Mini-max optimization of actuator/sensor placement for flexural vibration control of a rotating thin-walled cylinder over a range of speeds
For a rotating thin-walled cylinder subject to flexural vibration, active control can be applied using surface-mounted actuators and sensors. To achieve acceptable vibration control performance, the dependency of the dynamic behaviour on rotational speed must be accounted for in the control system d...
Saved in:
Published in | Journal of sound and vibration Vol. 506; p. 116105 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
18.08.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For a rotating thin-walled cylinder subject to flexural vibration, active control can be applied using surface-mounted actuators and sensors. To achieve acceptable vibration control performance, the dependency of the dynamic behaviour on rotational speed must be accounted for in the control system design, including the selection and positioning of actuators and sensors. A key issue is that the natural modes of vibration of the cylinder wall involve circumferential travelling waves and, for certain rotational speeds, the frequency of a backward wave for a low order mode can become equal to that of a forward wave for a high order mode. It is shown that these frequency-crossings have important implications for the actuator/sensor placement problem due to the potential for loss of controllability. Accordingly, an actuator/sensor placement approach is introduced based on a mini-max optimization, where the system controllability is maximized for the worst-case rotational speed within a specified interval. Placement solutions are obtained through the application of a nested particle swarm optimization algorithm, used to find saddle-point solutions. The approach is shown to be effective for cases involving 2, 3 and 4 actuator/sensor pairs and with multi-mode model (including up to 16 modes). The results are confirmed by experiments on a thin-walled rotor system with piezo patch actuators and sensors, where H2 control algorithms are applied to suppress vibrational resonances within a control bandwidth of 200-1200 Hz. The potential for loss of controllability at certain rotational speeds is confirmed, as well as the effectiveness of the optimal placement solutions in maintaining control performance over a targeted range of speeds. |
---|---|
AbstractList | For a rotating thin-walled cylinder subject to flexural vibration, active control can be applied using surface-mounted actuators and sensors. To achieve acceptable vibration control performance, the dependency of the dynamic behaviour on rotational speed must be accounted for in the control system design, including the selection and positioning of actuators and sensors. A key issue is that the natural modes of vibration of the cylinder wall involve circumferential travelling waves and, for certain rotational speeds, the frequency of a backward wave for a low order mode can become equal to that of a forward wave for a high order mode. It is shown that these frequency-crossings have important implications for the actuator/sensor placement problem due to the potential for loss of controllability. Accordingly, an actuator/sensor placement approach is introduced based on a mini-max optimization, where the system controllability is maximized for the worst-case rotational speed within a specified interval. Placement solutions are obtained through the application of a nested particle swarm optimization algorithm, used to find saddle-point solutions. The approach is shown to be effective for cases involving 2, 3 and 4 actuator/sensor pairs and with multi-mode model (including up to 16 modes). The results are confirmed by experiments on a thin-walled rotor system with piezo patch actuators and sensors, where H2 control algorithms are applied to suppress vibrational resonances within a control bandwidth of 200-1200 Hz. The potential for loss of controllability at certain rotational speeds is confirmed, as well as the effectiveness of the optimal placement solutions in maintaining control performance over a targeted range of speeds. |
ArticleNumber | 116105 |
Author | Brand, Ziv Cole, Matthew O T |
Author_xml | – sequence: 1 givenname: Ziv surname: Brand fullname: Brand, Ziv organization: Center for Mechatronic Systems and Innovation, Department of Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand – sequence: 2 givenname: Matthew O T orcidid: 0000-0002-1157-6537 surname: Cole fullname: Cole, Matthew O T email: motcole@dome.eng.cmu.ac.th organization: Center for Mechatronic Systems and Innovation, Department of Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand |
BookMark | eNp9kM9u3CAQh1GVSt2kfYDekHL2BlgDtnKqoiaNlCiXVuoNYRinWCy4wG7-vEJfOmzcUw65MGL0-2Y03zE6CjEAQl8pWVNCxdm0nvJ-zQija0oFJfwDWlHS86bjojtCK0IYa1pBfn9CxzlPhJC-3bQr9O_WBdds9SOOc3Fb96yLiwHHEWtTdrrEdJYh5Jjw7LWBLYSCx_obPTzukvZ474a0MCaGkqJ_ZXGKpXbDPS5_XGgetPdgsXnyLlhIOO7rU0M63MMhn2cAmz-jj6P2Gb78ryfo1-X3nxc_mpu7q-uLbzeN2TBeGipYN1johDFU6F7LQbaS9NBLOTDRSmAbI63k1nKmBTe2tlomxDhwaLth3Jyg02XunOLfHeSiprhLoa5UjHMiOl5l1ZRcUibFnBOMyrjyemlJ2nlFiTqYV5Oq5tXBvFrMV5K-Iefktjo9vcucLwzUw_cOksrGQTBgXQJTlI3uHfoFs0Sgug |
CitedBy_id | crossref_primary_10_1007_s42417_021_00411_w crossref_primary_10_1016_j_tws_2025_113094 crossref_primary_10_3390_app13105891 crossref_primary_10_3390_s22103867 crossref_primary_10_1177_10775463241260081 crossref_primary_10_1007_s00419_024_02697_0 crossref_primary_10_1007_s00419_024_02614_5 crossref_primary_10_1016_j_jfranklin_2024_107320 crossref_primary_10_2478_cait_2023_0022 |
Cites_doi | 10.1016/j.compstruct.2019.111575 10.1016/S0020-0190(02)00447-7 10.1016/S0378-3758(00)00137-3 10.1016/j.jsv.2006.10.018 10.1016/j.jsv.2020.115172 10.4186/ej.2020.24.6.127 10.1016/j.jsv.2018.04.021 10.1006/jsvi.1999.2530 10.1016/j.ymssp.2016.11.008 10.1080/15376494.2018.1472332 10.1016/S0957-4158(01)00079-4 10.1016/j.dt.2019.11.015 10.1088/0964-1726/17/5/055008 10.1155/2008/654184 10.1016/j.jsv.2009.12.001 10.2478/amns.2020.1.00036 10.1007/s10999-015-9293-2 10.1177/1045389X11414081 10.1177/104538903038019 10.1007/s10338-018-0005-y 10.1016/j.compscitech.2004.12.027 10.1016/j.engstruct.2016.11.008 10.1007/s00707-015-1388-1 10.1109/TMECH.2018.2877777 10.1115/1.4007720 10.1016/j.ijmecsci.2019.105101 10.1007/s11222-014-9466-0 10.1016/j.ijmecsci.2014.08.026 10.3390/s130202131 10.1016/j.eswa.2010.12.037 10.1006/jsvi.1993.1333 10.1016/j.ymssp.2005.08.030 10.1016/j.jsv.2008.09.051 10.1016/j.ymssp.2020.107097 10.1115/1.1432667 10.1106/VYJR-2UGX-UD2F-DAHX 10.1177/1045389X07078964 10.1177/1045389X05047989 10.1016/j.jsv.2004.03.048 10.1177/1045389X10381659 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Aug 18, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Aug 18, 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.jsv.2021.116105 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1095-8568 |
ExternalDocumentID | 10_1016_j_jsv_2021_116105 S0022460X21001772 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFSI ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DM4 E.L EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JJJVA KOM LG5 M24 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSQ SST SSZ T5K TN5 XPP ZMT ~G- 29L 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHPGS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ H~9 IHE NDZJH R2- RIG SEW SMS SPG SSH T9H VOH WUQ ZY4 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c325t-1628bde86cc16a9a7b74709e977b2647e23c7d75dd52a65cd47e4266fb5e48bf3 |
IEDL.DBID | .~1 |
ISSN | 0022-460X |
IngestDate | Fri Jul 25 02:57:11 EDT 2025 Tue Jul 01 03:32:15 EDT 2025 Thu Apr 24 23:05:08 EDT 2025 Fri Feb 23 02:44:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Piezoelectric patch Rotordynamics Smart structure Shell structure Particle swarm optimization Optimal control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-1628bde86cc16a9a7b74709e977b2647e23c7d75dd52a65cd47e4266fb5e48bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1157-6537 |
PQID | 2550685022 |
PQPubID | 2047461 |
ParticipantIDs | proquest_journals_2550685022 crossref_citationtrail_10_1016_j_jsv_2021_116105 crossref_primary_10_1016_j_jsv_2021_116105 elsevier_sciencedirect_doi_10_1016_j_jsv_2021_116105 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-18 |
PublicationDateYYYYMMDD | 2021-08-18 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of sound and vibration |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Bruant, Gallimard, Nikoukar (bib0027) 2010; 329 Kwak, Heo, Jeong (bib0008) 2009; 321 Halim, Moheimani (bib0026) 2003; 13 Duffy, Choi, Provenza, Min, Kray (bib0003) 2013; 135 Clerc (bib0043) 2006 Soedel (bib0037) 2005 Hac, Liu (bib0041) 1993; 167 Plattenburg, Dreyer, Singh (bib0009) 2017; 91 Eberhart, Shi (bib0046) 2000 Pan, Rong, Xu, Xiang (bib0002) 2020; 16 Brand, Cole (bib0005) 2020; 472 Kumar, Ray (bib0004) 2014; 89 Jha, Doki, Inman (bib0020) 2003; 14 Fakkaew, Cole, Chamroon (bib0039) 2019; 163 Hiramoto, Doki, Obinata (bib0015) 2000; 229 Chen, Chang, Wang, Tung, Wong (bib0034) 2014; 25 Mehdi, Rigal, Play (bib0001) 2002; 124 Alujevic, Campillo-Davo, Kindt, Desmet, Pluymers, Vercammen (bib0038) 2017; 132 Trelea (bib0045) 2003; 85 Nestorovic, Hassw, Oveisi (bib0013) 2021; 147 Qiu, Zhang, Wu, Zhang (bib0022) 2007; 301 Noubiap, Seidel (bib0033) 2000; 91 Honda, Kajiwara, Barita (bib0019) 2011; 22 Kouider, Polat (bib0029) 2020; 5 Gupta, Sharma, Thakur (bib0014) 2010; 21 Kumar, Narayanan (bib0018) 2008; 17 Liu, Hou, Demetriou (bib0017) 2006; 20 Masuda, Kurihara, Aiyoshi (bib0036) 2011 Marinaki, Marinakis, Stavroulakis (bib0030) 2011; 38 Laskari, Parsopoulos, Vrahatis (bib0035) 2002 Li, Li, Zhang, Wen (bib0032) 2020; 233 Hu, Li (bib0012) 2018; 426 Grewal, Zimcik, Hurtubise, Leigh (bib0006) 2000; 11 Kim, Sohn, Jeon, Choi (bib0010) 2013; 13 Biglar, Gromada, Stachowicz, Trzepiecinski (bib0011) 2015; 226 Bratton, Blackwell (bib0047) 2008 Ray, Reddy (bib0007) 2005; 65 Brand, Cole (bib0025) 2019 Cole, Fakkaew (bib0048) 2018; 23 Rao, Natesan, Bhat, Ganguli (bib0023) 2008; 19 Fesharaki, Madani, Golabi (bib0031) 2020; 27 Brand, Cole, Fakkaew, Chamroon (bib0040) 2020; 24 Hasheminejad, Oveisi (bib0028) 2015; 12 Kennedy, Eberhart (bib0044) 1995 Yang, Jin, Soh (bib0016) 2005; 282 Liu, Cai, Peng, Zhang. (bib0024) 2018; 31 Zhou, Doyle, Glover (bib0042) 1995 Bruant, Proslier (bib0021) 2005; 16 Kwak (10.1016/j.jsv.2021.116105_bib0008) 2009; 321 Pan (10.1016/j.jsv.2021.116105_bib0002) 2020; 16 Hasheminejad (10.1016/j.jsv.2021.116105_bib0028) 2015; 12 Bruant (10.1016/j.jsv.2021.116105_bib0021) 2005; 16 Fesharaki (10.1016/j.jsv.2021.116105_bib0031) 2020; 27 Clerc (10.1016/j.jsv.2021.116105_bib0043) 2006 Marinaki (10.1016/j.jsv.2021.116105_bib0030) 2011; 38 Hu (10.1016/j.jsv.2021.116105_bib0012) 2018; 426 Eberhart (10.1016/j.jsv.2021.116105_bib0046) 2000 Duffy (10.1016/j.jsv.2021.116105_bib0003) 2013; 135 Brand (10.1016/j.jsv.2021.116105_bib0040) 2020; 24 Trelea (10.1016/j.jsv.2021.116105_bib0045) 2003; 85 Masuda (10.1016/j.jsv.2021.116105_bib0036) 2011 Zhou (10.1016/j.jsv.2021.116105_bib0042) 1995 Kim (10.1016/j.jsv.2021.116105_bib0010) 2013; 13 Chen (10.1016/j.jsv.2021.116105_bib0034) 2014; 25 Alujevic (10.1016/j.jsv.2021.116105_bib0038) 2017; 132 Bratton (10.1016/j.jsv.2021.116105_bib0047) 2008 Gupta (10.1016/j.jsv.2021.116105_bib0014) 2010; 21 Liu (10.1016/j.jsv.2021.116105_bib0024) 2018; 31 Kennedy (10.1016/j.jsv.2021.116105_bib0044) 1995 Mehdi (10.1016/j.jsv.2021.116105_bib0001) 2002; 124 Noubiap (10.1016/j.jsv.2021.116105_bib0033) 2000; 91 Jha (10.1016/j.jsv.2021.116105_bib0020) 2003; 14 Hac (10.1016/j.jsv.2021.116105_bib0041) 1993; 167 Bruant (10.1016/j.jsv.2021.116105_bib0027) 2010; 329 Brand (10.1016/j.jsv.2021.116105_bib0025) 2019 Soedel (10.1016/j.jsv.2021.116105_bib0037) 2005 Halim (10.1016/j.jsv.2021.116105_bib0026) 2003; 13 Biglar (10.1016/j.jsv.2021.116105_bib0011) 2015; 226 Kumar (10.1016/j.jsv.2021.116105_bib0004) 2014; 89 Qiu (10.1016/j.jsv.2021.116105_bib0022) 2007; 301 Honda (10.1016/j.jsv.2021.116105_bib0019) 2011; 22 Kouider (10.1016/j.jsv.2021.116105_bib0029) 2020; 5 Ray (10.1016/j.jsv.2021.116105_bib0007) 2005; 65 Plattenburg (10.1016/j.jsv.2021.116105_bib0009) 2017; 91 Liu (10.1016/j.jsv.2021.116105_bib0017) 2006; 20 Rao (10.1016/j.jsv.2021.116105_bib0023) 2008; 19 Nestorovic (10.1016/j.jsv.2021.116105_bib0013) 2021; 147 Hiramoto (10.1016/j.jsv.2021.116105_bib0015) 2000; 229 Li (10.1016/j.jsv.2021.116105_bib0032) 2020; 233 Grewal (10.1016/j.jsv.2021.116105_bib0006) 2000; 11 Cole (10.1016/j.jsv.2021.116105_bib0048) 2018; 23 Brand (10.1016/j.jsv.2021.116105_bib0005) 2020; 472 Yang (10.1016/j.jsv.2021.116105_bib0016) 2005; 282 Kumar (10.1016/j.jsv.2021.116105_bib0018) 2008; 17 Laskari (10.1016/j.jsv.2021.116105_bib0035) 2002 Fakkaew (10.1016/j.jsv.2021.116105_bib0039) 2019; 163 |
References_xml | – volume: 91 start-page: 422 year: 2017 end-page: 437 ident: bib0009 article-title: Vibration control of a cylindrical shell with concurrent active piezoelectric patches and passive cardboard liner publication-title: Mech. Syst. Signal Process. – volume: 124 start-page: 569 year: 2002 end-page: 580 ident: bib0001 article-title: Dynamic behavior of a thin-walled cylindrical workpiece during the turning process, part 2: experimental approach and validation publication-title: ASME J. Manuf. Sci. Eng. – volume: 12 start-page: 1 year: 2015 end-page: 16 ident: bib0028 article-title: Active vibration control of an arbitrary thick smartcylindrical panel with optimally placed piezoelectric sensor/actuator pairs publication-title: Int. J. Mech. Mater. Des. – year: 2005 ident: bib0037 article-title: Vibration of Shells and Plates – volume: 472 start-page: 115172 year: 2020 ident: bib0005 article-title: Controllability and actuator placement optimization for active damping of a thin rotating ring with piezo-patch transducers publication-title: J. Sound Vib. – volume: 226 start-page: 3451 year: 2015 end-page: 3462 ident: bib0011 article-title: Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm publication-title: Acta Mech. – volume: 5 start-page: 385 year: 2020 end-page: 392 ident: bib0029 article-title: Optimal position of piezoelectric actuators for active vibration reduction of beams publication-title: Appl. Math. Nonlinear Sci. – volume: 16 start-page: 956 year: 2020 end-page: 967 ident: bib0002 article-title: Novel approach for active vibration control of a flexible missile publication-title: Def. Technol. – volume: 282 start-page: 1293 year: 2005 end-page: 1307 ident: bib0016 article-title: Integrated optimal design of vibration control system for smart beams using genetic algorithms publication-title: J. Sound Vib. – start-page: 2113 year: 2011 end-page: 2120 ident: bib0036 article-title: A novel method for solving min-max problems by using a modified particle swarm optimization publication-title: IEEE International Conference on Systems, Man and Cybernetics, Proceedings – volume: 132 start-page: 152 year: 2017 end-page: 171 ident: bib0038 article-title: Analytical solution for free vibrations of rotating cylindrical shells having free boundary conditions publication-title: Eng. Struct. – start-page: 654184 year: 2008 ident: bib0047 article-title: A simplified recombinant PSO publication-title: Journal of artificial evolution and applications – volume: 163 start-page: 105101 year: 2019 ident: bib0039 article-title: On the vibrational dynamics of rotating thin-walled cylinders: a theoretical and experimental study utilizing active magnetic bearings publication-title: Int. J. Mech. Sci. – start-page: 1576 year: 2002 end-page: 1581 ident: bib0035 article-title: Particle swarm optimization for minimax problems publication-title: 2002 Congress on Evolutionary Computation, Proceedings – start-page: 1942 year: 1995 end-page: 1948 ident: bib0044 article-title: Particle swarm optimization publication-title: IEEE International Conference on Neural Networks, Proceedings – volume: 321 start-page: 510 year: 2009 end-page: 524 ident: bib0008 article-title: Dynamic modelling and active vibration controller design for a cylindrical shell equipped with piezoelectric sensors and actuators publication-title: J. Sound Vib. – volume: 91 start-page: 151 year: 2000 end-page: 168 ident: bib0033 article-title: A minimax algorithm fro constructing optimal symmetrical balanced designs for a logistic regression model publication-title: J. Stat. Plan. Inference – volume: 24 start-page: 127 year: 2020 end-page: 137 ident: bib0040 article-title: Vibration modelling and control experiments for a thin-walled cylindrical rotor with piezo patch actuation and sensing publication-title: Eng. J. – volume: 14 start-page: 563 year: 2003 end-page: 576 ident: bib0020 article-title: Optimal sizes and placements of piezoelectric actuators and sensors for an inflated torus publication-title: J. Intell. Mater. Syst. Struct. – volume: 329 start-page: 1615 year: 2010 end-page: 1635 ident: bib0027 article-title: Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm publication-title: J. Sound Vib. – volume: 25 start-page: 975 year: 2014 end-page: 988 ident: bib0034 article-title: Minimax optimal designs via particle swarm optimization methods publication-title: Stat. Comput. – volume: 23 start-page: 2859 year: 2018 end-page: 2869 ident: bib0048 article-title: An active magnetic bearing for thin-walled rotors: vibrational dynamics and stabilizing control publication-title: IEEE ASME Trans. Mechatron. – volume: 17 start-page: 055008 year: 2008 ident: bib0018 article-title: Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs publication-title: Smart Mater. Struct. – volume: 19 start-page: 651 year: 2008 end-page: 669 ident: bib0023 article-title: Experimental demonstration of publication-title: J. Intell. Mater. Syst. Struct. – start-page: 84 year: 2000 end-page: 88 ident: bib0046 article-title: Comparing inertial weights and constriction factor in particle swarm optimization publication-title: Proceedings of the 2000 Congress on Evolutionary Computation – start-page: 245 year: 2019 end-page: 251 ident: bib0025 article-title: Results on active damping control of a thin-walled rotating cylinder with piezoelectric patch actuation and sensing publication-title: IEEE Conference on Control Technology and Applications, proceedings – volume: 233 start-page: 111575 year: 2020 ident: bib0032 article-title: Optimal locations of discontinuous piezoelectric laminated cylindrical shell with point supported elastic boundary conditions for vibration control publication-title: Compos. Struct. – volume: 426 start-page: 166 year: 2018 end-page: 185 ident: bib0012 article-title: Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells publication-title: J. Sound Vib. – volume: 21 start-page: 1227 year: 2010 end-page: 1243 ident: bib0014 article-title: Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review publication-title: J. Intell. Mater. Syst. Struct. – volume: 13 start-page: 27 year: 2003 end-page: 47 ident: bib0026 article-title: An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate publication-title: Mechatronics – year: 1995 ident: bib0042 article-title: Robust and Optimal Control – volume: 13 start-page: 2131 year: 2013 end-page: 2147 ident: bib0010 article-title: Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control publication-title: Sensors – volume: 147 start-page: 107097 year: 2021 ident: bib0013 article-title: Software in the loop optimization of actuator and sensor placement for a smart piezoelectric funnel-shaped inlet of a magnetic resonance imaging tomograph publication-title: Mech. Syst. Signal Process. – volume: 22 year: 2011 ident: bib0019 article-title: Multidisciplinary design optimization for vibration control of smart laminated composite structures publication-title: J. Intell. Mater. Syst. Struct. – volume: 301 start-page: 521 year: 2007 end-page: 543 ident: bib0022 article-title: Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate publication-title: J. Sound and Vib. – volume: 167 start-page: 239 year: 1993 end-page: 261 ident: bib0041 article-title: Sensor and actuator location in motion control of flexible structures publication-title: J. Sound Vib. – volume: 38 start-page: 6872 year: 2011 end-page: 6883 ident: bib0030 article-title: Vibration control of beams with piezoelectric sensors and actuators using particle swarm optimization publication-title: Expert Syst. Appl. – volume: 16 start-page: 197 year: 2005 end-page: 206 ident: bib0021 article-title: Optimal location of actuators and sensors in active vibration control publication-title: J. Intell. Mater. Syst. Struct. – volume: 31 start-page: 66 year: 2018 end-page: 79 ident: bib0024 article-title: Piezoelectric actuator placement optimization and active vibration control of a membrane structure publication-title: Acta Mech. Solida Sin. – year: 2006 ident: bib0043 article-title: Particle Swarm Optimisation – volume: 20 start-page: 881 year: 2006 end-page: 895 ident: bib0017 article-title: A computational scheme for the optimal sensor/actuator placement of flexible structures using spatial h2 measures publication-title: Mech. Syst. Signal Process. – volume: 135 start-page: 011601 year: 2013 ident: bib0003 article-title: Active piezoelectric vibration control of subscale composite fan blades publication-title: ASME J. Eng. Gas Turbine Power – volume: 65 start-page: 1226 year: 2005 end-page: 1236 ident: bib0007 article-title: Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites publication-title: Compos. Sci. Technol. – volume: 85 start-page: 317 year: 2003 end-page: 325 ident: bib0045 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Inf. Process. Lett. – volume: 27 start-page: 141 year: 2020 end-page: 151 ident: bib0031 article-title: Best pattern for placement of piezoelectric actuators in classical plate to reduce stress concentration using pso algorithm publication-title: Mech. Adv. Mater. Struct. – volume: 229 start-page: 1057 year: 2000 end-page: 1075 ident: bib0015 article-title: Optimal sensor/actuator placement for active vibration control using explicit solution of algebraic riccati equation publication-title: J. Sound Vib. – volume: 89 start-page: 123 year: 2014 end-page: 141 ident: bib0004 article-title: Control of smart rotating laminated composite truncated conical shell using acld treatment publication-title: Int. J. Mech. Sci. – volume: 11 start-page: 438 year: 2000 end-page: 447 ident: bib0006 article-title: Active cabin noise and vibration control for turboprop aircraft using multiple piezoelectric actuators publication-title: J. Intell. Mater. Syst. Struct. – volume: 233 start-page: 111575 year: 2020 ident: 10.1016/j.jsv.2021.116105_bib0032 article-title: Optimal locations of discontinuous piezoelectric laminated cylindrical shell with point supported elastic boundary conditions for vibration control publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111575 – volume: 85 start-page: 317 year: 2003 ident: 10.1016/j.jsv.2021.116105_bib0045 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Inf. Process. Lett. doi: 10.1016/S0020-0190(02)00447-7 – volume: 91 start-page: 151 year: 2000 ident: 10.1016/j.jsv.2021.116105_bib0033 article-title: A minimax algorithm fro constructing optimal symmetrical balanced designs for a logistic regression model publication-title: J. Stat. Plan. Inference doi: 10.1016/S0378-3758(00)00137-3 – volume: 301 start-page: 521 issue: 3-5 year: 2007 ident: 10.1016/j.jsv.2021.116105_bib0022 article-title: Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate publication-title: J. Sound and Vib. doi: 10.1016/j.jsv.2006.10.018 – start-page: 2113 year: 2011 ident: 10.1016/j.jsv.2021.116105_bib0036 article-title: A novel method for solving min-max problems by using a modified particle swarm optimization – year: 2005 ident: 10.1016/j.jsv.2021.116105_bib0037 – volume: 472 start-page: 115172 year: 2020 ident: 10.1016/j.jsv.2021.116105_bib0005 article-title: Controllability and actuator placement optimization for active damping of a thin rotating ring with piezo-patch transducers publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115172 – volume: 24 start-page: 127 issue: 6 year: 2020 ident: 10.1016/j.jsv.2021.116105_bib0040 article-title: Vibration modelling and control experiments for a thin-walled cylindrical rotor with piezo patch actuation and sensing publication-title: Eng. J. doi: 10.4186/ej.2020.24.6.127 – start-page: 84 year: 2000 ident: 10.1016/j.jsv.2021.116105_bib0046 article-title: Comparing inertial weights and constriction factor in particle swarm optimization – volume: 426 start-page: 166 year: 2018 ident: 10.1016/j.jsv.2021.116105_bib0012 article-title: Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.04.021 – volume: 229 start-page: 1057 issue: 5 year: 2000 ident: 10.1016/j.jsv.2021.116105_bib0015 article-title: Optimal sensor/actuator placement for active vibration control using explicit solution of algebraic riccati equation publication-title: J. Sound Vib. doi: 10.1006/jsvi.1999.2530 – volume: 91 start-page: 422 year: 2017 ident: 10.1016/j.jsv.2021.116105_bib0009 article-title: Vibration control of a cylindrical shell with concurrent active piezoelectric patches and passive cardboard liner publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.11.008 – year: 1995 ident: 10.1016/j.jsv.2021.116105_bib0042 – volume: 27 start-page: 141 issue: 2 year: 2020 ident: 10.1016/j.jsv.2021.116105_bib0031 article-title: Best pattern for placement of piezoelectric actuators in classical plate to reduce stress concentration using pso algorithm publication-title: Mech. Adv. Mater. Struct. doi: 10.1080/15376494.2018.1472332 – start-page: 245 year: 2019 ident: 10.1016/j.jsv.2021.116105_bib0025 article-title: Results on active damping control of a thin-walled rotating cylinder with piezoelectric patch actuation and sensing – volume: 13 start-page: 27 issue: 1 year: 2003 ident: 10.1016/j.jsv.2021.116105_bib0026 article-title: An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate publication-title: Mechatronics doi: 10.1016/S0957-4158(01)00079-4 – volume: 16 start-page: 956 issue: 4 year: 2020 ident: 10.1016/j.jsv.2021.116105_bib0002 article-title: Novel approach for active vibration control of a flexible missile publication-title: Def. Technol. doi: 10.1016/j.dt.2019.11.015 – volume: 17 start-page: 055008 issue: 5 year: 2008 ident: 10.1016/j.jsv.2021.116105_bib0018 article-title: Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/5/055008 – year: 2006 ident: 10.1016/j.jsv.2021.116105_bib0043 – start-page: 654184 year: 2008 ident: 10.1016/j.jsv.2021.116105_bib0047 article-title: A simplified recombinant PSO publication-title: Journal of artificial evolution and applications doi: 10.1155/2008/654184 – volume: 329 start-page: 1615 issue: 10 year: 2010 ident: 10.1016/j.jsv.2021.116105_bib0027 article-title: Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.12.001 – start-page: 1942 year: 1995 ident: 10.1016/j.jsv.2021.116105_bib0044 article-title: Particle swarm optimization – volume: 5 start-page: 385 issue: 1 year: 2020 ident: 10.1016/j.jsv.2021.116105_bib0029 article-title: Optimal position of piezoelectric actuators for active vibration reduction of beams publication-title: Appl. Math. Nonlinear Sci. doi: 10.2478/amns.2020.1.00036 – volume: 12 start-page: 1 year: 2015 ident: 10.1016/j.jsv.2021.116105_bib0028 article-title: Active vibration control of an arbitrary thick smartcylindrical panel with optimally placed piezoelectric sensor/actuator pairs publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-015-9293-2 – volume: 22 issue: 13 year: 2011 ident: 10.1016/j.jsv.2021.116105_bib0019 article-title: Multidisciplinary design optimization for vibration control of smart laminated composite structures publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X11414081 – volume: 14 start-page: 563 issue: 9 year: 2003 ident: 10.1016/j.jsv.2021.116105_bib0020 article-title: Optimal sizes and placements of piezoelectric actuators and sensors for an inflated torus publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/104538903038019 – volume: 31 start-page: 66 issue: 1 year: 2018 ident: 10.1016/j.jsv.2021.116105_bib0024 article-title: Piezoelectric actuator placement optimization and active vibration control of a membrane structure publication-title: Acta Mech. Solida Sin. doi: 10.1007/s10338-018-0005-y – volume: 65 start-page: 1226 issue: 7-8 year: 2005 ident: 10.1016/j.jsv.2021.116105_bib0007 article-title: Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2004.12.027 – volume: 132 start-page: 152 year: 2017 ident: 10.1016/j.jsv.2021.116105_bib0038 article-title: Analytical solution for free vibrations of rotating cylindrical shells having free boundary conditions publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2016.11.008 – volume: 226 start-page: 3451 year: 2015 ident: 10.1016/j.jsv.2021.116105_bib0011 article-title: Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm publication-title: Acta Mech. doi: 10.1007/s00707-015-1388-1 – volume: 23 start-page: 2859 year: 2018 ident: 10.1016/j.jsv.2021.116105_bib0048 article-title: An active magnetic bearing for thin-walled rotors: vibrational dynamics and stabilizing control publication-title: IEEE ASME Trans. Mechatron. doi: 10.1109/TMECH.2018.2877777 – start-page: 1576 year: 2002 ident: 10.1016/j.jsv.2021.116105_bib0035 article-title: Particle swarm optimization for minimax problems – volume: 135 start-page: 011601 issue: 1 year: 2013 ident: 10.1016/j.jsv.2021.116105_bib0003 article-title: Active piezoelectric vibration control of subscale composite fan blades publication-title: ASME J. Eng. Gas Turbine Power doi: 10.1115/1.4007720 – volume: 163 start-page: 105101 year: 2019 ident: 10.1016/j.jsv.2021.116105_bib0039 article-title: On the vibrational dynamics of rotating thin-walled cylinders: a theoretical and experimental study utilizing active magnetic bearings publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.105101 – volume: 25 start-page: 975 year: 2014 ident: 10.1016/j.jsv.2021.116105_bib0034 article-title: Minimax optimal designs via particle swarm optimization methods publication-title: Stat. Comput. doi: 10.1007/s11222-014-9466-0 – volume: 89 start-page: 123 year: 2014 ident: 10.1016/j.jsv.2021.116105_bib0004 article-title: Control of smart rotating laminated composite truncated conical shell using acld treatment publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2014.08.026 – volume: 13 start-page: 2131 issue: 2 year: 2013 ident: 10.1016/j.jsv.2021.116105_bib0010 article-title: Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control publication-title: Sensors doi: 10.3390/s130202131 – volume: 38 start-page: 6872 issue: 6 year: 2011 ident: 10.1016/j.jsv.2021.116105_bib0030 article-title: Vibration control of beams with piezoelectric sensors and actuators using particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.037 – volume: 167 start-page: 239 year: 1993 ident: 10.1016/j.jsv.2021.116105_bib0041 article-title: Sensor and actuator location in motion control of flexible structures publication-title: J. Sound Vib. doi: 10.1006/jsvi.1993.1333 – volume: 20 start-page: 881 issue: 4 year: 2006 ident: 10.1016/j.jsv.2021.116105_bib0017 article-title: A computational scheme for the optimal sensor/actuator placement of flexible structures using spatial h2 measures publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.08.030 – volume: 321 start-page: 510 issue: 3-5 year: 2009 ident: 10.1016/j.jsv.2021.116105_bib0008 article-title: Dynamic modelling and active vibration controller design for a cylindrical shell equipped with piezoelectric sensors and actuators publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.09.051 – volume: 147 start-page: 107097 year: 2021 ident: 10.1016/j.jsv.2021.116105_bib0013 article-title: Software in the loop optimization of actuator and sensor placement for a smart piezoelectric funnel-shaped inlet of a magnetic resonance imaging tomograph publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107097 – volume: 124 start-page: 569 issue: 3 year: 2002 ident: 10.1016/j.jsv.2021.116105_bib0001 article-title: Dynamic behavior of a thin-walled cylindrical workpiece during the turning process, part 2: experimental approach and validation publication-title: ASME J. Manuf. Sci. Eng. doi: 10.1115/1.1432667 – volume: 11 start-page: 438 issue: 6 year: 2000 ident: 10.1016/j.jsv.2021.116105_bib0006 article-title: Active cabin noise and vibration control for turboprop aircraft using multiple piezoelectric actuators publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1106/VYJR-2UGX-UD2F-DAHX – volume: 19 start-page: 651 issue: 6 year: 2008 ident: 10.1016/j.jsv.2021.116105_bib0023 article-title: Experimental demonstration of h∞ control based active vibration in composite fin tip aircraft using optimaly placed piezoelectric patch actuators publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X07078964 – volume: 16 start-page: 197 issue: 3 year: 2005 ident: 10.1016/j.jsv.2021.116105_bib0021 article-title: Optimal location of actuators and sensors in active vibration control publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X05047989 – volume: 282 start-page: 1293 issue: 3-5 year: 2005 ident: 10.1016/j.jsv.2021.116105_bib0016 article-title: Integrated optimal design of vibration control system for smart beams using genetic algorithms publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2004.03.048 – volume: 21 start-page: 1227 issue: 12 year: 2010 ident: 10.1016/j.jsv.2021.116105_bib0014 article-title: Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X10381659 |
SSID | ssj0009434 |
Score | 2.4020488 |
Snippet | For a rotating thin-walled cylinder subject to flexural vibration, active control can be applied using surface-mounted actuators and sensors. To achieve... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116105 |
SubjectTerms | Active control Actuators Algorithms Backward waves Control systems design Controllability Optimal control Optimization Particle swarm optimization Piezoelectric patch Placement Rotating cylinders Rotation Rotordynamics Saddle points Sensors Shell structure Smart structure Stability Thin films Traveling waves Vibration Vibration control Vibration mode |
Title | Mini-max optimization of actuator/sensor placement for flexural vibration control of a rotating thin-walled cylinder over a range of speeds |
URI | https://dx.doi.org/10.1016/j.jsv.2021.116105 https://www.proquest.com/docview/2550685022 |
Volume | 506 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQCIkLaksRFLrygVMldxMntrNHhEBL0XIq0t4sfwWClmS12QK99A_0TzOTdaiKBAeOsTxRlBnPvLFnngk5yhQ3UoURS4qRZ4igmeHBM6ds5rgsM-Ow33lyKcdX-Y-pmK6Rk74XBssqo-9f-fTOW8eRYfybw3lVYY8vkqElU440QgASsYM9V2jl3__8K_NA_rOeMRxn9yebXY3XbXsPKSJPwXEAjBCvxaYXXroLPWcfyHbEjPR49VkfyVqoP5HNrnbTtTvk76SqK3ZnHmkD6_8uNlbSpqQGu0MgqR62kKw2C9oVYOF2IAWoSstZeETSDXqPKXMnEwvXO1m6aPCYvr6my5uqZg946Yqn7vcMCRYXFEs_cRI2J-D8dg5xsP1Mrs5Of56MWbxjgbmMiyVLJS-sD4V0LpVmZJSF_CIZBYCFFrCSCjxzyivhvQClCudhCIN6aUXIC1tmu2S9buqwR6hw0qgyETazyFvPDWAFnwcAfJmTaVnsk6T_u9pFAnK8B2Om-0qzWw0K0agQvVLIPvn2LDJfsW-8NTnvVab_MyEN0eEtscNevTqu31ZDopXIQoDRfHnfWw_IFj7h7nNaHJL15eJX-ArwZWkHnX0OyMbx-cX48glTWfCD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELboItReKmipSgutD5wqWZvYsZM9IlS0PHZPIO3N8is0aElWmy2lv6F_ujNZpxVIcODqeKLIM5n5xp75TMihyLlReRixpBh5hgiaGR48c7kVjqtSGIf9zpOpGl9lZzM52yDHfS8MllVG37_26Z23jiPDuJrDRVVhjy-SoSUzjjRCABJfkU1kp5IDsnl0ej6e_ufezUTWk4ajQH-42ZV53bR3kCXyFHwHIAn5VHh65Ki76HOyTd5G2EiP1l-2QzZC_Y5sdeWbrn1P_kyqumK35p424AJuY28lbUpqsEEE8uphC_lqs6RdDRbuCFJAq7Sch3vk3aB3mDV3MrF2vZOlywZP6utruvpR1ewX3rviqfs9R47FJcXqT5yE_Qk4v11AKGx3ydXJ98vjMYvXLDAnuFyxVPHC-lAo51JlRia3kGIkowDI0AJcygMXLve59F6CXqXzMIRxvbQyZIUtxQcyqJs6fCRUOmXyMpFWWKSu5wbggs8CYD7hVFoWeyTpV1e7yEGOV2HMdV9sdqNBIRoVotcK2SPf_oks1gQcz03OepXpB1akIUA8J7bfq1fHX7jVkGslqpBgNJ9e9tav5PX4cnKhL06n55_JG3yCm9FpsU8Gq-XPcABoZmW_RGv9C5B88zQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mini-max+optimization+of+actuator%2Fsensor+placement+for+flexural+vibration+control+of+a+rotating+thin-walled+cylinder+over+a+range+of+speeds&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Brand%2C+Ziv&rft.au=Cole%2C+Matthew+O+T&rft.date=2021-08-18&rft.issn=0022-460X&rft.volume=506&rft.spage=116105&rft_id=info:doi/10.1016%2Fj.jsv.2021.116105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsv_2021_116105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon |