Atomistic–continuum model for probing the biomechanical properties of human erythrocyte membrane under extreme conditions

A precise first attempt is performed to quantify the biomechanical properties of human erythrocyte membrane subjects to extreme temperature and loading conditions. An improved three-dimensional (3D) atomistic–continuum model based on the Cauchy–Born rule is proposed to investigate the elastic proper...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 325; pp. 22 - 36
Main Authors Ademiloye, A.S., Zhang, L.W., Liew, K.M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
DOI10.1016/j.cma.2017.06.033

Cover

Loading…
Abstract A precise first attempt is performed to quantify the biomechanical properties of human erythrocyte membrane subjects to extreme temperature and loading conditions. An improved three-dimensional (3D) atomistic–continuum model based on the Cauchy–Born rule is proposed to investigate the elastic properties and biomechanical responses of the erythrocyte membrane. A membrane rigidity model is developed to estimate the membrane elastic properties over an extreme temperature range. Our computational results reveal that the membrane is able to sustain large strains up to a certain limit; beyond which, mechanically induced hemolysis may occur as exponential stress increment, fluctuations and multiple peaks were observed in the stress–strain curves. Additionally, we found that the overall deformability of the erythrocyte membrane significantly decreases as temperature increases. It is concluded that the observed increase in membrane rigidity may be attributed to the denaturation, structural remodeling and cross-linking of membrane cytoskeletal proteins.
AbstractList A precise first attempt is performed to quantify the biomechanical properties of human erythrocyte membrane subjects to extreme temperature and loading conditions. An improved three-dimensional (3D) atomistic–continuum model based on the Cauchy–Born rule is proposed to investigate the elastic properties and biomechanical responses of the erythrocyte membrane. A membrane rigidity model is developed to estimate the membrane elastic properties over an extreme temperature range. Our computational results reveal that the membrane is able to sustain large strains up to a certain limit; beyond which, mechanically induced hemolysis may occur as exponential stress increment, fluctuations and multiple peaks were observed in the stress–strain curves. Additionally, we found that the overall deformability of the erythrocyte membrane significantly decreases as temperature increases. It is concluded that the observed increase in membrane rigidity may be attributed to the denaturation, structural remodeling and cross-linking of membrane cytoskeletal proteins.
Author Zhang, L.W.
Liew, K.M.
Ademiloye, A.S.
Author_xml – sequence: 1
  givenname: A.S.
  orcidid: 0000-0002-9741-6488
  surname: Ademiloye
  fullname: Ademiloye, A.S.
  organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
– sequence: 2
  givenname: L.W.
  surname: Zhang
  fullname: Zhang, L.W.
  email: zlvwen@hotmail.com
  organization: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 3
  givenname: K.M.
  orcidid: 0000-0001-7160-7676
  surname: Liew
  fullname: Liew, K.M.
  email: kmliew@cityu.edu.hk
  organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
BookMark eNp9kD1u3DAQhYnABrJ2coB0BFJLIUVRlJDKMPIHGEhj18SIHHm5WJIbkgqySJM7-IY5ibnYVCk8zRTzvpk374pchBiQkHectZzx4cOuNR7ajnHVsqFlQrwiGz6qqem4GC_IhrFeNmrs5GtylfOO1Rp5tyG_b0r0Lhdn_v55MjEUF9bVUx8t7ukSEz2kOLvwSMsW6eyiR7OF4AzsT5MDpuIw07jQ7eohUEzHsk3RHAtSj35OEJCuwWKi-Ksk9EjrEeuKiyG_IZcL7DO-_devycPnT_e3X5u771--3d7cNUZ0sjSc95KLDjoxCI7LBJIvbByFBAGopGXWTjOOACDlYhCU7eU4207NCnrR9-KavD_vrY5_rJiL3sU1hXpS82mQnCnZT1WlziqTYs4JF21cgZPRksDtNWf6lLTe6Zq0PiWt2aBr0pXk_5GH5Dyk44vMxzOD9fGfDpPOxmEwaF1CU7SN7gX6GdBBnLY
CitedBy_id crossref_primary_10_1002_cnm_3520
crossref_primary_10_3390_app10093209
crossref_primary_10_1016_j_cma_2018_04_038
crossref_primary_10_1007_s00521_019_04480_7
crossref_primary_10_1371_journal_pone_0215447
crossref_primary_10_1007_s11831_018_9283_2
crossref_primary_10_1016_j_cma_2017_10_004
crossref_primary_10_1016_j_compositesb_2019_01_072
Cites_doi 10.1016/S0006-3495(99)77279-6
10.1083/jcb.104.3.527
10.1016/j.msec.2005.08.020
10.1002/aic.690150514
10.1046/j.1423-0410.2000.7930168.x
10.1016/0006-3002(53)90273-X
10.1016/j.cma.2008.02.003
10.1016/S0006-3495(98)74076-7
10.1016/S0006-3495(79)85239-X
10.1182/blood-2008-07-161166
10.1529/biophysj.104.047332
10.1016/j.ces.2008.11.028
10.1016/S0006-3495(01)76232-7
10.1016/j.apm.2017.04.030
10.1182/blood.V32.6.862.862
10.1103/PhysRevLett.101.118105
10.1016/j.cmpb.2006.06.005
10.1007/BF01872821
10.1038/173659a0
10.1182/blood.V46.4.611.611
10.1373/49.5.792
10.1016/S0006-3495(75)85885-1
10.1016/S0006-3495(72)86085-5
10.1097/00002480-199907000-00010
10.1016/j.cma.2010.02.001
10.1109/51.582176
10.1016/j.cma.2013.08.020
10.1016/j.jmps.2003.09.019
10.3233/BIR-1985-22106
10.1073/pnas.2433968100
10.1056/NEJM194311042291901
10.1016/0005-2736(82)90409-6
10.1016/S0006-3495(73)86036-9
10.1111/j.1537-2995.2004.03271.x
10.1063/1.4817959
10.1073/pnas.82.18.6153
10.1016/j.jmps.2017.01.009
10.1016/S0006-3495(95)79921-0
10.1016/j.camwa.2010.03.057
10.1101/136796
10.1053/tmrv.2002.29404
10.1016/j.scient.2011.12.007
10.1016/S0006-3495(02)75527-6
10.1007/s10237-010-0246-2
10.3233/BIR-140660
10.1136/thx.16.4.356
10.1103/PhysRevB.69.115415
10.1002/aic.690160412
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Oct 1, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 1, 2017
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2017.06.033
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 36
ExternalDocumentID 10_1016_j_cma_2017_06_033
S0045782517305479
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-1145132a23631ef9a51f08835a3ae75d0dd9be8aaa55fcea7d458bd27b7a43443
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Fri Jul 25 06:14:33 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Tue Jul 01 04:06:03 EDT 2025
Fri Feb 23 02:20:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Temperature effect
Multiscale Cauchy–Born framework
Elastic properties
Erythrocyte membrane deformability
Large strains and deformation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-1145132a23631ef9a51f08835a3ae75d0dd9be8aaa55fcea7d458bd27b7a43443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7160-7676
0000-0002-9741-6488
PQID 1965107549
PQPubID 2045269
PageCount 15
ParticipantIDs proquest_journals_1965107549
crossref_citationtrail_10_1016_j_cma_2017_06_033
crossref_primary_10_1016_j_cma_2017_06_033
elsevier_sciencedirect_doi_10_1016_j_cma_2017_06_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Sowemimo-Coker (b43) 2002; 16
Arroyo, Belytschko (b51) 2004; 69
Sayed, Dacie, Handley, Lewis, Cleland (b40) 1961; 16
Ademiloye, Zhang, Liew (b27) 2016
Rabai, Detterich, Wenby, Hernandez, Toth, Meiselman, Wood (b9) 2014; 51
Strey, Peterson, Sackmann (b10) 1995; 69
Ahmadian, Firoozbakhsh, Hasanian (b19) 2011; 19
Zhang, Ademiloye, Liew (b29) 2017; 101
Heath, Mohandas, Wyatt, Shohet (b41) 1982; 691
Dao, Li, Suresh (b58) 2006; 26
Byers, Branton (b1) 1985; 82
Radmacher (b5) 1997; 16
Hénon, Lenormand, Richert, Gallet (b6) 1999; 76
Pivkin, Karniadakis (b15) 2008; 101
Nevaril, Lynch, Alfrey, Hellums (b48) 2016; 71
.
Discher, Boal, Boey, Boal (b54) 1998; 75
Ademiloye, Liew, Zhang (b28) 2016
Krüger, Varnik, Raabe (b20) 2011; 61
Ademiloye, Zhang, Liew (b56) 2017; 49
Dao, Lim, Suresh (b13) 2003; 51
Wang, Guo, Su (b23) 2014; 268
Klöppel, Wall (b12) 2011; 10
Ademiloye, Zhang, Liew (b30) 2017
Shen, Ham, Fleming (b37) 1943; 229
Lovelock (b35) 1953; 10
Sun, Liew (b53) 2008; 197
Hirsch, Menzebach, Welters, Dietrich, Katz, Hempelmann (b34) 2003; 49
Nash, Meiselman (b44) 1985; 22
Shapiro, Williams (b49) 1970; 16
Mukhopadhyay, Gerald Lim, Wortis (b57) 2002; 82
Evans (b4) 1973; 13
Wang, Wang, Qiu, Hu (b25) 2015
A.S. Ademiloye, L.W. Zhang, K.M. Liew, Does temperature change worsen or mitigate the effect of malaria infection on erythrocyte deformability?, in: Proc. 8th World Congr. Bioeng. (WACBE 2017), Hong Kong, 2017.
Liu, Derick, Palek (b2) 1987; 104
Nevaril, Hellums, Alfrey, Lynch (b47) 1969; 15
Gompper, Kroll (b55) 1996; 6
Leverett, Hellums, Alfrey, Lynch (b50) 1972; 12
Fedosov, Caswell, Karniadakis (b16) 2010; 199
Tsubota, Wada, Yamaguchi (b18) 2006; 83
Mohandas, Gallagher (b3) 2008; 112
Rakow, Hochmuth (b59) 1975; 15
Kameneva, Undar, Antaki, Watach, Calhoon, Borovetz (b46) 1999; 45
Hosseini, Feng (b21) 2009; 64
Lecak, Scott, Young, Hannon, Acker (b33) 2004; 44
Bessis, Mohandas, Feo (b8) 1979; 6
Discher, Boey, Boal (b11) 1998; 75
Ademiloye, Zhang, Liew (b24) 2015; 268
Valeri, Ragno, Pivacek, Cassidy, Srey, Hansson-Wicher, Leavy (b32) 2000; 79
Ademiloye, Zhang, Liew (b26) 2016
Lovelock (b36) 1954; 173
Ham, Sayre, Dunn, Murphy (b39) 1968; 32
Gershfeld, Murayama (b42) 1988; 101
Waugh, Evans (b45) 1979; 26
Li, Dao, Lim, Suresh (b14) 2005; 88
Shelby, White, Ganesan, Rathod, Chiu (b7) 2003; 100
Williamson, Shanahan, Hochmuth (b38) 1975; 46
Kelemen, Chien, Artmann (b60) 2001; 80
Wu, Feng (b22) 2013; 7
Wang, Guo, Zhang, Wang, Liao (b52) 2006; 73
Ahmadian, Firoozbakhsh, Hasanian (b17) 2010
Pivkin (10.1016/j.cma.2017.06.033_b15) 2008; 101
Dao (10.1016/j.cma.2017.06.033_b58) 2006; 26
Ademiloye (10.1016/j.cma.2017.06.033_b24) 2015; 268
Liu (10.1016/j.cma.2017.06.033_b2) 1987; 104
Sun (10.1016/j.cma.2017.06.033_b53) 2008; 197
Gershfeld (10.1016/j.cma.2017.06.033_b42) 1988; 101
Zhang (10.1016/j.cma.2017.06.033_b29) 2017; 101
Wu (10.1016/j.cma.2017.06.033_b22) 2013; 7
Ham (10.1016/j.cma.2017.06.033_b39) 1968; 32
Sowemimo-Coker (10.1016/j.cma.2017.06.033_b43) 2002; 16
Shelby (10.1016/j.cma.2017.06.033_b7) 2003; 100
Kelemen (10.1016/j.cma.2017.06.033_b60) 2001; 80
Hirsch (10.1016/j.cma.2017.06.033_b34) 2003; 49
Klöppel (10.1016/j.cma.2017.06.033_b12) 2011; 10
Tsubota (10.1016/j.cma.2017.06.033_b18) 2006; 83
Ademiloye (10.1016/j.cma.2017.06.033_b28) 2016
Radmacher (10.1016/j.cma.2017.06.033_b5) 1997; 16
Kameneva (10.1016/j.cma.2017.06.033_b46) 1999; 45
Krüger (10.1016/j.cma.2017.06.033_b20) 2011; 61
Wang (10.1016/j.cma.2017.06.033_b23) 2014; 268
Discher (10.1016/j.cma.2017.06.033_b11) 1998; 75
Valeri (10.1016/j.cma.2017.06.033_b32) 2000; 79
Ahmadian (10.1016/j.cma.2017.06.033_b19) 2011; 19
Mohandas (10.1016/j.cma.2017.06.033_b3) 2008; 112
Nevaril (10.1016/j.cma.2017.06.033_b47) 1969; 15
Ahmadian (10.1016/j.cma.2017.06.033_b17) 2010
Nevaril (10.1016/j.cma.2017.06.033_b48) 2016; 71
Ademiloye (10.1016/j.cma.2017.06.033_b27) 2016
Rabai (10.1016/j.cma.2017.06.033_b9) 2014; 51
Rakow (10.1016/j.cma.2017.06.033_b59) 1975; 15
Dao (10.1016/j.cma.2017.06.033_b13) 2003; 51
10.1016/j.cma.2017.06.033_b31
Hénon (10.1016/j.cma.2017.06.033_b6) 1999; 76
Ademiloye (10.1016/j.cma.2017.06.033_b56) 2017; 49
Williamson (10.1016/j.cma.2017.06.033_b38) 1975; 46
Sayed (10.1016/j.cma.2017.06.033_b40) 1961; 16
Heath (10.1016/j.cma.2017.06.033_b41) 1982; 691
Leverett (10.1016/j.cma.2017.06.033_b50) 1972; 12
Wang (10.1016/j.cma.2017.06.033_b52) 2006; 73
Ademiloye (10.1016/j.cma.2017.06.033_b26) 2016
Lovelock (10.1016/j.cma.2017.06.033_b35) 1953; 10
Gompper (10.1016/j.cma.2017.06.033_b55) 1996; 6
Arroyo (10.1016/j.cma.2017.06.033_b51) 2004; 69
Mukhopadhyay (10.1016/j.cma.2017.06.033_b57) 2002; 82
Lovelock (10.1016/j.cma.2017.06.033_b36) 1954; 173
Strey (10.1016/j.cma.2017.06.033_b10) 1995; 69
Li (10.1016/j.cma.2017.06.033_b14) 2005; 88
Nash (10.1016/j.cma.2017.06.033_b44) 1985; 22
Fedosov (10.1016/j.cma.2017.06.033_b16) 2010; 199
Wang (10.1016/j.cma.2017.06.033_b25) 2015
Ademiloye (10.1016/j.cma.2017.06.033_b30) 2017
Lecak (10.1016/j.cma.2017.06.033_b33) 2004; 44
Shen (10.1016/j.cma.2017.06.033_b37) 1943; 229
Evans (10.1016/j.cma.2017.06.033_b4) 1973; 13
Discher (10.1016/j.cma.2017.06.033_b54) 1998; 75
Bessis (10.1016/j.cma.2017.06.033_b8) 1979; 6
Shapiro (10.1016/j.cma.2017.06.033_b49) 1970; 16
Waugh (10.1016/j.cma.2017.06.033_b45) 1979; 26
Hosseini (10.1016/j.cma.2017.06.033_b21) 2009; 64
Byers (10.1016/j.cma.2017.06.033_b1) 1985; 82
References_xml – reference: A.S. Ademiloye, L.W. Zhang, K.M. Liew, Does temperature change worsen or mitigate the effect of malaria infection on erythrocyte deformability?, in: Proc. 8th World Congr. Bioeng. (WACBE 2017), Hong Kong, 2017.
– volume: 104
  start-page: 527
  year: 1987
  end-page: 536
  ident: b2
  article-title: Visualization of the hexagonal lattice in the erythrocyte membrane skeleton
  publication-title: J. Cell Biol.
– start-page: 119
  year: 2016
  end-page: 124
  ident: b28
  article-title: Numerical modeling of biomechanical responses of healthy red blood cell membrane under various loading conditions using a 3D quasicontinuum approach
  publication-title: 2016 Int. Conf. Biomed. Eng
– volume: 100
  start-page: 14618
  year: 2003
  end-page: 14622
  ident: b7
  article-title: A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 79
  start-page: 168
  year: 2000
  end-page: 174
  ident: b32
  article-title: An experiment with glycerol-frozen red blood cells stored at
  publication-title: Vox Sang.
– volume: 26
  start-page: 1232
  year: 2006
  end-page: 1244
  ident: b58
  article-title: Molecularly based analysis of deformation of spectrin network and human erythrocyte
  publication-title: Mater. Sci. Eng. C
– volume: 83
  start-page: 139
  year: 2006
  end-page: 146
  ident: b18
  article-title: Particle method for computer simulation of red blood cell motion in blood flow
  publication-title: Comput. Methods Programs Biomed.
– volume: 101
  start-page: 118105
  year: 2008
  ident: b15
  article-title: Accurate coarse-grained modeling of red blood cells
  publication-title: Phys. Rev. Lett.
– start-page: 316
  year: 2017
  end-page: 319
  ident: b30
  article-title: Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection
  publication-title: Proc. 5th Int. Conf. Comput. Math. Biomed. Eng.
– volume: 45
  start-page: 307
  year: 1999
  end-page: 310
  ident: b46
  article-title: Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: factors related to cardiopulmonary bypass
  publication-title: ASAIO J.
– volume: 44
  start-page: 1306
  year: 2004
  end-page: 1313
  ident: b33
  article-title: Evaluation of red blood cells stored at
  publication-title: Transfusion
– volume: 112
  start-page: 3939
  year: 2008
  end-page: 3948
  ident: b3
  article-title: Red cell membrane: Past, present, and future
  publication-title: Blood
– volume: 12
  start-page: 257
  year: 1972
  end-page: 273
  ident: b50
  article-title: Red blood cell damage by shear stress
  publication-title: Biophys. J.
– volume: 10
  start-page: 445
  year: 2011
  end-page: 459
  ident: b12
  article-title: A novel two-layer coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes
  publication-title: Biomech. Model. Mechanobiol.
– volume: 173
  start-page: 659
  year: 1954
  end-page: 661
  ident: b36
  article-title: Physical instability and thermal shock in red cells
  publication-title: Nature
– start-page: 942
  year: 2016
  end-page: 946
  ident: b26
  article-title: Predicting the elastic properties and deformability of red blood cell membrane using an atomistic–continuum approach
  publication-title: Proc. Int. MultiConference Eng. Comput. Sci. 2016
– volume: 101
  start-page: 268
  year: 2017
  end-page: 284
  ident: b29
  article-title: A multiscale Cauchy–Born meshfree model for deformability of red blood cells parasitized by Plasmodium falciparum
  publication-title: J. Mech. Phys. Solids
– volume: 22
  start-page: 73
  year: 1985
  end-page: 84
  ident: b44
  article-title: Alteration of red cell membrane viscoelasticity by heat treatment: effect on cell deformability and suspension viscosity
  publication-title: Biorheology
– volume: 80
  start-page: 2622
  year: 2001
  end-page: 2630
  ident: b60
  article-title: Temperature transition of human hemoglobin at body temperature: effects of calcium
  publication-title: Biophys. J.
– volume: 6
  start-page: 1305
  year: 1996
  end-page: 1320
  ident: b55
  article-title: Random surface discretizations and the renormalization of the bending rigidity
  publication-title: J. Phys. I
– volume: 268
  start-page: 334
  year: 2015
  end-page: 353
  ident: b24
  article-title: Numerical computation of the elastic and mechanical properties of red blood cell membrane using the higher-order Cauchy–Born rule
  publication-title: Appl. Math. Comput.
– volume: 19
  start-page: 113
  year: 2011
  end-page: 118
  ident: b19
  article-title: Simulation of red blood cell motion in microvessels using modified moving particle semi-implicit method
  publication-title: Sci. Iran
– volume: 16
  start-page: 356
  year: 1961
  end-page: 360
  ident: b40
  article-title: Haemolytic anaemia of mechanical origin after open heart surgery
  publication-title: Thorax
– volume: 10
  start-page: 414
  year: 1953
  end-page: 426
  ident: b35
  article-title: The haemolysis of human red blood-cells by freezing and thawing
  publication-title: Biochim. Biophys. Acta
– volume: 69
  start-page: 478
  year: 1995
  end-page: 488
  ident: b10
  article-title: Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition
  publication-title: Biophys. J.
– volume: 46
  start-page: 611
  year: 1975
  end-page: 625
  ident: b38
  article-title: The influence of temperature on red cell deformability
  publication-title: Blood
– volume: 16
  start-page: 575
  year: 1970
  end-page: 580
  ident: b49
  article-title: Hemolysis in simple shear flows
  publication-title: AIChE J.
– volume: 76
  start-page: 1145
  year: 1999
  end-page: 1151
  ident: b6
  article-title: A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers
  publication-title: Biophys. J.
– volume: 32
  start-page: 862
  year: 1968
  end-page: 871
  ident: b39
  article-title: Physical properties of red cells as related to effects in vivo. II. Effect of thermal treatment on rigidity of red cells, stroma and the sickle cell
  publication-title: Blood
– volume: 75
  start-page: 1573
  year: 1998
  end-page: 1583
  ident: b11
  article-title: Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models
  publication-title: Biophys. J.
– volume: 75
  start-page: 1584
  year: 1998
  end-page: 1597
  ident: b54
  article-title: Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration
  publication-title: Biophys. J.
– start-page: 1
  year: 2015
  end-page: 12
  ident: b25
  article-title: Large deformation properties of red blood cell membrane based on a higher order gradient quasi-continuum model
  publication-title: J. Membr. Biol.
– volume: 26
  start-page: 115
  year: 1979
  end-page: 131
  ident: b45
  article-title: Thermoelasticity of red blood cell membrane
  publication-title: Biophys. J.
– volume: 82
  start-page: 6153
  year: 1985
  end-page: 6157
  ident: b1
  article-title: Visualization of the protein associations in the erythrocyte membrane skeleton
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 64
  start-page: 4488
  year: 2009
  end-page: 4497
  ident: b21
  article-title: A particle-based model for the transport of erythrocytes in capillaries
  publication-title: Chem. Eng. Sci.
– volume: 51
  start-page: 2259
  year: 2003
  end-page: 2280
  ident: b13
  article-title: Mechanics of the human red blood cell deformed by optical tweezers
  publication-title: J. Mech. Phys. Solids
– volume: 49
  start-page: 792
  year: 2003
  end-page: 799
  ident: b34
  article-title: Indicators of erythrocyte damage after microwave warming of packed red blood cells
  publication-title: Clin. Chem.
– volume: 49
  start-page: 35
  year: 2017
  end-page: 47
  ident: b56
  article-title: A three-dimensional quasicontinuum approach for predicting biomechanical properties of malaria-infected red blood cell membrane
  publication-title: Appl. Math. Model.
– volume: 15
  start-page: 1095
  year: 1975
  end-page: 1100
  ident: b59
  article-title: Effect of heat treatment on the elasticity of human erythrocyte membrane
  publication-title: Biophys. J.
– volume: 88
  start-page: 3707
  year: 2005
  end-page: 3719
  ident: b14
  article-title: Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte
  publication-title: Biophys. J.
– volume: 71
  start-page: 784
  year: 2016
  end-page: 790
  ident: b48
  article-title: Erythrocyte damage and destruction induced by shearing stress
  publication-title: J. Lab. Clin. Med.
– volume: 16
  start-page: 46
  year: 2002
  end-page: 60
  ident: b43
  article-title: Red blood cell hemolysis during processing
  publication-title: Transfus. Med. Rev.
– volume: 197
  start-page: 33
  year: 2008
  end-page: 40
  ident: b53
  article-title: The buckling of single-walled carbon nanotubes upon bending: The higher order gradient continuum and mesh-free method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 268
  start-page: 284
  year: 2014
  end-page: 298
  ident: b23
  article-title: A quasi-continuum model for human erythrocyte membrane based on the higher order Cauchy–Born rule
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 186
  year: 2016
  end-page: 191
  ident: b27
  article-title: Multiscale meshfree analysis of the effects of thermal treatments on deformability of red blood cell membrane
  publication-title: Bioinforma. Bioeng. (BIBE), 2016 IEEE 16th Int. Conf. on
– volume: 61
  start-page: 3485
  year: 2011
  end-page: 3505
  ident: b20
  article-title: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method
  publication-title: Comput. Math. Appl.
– volume: 82
  start-page: 1756
  year: 2002
  end-page: 1772
  ident: b57
  article-title: Echinocyte shapes: Bending stretching and shear determine spicule shape and spacing
  publication-title: Biophys. J.
– volume: 16
  start-page: 47
  year: 1997
  end-page: 57
  ident: b5
  article-title: Measuring the elastic properties of biological samples with the AFM
  publication-title: Eng. Med. Biol. Mag. IEEE
– reference: .
– volume: 69
  start-page: 1
  year: 2004
  end-page: 11
  ident: b51
  article-title: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule
  publication-title: Phys. Rev. B.
– volume: 73
  start-page: 1
  year: 2006
  end-page: 9
  ident: b52
  article-title: Energy and mechanical properties of single-walled carbon nanotubes predicted using the higher order Cauchy-Born rule
  publication-title: Phys. Rev. B.
– volume: 15
  start-page: 707
  year: 1969
  end-page: 711
  ident: b47
  article-title: Physical effects in red blood cell trauma
  publication-title: AIChE J.
– volume: 13
  start-page: 941
  year: 1973
  end-page: 954
  ident: b4
  article-title: New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells
  publication-title: Biophys. J.
– volume: 199
  start-page: 1937
  year: 2010
  end-page: 1948
  ident: b16
  article-title: Systematic coarse-graining of spectrin-level red blood cell models
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 6
  start-page: 315
  year: 1979
  end-page: 327
  ident: b8
  article-title: Automated ektacytometry: a new method of measuring red cell deformability and red cell indices
  publication-title: Blood Cells
– volume: 229
  start-page: 701
  year: 1943
  end-page: 713
  ident: b37
  article-title: Studies on the destruction of red blood cells: Mechanism and complications of hemoglobinuria in patients with thermal burns: spherocytosis and increased osmotic fragility of red blood cells
  publication-title: N. Engl. J. Med.
– volume: 101
  start-page: 67
  year: 1988
  end-page: 72
  ident: b42
  article-title: Thermal instability of red blood cell membrane bilayers: temperature dependence of hemolysis
  publication-title: J. Membr. Biol.
– year: 2010
  ident: b17
  article-title: Simulation of red blood cell mechanical behavior in optical tweezers experiment based on a particle method
  publication-title: Proc. ASME 2010 Int. Mech. Eng. Congr. Expo
– volume: 7
  start-page: 1
  year: 2013
  end-page: 18
  ident: b22
  article-title: Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage
  publication-title: Biomicrofluidics
– volume: 51
  start-page: 159
  year: 2014
  end-page: 170
  ident: b9
  article-title: Deformability analysis of sickle blood using ektacytometry
  publication-title: Biorheology
– volume: 691
  start-page: 211
  year: 1982
  end-page: 219
  ident: b41
  article-title: Deformability of isolated red blood cell membranes
  publication-title: Biochim. Biophys. Acta
– volume: 76
  start-page: 1145
  year: 1999
  ident: 10.1016/j.cma.2017.06.033_b6
  article-title: A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77279-6
– start-page: 186
  year: 2016
  ident: 10.1016/j.cma.2017.06.033_b27
  article-title: Multiscale meshfree analysis of the effects of thermal treatments on deformability of red blood cell membrane
– volume: 104
  start-page: 527
  year: 1987
  ident: 10.1016/j.cma.2017.06.033_b2
  article-title: Visualization of the hexagonal lattice in the erythrocyte membrane skeleton
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.104.3.527
– volume: 26
  start-page: 1232
  year: 2006
  ident: 10.1016/j.cma.2017.06.033_b58
  article-title: Molecularly based analysis of deformation of spectrin network and human erythrocyte
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2005.08.020
– volume: 15
  start-page: 707
  year: 1969
  ident: 10.1016/j.cma.2017.06.033_b47
  article-title: Physical effects in red blood cell trauma
  publication-title: AIChE J.
  doi: 10.1002/aic.690150514
– volume: 79
  start-page: 168
  year: 2000
  ident: 10.1016/j.cma.2017.06.033_b32
  article-title: An experiment with glycerol-frozen red blood cells stored at −80°C for up to 37 years
  publication-title: Vox Sang.
  doi: 10.1046/j.1423-0410.2000.7930168.x
– volume: 73
  start-page: 1
  year: 2006
  ident: 10.1016/j.cma.2017.06.033_b52
  article-title: Energy and mechanical properties of single-walled carbon nanotubes predicted using the higher order Cauchy-Born rule
  publication-title: Phys. Rev. B.
– volume: 10
  start-page: 414
  year: 1953
  ident: 10.1016/j.cma.2017.06.033_b35
  article-title: The haemolysis of human red blood-cells by freezing and thawing
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0006-3002(53)90273-X
– year: 2010
  ident: 10.1016/j.cma.2017.06.033_b17
  article-title: Simulation of red blood cell mechanical behavior in optical tweezers experiment based on a particle method
– volume: 197
  start-page: 33
  year: 2008
  ident: 10.1016/j.cma.2017.06.033_b53
  article-title: The buckling of single-walled carbon nanotubes upon bending: The higher order gradient continuum and mesh-free method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2008.02.003
– start-page: 942
  year: 2016
  ident: 10.1016/j.cma.2017.06.033_b26
  article-title: Predicting the elastic properties and deformability of red blood cell membrane using an atomistic–continuum approach
– volume: 6
  start-page: 315
  year: 1979
  ident: 10.1016/j.cma.2017.06.033_b8
  article-title: Automated ektacytometry: a new method of measuring red cell deformability and red cell indices
  publication-title: Blood Cells
– volume: 75
  start-page: 1584
  year: 1998
  ident: 10.1016/j.cma.2017.06.033_b54
  article-title: Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)74076-7
– volume: 26
  start-page: 115
  year: 1979
  ident: 10.1016/j.cma.2017.06.033_b45
  article-title: Thermoelasticity of red blood cell membrane
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(79)85239-X
– volume: 112
  start-page: 3939
  year: 2008
  ident: 10.1016/j.cma.2017.06.033_b3
  article-title: Red cell membrane: Past, present, and future
  publication-title: Blood
  doi: 10.1182/blood-2008-07-161166
– volume: 88
  start-page: 3707
  year: 2005
  ident: 10.1016/j.cma.2017.06.033_b14
  article-title: Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.047332
– volume: 64
  start-page: 4488
  year: 2009
  ident: 10.1016/j.cma.2017.06.033_b21
  article-title: A particle-based model for the transport of erythrocytes in capillaries
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.11.028
– volume: 80
  start-page: 2622
  year: 2001
  ident: 10.1016/j.cma.2017.06.033_b60
  article-title: Temperature transition of human hemoglobin at body temperature: effects of calcium
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76232-7
– volume: 49
  start-page: 35
  year: 2017
  ident: 10.1016/j.cma.2017.06.033_b56
  article-title: A three-dimensional quasicontinuum approach for predicting biomechanical properties of malaria-infected red blood cell membrane
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.04.030
– volume: 75
  start-page: 1573
  year: 1998
  ident: 10.1016/j.cma.2017.06.033_b11
  article-title: Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)74076-7
– volume: 32
  start-page: 862
  year: 1968
  ident: 10.1016/j.cma.2017.06.033_b39
  article-title: Physical properties of red cells as related to effects in vivo. II. Effect of thermal treatment on rigidity of red cells, stroma and the sickle cell
  publication-title: Blood
  doi: 10.1182/blood.V32.6.862.862
– volume: 101
  start-page: 118105
  year: 2008
  ident: 10.1016/j.cma.2017.06.033_b15
  article-title: Accurate coarse-grained modeling of red blood cells
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.118105
– volume: 83
  start-page: 139
  year: 2006
  ident: 10.1016/j.cma.2017.06.033_b18
  article-title: Particle method for computer simulation of red blood cell motion in blood flow
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2006.06.005
– volume: 71
  start-page: 784
  year: 2016
  ident: 10.1016/j.cma.2017.06.033_b48
  article-title: Erythrocyte damage and destruction induced by shearing stress
  publication-title: J. Lab. Clin. Med.
– volume: 101
  start-page: 67
  year: 1988
  ident: 10.1016/j.cma.2017.06.033_b42
  article-title: Thermal instability of red blood cell membrane bilayers: temperature dependence of hemolysis
  publication-title: J. Membr. Biol.
  doi: 10.1007/BF01872821
– start-page: 316
  year: 2017
  ident: 10.1016/j.cma.2017.06.033_b30
  article-title: Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection
– volume: 173
  start-page: 659
  year: 1954
  ident: 10.1016/j.cma.2017.06.033_b36
  article-title: Physical instability and thermal shock in red cells
  publication-title: Nature
  doi: 10.1038/173659a0
– start-page: 119
  year: 2016
  ident: 10.1016/j.cma.2017.06.033_b28
  article-title: Numerical modeling of biomechanical responses of healthy red blood cell membrane under various loading conditions using a 3D quasicontinuum approach
– volume: 46
  start-page: 611
  year: 1975
  ident: 10.1016/j.cma.2017.06.033_b38
  article-title: The influence of temperature on red cell deformability
  publication-title: Blood
  doi: 10.1182/blood.V46.4.611.611
– volume: 49
  start-page: 792
  year: 2003
  ident: 10.1016/j.cma.2017.06.033_b34
  article-title: Indicators of erythrocyte damage after microwave warming of packed red blood cells
  publication-title: Clin. Chem.
  doi: 10.1373/49.5.792
– volume: 15
  start-page: 1095
  year: 1975
  ident: 10.1016/j.cma.2017.06.033_b59
  article-title: Effect of heat treatment on the elasticity of human erythrocyte membrane
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(75)85885-1
– volume: 12
  start-page: 257
  year: 1972
  ident: 10.1016/j.cma.2017.06.033_b50
  article-title: Red blood cell damage by shear stress
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(72)86085-5
– volume: 45
  start-page: 307
  year: 1999
  ident: 10.1016/j.cma.2017.06.033_b46
  article-title: Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: factors related to cardiopulmonary bypass
  publication-title: ASAIO J.
  doi: 10.1097/00002480-199907000-00010
– volume: 199
  start-page: 1937
  year: 2010
  ident: 10.1016/j.cma.2017.06.033_b16
  article-title: Systematic coarse-graining of spectrin-level red blood cell models
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2010.02.001
– start-page: 1
  year: 2015
  ident: 10.1016/j.cma.2017.06.033_b25
  article-title: Large deformation properties of red blood cell membrane based on a higher order gradient quasi-continuum model
  publication-title: J. Membr. Biol.
– volume: 16
  start-page: 47
  year: 1997
  ident: 10.1016/j.cma.2017.06.033_b5
  article-title: Measuring the elastic properties of biological samples with the AFM
  publication-title: Eng. Med. Biol. Mag. IEEE
  doi: 10.1109/51.582176
– volume: 268
  start-page: 284
  year: 2014
  ident: 10.1016/j.cma.2017.06.033_b23
  article-title: A quasi-continuum model for human erythrocyte membrane based on the higher order Cauchy–Born rule
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2013.08.020
– volume: 51
  start-page: 2259
  year: 2003
  ident: 10.1016/j.cma.2017.06.033_b13
  article-title: Mechanics of the human red blood cell deformed by optical tweezers
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2003.09.019
– volume: 22
  start-page: 73
  year: 1985
  ident: 10.1016/j.cma.2017.06.033_b44
  article-title: Alteration of red cell membrane viscoelasticity by heat treatment: effect on cell deformability and suspension viscosity
  publication-title: Biorheology
  doi: 10.3233/BIR-1985-22106
– volume: 100
  start-page: 14618
  year: 2003
  ident: 10.1016/j.cma.2017.06.033_b7
  article-title: A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2433968100
– volume: 229
  start-page: 701
  year: 1943
  ident: 10.1016/j.cma.2017.06.033_b37
  article-title: Studies on the destruction of red blood cells: Mechanism and complications of hemoglobinuria in patients with thermal burns: spherocytosis and increased osmotic fragility of red blood cells
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM194311042291901
– volume: 6
  start-page: 1305
  year: 1996
  ident: 10.1016/j.cma.2017.06.033_b55
  article-title: Random surface discretizations and the renormalization of the bending rigidity
  publication-title: J. Phys. I
– volume: 691
  start-page: 211
  year: 1982
  ident: 10.1016/j.cma.2017.06.033_b41
  article-title: Deformability of isolated red blood cell membranes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(82)90409-6
– volume: 13
  start-page: 941
  year: 1973
  ident: 10.1016/j.cma.2017.06.033_b4
  article-title: New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(73)86036-9
– volume: 44
  start-page: 1306
  year: 2004
  ident: 10.1016/j.cma.2017.06.033_b33
  article-title: Evaluation of red blood cells stored at −80°C in excess of 10 years
  publication-title: Transfusion
  doi: 10.1111/j.1537-2995.2004.03271.x
– volume: 7
  start-page: 1
  year: 2013
  ident: 10.1016/j.cma.2017.06.033_b22
  article-title: Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4817959
– volume: 82
  start-page: 6153
  year: 1985
  ident: 10.1016/j.cma.2017.06.033_b1
  article-title: Visualization of the protein associations in the erythrocyte membrane skeleton
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.82.18.6153
– volume: 101
  start-page: 268
  year: 2017
  ident: 10.1016/j.cma.2017.06.033_b29
  article-title: A multiscale Cauchy–Born meshfree model for deformability of red blood cells parasitized by Plasmodium falciparum
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.01.009
– volume: 69
  start-page: 478
  year: 1995
  ident: 10.1016/j.cma.2017.06.033_b10
  article-title: Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(95)79921-0
– volume: 61
  start-page: 3485
  year: 2011
  ident: 10.1016/j.cma.2017.06.033_b20
  article-title: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.03.057
– ident: 10.1016/j.cma.2017.06.033_b31
  doi: 10.1101/136796
– volume: 16
  start-page: 46
  year: 2002
  ident: 10.1016/j.cma.2017.06.033_b43
  article-title: Red blood cell hemolysis during processing
  publication-title: Transfus. Med. Rev.
  doi: 10.1053/tmrv.2002.29404
– volume: 19
  start-page: 113
  year: 2011
  ident: 10.1016/j.cma.2017.06.033_b19
  article-title: Simulation of red blood cell motion in microvessels using modified moving particle semi-implicit method
  publication-title: Sci. Iran
  doi: 10.1016/j.scient.2011.12.007
– volume: 82
  start-page: 1756
  year: 2002
  ident: 10.1016/j.cma.2017.06.033_b57
  article-title: Echinocyte shapes: Bending stretching and shear determine spicule shape and spacing
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75527-6
– volume: 10
  start-page: 445
  year: 2011
  ident: 10.1016/j.cma.2017.06.033_b12
  article-title: A novel two-layer coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-010-0246-2
– volume: 51
  start-page: 159
  year: 2014
  ident: 10.1016/j.cma.2017.06.033_b9
  article-title: Deformability analysis of sickle blood using ektacytometry
  publication-title: Biorheology
  doi: 10.3233/BIR-140660
– volume: 268
  start-page: 334
  year: 2015
  ident: 10.1016/j.cma.2017.06.033_b24
  article-title: Numerical computation of the elastic and mechanical properties of red blood cell membrane using the higher-order Cauchy–Born rule
  publication-title: Appl. Math. Comput.
– volume: 16
  start-page: 356
  year: 1961
  ident: 10.1016/j.cma.2017.06.033_b40
  article-title: Haemolytic anaemia of mechanical origin after open heart surgery
  publication-title: Thorax
  doi: 10.1136/thx.16.4.356
– volume: 69
  start-page: 1
  year: 2004
  ident: 10.1016/j.cma.2017.06.033_b51
  article-title: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.69.115415
– volume: 16
  start-page: 575
  year: 1970
  ident: 10.1016/j.cma.2017.06.033_b49
  article-title: Hemolysis in simple shear flows
  publication-title: AIChE J.
  doi: 10.1002/aic.690160412
SSID ssj0000812
Score 2.2797794
Snippet A precise first attempt is performed to quantify the biomechanical properties of human erythrocyte membrane subjects to extreme temperature and loading...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22
SubjectTerms Biomechanics
Computational mathematics
Continuum modeling
Crosslinking
Cytoskeleton
Deformation
Denaturation
Elastic properties
Erythrocyte membrane deformability
Erythrocytes
Formability
Large strains and deformation
Mechanical properties
Multiscale Cauchy–Born framework
Properties (attributes)
Proteins
Rigidity
Stress-strain curves
Stress-strain relationships
Studies
Temperature effect
Three dimensional models
Title Atomistic–continuum model for probing the biomechanical properties of human erythrocyte membrane under extreme conditions
URI https://dx.doi.org/10.1016/j.cma.2017.06.033
https://www.proquest.com/docview/1965107549
Volume 325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T-QwELYQ10DB6w7xlgsqpBxJbMfZcoUOLSCoQKKz_Iq0iM2udrMFQkL8B_7h_ZKbcRw4kKCgTGInkWc8j-Sbbwg5LHVmWFryxDFrEt4zPimNtpClpNylSJ8isVD48qoY3PDzW3G7QE66WhiEVUbb39r0YK3jmeO4mseT4RBrfDlysYsMlFRwiUV8nEvU8t9PbzAPcHktYzgXCY7u_mwGjJcN1EOZDBSejH3mmz5Y6eB6TtfISowZab99rXWy4OsNshrjRxp352yDLP9HLviTPPab8SjQMP99fkFE-rCez0c0tL6hEKpS7CUDIymEgDRU4WMRMMoMr0wQb-1ndFzR0MaP-ukDtlSwD42nIz-CJLv2FCvQphTsO35lpPAQ1yLAfpGb0z_XJ4MktlpILMtFk2TYsJflOmcFy3zV0yKrwP4woZn2UrjUORBjqbUWorJeS8dFaVwujdSccc42yWI9rv0WoQYiKiML78rKcJsXplc4C74yT21ZFUW1TdJukZWNPOTYDuNedYCzOwVyUSgXhaA7xrbJ0euUSUvC8dVg3klOvdMkBU7iq2l7nZRV3MYzhXSLkB9DDr3zvbvukiU8atF_e2Sxmc79PkQxjTkIanpAfvTPLgZX_wAlQ_Sn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7R5dD20AItKi0FH3qqFJHEdpI9rlDRUmBPIHGz_Bdpq252tZs9oF76DrwhT9IZx4G2Ehy4xp4k8tjzk3zzDcCXSmeGp5VIHLcmEUPjk8poi1lKKlxK9CklFQpfTIrxlfh-La834LivhSFYZbT9nU0P1jpeOYqrebSYTqnGVxAXu8xwk0pRDl_AJrFTyQFsjk7PxpMHg1xlHWm4kAkJ9D83A8zLBvahrAwsnpw_5p7-M9TB-5xswZsYNrJR92bbsOGbHXgbQ0gWD-hqB17_xS_4Dn6N2vksMDHf_b4lUPq0Wa9nLHS_YRitMmongzMZRoEsFOJTHTCpjUYWBLn2KzavWejkx_zyhroq2JvWs5mfYZ7deEZFaEuGJp4-NDJ8iOtAYO_h6uTb5fE4id0WEstz2SYZ9ezluc55wTNfD7XMajRBXGqufSld6hxqstJaS1lbr0snZGVcXppSCy4E34VBM2_8B2AGgypTFt5VtRE2L8ywcBbdZZ7aqi6Keg_SfpGVjVTk1BHjp-oxZz8U6kWRXhTh7jjfg6_3IouOh-OpyaLXnPpnMyn0E0-J7fdaVvEkrxQxLmKKjGn0x-fd9RBeji8vztX56eTsE7yikQ4MuA-Ddrn2nzGoac1B3LR_AIBl91g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomistic%E2%80%93continuum+model+for+probing+the+biomechanical+properties+of+human+erythrocyte+membrane+under+extreme+conditions&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Ademiloye%2C+A.S.&rft.au=Zhang%2C+L.W.&rft.au=Liew%2C+K.M.&rft.date=2017-10-01&rft.issn=0045-7825&rft.volume=325&rft.spage=22&rft.epage=36&rft_id=info:doi/10.1016%2Fj.cma.2017.06.033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2017_06_033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon