rft.jtitle=Computer+aided+design&rft.au=Wang%2C+Jinxi&rft.au=Jiang%2C+Jincen&rft.au=Lu%2C+Xuequan&rft.au=Wang%2C+Meili&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=144&rft_id=info:doi/10.1016%2Fj.cad.2021.103162&rft.externalDocID=S0010448521001676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon