Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation in plasma physics

In present work, we discussed the (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation (gKdV-ZKe) which describes the effect of magnetic field on weak nonlinear ion-acoustic waves studied in the field of plasma comprised of cool and hot electrons. The solutions of gKdV-ZKe are...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 33; p. 105069
Main Authors Rehman, H.U., Seadawy, Aly R., Younis, M., Rizvi, S.T.R., Anwar, I., Baber, M.Z., Althobaiti, Ali
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In present work, we discussed the (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation (gKdV-ZKe) which describes the effect of magnetic field on weak nonlinear ion-acoustic waves studied in the field of plasma comprised of cool and hot electrons. The solutions of gKdV-ZKe are acquired by new modified extended direct algebraic method (MEDAM) and are observed in the form of solitary, shock, singular, shock-singular, solitary-shock and double singular soliton solutions. Moreover, the families of rational solutions are also emerged during the derivation. The results we derive, in this article, are useful to study and verify the analytical solutions with numerical and experimental solutions in plasma physics. The obtained solutions are also illustrated graphically. •The weakly nonlinear electron-acoustic waves in plasma.•The nonlinear generalized Korteweg–de-Vries–Zakharov–Kuznetsov dynamical equation.•Weakly dispersive prorogation of waves in mathematical physics.
AbstractList In present work, we discussed the (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation (gKdV-ZKe) which describes the effect of magnetic field on weak nonlinear ion-acoustic waves studied in the field of plasma comprised of cool and hot electrons. The solutions of gKdV-ZKe are acquired by new modified extended direct algebraic method (MEDAM) and are observed in the form of solitary, shock, singular, shock-singular, solitary-shock and double singular soliton solutions. Moreover, the families of rational solutions are also emerged during the derivation. The results we derive, in this article, are useful to study and verify the analytical solutions with numerical and experimental solutions in plasma physics. The obtained solutions are also illustrated graphically. •The weakly nonlinear electron-acoustic waves in plasma.•The nonlinear generalized Korteweg–de-Vries–Zakharov–Kuznetsov dynamical equation.•Weakly dispersive prorogation of waves in mathematical physics.
In present work, we discussed the (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation (gKdV-ZKe) which describes the effect of magnetic field on weak nonlinear ion-acoustic waves studied in the field of plasma comprised of cool and hot electrons. The solutions of gKdV-ZKe are acquired by new modified extended direct algebraic method (MEDAM) and are observed in the form of solitary, shock, singular, shock-singular, solitary-shock and double singular soliton solutions. Moreover, the families of rational solutions are also emerged during the derivation. The results we derive, in this article, are useful to study and verify the analytical solutions with numerical and experimental solutions in plasma physics. The obtained solutions are also illustrated graphically.
ArticleNumber 105069
Author Seadawy, Aly R.
Rizvi, S.T.R.
Althobaiti, Ali
Rehman, H.U.
Anwar, I.
Baber, M.Z.
Younis, M.
Author_xml – sequence: 1
  givenname: H.U.
  surname: Rehman
  fullname: Rehman, H.U.
  organization: Department of Mathematics, University of Okara, Okara, Pakistan
– sequence: 2
  givenname: Aly R.
  surname: Seadawy
  fullname: Seadawy, Aly R.
  email: aly742001@yahoo.com
  organization: Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
– sequence: 3
  givenname: M.
  surname: Younis
  fullname: Younis, M.
  organization: Department of Computer Science, University of the Punjab, Lahore, Pakistan
– sequence: 4
  givenname: S.T.R.
  orcidid: 0000-0002-1730-7864
  surname: Rizvi
  fullname: Rizvi, S.T.R.
  organization: Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan
– sequence: 5
  givenname: I.
  surname: Anwar
  fullname: Anwar, I.
  organization: Department of Mathematics, University of Okara, Okara, Pakistan
– sequence: 6
  givenname: M.Z.
  surname: Baber
  fullname: Baber, M.Z.
  organization: Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
– sequence: 7
  givenname: Ali
  surname: Althobaiti
  fullname: Althobaiti, Ali
  organization: Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
BookMark eNp9kc9u1DAQxiNUJErpC3DyEYSy2I7tJBIXVAGtWokLfyQu1sSZ7HrrtYOdTbU98Q59EN6JJ8HbBQlx6MmfRvP7PDPf0-LIB49F8ZzRBaNMvV4vovXjglPOckFS1T4qjjlnrKzqtj76Rz8pTlNaU5opISVjx8XPrwjXbkeypbMeIRJ0aKYYfAkmbNNkDbmBGROxnkwrJIPb2p7Y4BMZYxhhCRP2ZLZAgLyoXrGXZW836FPuAEeW6DGCs7e55zLECW9w-evHXY_ll2gxZfkNrlcQw5zl5fbW45TCTPD7FqbssP90dJA2QMbVLlmTnhWPB3AJT_-8J8Xn9-8-nZ2XVx8_XJy9vSpNxWVbKiWVkW3dMdpVsq4kDA2XtBNMCiOgq1SnRG-aTvKBigEZctqDaUD0CmXbVyfFxcG3D7DWY7QbiDsdwOr7QohLDTEfx6GuFaqmaYzgnRRSDVA1XKCsVV03fDB19moOXiaGlCIO2tjpfr8pgnWaUb3PUa_1Pke9z1Efcswo_w_9O8qD0JsDhPlAs8Wok7HoDfY25mzzBvYh_DeARL7p
CitedBy_id crossref_primary_10_1088_1402_4896_ace6de
crossref_primary_10_1016_j_rinp_2023_106331
crossref_primary_10_1080_02286203_2024_2318805
crossref_primary_10_1016_j_rinp_2023_106299
crossref_primary_10_3390_sym15030650
crossref_primary_10_1016_j_rinp_2022_106175
crossref_primary_10_1016_j_rinp_2023_106494
crossref_primary_10_1007_s11082_023_05531_z
crossref_primary_10_1016_j_joes_2022_05_005
crossref_primary_10_1016_j_aej_2023_01_025
crossref_primary_10_1142_S0217979223501552
crossref_primary_10_3390_fractalfract7010038
crossref_primary_10_1016_j_padiff_2024_101036
crossref_primary_10_1515_phys_2023_0106
crossref_primary_10_3390_axioms11110625
crossref_primary_10_3390_fractalfract6070399
crossref_primary_10_1016_j_joes_2022_04_032
crossref_primary_10_1007_s11071_022_07803_x
crossref_primary_10_1142_S021798492550085X
crossref_primary_10_1016_j_joes_2022_04_036
crossref_primary_10_1063_5_0153529
crossref_primary_10_1007_s11082_023_05644_5
crossref_primary_10_1142_S0217979223501916
crossref_primary_10_1016_j_joes_2022_04_018
crossref_primary_10_1007_s11082_024_06465_w
crossref_primary_10_1088_1402_4896_ad4e14
crossref_primary_10_1016_j_rineng_2024_102194
crossref_primary_10_1016_j_rinp_2023_106677
crossref_primary_10_1142_S0218348X23500652
crossref_primary_10_34248_bsengineering_1413250
crossref_primary_10_1016_j_rinp_2022_106166
crossref_primary_10_3390_fractalfract7020191
crossref_primary_10_1002_mma_8596
crossref_primary_10_1016_j_joes_2022_04_021
crossref_primary_10_1007_s11082_023_06198_2
crossref_primary_10_1016_j_joes_2022_04_003
crossref_primary_10_1016_j_joes_2022_04_025
crossref_primary_10_1007_s11082_024_06830_9
crossref_primary_10_3390_sym15020361
crossref_primary_10_1142_S0218863523500200
crossref_primary_10_1016_j_rinp_2023_106389
crossref_primary_10_3390_math12030383
crossref_primary_10_1016_j_rinp_2022_105834
Cites_doi 10.1016/j.chaos.2021.110875
10.1016/j.camwa.2005.05.010
10.1016/j.jfranklin.2013.04.017
10.1088/0031-8949/54/6/003
10.1016/j.ijleo.2017.03.086
10.1140/epjp/i2019-12467-7
10.1002/mma.7013
10.1016/j.aml.2021.107301
10.1016/j.rinp.2021.103998
10.1016/j.jksus.2021.101627
10.1016/j.physleta.2007.07.051
10.2298/TSCI170615267C
10.1088/1402-4896/ac0f93
10.1016/j.chaos.2006.03.020
10.1007/s00332-019-09599-4
10.1111/sapm.12293
10.1016/j.aml.2021.107161
10.1016/j.rinp.2020.103197
10.1016/j.chaos.2021.111222
10.1016/j.physleta.2007.11.026
10.1140/epjp/i2018-12354-9
10.1080/16583655.2021.1999053
10.1002/num.20497
10.1016/j.chaos.2005.04.071
10.1515/ijnsns-2015-0151
10.1016/S0375-9601(98)00547-7
10.1088/1402-4896/ab0455
10.1016/S0375-9601(00)00725-8
10.1016/j.aml.2019.106147
10.1016/j.aml.2020.106936
10.1186/s13662-015-0452-4
10.1016/0375-9601(96)00103-X
10.1109/JAS.2016.7510172
10.2298/FIL1807489A
10.1016/j.cjph.2020.09.021
10.1016/S0375-9601(01)00580-1
10.1016/j.chaos.2020.110487
10.1016/j.rinp.2021.103959
10.1016/j.chaos.2005.04.063
10.1016/j.aej.2016.07.013
10.1155/2011/901235
10.1016/j.physleta.2005.10.099
10.1002/aic.15794
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2021.105069
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_76e6888c42b5456fa3824e5767782fc7
10_1016_j_rinp_2021_105069
S2211379721010536
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c3259-6656c597b10b35735af8250b4154c4ab36b64dc8b52f04fe1e20dac8a4d6e59d3
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 00:57:07 EDT 2025
Tue Jul 01 02:27:42 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Tue Jul 25 20:58:22 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Simulations
Ion-acoustic waves
New MEDAM
The (3+1)-dimensional gKdV-ZK equation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3259-6656c597b10b35735af8250b4154c4ab36b64dc8b52f04fe1e20dac8a4d6e59d3
ORCID 0000-0002-1730-7864
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379721010536
ParticipantIDs doaj_primary_oai_doaj_org_article_76e6888c42b5456fa3824e5767782fc7
crossref_citationtrail_10_1016_j_rinp_2021_105069
crossref_primary_10_1016_j_rinp_2021_105069
elsevier_sciencedirect_doi_10_1016_j_rinp_2021_105069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Cheemaa, Seadawy, Chen (b43) 2019; 134
He, Wu (b26) 2006; 30
Liu (b33) 2001; 289
Bilal, Seadawy, Younis, Rizvi, El-Rashidy (b41) 2021; 23
Aminikhad, H.Moosaei, Hajipour (b27) 2009; 26
Li, Geng (b35) 2020; 144
Seadway, Rehman, Younis, Rizvi, Althobaiti (b42) 2021; 96
Cheemaa, Seadawy, Chen (b38) 2018; 133
Younas, Seadawy, Younis, Rizvi (b31) 2020; 68
Wang, Tian, Hu, Liu (b1) 2021; 119
Rizvi, Seadawy, Younis, Iqbal, Althobaiti (b40) 2021; 23
Shen, Tian (b2) 2021; 122
Ahmed, Seadawy, Lu (b19) 2019; 94
Gao, Guo, Shan (b5) 2021; 120
Özkan, Seadawy, Yasar (b14) 2021; 15
Raza, Seadawy, Kaplan, Butt (b46) 2021; 96
Çevikel (b8) 2018; 22
Bekir, Guner, Çevikel (b10) 2017; 4
Ali (b24) 2011; 2012
Ali (b25) 2017; 63
Li, Geng (b36) 2020; 102
Seadawy (b37) 2017; 139
Çevikel, Bekir, San, Gucen (b12) 2014; 351
Dai, Zhang (b32) 2006; 27
Raddadi, Younis, Seadawy, Rehman, Bilal (b44) 2021; 33
Zhang (b21) 2006; 350
Aksoy, Bekir, Çevikel (b9) 2019; 5
Khalique, Adeyemo (b47) 2020; 18
Guner, Bekir, Çevikel (b11) 2013; 68
Yang, Deng, Wei (b15) 2015; 2015
Wang, Zhang, Li (b28) 2008; 372
Zhang, L.Tong, Wang (b29) 2008; 372
Malflieta, Hereman (b30) 1996; 54
Ali (b22) 2016; 55
Gao, Tian, Shen, Feng (b3) 2021; 151
Ali (b23) 2018; 32
Wazwaz (b13) 2005; 50
Geng, Li, Xue, Li, Geng (b34) 2020; 30
Fan, Zhang (b16) 1998; 246
Fan (b18) 2000; 277
Wang (b17) 1996; 213
Ren, Zhang (b20) 2006; 27
Bilal, Seadawy, Younis, Rizvi, Zahed (b45) 2021; 44
Gao, Guo, Shan (b6) 2021; 147
Çevikel, Aksoy (b7) 2021; 67
Bashir, Seadawy, Rizvi, Younis, Ali (b39) 2021; 25
Yang, Tian, Qu, Zhang, Chen (b4) 2021; 150
Wazwaz (10.1016/j.rinp.2021.105069_b13) 2005; 50
Bilal (10.1016/j.rinp.2021.105069_b41) 2021; 23
Zhang (10.1016/j.rinp.2021.105069_b29) 2008; 372
Rizvi (10.1016/j.rinp.2021.105069_b40) 2021; 23
He (10.1016/j.rinp.2021.105069_b26) 2006; 30
Gao (10.1016/j.rinp.2021.105069_b6) 2021; 147
Ali (10.1016/j.rinp.2021.105069_b24) 2011; 2012
Younas (10.1016/j.rinp.2021.105069_b31) 2020; 68
Cheemaa (10.1016/j.rinp.2021.105069_b43) 2019; 134
Bekir (10.1016/j.rinp.2021.105069_b10) 2017; 4
Çevikel (10.1016/j.rinp.2021.105069_b12) 2014; 351
Khalique (10.1016/j.rinp.2021.105069_b47) 2020; 18
Gao (10.1016/j.rinp.2021.105069_b5) 2021; 120
Bilal (10.1016/j.rinp.2021.105069_b45) 2021; 44
Yang (10.1016/j.rinp.2021.105069_b15) 2015; 2015
Ali (10.1016/j.rinp.2021.105069_b25) 2017; 63
Li (10.1016/j.rinp.2021.105069_b35) 2020; 144
Bashir (10.1016/j.rinp.2021.105069_b39) 2021; 25
Wang (10.1016/j.rinp.2021.105069_b1) 2021; 119
Guner (10.1016/j.rinp.2021.105069_b11) 2013; 68
Seadawy (10.1016/j.rinp.2021.105069_b37) 2017; 139
Raddadi (10.1016/j.rinp.2021.105069_b44) 2021; 33
Gao (10.1016/j.rinp.2021.105069_b3) 2021; 151
Geng (10.1016/j.rinp.2021.105069_b34) 2020; 30
Liu (10.1016/j.rinp.2021.105069_b33) 2001; 289
Ahmed (10.1016/j.rinp.2021.105069_b19) 2019; 94
Dai (10.1016/j.rinp.2021.105069_b32) 2006; 27
Malflieta (10.1016/j.rinp.2021.105069_b30) 1996; 54
Fan (10.1016/j.rinp.2021.105069_b16) 1998; 246
Wang (10.1016/j.rinp.2021.105069_b17) 1996; 213
Fan (10.1016/j.rinp.2021.105069_b18) 2000; 277
Özkan (10.1016/j.rinp.2021.105069_b14) 2021; 15
Wang (10.1016/j.rinp.2021.105069_b28) 2008; 372
Yang (10.1016/j.rinp.2021.105069_b4) 2021; 150
Çevikel (10.1016/j.rinp.2021.105069_b8) 2018; 22
Li (10.1016/j.rinp.2021.105069_b36) 2020; 102
Raza (10.1016/j.rinp.2021.105069_b46) 2021; 96
Shen (10.1016/j.rinp.2021.105069_b2) 2021; 122
Cheemaa (10.1016/j.rinp.2021.105069_b38) 2018; 133
Ali (10.1016/j.rinp.2021.105069_b22) 2016; 55
Ali (10.1016/j.rinp.2021.105069_b23) 2018; 32
Ren (10.1016/j.rinp.2021.105069_b20) 2006; 27
Çevikel (10.1016/j.rinp.2021.105069_b7) 2021; 67
Aminikhad (10.1016/j.rinp.2021.105069_b27) 2009; 26
Aksoy (10.1016/j.rinp.2021.105069_b9) 2019; 5
Zhang (10.1016/j.rinp.2021.105069_b21) 2006; 350
Seadway (10.1016/j.rinp.2021.105069_b42) 2021; 96
References_xml – volume: 119
  year: 2021
  ident: b1
  article-title: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber
  publication-title: Appl Math Lett
– volume: 23
  year: 2021
  ident: b40
  article-title: Various optical soliton for a weak fractional nonlinear Schrödinger equation with parabolic law
  publication-title: Results Phys
– volume: 26
  start-page: 1427
  year: 2009
  end-page: 1433
  ident: b27
  article-title: Exact solutions for nonlinear partial differential equations via exp-function method
  publication-title: Numer Methods Partial Differ Eq
– volume: 68
  year: 2013
  ident: b11
  article-title: Dark soliton and periodic wave solutions of nonlinear evolution equations
  publication-title: Adv Differ Eq Vol
– volume: 213
  start-page: 279
  year: 1996
  end-page: 287
  ident: b17
  article-title: Exact solutions for a compound KdV-burgers equation
  publication-title: Phys Lett A
– volume: 27
  start-page: 1042
  year: 2006
  end-page: 1049
  ident: b32
  article-title: Jacobian elliptic function method for nonlinear differential equations
  publication-title: Chaos Solitons Fractals
– volume: 32
  start-page: 2489
  year: 2018
  end-page: 2497
  ident: b23
  article-title: A new analytical approach for solving nonlinear boundary value problems arising in nonlinear phenomena
  publication-title: Filomat
– volume: 67
  start-page: 3
  year: 2021
  ident: b7
  article-title: Soliton solutions of nonlinear fractional differentialequations with their applications in mathematical physics
  publication-title: Rev Mexicana Fís
– volume: 133
  start-page: 547
  year: 2018
  ident: b38
  article-title: More general families of exact solitary wave solutions of the nonlinear Schrodinger equation with their applications in nonlinear optics
  publication-title: Eur Phys J Plus
– volume: 25
  year: 2021
  ident: b39
  article-title: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system
  publication-title: Results Phys
– volume: 23
  year: 2021
  ident: b41
  article-title: Analytical wave structures in plasma physics modelled by Gilson-Pickering equation by two integration norms
  publication-title: Results Phys
– volume: 147
  year: 2021
  ident: b6
  article-title: Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq-Burgers system
  publication-title: Chaos Solitons Fractals
– volume: 102
  year: 2020
  ident: b36
  article-title: Rogue periodic waves of the sine–Gordon equation
  publication-title: Appl Math Lett
– volume: 289
  start-page: 69
  year: 2001
  end-page: 74
  ident: b33
  article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
  publication-title: Phys Lett A
– volume: 351
  start-page: 694
  year: 2014
  end-page: 700
  ident: b12
  article-title: Construction of periodic and solitary wave solutions for the complex nonlinear evolution equations
  publication-title: J Franklin Inst B
– volume: 139
  start-page: 31
  year: 2017
  end-page: 43
  ident: b37
  article-title: The generalized nonlinear higher order of KdV equations from the higher order nonlinear schrödiner’s equation and its solutions
  publication-title: Optik
– volume: 63
  start-page: 5149
  year: 2017
  end-page: 5158
  ident: b25
  article-title: Magnetohydrodynamics thin film fluid flow under the effect of thermophoresis and variable fluid properties
  publication-title: AICHE J
– volume: 4
  start-page: 315
  year: 2017
  end-page: 321
  ident: b10
  article-title: The exp-function method for some time-fractional differential equations
  publication-title: IEEE/CAA J Autom Sin
– volume: 2012
  start-page: 1
  year: 2011
  end-page: 14
  ident: b24
  article-title: The optimal homotopy asymptotic method for the solution of higher-order boundary value problems in finite domains
  publication-title: Abstr Appl Anal
– volume: 246
  start-page: 403
  year: 1998
  end-page: 406
  ident: b16
  article-title: A note on the homogeneous balance method
  publication-title: Phys Lett A
– volume: 150
  year: 2021
  ident: b4
  article-title: Lax pair, conservation laws, darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber
  publication-title: Chaos Solitons Fractals
– volume: 2015
  start-page: 117
  year: 2015
  ident: b15
  article-title: A Riccati–Bernoulli sub-ODE method for nonlinear partial differential equations and its application
  publication-title: Adv Differ Eq
– volume: 27
  start-page: 959
  year: 2006
  end-page: 979
  ident: b20
  article-title: A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equation
  publication-title: Chaos Solitons Fractals
– volume: 96
  year: 2021
  ident: b46
  article-title: Symbolic computation and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with applications
  publication-title: Phys Scr
– volume: 372
  start-page: 417
  year: 2008
  ident: b28
  article-title: The (G’, G)-expansion method and traveling wave solutions of nonlinear evolutions equations in mathematical physics
  publication-title: Phys Lett A
– volume: 30
  start-page: 991
  year: 2020
  end-page: 1013
  ident: b34
  article-title: A vector general nonlinear Schrödinger equation with (m+n) components
  publication-title: J Nonlinear Sci
– volume: 372
  start-page: 2254
  year: 2008
  end-page: 2257
  ident: b29
  article-title: A generalized (g’/g)-expansion method for the mkdv equation with variable coefficients
  publication-title: Phys Lett A
– volume: 134
  start-page: 117
  year: 2019
  ident: b43
  article-title: Some new families of solitary wave solutions of generalized Schamel equation and their applications in plasma physics
  publication-title: Eur Phys J Plus
– volume: 277
  start-page: 212
  year: 2000
  end-page: 218
  ident: b18
  article-title: Extended tanh-function method and its applications to nonlinear equations
  publication-title: Phys Lett A
– volume: 350
  start-page: 103
  year: 2006
  end-page: 109
  ident: b21
  article-title: The improved F-expansion method and its applications
  publication-title: Phys Lett A
– volume: 68
  start-page: 348
  year: 2020
  end-page: 364
  ident: b31
  article-title: Dispersive of propagation wave structures to the dullin–gottwald–holm dynamical equation in a shallow water waves
  publication-title: Chinese J Phys
– volume: 151
  year: 2021
  ident: b3
  article-title: Comment on: Shallow water in an open sea or a wide channel: Auto- and non-auto-bäcklund transformations with solitons for a generalized dimensional dispersive long-wave system
  publication-title: Chaos Solitons Fractals
– volume: 54
  start-page: 563
  year: 1996
  end-page: 568
  ident: b30
  article-title: The tanh method: Exact solutions of nonlinear evolution and wave equations
  publication-title: Phys Scr
– volume: 22
  start-page: 15
  year: 2018
  end-page: 24
  ident: b8
  article-title: New exact solutions of the space–time fractional KdV-burgers and nonlinear fractional foam drainage equation
  publication-title: Thermal Sci
– volume: 18
  year: 2020
  ident: b47
  article-title: A study of
  publication-title: Results Phys
– volume: 122
  year: 2021
  ident: b2
  article-title: Bilinear auto-bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves
  publication-title: Appl Math Lett
– volume: 55
  start-page: 2811
  year: 2016
  end-page: 2819
  ident: b22
  article-title: New version of optimal homotopy asymptotic method for the solution of nonlinear boundary value problems in finite and infinite intervals
  publication-title: Alexandria Eng J
– volume: 50
  start-page: 1685
  year: 2005
  end-page: 1696
  ident: b13
  article-title: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method
  publication-title: Comput Math Appl
– volume: 5
  start-page: 511
  year: 2019
  end-page: 516
  ident: b9
  article-title: Study on fractional differential equations with modified Riemann–Liouville derivative via Kudryashov method
  publication-title: Int J Nonlinear Sci Numer Simul 20
– volume: 30
  start-page: 700
  year: 2006
  end-page: 708
  ident: b26
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos Solitons Fractals
– volume: 15
  start-page: 666
  year: 2021
  end-page: 678
  ident: b14
  article-title: Multi-wave, breather and interaction solutions to (3+1) dimensional vakhnenko–parkes equation arising at propagation of high-frequency waves in a relaxing medium
  publication-title: J Taibah Univ Sci
– volume: 120
  year: 2021
  ident: b5
  article-title: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system
  publication-title: Appl Math Lett
– volume: 44
  start-page: 4094
  year: 2021
  end-page: 4104
  ident: b45
  article-title: Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis
  publication-title: Math Methods Appl Sci
– volume: 94
  year: 2019
  ident: b19
  article-title: M-shaped rational solitons and their interaction with kink waves in the Fokas-lenells equation
  publication-title: Phys Scr
– volume: 144
  start-page: 164
  year: 2020
  end-page: 184
  ident: b35
  article-title: On a vector long wave-short wave-type model
  publication-title: Stud Appl Math
– volume: 96
  year: 2021
  ident: b42
  article-title: Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with pochhammer-chree equation
  publication-title: Phys Scr
– volume: 33
  year: 2021
  ident: b44
  article-title: Dynamical behaviour of shallow water waves and solitary wavesolutions of the Dullin–Gottwald–Holm dynamical system
  publication-title: J King Saud Univ Sci
– volume: 147
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b6
  article-title: Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq-Burgers system
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110875
– volume: 50
  start-page: 1685
  year: 2005
  ident: 10.1016/j.rinp.2021.105069_b13
  article-title: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2005.05.010
– volume: 351
  start-page: 694
  issue: 2
  year: 2014
  ident: 10.1016/j.rinp.2021.105069_b12
  article-title: Construction of periodic and solitary wave solutions for the complex nonlinear evolution equations
  publication-title: J Franklin Inst B
  doi: 10.1016/j.jfranklin.2013.04.017
– volume: 54
  start-page: 563
  year: 1996
  ident: 10.1016/j.rinp.2021.105069_b30
  article-title: The tanh method: Exact solutions of nonlinear evolution and wave equations
  publication-title: Phys Scr
  doi: 10.1088/0031-8949/54/6/003
– volume: 139
  start-page: 31
  year: 2017
  ident: 10.1016/j.rinp.2021.105069_b37
  article-title: The generalized nonlinear higher order of KdV equations from the higher order nonlinear schrödiner’s equation and its solutions
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.03.086
– volume: 25
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b39
  article-title: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system
  publication-title: Results Phys
– volume: 67
  start-page: 3
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b7
  article-title: Soliton solutions of nonlinear fractional differentialequations with their applications in mathematical physics
  publication-title: Rev Mexicana Fís
– volume: 134
  start-page: 117
  year: 2019
  ident: 10.1016/j.rinp.2021.105069_b43
  article-title: Some new families of solitary wave solutions of generalized Schamel equation and their applications in plasma physics
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2019-12467-7
– volume: 44
  start-page: 4094
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b45
  article-title: Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.7013
– volume: 122
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b2
  article-title: Bilinear auto-bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2021.107301
– volume: 23
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b40
  article-title: Various optical soliton for a weak fractional nonlinear Schrödinger equation with parabolic law
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.103998
– volume: 33
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b44
  article-title: Dynamical behaviour of shallow water waves and solitary wavesolutions of the Dullin–Gottwald–Holm dynamical system
  publication-title: J King Saud Univ Sci
  doi: 10.1016/j.jksus.2021.101627
– volume: 68
  year: 2013
  ident: 10.1016/j.rinp.2021.105069_b11
  article-title: Dark soliton and periodic wave solutions of nonlinear evolution equations
  publication-title: Adv Differ Eq Vol
– volume: 372
  start-page: 417
  year: 2008
  ident: 10.1016/j.rinp.2021.105069_b28
  article-title: The (G’, G)-expansion method and traveling wave solutions of nonlinear evolutions equations in mathematical physics
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2007.07.051
– volume: 22
  start-page: 15
  issue: 1
  year: 2018
  ident: 10.1016/j.rinp.2021.105069_b8
  article-title: New exact solutions of the space–time fractional KdV-burgers and nonlinear fractional foam drainage equation
  publication-title: Thermal Sci
  doi: 10.2298/TSCI170615267C
– volume: 96
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b46
  article-title: Symbolic computation and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with applications
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ac0f93
– volume: 30
  start-page: 700
  year: 2006
  ident: 10.1016/j.rinp.2021.105069_b26
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.03.020
– volume: 30
  start-page: 991
  issue: 3
  year: 2020
  ident: 10.1016/j.rinp.2021.105069_b34
  article-title: A vector general nonlinear Schrödinger equation with (m+n) components
  publication-title: J Nonlinear Sci
  doi: 10.1007/s00332-019-09599-4
– volume: 144
  start-page: 164
  issue: 2
  year: 2020
  ident: 10.1016/j.rinp.2021.105069_b35
  article-title: On a vector long wave-short wave-type model
  publication-title: Stud Appl Math
  doi: 10.1111/sapm.12293
– volume: 120
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b5
  article-title: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2021.107161
– volume: 18
  year: 2020
  ident: 10.1016/j.rinp.2021.105069_b47
  article-title: A study of (3+1)−dimensional generalized Korteweg–de Vries- Zakharov-Kuznetsov equation via Lie symmetry approach
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2020.103197
– volume: 151
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b3
  article-title: Comment on: Shallow water in an open sea or a wide channel: Auto- and non-auto-bäcklund transformations with solitons for a generalized dimensional dispersive long-wave system
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111222
– volume: 372
  start-page: 2254
  year: 2008
  ident: 10.1016/j.rinp.2021.105069_b29
  article-title: A generalized (g’/g)-expansion method for the mkdv equation with variable coefficients
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2007.11.026
– volume: 133
  start-page: 547
  year: 2018
  ident: 10.1016/j.rinp.2021.105069_b38
  article-title: More general families of exact solitary wave solutions of the nonlinear Schrodinger equation with their applications in nonlinear optics
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2018-12354-9
– volume: 15
  start-page: 666
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b14
  article-title: Multi-wave, breather and interaction solutions to (3+1) dimensional vakhnenko–parkes equation arising at propagation of high-frequency waves in a relaxing medium
  publication-title: J Taibah Univ Sci
  doi: 10.1080/16583655.2021.1999053
– volume: 26
  start-page: 1427
  year: 2009
  ident: 10.1016/j.rinp.2021.105069_b27
  article-title: Exact solutions for nonlinear partial differential equations via exp-function method
  publication-title: Numer Methods Partial Differ Eq
  doi: 10.1002/num.20497
– volume: 27
  start-page: 1042
  year: 2006
  ident: 10.1016/j.rinp.2021.105069_b32
  article-title: Jacobian elliptic function method for nonlinear differential equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.04.071
– volume: 5
  start-page: 511
  year: 2019
  ident: 10.1016/j.rinp.2021.105069_b9
  article-title: Study on fractional differential equations with modified Riemann–Liouville derivative via Kudryashov method
  publication-title: Int J Nonlinear Sci Numer Simul 20
  doi: 10.1515/ijnsns-2015-0151
– volume: 246
  start-page: 403
  year: 1998
  ident: 10.1016/j.rinp.2021.105069_b16
  article-title: A note on the homogeneous balance method
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(98)00547-7
– volume: 94
  year: 2019
  ident: 10.1016/j.rinp.2021.105069_b19
  article-title: M-shaped rational solitons and their interaction with kink waves in the Fokas-lenells equation
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ab0455
– volume: 277
  start-page: 212
  year: 2000
  ident: 10.1016/j.rinp.2021.105069_b18
  article-title: Extended tanh-function method and its applications to nonlinear equations
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(00)00725-8
– volume: 102
  year: 2020
  ident: 10.1016/j.rinp.2021.105069_b36
  article-title: Rogue periodic waves of the sine–Gordon equation
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2019.106147
– volume: 119
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b1
  article-title: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2020.106936
– volume: 2015
  start-page: 117
  year: 2015
  ident: 10.1016/j.rinp.2021.105069_b15
  article-title: A Riccati–Bernoulli sub-ODE method for nonlinear partial differential equations and its application
  publication-title: Adv Differ Eq
  doi: 10.1186/s13662-015-0452-4
– volume: 96
  issue: 4
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b42
  article-title: Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with pochhammer-chree equation
  publication-title: Phys Scr
– volume: 213
  start-page: 279
  year: 1996
  ident: 10.1016/j.rinp.2021.105069_b17
  article-title: Exact solutions for a compound KdV-burgers equation
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(96)00103-X
– volume: 4
  start-page: 315
  issue: 2
  year: 2017
  ident: 10.1016/j.rinp.2021.105069_b10
  article-title: The exp-function method for some time-fractional differential equations
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2016.7510172
– volume: 32
  start-page: 2489
  year: 2018
  ident: 10.1016/j.rinp.2021.105069_b23
  article-title: A new analytical approach for solving nonlinear boundary value problems arising in nonlinear phenomena
  publication-title: Filomat
  doi: 10.2298/FIL1807489A
– volume: 68
  start-page: 348
  year: 2020
  ident: 10.1016/j.rinp.2021.105069_b31
  article-title: Dispersive of propagation wave structures to the dullin–gottwald–holm dynamical equation in a shallow water waves
  publication-title: Chinese J Phys
  doi: 10.1016/j.cjph.2020.09.021
– volume: 289
  start-page: 69
  year: 2001
  ident: 10.1016/j.rinp.2021.105069_b33
  article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(01)00580-1
– volume: 150
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b4
  article-title: Lax pair, conservation laws, darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110487
– volume: 23
  year: 2021
  ident: 10.1016/j.rinp.2021.105069_b41
  article-title: Analytical wave structures in plasma physics modelled by Gilson-Pickering equation by two integration norms
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.103959
– volume: 27
  start-page: 959
  year: 2006
  ident: 10.1016/j.rinp.2021.105069_b20
  article-title: A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equation
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.04.063
– volume: 55
  start-page: 2811
  year: 2016
  ident: 10.1016/j.rinp.2021.105069_b22
  article-title: New version of optimal homotopy asymptotic method for the solution of nonlinear boundary value problems in finite and infinite intervals
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2016.07.013
– volume: 2012
  start-page: 1
  year: 2011
  ident: 10.1016/j.rinp.2021.105069_b24
  article-title: The optimal homotopy asymptotic method for the solution of higher-order boundary value problems in finite domains
  publication-title: Abstr Appl Anal
  doi: 10.1155/2011/901235
– volume: 350
  start-page: 103
  year: 2006
  ident: 10.1016/j.rinp.2021.105069_b21
  article-title: The improved F-expansion method and its applications
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2005.10.099
– volume: 63
  start-page: 5149
  year: 2017
  ident: 10.1016/j.rinp.2021.105069_b25
  article-title: Magnetohydrodynamics thin film fluid flow under the effect of thermophoresis and variable fluid properties
  publication-title: AICHE J
  doi: 10.1002/aic.15794
SSID ssj0001645511
Score 2.4127297
Snippet In present work, we discussed the (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation (gKdV-ZKe) which describes the effect of magnetic...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 105069
SubjectTerms Ion-acoustic waves
New MEDAM
Simulations
The (3+1)-dimensional gKdV-ZK equation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwELVQJSQ2iKe4QJEXLECVxY3j2MmyIKqKClYUKjbRxJ6U0Nu03FdFV_wDH8I_8SXM2LlVVmXDLoocO_KM5pyxxmeEeE5MKAuAToGujDLEaFVVxsqppoqQlsSe33-w-4fm3VFxNGr1xTVhSR44bdwrZ9FSluaNbhjsW8hLbZDmdIRtrY_3yAnzRslUPF2xhqgAZ1tas06fq9xwYyYVd827nsUqdcZ9bqdc7TxCpSjePwKnEeDs3RG3B6Yod9Mf3hU3sL8nbsaKTb-4L35_RjiZ_ZB90rqAudx0tFEU5GKPLnkBa1zIrpfE8mQ7W3VBspdJipoUR4hlBrnuQIJ8ke9kL1Vgpf-k0iGPkxx1d0ljDrgg9wKP__z8FVB94uSaHr_AyVeYn63p8WB12eNycbaW-D1Jh_Oi50TMT0Gms5PFA3G49_bjm301dF9QPqecSFliep7SjYbMlhcuL6ClbHLaEOIbb6DJbWNN8GVT6HZqWsxQTwP4EkywWFQhfyi2aAvwkZAOdElEEKrCobFIU5rMZa3F0lJ409VEZJvdr_0gTc4dMmb1pgbtW80Wq9lidbLYROxcfXOehDmuHf2ajXo1kkW14wtytXpwtfpfrjYRxcYl6oGfJN5BU3XXLP74fyz-RNzSfPMiFow_FVvL-Qq3iQ8tm2fR9f8CePkIqQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqSkhcEG1BLD-VDz2AKms3tmM7x7aiqqjgAoUVl8hxnCXtkl2yPxU98Q48CO_EkzBjJ2W59MAtsvwTeUYz31gz3xByAEgoKa3XzPJMMgmIlmUmZE4VWXBpkez57Tt1diHfjNPxFjnpa2EwrbKz_dGmB2vdjQy72xzO63r4nkPsIjSyz2CXR4G020KaUMQ3Pv77zqIkgAKMu3A-wwVd7UxM82rrBmkreYIdb0eY97zhnwKN_4ab2nA9pw_Jgw4z0qP4Wztkyze75F7I3XSLPfLrk7dX0--0iawXtqV9bxsG5i5066LXdu0XtG4o4D1aTVd1SVHfKNhPsCiAN0u6ri219KU4TF6xEjn_I18HnURi6voG5pxjau61n_z-8bP07COG2fD52V59se1sDZ_nq5vGLxezNfXfIok4HjoHiP7V0viKsnhELk5ffzg5Y10fBuYEREdMAeZzEHgUIECRapHaCuLKUQG-XzppC6EKJUtnipRXI1n5xPNRaZ2xslQ-zUrxmGzDFfgnhGrLDUBCm6XaS-VhS5nopFLeKDB0PBuQpL_93HUk5dgrY5r32WiXOUosR4nlUWIDcni7Zh4pOu6cfYxCvZ2J9NphYNZO8k6_cq28MsY4yQtEmJUVhksPiqwBUFVOD0jaq0T-j7bCVvUdhz_9z3XPyH2OZRchW_w52V62K_8CwNCy2A_a_gcRjgoN
  priority: 102
  providerName: Elsevier
Title Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation in plasma physics
URI https://dx.doi.org/10.1016/j.rinp.2021.105069
https://doaj.org/article/76e6888c42b5456fa3824e5767782fc7
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKERKXil-xLVQ-cABVRhvHsZ0DQi2iKlTlxMKKS-Q4zhK6zbbJ7vbnxDvwILwTT8KMnZQiVZW4RFbk2JFnPPONNf6GkOeAhKLCOMUMTwUTgGhZqn3mVJ56lxbIng8-yr2R-DBOxiukL3fULWB7bWiH9aRGzfTV2cn5G9jwr__majVVjdyTPMKytUOZ3iK3wTMp3KgHHdz3Zy5SAEDAGIxzZO9Tqeru0Vw_zD--ylP6X3FZV9zQ7j2y1uFHuh0Efp-suPoBuePzOG37kPz64szh9JzWgQHDNLSvc8PA9PnKXfTULF1Lq5oC9qPldFEVFHWPgi0F6wLYs6DLylBDX8Rb0UtWIP9_4O6gk0BSXV1An31M0z11k98_fhaOfcaQG5pfzeE308yW0NxfXNRu3s6W1J0EQnGc9Bjg-pGh4USlfURGu-8-vd1jXU0GZmOIlJgE_GchCMlBmHGi4sSUEGMOc8ABwgqTxzKXorA6T3g5FKWLHB8WxmojCumStIgfk1VYAveEUGW4Bnho0kQ5IR0MiSIrpdMSjB5PByTqVz-zHWE51s2YZn1m2vcMJZahxLIgsQHZuvzmONB13Nh7B4V62ROptv2LWTPJup2bKemk1toKniPaLE2suXCg1ArAVWnVgCS9SmQdagloBIaqbph8_b9-dYPc5XjxwueLPyWr82bhngEcmueb_hgBnu_HO5te3_8AaBwL5A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKEYIL4lcsvz5wAFXWbhzHTo60otqybS-0sOISObazhC7ZJftT0RPvwIPwTjwJM3ZSlksP3CLLY0ee0cw31vgbQl4CEoqsdoppngkmANGyLPWVU0XmQ1ogez46lsNT8W6cjLfIXvcWBssqW98ffLr31u1Ivz3N_ryq-u855C6xQvYZ7PIYy2vkOqABhf0bDsa7fy9apABUgIkXCjCUaB_PhDqvpqqRt5JH2PJ2gIXPGwHK8_hvxKmN2LN_h9xuQSN9E_7rLtly9T1ywxdvmsV98uuj02fT77QOtBe6oV1zGwb-zrfroud67Ra0qikAPlpOV5WlaHAUHCi4FACclq4rTTV9Fe9Er5lF0v9A2EEngZm6uoA5I6zNPXeT3z9-Wsc-YJ4Nn5_02WfdzNbwOVpd1G65mK2p-xZYxHHTOWD0r5qGa5TFA3K6__Zkb8jaRgzMxJAeMQmgz0DmUYAG40TFiS4hsRwUEPyFEbqIZSGFNWmR8HIgShc5PrDapFpY6ZLMxg_JNhyBe0So0jwFTKizRDkhHSwpIhWV0qUSPB3PeiTqTj83LUs5NsuY5l052pccNZajxvKgsR7ZuZSZB46OK2fvolIvZyK_th-YNZO8NbBcSSfTNDWCFwgxSx2nXDiwZAWIqjSqR5LOJPJ_zBWWqq7Y_PF_yr0gN4cnR4f54cHx6Am5xfENhi8df0q2l83KPQNktCyee8v_A21IDSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+nonlinear+electron-acoustic+waves+in+the+fluid+ions+propagated+via+a+%283%2B1%29-dimensional+generalized+Korteweg%E2%80%93de-Vries%E2%80%93Zakharov%E2%80%93Kuznetsov+equation+in+plasma+physics&rft.jtitle=Results+in+physics&rft.au=Rehman%2C+H.U.&rft.au=Seadawy%2C+Aly+R.&rft.au=Younis%2C+M.&rft.au=Rizvi%2C+S.T.R.&rft.date=2022-02-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=33&rft.spage=105069&rft_id=info:doi/10.1016%2Fj.rinp.2021.105069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2021_105069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon