Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation in plasma physics
In present work, we discussed the (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation (gKdV-ZKe) which describes the effect of magnetic field on weak nonlinear ion-acoustic waves studied in the field of plasma comprised of cool and hot electrons. The solutions of gKdV-ZKe are...
Saved in:
Published in | Results in physics Vol. 33; p. 105069 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In present work, we discussed the (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation (gKdV-ZKe) which describes the effect of magnetic field on weak nonlinear ion-acoustic waves studied in the field of plasma comprised of cool and hot electrons. The solutions of gKdV-ZKe are acquired by new modified extended direct algebraic method (MEDAM) and are observed in the form of solitary, shock, singular, shock-singular, solitary-shock and double singular soliton solutions. Moreover, the families of rational solutions are also emerged during the derivation. The results we derive, in this article, are useful to study and verify the analytical solutions with numerical and experimental solutions in plasma physics. The obtained solutions are also illustrated graphically.
•The weakly nonlinear electron-acoustic waves in plasma.•The nonlinear generalized Korteweg–de-Vries–Zakharov–Kuznetsov dynamical equation.•Weakly dispersive prorogation of waves in mathematical physics. |
---|---|
AbstractList | In present work, we discussed the (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation (gKdV-ZKe) which describes the effect of magnetic field on weak nonlinear ion-acoustic waves studied in the field of plasma comprised of cool and hot electrons. The solutions of gKdV-ZKe are acquired by new modified extended direct algebraic method (MEDAM) and are observed in the form of solitary, shock, singular, shock-singular, solitary-shock and double singular soliton solutions. Moreover, the families of rational solutions are also emerged during the derivation. The results we derive, in this article, are useful to study and verify the analytical solutions with numerical and experimental solutions in plasma physics. The obtained solutions are also illustrated graphically.
•The weakly nonlinear electron-acoustic waves in plasma.•The nonlinear generalized Korteweg–de-Vries–Zakharov–Kuznetsov dynamical equation.•Weakly dispersive prorogation of waves in mathematical physics. In present work, we discussed the (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation (gKdV-ZKe) which describes the effect of magnetic field on weak nonlinear ion-acoustic waves studied in the field of plasma comprised of cool and hot electrons. The solutions of gKdV-ZKe are acquired by new modified extended direct algebraic method (MEDAM) and are observed in the form of solitary, shock, singular, shock-singular, solitary-shock and double singular soliton solutions. Moreover, the families of rational solutions are also emerged during the derivation. The results we derive, in this article, are useful to study and verify the analytical solutions with numerical and experimental solutions in plasma physics. The obtained solutions are also illustrated graphically. |
ArticleNumber | 105069 |
Author | Seadawy, Aly R. Rizvi, S.T.R. Althobaiti, Ali Rehman, H.U. Anwar, I. Baber, M.Z. Younis, M. |
Author_xml | – sequence: 1 givenname: H.U. surname: Rehman fullname: Rehman, H.U. organization: Department of Mathematics, University of Okara, Okara, Pakistan – sequence: 2 givenname: Aly R. surname: Seadawy fullname: Seadawy, Aly R. email: aly742001@yahoo.com organization: Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia – sequence: 3 givenname: M. surname: Younis fullname: Younis, M. organization: Department of Computer Science, University of the Punjab, Lahore, Pakistan – sequence: 4 givenname: S.T.R. orcidid: 0000-0002-1730-7864 surname: Rizvi fullname: Rizvi, S.T.R. organization: Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan – sequence: 5 givenname: I. surname: Anwar fullname: Anwar, I. organization: Department of Mathematics, University of Okara, Okara, Pakistan – sequence: 6 givenname: M.Z. surname: Baber fullname: Baber, M.Z. organization: Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan – sequence: 7 givenname: Ali surname: Althobaiti fullname: Althobaiti, Ali organization: Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia |
BookMark | eNp9kc9u1DAQxiNUJErpC3DyEYSy2I7tJBIXVAGtWokLfyQu1sSZ7HrrtYOdTbU98Q59EN6JJ8HbBQlx6MmfRvP7PDPf0-LIB49F8ZzRBaNMvV4vovXjglPOckFS1T4qjjlnrKzqtj76Rz8pTlNaU5opISVjx8XPrwjXbkeypbMeIRJ0aKYYfAkmbNNkDbmBGROxnkwrJIPb2p7Y4BMZYxhhCRP2ZLZAgLyoXrGXZW836FPuAEeW6DGCs7e55zLECW9w-evHXY_ll2gxZfkNrlcQw5zl5fbW45TCTPD7FqbssP90dJA2QMbVLlmTnhWPB3AJT_-8J8Xn9-8-nZ2XVx8_XJy9vSpNxWVbKiWVkW3dMdpVsq4kDA2XtBNMCiOgq1SnRG-aTvKBigEZctqDaUD0CmXbVyfFxcG3D7DWY7QbiDsdwOr7QohLDTEfx6GuFaqmaYzgnRRSDVA1XKCsVV03fDB19moOXiaGlCIO2tjpfr8pgnWaUb3PUa_1Pke9z1Efcswo_w_9O8qD0JsDhPlAs8Wok7HoDfY25mzzBvYh_DeARL7p |
CitedBy_id | crossref_primary_10_1088_1402_4896_ace6de crossref_primary_10_1016_j_rinp_2023_106331 crossref_primary_10_1080_02286203_2024_2318805 crossref_primary_10_1016_j_rinp_2023_106299 crossref_primary_10_3390_sym15030650 crossref_primary_10_1016_j_rinp_2022_106175 crossref_primary_10_1016_j_rinp_2023_106494 crossref_primary_10_1007_s11082_023_05531_z crossref_primary_10_1016_j_joes_2022_05_005 crossref_primary_10_1016_j_aej_2023_01_025 crossref_primary_10_1142_S0217979223501552 crossref_primary_10_3390_fractalfract7010038 crossref_primary_10_1016_j_padiff_2024_101036 crossref_primary_10_1515_phys_2023_0106 crossref_primary_10_3390_axioms11110625 crossref_primary_10_3390_fractalfract6070399 crossref_primary_10_1016_j_joes_2022_04_032 crossref_primary_10_1007_s11071_022_07803_x crossref_primary_10_1142_S021798492550085X crossref_primary_10_1016_j_joes_2022_04_036 crossref_primary_10_1063_5_0153529 crossref_primary_10_1007_s11082_023_05644_5 crossref_primary_10_1142_S0217979223501916 crossref_primary_10_1016_j_joes_2022_04_018 crossref_primary_10_1007_s11082_024_06465_w crossref_primary_10_1088_1402_4896_ad4e14 crossref_primary_10_1016_j_rineng_2024_102194 crossref_primary_10_1016_j_rinp_2023_106677 crossref_primary_10_1142_S0218348X23500652 crossref_primary_10_34248_bsengineering_1413250 crossref_primary_10_1016_j_rinp_2022_106166 crossref_primary_10_3390_fractalfract7020191 crossref_primary_10_1002_mma_8596 crossref_primary_10_1016_j_joes_2022_04_021 crossref_primary_10_1007_s11082_023_06198_2 crossref_primary_10_1016_j_joes_2022_04_003 crossref_primary_10_1016_j_joes_2022_04_025 crossref_primary_10_1007_s11082_024_06830_9 crossref_primary_10_3390_sym15020361 crossref_primary_10_1142_S0218863523500200 crossref_primary_10_1016_j_rinp_2023_106389 crossref_primary_10_3390_math12030383 crossref_primary_10_1016_j_rinp_2022_105834 |
Cites_doi | 10.1016/j.chaos.2021.110875 10.1016/j.camwa.2005.05.010 10.1016/j.jfranklin.2013.04.017 10.1088/0031-8949/54/6/003 10.1016/j.ijleo.2017.03.086 10.1140/epjp/i2019-12467-7 10.1002/mma.7013 10.1016/j.aml.2021.107301 10.1016/j.rinp.2021.103998 10.1016/j.jksus.2021.101627 10.1016/j.physleta.2007.07.051 10.2298/TSCI170615267C 10.1088/1402-4896/ac0f93 10.1016/j.chaos.2006.03.020 10.1007/s00332-019-09599-4 10.1111/sapm.12293 10.1016/j.aml.2021.107161 10.1016/j.rinp.2020.103197 10.1016/j.chaos.2021.111222 10.1016/j.physleta.2007.11.026 10.1140/epjp/i2018-12354-9 10.1080/16583655.2021.1999053 10.1002/num.20497 10.1016/j.chaos.2005.04.071 10.1515/ijnsns-2015-0151 10.1016/S0375-9601(98)00547-7 10.1088/1402-4896/ab0455 10.1016/S0375-9601(00)00725-8 10.1016/j.aml.2019.106147 10.1016/j.aml.2020.106936 10.1186/s13662-015-0452-4 10.1016/0375-9601(96)00103-X 10.1109/JAS.2016.7510172 10.2298/FIL1807489A 10.1016/j.cjph.2020.09.021 10.1016/S0375-9601(01)00580-1 10.1016/j.chaos.2020.110487 10.1016/j.rinp.2021.103959 10.1016/j.chaos.2005.04.063 10.1016/j.aej.2016.07.013 10.1155/2011/901235 10.1016/j.physleta.2005.10.099 10.1002/aic.15794 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2021.105069 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_76e6888c42b5456fa3824e5767782fc7 10_1016_j_rinp_2021_105069 S2211379721010536 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c3259-6656c597b10b35735af8250b4154c4ab36b64dc8b52f04fe1e20dac8a4d6e59d3 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 00:57:07 EDT 2025 Tue Jul 01 02:27:42 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Tue Jul 25 20:58:22 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Simulations Ion-acoustic waves New MEDAM The (3+1)-dimensional gKdV-ZK equation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3259-6656c597b10b35735af8250b4154c4ab36b64dc8b52f04fe1e20dac8a4d6e59d3 |
ORCID | 0000-0002-1730-7864 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379721010536 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_76e6888c42b5456fa3824e5767782fc7 crossref_citationtrail_10_1016_j_rinp_2021_105069 crossref_primary_10_1016_j_rinp_2021_105069 elsevier_sciencedirect_doi_10_1016_j_rinp_2021_105069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Cheemaa, Seadawy, Chen (b43) 2019; 134 He, Wu (b26) 2006; 30 Liu (b33) 2001; 289 Bilal, Seadawy, Younis, Rizvi, El-Rashidy (b41) 2021; 23 Aminikhad, H.Moosaei, Hajipour (b27) 2009; 26 Li, Geng (b35) 2020; 144 Seadway, Rehman, Younis, Rizvi, Althobaiti (b42) 2021; 96 Cheemaa, Seadawy, Chen (b38) 2018; 133 Younas, Seadawy, Younis, Rizvi (b31) 2020; 68 Wang, Tian, Hu, Liu (b1) 2021; 119 Rizvi, Seadawy, Younis, Iqbal, Althobaiti (b40) 2021; 23 Shen, Tian (b2) 2021; 122 Ahmed, Seadawy, Lu (b19) 2019; 94 Gao, Guo, Shan (b5) 2021; 120 Özkan, Seadawy, Yasar (b14) 2021; 15 Raza, Seadawy, Kaplan, Butt (b46) 2021; 96 Çevikel (b8) 2018; 22 Bekir, Guner, Çevikel (b10) 2017; 4 Ali (b24) 2011; 2012 Ali (b25) 2017; 63 Li, Geng (b36) 2020; 102 Seadawy (b37) 2017; 139 Çevikel, Bekir, San, Gucen (b12) 2014; 351 Dai, Zhang (b32) 2006; 27 Raddadi, Younis, Seadawy, Rehman, Bilal (b44) 2021; 33 Zhang (b21) 2006; 350 Aksoy, Bekir, Çevikel (b9) 2019; 5 Khalique, Adeyemo (b47) 2020; 18 Guner, Bekir, Çevikel (b11) 2013; 68 Yang, Deng, Wei (b15) 2015; 2015 Wang, Zhang, Li (b28) 2008; 372 Zhang, L.Tong, Wang (b29) 2008; 372 Malflieta, Hereman (b30) 1996; 54 Ali (b22) 2016; 55 Gao, Tian, Shen, Feng (b3) 2021; 151 Ali (b23) 2018; 32 Wazwaz (b13) 2005; 50 Geng, Li, Xue, Li, Geng (b34) 2020; 30 Fan, Zhang (b16) 1998; 246 Fan (b18) 2000; 277 Wang (b17) 1996; 213 Ren, Zhang (b20) 2006; 27 Bilal, Seadawy, Younis, Rizvi, Zahed (b45) 2021; 44 Gao, Guo, Shan (b6) 2021; 147 Çevikel, Aksoy (b7) 2021; 67 Bashir, Seadawy, Rizvi, Younis, Ali (b39) 2021; 25 Yang, Tian, Qu, Zhang, Chen (b4) 2021; 150 Wazwaz (10.1016/j.rinp.2021.105069_b13) 2005; 50 Bilal (10.1016/j.rinp.2021.105069_b41) 2021; 23 Zhang (10.1016/j.rinp.2021.105069_b29) 2008; 372 Rizvi (10.1016/j.rinp.2021.105069_b40) 2021; 23 He (10.1016/j.rinp.2021.105069_b26) 2006; 30 Gao (10.1016/j.rinp.2021.105069_b6) 2021; 147 Ali (10.1016/j.rinp.2021.105069_b24) 2011; 2012 Younas (10.1016/j.rinp.2021.105069_b31) 2020; 68 Cheemaa (10.1016/j.rinp.2021.105069_b43) 2019; 134 Bekir (10.1016/j.rinp.2021.105069_b10) 2017; 4 Çevikel (10.1016/j.rinp.2021.105069_b12) 2014; 351 Khalique (10.1016/j.rinp.2021.105069_b47) 2020; 18 Gao (10.1016/j.rinp.2021.105069_b5) 2021; 120 Bilal (10.1016/j.rinp.2021.105069_b45) 2021; 44 Yang (10.1016/j.rinp.2021.105069_b15) 2015; 2015 Ali (10.1016/j.rinp.2021.105069_b25) 2017; 63 Li (10.1016/j.rinp.2021.105069_b35) 2020; 144 Bashir (10.1016/j.rinp.2021.105069_b39) 2021; 25 Wang (10.1016/j.rinp.2021.105069_b1) 2021; 119 Guner (10.1016/j.rinp.2021.105069_b11) 2013; 68 Seadawy (10.1016/j.rinp.2021.105069_b37) 2017; 139 Raddadi (10.1016/j.rinp.2021.105069_b44) 2021; 33 Gao (10.1016/j.rinp.2021.105069_b3) 2021; 151 Geng (10.1016/j.rinp.2021.105069_b34) 2020; 30 Liu (10.1016/j.rinp.2021.105069_b33) 2001; 289 Ahmed (10.1016/j.rinp.2021.105069_b19) 2019; 94 Dai (10.1016/j.rinp.2021.105069_b32) 2006; 27 Malflieta (10.1016/j.rinp.2021.105069_b30) 1996; 54 Fan (10.1016/j.rinp.2021.105069_b16) 1998; 246 Wang (10.1016/j.rinp.2021.105069_b17) 1996; 213 Fan (10.1016/j.rinp.2021.105069_b18) 2000; 277 Özkan (10.1016/j.rinp.2021.105069_b14) 2021; 15 Wang (10.1016/j.rinp.2021.105069_b28) 2008; 372 Yang (10.1016/j.rinp.2021.105069_b4) 2021; 150 Çevikel (10.1016/j.rinp.2021.105069_b8) 2018; 22 Li (10.1016/j.rinp.2021.105069_b36) 2020; 102 Raza (10.1016/j.rinp.2021.105069_b46) 2021; 96 Shen (10.1016/j.rinp.2021.105069_b2) 2021; 122 Cheemaa (10.1016/j.rinp.2021.105069_b38) 2018; 133 Ali (10.1016/j.rinp.2021.105069_b22) 2016; 55 Ali (10.1016/j.rinp.2021.105069_b23) 2018; 32 Ren (10.1016/j.rinp.2021.105069_b20) 2006; 27 Çevikel (10.1016/j.rinp.2021.105069_b7) 2021; 67 Aminikhad (10.1016/j.rinp.2021.105069_b27) 2009; 26 Aksoy (10.1016/j.rinp.2021.105069_b9) 2019; 5 Zhang (10.1016/j.rinp.2021.105069_b21) 2006; 350 Seadway (10.1016/j.rinp.2021.105069_b42) 2021; 96 |
References_xml | – volume: 119 year: 2021 ident: b1 article-title: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber publication-title: Appl Math Lett – volume: 23 year: 2021 ident: b40 article-title: Various optical soliton for a weak fractional nonlinear Schrödinger equation with parabolic law publication-title: Results Phys – volume: 26 start-page: 1427 year: 2009 end-page: 1433 ident: b27 article-title: Exact solutions for nonlinear partial differential equations via exp-function method publication-title: Numer Methods Partial Differ Eq – volume: 68 year: 2013 ident: b11 article-title: Dark soliton and periodic wave solutions of nonlinear evolution equations publication-title: Adv Differ Eq Vol – volume: 213 start-page: 279 year: 1996 end-page: 287 ident: b17 article-title: Exact solutions for a compound KdV-burgers equation publication-title: Phys Lett A – volume: 27 start-page: 1042 year: 2006 end-page: 1049 ident: b32 article-title: Jacobian elliptic function method for nonlinear differential equations publication-title: Chaos Solitons Fractals – volume: 32 start-page: 2489 year: 2018 end-page: 2497 ident: b23 article-title: A new analytical approach for solving nonlinear boundary value problems arising in nonlinear phenomena publication-title: Filomat – volume: 67 start-page: 3 year: 2021 ident: b7 article-title: Soliton solutions of nonlinear fractional differentialequations with their applications in mathematical physics publication-title: Rev Mexicana Fís – volume: 133 start-page: 547 year: 2018 ident: b38 article-title: More general families of exact solitary wave solutions of the nonlinear Schrodinger equation with their applications in nonlinear optics publication-title: Eur Phys J Plus – volume: 25 year: 2021 ident: b39 article-title: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system publication-title: Results Phys – volume: 23 year: 2021 ident: b41 article-title: Analytical wave structures in plasma physics modelled by Gilson-Pickering equation by two integration norms publication-title: Results Phys – volume: 147 year: 2021 ident: b6 article-title: Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq-Burgers system publication-title: Chaos Solitons Fractals – volume: 102 year: 2020 ident: b36 article-title: Rogue periodic waves of the sine–Gordon equation publication-title: Appl Math Lett – volume: 289 start-page: 69 year: 2001 end-page: 74 ident: b33 article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations publication-title: Phys Lett A – volume: 351 start-page: 694 year: 2014 end-page: 700 ident: b12 article-title: Construction of periodic and solitary wave solutions for the complex nonlinear evolution equations publication-title: J Franklin Inst B – volume: 139 start-page: 31 year: 2017 end-page: 43 ident: b37 article-title: The generalized nonlinear higher order of KdV equations from the higher order nonlinear schrödiner’s equation and its solutions publication-title: Optik – volume: 63 start-page: 5149 year: 2017 end-page: 5158 ident: b25 article-title: Magnetohydrodynamics thin film fluid flow under the effect of thermophoresis and variable fluid properties publication-title: AICHE J – volume: 4 start-page: 315 year: 2017 end-page: 321 ident: b10 article-title: The exp-function method for some time-fractional differential equations publication-title: IEEE/CAA J Autom Sin – volume: 2012 start-page: 1 year: 2011 end-page: 14 ident: b24 article-title: The optimal homotopy asymptotic method for the solution of higher-order boundary value problems in finite domains publication-title: Abstr Appl Anal – volume: 246 start-page: 403 year: 1998 end-page: 406 ident: b16 article-title: A note on the homogeneous balance method publication-title: Phys Lett A – volume: 150 year: 2021 ident: b4 article-title: Lax pair, conservation laws, darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber publication-title: Chaos Solitons Fractals – volume: 2015 start-page: 117 year: 2015 ident: b15 article-title: A Riccati–Bernoulli sub-ODE method for nonlinear partial differential equations and its application publication-title: Adv Differ Eq – volume: 27 start-page: 959 year: 2006 end-page: 979 ident: b20 article-title: A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equation publication-title: Chaos Solitons Fractals – volume: 96 year: 2021 ident: b46 article-title: Symbolic computation and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with applications publication-title: Phys Scr – volume: 372 start-page: 417 year: 2008 ident: b28 article-title: The (G’, G)-expansion method and traveling wave solutions of nonlinear evolutions equations in mathematical physics publication-title: Phys Lett A – volume: 30 start-page: 991 year: 2020 end-page: 1013 ident: b34 article-title: A vector general nonlinear Schrödinger equation with (m+n) components publication-title: J Nonlinear Sci – volume: 372 start-page: 2254 year: 2008 end-page: 2257 ident: b29 article-title: A generalized (g’/g)-expansion method for the mkdv equation with variable coefficients publication-title: Phys Lett A – volume: 134 start-page: 117 year: 2019 ident: b43 article-title: Some new families of solitary wave solutions of generalized Schamel equation and their applications in plasma physics publication-title: Eur Phys J Plus – volume: 277 start-page: 212 year: 2000 end-page: 218 ident: b18 article-title: Extended tanh-function method and its applications to nonlinear equations publication-title: Phys Lett A – volume: 350 start-page: 103 year: 2006 end-page: 109 ident: b21 article-title: The improved F-expansion method and its applications publication-title: Phys Lett A – volume: 68 start-page: 348 year: 2020 end-page: 364 ident: b31 article-title: Dispersive of propagation wave structures to the dullin–gottwald–holm dynamical equation in a shallow water waves publication-title: Chinese J Phys – volume: 151 year: 2021 ident: b3 article-title: Comment on: Shallow water in an open sea or a wide channel: Auto- and non-auto-bäcklund transformations with solitons for a generalized dimensional dispersive long-wave system publication-title: Chaos Solitons Fractals – volume: 54 start-page: 563 year: 1996 end-page: 568 ident: b30 article-title: The tanh method: Exact solutions of nonlinear evolution and wave equations publication-title: Phys Scr – volume: 22 start-page: 15 year: 2018 end-page: 24 ident: b8 article-title: New exact solutions of the space–time fractional KdV-burgers and nonlinear fractional foam drainage equation publication-title: Thermal Sci – volume: 18 year: 2020 ident: b47 article-title: A study of publication-title: Results Phys – volume: 122 year: 2021 ident: b2 article-title: Bilinear auto-bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves publication-title: Appl Math Lett – volume: 55 start-page: 2811 year: 2016 end-page: 2819 ident: b22 article-title: New version of optimal homotopy asymptotic method for the solution of nonlinear boundary value problems in finite and infinite intervals publication-title: Alexandria Eng J – volume: 50 start-page: 1685 year: 2005 end-page: 1696 ident: b13 article-title: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method publication-title: Comput Math Appl – volume: 5 start-page: 511 year: 2019 end-page: 516 ident: b9 article-title: Study on fractional differential equations with modified Riemann–Liouville derivative via Kudryashov method publication-title: Int J Nonlinear Sci Numer Simul 20 – volume: 30 start-page: 700 year: 2006 end-page: 708 ident: b26 article-title: Exp-function method for nonlinear wave equations publication-title: Chaos Solitons Fractals – volume: 15 start-page: 666 year: 2021 end-page: 678 ident: b14 article-title: Multi-wave, breather and interaction solutions to (3+1) dimensional vakhnenko–parkes equation arising at propagation of high-frequency waves in a relaxing medium publication-title: J Taibah Univ Sci – volume: 120 year: 2021 ident: b5 article-title: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system publication-title: Appl Math Lett – volume: 44 start-page: 4094 year: 2021 end-page: 4104 ident: b45 article-title: Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis publication-title: Math Methods Appl Sci – volume: 94 year: 2019 ident: b19 article-title: M-shaped rational solitons and their interaction with kink waves in the Fokas-lenells equation publication-title: Phys Scr – volume: 144 start-page: 164 year: 2020 end-page: 184 ident: b35 article-title: On a vector long wave-short wave-type model publication-title: Stud Appl Math – volume: 96 year: 2021 ident: b42 article-title: Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with pochhammer-chree equation publication-title: Phys Scr – volume: 33 year: 2021 ident: b44 article-title: Dynamical behaviour of shallow water waves and solitary wavesolutions of the Dullin–Gottwald–Holm dynamical system publication-title: J King Saud Univ Sci – volume: 147 year: 2021 ident: 10.1016/j.rinp.2021.105069_b6 article-title: Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq-Burgers system publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110875 – volume: 50 start-page: 1685 year: 2005 ident: 10.1016/j.rinp.2021.105069_b13 article-title: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method publication-title: Comput Math Appl doi: 10.1016/j.camwa.2005.05.010 – volume: 351 start-page: 694 issue: 2 year: 2014 ident: 10.1016/j.rinp.2021.105069_b12 article-title: Construction of periodic and solitary wave solutions for the complex nonlinear evolution equations publication-title: J Franklin Inst B doi: 10.1016/j.jfranklin.2013.04.017 – volume: 54 start-page: 563 year: 1996 ident: 10.1016/j.rinp.2021.105069_b30 article-title: The tanh method: Exact solutions of nonlinear evolution and wave equations publication-title: Phys Scr doi: 10.1088/0031-8949/54/6/003 – volume: 139 start-page: 31 year: 2017 ident: 10.1016/j.rinp.2021.105069_b37 article-title: The generalized nonlinear higher order of KdV equations from the higher order nonlinear schrödiner’s equation and its solutions publication-title: Optik doi: 10.1016/j.ijleo.2017.03.086 – volume: 25 year: 2021 ident: 10.1016/j.rinp.2021.105069_b39 article-title: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system publication-title: Results Phys – volume: 67 start-page: 3 year: 2021 ident: 10.1016/j.rinp.2021.105069_b7 article-title: Soliton solutions of nonlinear fractional differentialequations with their applications in mathematical physics publication-title: Rev Mexicana Fís – volume: 134 start-page: 117 year: 2019 ident: 10.1016/j.rinp.2021.105069_b43 article-title: Some new families of solitary wave solutions of generalized Schamel equation and their applications in plasma physics publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2019-12467-7 – volume: 44 start-page: 4094 year: 2021 ident: 10.1016/j.rinp.2021.105069_b45 article-title: Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis publication-title: Math Methods Appl Sci doi: 10.1002/mma.7013 – volume: 122 year: 2021 ident: 10.1016/j.rinp.2021.105069_b2 article-title: Bilinear auto-bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves publication-title: Appl Math Lett doi: 10.1016/j.aml.2021.107301 – volume: 23 year: 2021 ident: 10.1016/j.rinp.2021.105069_b40 article-title: Various optical soliton for a weak fractional nonlinear Schrödinger equation with parabolic law publication-title: Results Phys doi: 10.1016/j.rinp.2021.103998 – volume: 33 year: 2021 ident: 10.1016/j.rinp.2021.105069_b44 article-title: Dynamical behaviour of shallow water waves and solitary wavesolutions of the Dullin–Gottwald–Holm dynamical system publication-title: J King Saud Univ Sci doi: 10.1016/j.jksus.2021.101627 – volume: 68 year: 2013 ident: 10.1016/j.rinp.2021.105069_b11 article-title: Dark soliton and periodic wave solutions of nonlinear evolution equations publication-title: Adv Differ Eq Vol – volume: 372 start-page: 417 year: 2008 ident: 10.1016/j.rinp.2021.105069_b28 article-title: The (G’, G)-expansion method and traveling wave solutions of nonlinear evolutions equations in mathematical physics publication-title: Phys Lett A doi: 10.1016/j.physleta.2007.07.051 – volume: 22 start-page: 15 issue: 1 year: 2018 ident: 10.1016/j.rinp.2021.105069_b8 article-title: New exact solutions of the space–time fractional KdV-burgers and nonlinear fractional foam drainage equation publication-title: Thermal Sci doi: 10.2298/TSCI170615267C – volume: 96 year: 2021 ident: 10.1016/j.rinp.2021.105069_b46 article-title: Symbolic computation and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with applications publication-title: Phys Scr doi: 10.1088/1402-4896/ac0f93 – volume: 30 start-page: 700 year: 2006 ident: 10.1016/j.rinp.2021.105069_b26 article-title: Exp-function method for nonlinear wave equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.03.020 – volume: 30 start-page: 991 issue: 3 year: 2020 ident: 10.1016/j.rinp.2021.105069_b34 article-title: A vector general nonlinear Schrödinger equation with (m+n) components publication-title: J Nonlinear Sci doi: 10.1007/s00332-019-09599-4 – volume: 144 start-page: 164 issue: 2 year: 2020 ident: 10.1016/j.rinp.2021.105069_b35 article-title: On a vector long wave-short wave-type model publication-title: Stud Appl Math doi: 10.1111/sapm.12293 – volume: 120 year: 2021 ident: 10.1016/j.rinp.2021.105069_b5 article-title: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system publication-title: Appl Math Lett doi: 10.1016/j.aml.2021.107161 – volume: 18 year: 2020 ident: 10.1016/j.rinp.2021.105069_b47 article-title: A study of (3+1)−dimensional generalized Korteweg–de Vries- Zakharov-Kuznetsov equation via Lie symmetry approach publication-title: Results Phys doi: 10.1016/j.rinp.2020.103197 – volume: 151 year: 2021 ident: 10.1016/j.rinp.2021.105069_b3 article-title: Comment on: Shallow water in an open sea or a wide channel: Auto- and non-auto-bäcklund transformations with solitons for a generalized dimensional dispersive long-wave system publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111222 – volume: 372 start-page: 2254 year: 2008 ident: 10.1016/j.rinp.2021.105069_b29 article-title: A generalized (g’/g)-expansion method for the mkdv equation with variable coefficients publication-title: Phys Lett A doi: 10.1016/j.physleta.2007.11.026 – volume: 133 start-page: 547 year: 2018 ident: 10.1016/j.rinp.2021.105069_b38 article-title: More general families of exact solitary wave solutions of the nonlinear Schrodinger equation with their applications in nonlinear optics publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2018-12354-9 – volume: 15 start-page: 666 issue: 1 year: 2021 ident: 10.1016/j.rinp.2021.105069_b14 article-title: Multi-wave, breather and interaction solutions to (3+1) dimensional vakhnenko–parkes equation arising at propagation of high-frequency waves in a relaxing medium publication-title: J Taibah Univ Sci doi: 10.1080/16583655.2021.1999053 – volume: 26 start-page: 1427 year: 2009 ident: 10.1016/j.rinp.2021.105069_b27 article-title: Exact solutions for nonlinear partial differential equations via exp-function method publication-title: Numer Methods Partial Differ Eq doi: 10.1002/num.20497 – volume: 27 start-page: 1042 year: 2006 ident: 10.1016/j.rinp.2021.105069_b32 article-title: Jacobian elliptic function method for nonlinear differential equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.04.071 – volume: 5 start-page: 511 year: 2019 ident: 10.1016/j.rinp.2021.105069_b9 article-title: Study on fractional differential equations with modified Riemann–Liouville derivative via Kudryashov method publication-title: Int J Nonlinear Sci Numer Simul 20 doi: 10.1515/ijnsns-2015-0151 – volume: 246 start-page: 403 year: 1998 ident: 10.1016/j.rinp.2021.105069_b16 article-title: A note on the homogeneous balance method publication-title: Phys Lett A doi: 10.1016/S0375-9601(98)00547-7 – volume: 94 year: 2019 ident: 10.1016/j.rinp.2021.105069_b19 article-title: M-shaped rational solitons and their interaction with kink waves in the Fokas-lenells equation publication-title: Phys Scr doi: 10.1088/1402-4896/ab0455 – volume: 277 start-page: 212 year: 2000 ident: 10.1016/j.rinp.2021.105069_b18 article-title: Extended tanh-function method and its applications to nonlinear equations publication-title: Phys Lett A doi: 10.1016/S0375-9601(00)00725-8 – volume: 102 year: 2020 ident: 10.1016/j.rinp.2021.105069_b36 article-title: Rogue periodic waves of the sine–Gordon equation publication-title: Appl Math Lett doi: 10.1016/j.aml.2019.106147 – volume: 119 year: 2021 ident: 10.1016/j.rinp.2021.105069_b1 article-title: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber publication-title: Appl Math Lett doi: 10.1016/j.aml.2020.106936 – volume: 2015 start-page: 117 year: 2015 ident: 10.1016/j.rinp.2021.105069_b15 article-title: A Riccati–Bernoulli sub-ODE method for nonlinear partial differential equations and its application publication-title: Adv Differ Eq doi: 10.1186/s13662-015-0452-4 – volume: 96 issue: 4 year: 2021 ident: 10.1016/j.rinp.2021.105069_b42 article-title: Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with pochhammer-chree equation publication-title: Phys Scr – volume: 213 start-page: 279 year: 1996 ident: 10.1016/j.rinp.2021.105069_b17 article-title: Exact solutions for a compound KdV-burgers equation publication-title: Phys Lett A doi: 10.1016/0375-9601(96)00103-X – volume: 4 start-page: 315 issue: 2 year: 2017 ident: 10.1016/j.rinp.2021.105069_b10 article-title: The exp-function method for some time-fractional differential equations publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2016.7510172 – volume: 32 start-page: 2489 year: 2018 ident: 10.1016/j.rinp.2021.105069_b23 article-title: A new analytical approach for solving nonlinear boundary value problems arising in nonlinear phenomena publication-title: Filomat doi: 10.2298/FIL1807489A – volume: 68 start-page: 348 year: 2020 ident: 10.1016/j.rinp.2021.105069_b31 article-title: Dispersive of propagation wave structures to the dullin–gottwald–holm dynamical equation in a shallow water waves publication-title: Chinese J Phys doi: 10.1016/j.cjph.2020.09.021 – volume: 289 start-page: 69 year: 2001 ident: 10.1016/j.rinp.2021.105069_b33 article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations publication-title: Phys Lett A doi: 10.1016/S0375-9601(01)00580-1 – volume: 150 year: 2021 ident: 10.1016/j.rinp.2021.105069_b4 article-title: Lax pair, conservation laws, darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110487 – volume: 23 year: 2021 ident: 10.1016/j.rinp.2021.105069_b41 article-title: Analytical wave structures in plasma physics modelled by Gilson-Pickering equation by two integration norms publication-title: Results Phys doi: 10.1016/j.rinp.2021.103959 – volume: 27 start-page: 959 year: 2006 ident: 10.1016/j.rinp.2021.105069_b20 article-title: A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equation publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.04.063 – volume: 55 start-page: 2811 year: 2016 ident: 10.1016/j.rinp.2021.105069_b22 article-title: New version of optimal homotopy asymptotic method for the solution of nonlinear boundary value problems in finite and infinite intervals publication-title: Alexandria Eng J doi: 10.1016/j.aej.2016.07.013 – volume: 2012 start-page: 1 year: 2011 ident: 10.1016/j.rinp.2021.105069_b24 article-title: The optimal homotopy asymptotic method for the solution of higher-order boundary value problems in finite domains publication-title: Abstr Appl Anal doi: 10.1155/2011/901235 – volume: 350 start-page: 103 year: 2006 ident: 10.1016/j.rinp.2021.105069_b21 article-title: The improved F-expansion method and its applications publication-title: Phys Lett A doi: 10.1016/j.physleta.2005.10.099 – volume: 63 start-page: 5149 year: 2017 ident: 10.1016/j.rinp.2021.105069_b25 article-title: Magnetohydrodynamics thin film fluid flow under the effect of thermophoresis and variable fluid properties publication-title: AICHE J doi: 10.1002/aic.15794 |
SSID | ssj0001645511 |
Score | 2.4127297 |
Snippet | In present work, we discussed the (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation (gKdV-ZKe) which describes the effect of magnetic... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 105069 |
SubjectTerms | Ion-acoustic waves New MEDAM Simulations The (3+1)-dimensional gKdV-ZK equation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwELVQJSQ2iKe4QJEXLECVxY3j2MmyIKqKClYUKjbRxJ6U0Nu03FdFV_wDH8I_8SXM2LlVVmXDLoocO_KM5pyxxmeEeE5MKAuAToGujDLEaFVVxsqppoqQlsSe33-w-4fm3VFxNGr1xTVhSR44bdwrZ9FSluaNbhjsW8hLbZDmdIRtrY_3yAnzRslUPF2xhqgAZ1tas06fq9xwYyYVd827nsUqdcZ9bqdc7TxCpSjePwKnEeDs3RG3B6Yod9Mf3hU3sL8nbsaKTb-4L35_RjiZ_ZB90rqAudx0tFEU5GKPLnkBa1zIrpfE8mQ7W3VBspdJipoUR4hlBrnuQIJ8ke9kL1Vgpf-k0iGPkxx1d0ljDrgg9wKP__z8FVB94uSaHr_AyVeYn63p8WB12eNycbaW-D1Jh_Oi50TMT0Gms5PFA3G49_bjm301dF9QPqecSFliep7SjYbMlhcuL6ClbHLaEOIbb6DJbWNN8GVT6HZqWsxQTwP4EkywWFQhfyi2aAvwkZAOdElEEKrCobFIU5rMZa3F0lJ409VEZJvdr_0gTc4dMmb1pgbtW80Wq9lidbLYROxcfXOehDmuHf2ajXo1kkW14wtytXpwtfpfrjYRxcYl6oGfJN5BU3XXLP74fyz-RNzSfPMiFow_FVvL-Qq3iQ8tm2fR9f8CePkIqQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqSkhcEG1BLD-VDz2AKms3tmM7x7aiqqjgAoUVl8hxnCXtkl2yPxU98Q48CO_EkzBjJ2W59MAtsvwTeUYz31gz3xByAEgoKa3XzPJMMgmIlmUmZE4VWXBpkez57Tt1diHfjNPxFjnpa2EwrbKz_dGmB2vdjQy72xzO63r4nkPsIjSyz2CXR4G020KaUMQ3Pv77zqIkgAKMu3A-wwVd7UxM82rrBmkreYIdb0eY97zhnwKN_4ab2nA9pw_Jgw4z0qP4Wztkyze75F7I3XSLPfLrk7dX0--0iawXtqV9bxsG5i5066LXdu0XtG4o4D1aTVd1SVHfKNhPsCiAN0u6ri219KU4TF6xEjn_I18HnURi6voG5pxjau61n_z-8bP07COG2fD52V59se1sDZ_nq5vGLxezNfXfIok4HjoHiP7V0viKsnhELk5ffzg5Y10fBuYEREdMAeZzEHgUIECRapHaCuLKUQG-XzppC6EKJUtnipRXI1n5xPNRaZ2xslQ-zUrxmGzDFfgnhGrLDUBCm6XaS-VhS5nopFLeKDB0PBuQpL_93HUk5dgrY5r32WiXOUosR4nlUWIDcni7Zh4pOu6cfYxCvZ2J9NphYNZO8k6_cq28MsY4yQtEmJUVhksPiqwBUFVOD0jaq0T-j7bCVvUdhz_9z3XPyH2OZRchW_w52V62K_8CwNCy2A_a_gcRjgoN priority: 102 providerName: Elsevier |
Title | Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation in plasma physics |
URI | https://dx.doi.org/10.1016/j.rinp.2021.105069 https://doaj.org/article/76e6888c42b5456fa3824e5767782fc7 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKERKXil-xLVQ-cABVRhvHsZ0DQi2iKlTlxMKKS-Q4zhK6zbbJ7vbnxDvwILwTT8KMnZQiVZW4RFbk2JFnPPONNf6GkOeAhKLCOMUMTwUTgGhZqn3mVJ56lxbIng8-yr2R-DBOxiukL3fULWB7bWiH9aRGzfTV2cn5G9jwr__majVVjdyTPMKytUOZ3iK3wTMp3KgHHdz3Zy5SAEDAGIxzZO9Tqeru0Vw_zD--ylP6X3FZV9zQ7j2y1uFHuh0Efp-suPoBuePzOG37kPz64szh9JzWgQHDNLSvc8PA9PnKXfTULF1Lq5oC9qPldFEVFHWPgi0F6wLYs6DLylBDX8Rb0UtWIP9_4O6gk0BSXV1An31M0z11k98_fhaOfcaQG5pfzeE308yW0NxfXNRu3s6W1J0EQnGc9Bjg-pGh4USlfURGu-8-vd1jXU0GZmOIlJgE_GchCMlBmHGi4sSUEGMOc8ABwgqTxzKXorA6T3g5FKWLHB8WxmojCumStIgfk1VYAveEUGW4Bnho0kQ5IR0MiSIrpdMSjB5PByTqVz-zHWE51s2YZn1m2vcMJZahxLIgsQHZuvzmONB13Nh7B4V62ROptv2LWTPJup2bKemk1toKniPaLE2suXCg1ArAVWnVgCS9SmQdagloBIaqbph8_b9-dYPc5XjxwueLPyWr82bhngEcmueb_hgBnu_HO5te3_8AaBwL5A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKEYIL4lcsvz5wAFXWbhzHTo60otqybS-0sOISObazhC7ZJftT0RPvwIPwTjwJM3ZSlksP3CLLY0ee0cw31vgbQl4CEoqsdoppngkmANGyLPWVU0XmQ1ogez46lsNT8W6cjLfIXvcWBssqW98ffLr31u1Ivz3N_ryq-u855C6xQvYZ7PIYy2vkOqABhf0bDsa7fy9apABUgIkXCjCUaB_PhDqvpqqRt5JH2PJ2gIXPGwHK8_hvxKmN2LN_h9xuQSN9E_7rLtly9T1ywxdvmsV98uuj02fT77QOtBe6oV1zGwb-zrfroud67Ra0qikAPlpOV5WlaHAUHCi4FACclq4rTTV9Fe9Er5lF0v9A2EEngZm6uoA5I6zNPXeT3z9-Wsc-YJ4Nn5_02WfdzNbwOVpd1G65mK2p-xZYxHHTOWD0r5qGa5TFA3K6__Zkb8jaRgzMxJAeMQmgz0DmUYAG40TFiS4hsRwUEPyFEbqIZSGFNWmR8HIgShc5PrDapFpY6ZLMxg_JNhyBe0So0jwFTKizRDkhHSwpIhWV0qUSPB3PeiTqTj83LUs5NsuY5l052pccNZajxvKgsR7ZuZSZB46OK2fvolIvZyK_th-YNZO8NbBcSSfTNDWCFwgxSx2nXDiwZAWIqjSqR5LOJPJ_zBWWqq7Y_PF_yr0gN4cnR4f54cHx6Am5xfENhi8df0q2l83KPQNktCyee8v_A21IDSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+nonlinear+electron-acoustic+waves+in+the+fluid+ions+propagated+via+a+%283%2B1%29-dimensional+generalized+Korteweg%E2%80%93de-Vries%E2%80%93Zakharov%E2%80%93Kuznetsov+equation+in+plasma+physics&rft.jtitle=Results+in+physics&rft.au=Rehman%2C+H.U.&rft.au=Seadawy%2C+Aly+R.&rft.au=Younis%2C+M.&rft.au=Rizvi%2C+S.T.R.&rft.date=2022-02-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=33&rft.spage=105069&rft_id=info:doi/10.1016%2Fj.rinp.2021.105069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2021_105069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |