GABA‐edited MEGA‐PRESS at 3 T: Does a measured macromolecule background improve linear combination modeling?
Purpose The J‐difference edited γ‐aminobutyric acid (GABA) signal is contaminated by other co‐edited signals—the largest of which originates from co‐edited macromolecules (MMs)—and is consequently often reported as “GABA+.” MM signals are broader and less well‐characterized than the metabolites, and...
Saved in:
Published in | Magnetic resonance in medicine Vol. 92; no. 4; pp. 1348 - 1362 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
The J‐difference edited γ‐aminobutyric acid (GABA) signal is contaminated by other co‐edited signals—the largest of which originates from co‐edited macromolecules (MMs)—and is consequently often reported as “GABA+.” MM signals are broader and less well‐characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus‐recommended alternative to parameterized modeling; however, they are relatively under‐studied in the context of edited MRS.
Methods
To address this limitation in the literature, we have acquired GABA‐edited MEGA‐PRESS data with pre‐inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single‐Gaussian parameterization, mean experimental MM spectrum and new multi‐Gaussian parameterization were compared in a three‐way analysis of a public MEGA‐PRESS dataset of 61 healthy participants.
Results
Both the experimental MMs and the multi‐Gaussian parameterization exhibited reduced fit residuals compared to the single‐Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single‐Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi‐Gaussian parameterization (58%), compared to the single‐Gaussian approach (50%).
Conclusions
Our results indicate that single‐Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra. |
---|---|
AbstractList | The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS.
To address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants.
Both the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%).
Our results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra. Purpose The J‐difference edited γ‐aminobutyric acid (GABA) signal is contaminated by other co‐edited signals—the largest of which originates from co‐edited macromolecules (MMs)—and is consequently often reported as “GABA+.” MM signals are broader and less well‐characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus‐recommended alternative to parameterized modeling; however, they are relatively under‐studied in the context of edited MRS. Methods To address this limitation in the literature, we have acquired GABA‐edited MEGA‐PRESS data with pre‐inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single‐Gaussian parameterization, mean experimental MM spectrum and new multi‐Gaussian parameterization were compared in a three‐way analysis of a public MEGA‐PRESS dataset of 61 healthy participants. Results Both the experimental MMs and the multi‐Gaussian parameterization exhibited reduced fit residuals compared to the single‐Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single‐Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi‐Gaussian parameterization (58%), compared to the single‐Gaussian approach (50%). Conclusions Our results indicate that single‐Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra. The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS.PURPOSEThe J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS.To address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants.METHODSTo address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants.Both the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%).RESULTSBoth the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%).Our results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.CONCLUSIONSOur results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra. |
Author | Simicic, Dunja Oeltzschner, Georg Hupfeld, Kathleen E. Hui, Steve C. N. Prisciandaro, James J. Zöllner, Helge J. Davies‐Jenkins, Christopher W. Song, Yulu Edden, Richard A. E. |
Author_xml | – sequence: 1 givenname: Christopher W. orcidid: 0000-0002-6015-762X surname: Davies‐Jenkins fullname: Davies‐Jenkins, Christopher W. organization: Kennedy Krieger Institute – sequence: 2 givenname: Helge J. orcidid: 0000-0002-7148-292X surname: Zöllner fullname: Zöllner, Helge J. organization: Kennedy Krieger Institute – sequence: 3 givenname: Dunja orcidid: 0000-0002-6600-2696 surname: Simicic fullname: Simicic, Dunja organization: Kennedy Krieger Institute – sequence: 4 givenname: Steve C. N. orcidid: 0000-0002-1523-4040 surname: Hui fullname: Hui, Steve C. N. organization: The George Washington School of Medicine and Health Sciences – sequence: 5 givenname: Yulu orcidid: 0000-0002-4416-7959 surname: Song fullname: Song, Yulu organization: Kennedy Krieger Institute – sequence: 6 givenname: Kathleen E. orcidid: 0000-0001-5086-4841 surname: Hupfeld fullname: Hupfeld, Kathleen E. organization: Kennedy Krieger Institute – sequence: 7 givenname: James J. orcidid: 0000-0002-8877-7871 surname: Prisciandaro fullname: Prisciandaro, James J. organization: Medical University of South Carolina – sequence: 8 givenname: Richard A. E. orcidid: 0000-0002-0671-7374 surname: Edden fullname: Edden, Richard A. E. organization: Kennedy Krieger Institute – sequence: 9 givenname: Georg orcidid: 0000-0003-3083-9811 surname: Oeltzschner fullname: Oeltzschner, Georg email: goeltzs1@jhmi.edu organization: Kennedy Krieger Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38818623$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1P3DAQhi1EVRbaA38A-UgPAX8lcXpBW7rdVmJFxcfZcuwJchvH1E5acePaW38jv6SGXS5VOY1m9LyvZubdRdtDGAChfUqOKCHs2Ed_xAkt5Raa0ZKxgpWN2EYzUgtScNqIHbSb0jdCSNPU4jXa4VJSWTE-Q3E5_zB_uP8D1o1g8WqxfOy-XiwuL7EeMX-4_331Hn8MkLDGHnSaYsa8NjH40IOZesCtNt9vYpgGi52_jeEn4N4NoCM2wbdu0KMLA_bBQh7fnLxBrzrdJ3i7qXvo-tPi6vRzcXa-_HI6PysMZ6UsRGepEJp1jWaMs5qZTpa2reoSBDU1laTWthWyMVoKW3UNyZOutdJ2lBjS8j10uPbNK_2YII3Ku2Sg7_UAYUqKk4qLSjSiyujBBp1aD1bdRud1vFPPf8rA8RrId6cUoVPGjU93jVG7XlGiHpNQOQn1lERWvPtH8Wz6P3bj_sv1cPcyqFYXq7XiL9hSmc4 |
CitedBy_id | crossref_primary_10_1002_mrm_30423 |
Cites_doi | 10.1002/mrm.28942 10.1002/nbm.4482 10.1016/j.neuroimage.2015.07.042 10.1002/nbm.4618 10.1002/nbm.4199 10.1006/jmre.1997.1244 10.1016/j.jneumeth.2020.108827 10.1002/nbm.4328 10.1002/1099‐1492(200005)13:3<129::AID‐NBM619>3.0.CO;2‐V 10.1002/mrm.27742 10.1002/mrm.21081 10.1002/(SICI)1099‐1492(199810)11:6<266::AID‐NBM530>3.0.CO;2‐J 10.1002/mrm.28484 10.1002/mrm.25009 10.1073/pnas.90.12.5662 10.1002/nbm.4484 10.1371/journal.pone.0060312 10.1002/mrm.22579 10.1002/jmri.23817 10.1006/jmre.1999.1895 10.1002/jmri.24478 10.1016/j.neuroimage.2012.12.004 10.1002/mrm.27824 10.1016/j.neuroimage.2017.07.021 10.1002/mrm.1910140104 10.1016/j.ab.2023.115113 10.1002/mrm.22022 10.1002/nbm.1688 10.1002/nbm.4411 10.1002/nbm.2896 10.1002/nbm.4393 10.1002/mrm.25549 10.1002/mrm.1910170202 10.1002/nbm.4368 10.1002/mrm.29370 10.1002/nbm.4197 10.1002/mrm.24391 10.1002/mrm.26103 10.1016/j.mri.2017.04.013 10.1002/nbm.4854 10.1152/jn.91060.2008 10.1016/j.ab.2020.113738 10.3174/ajnr.A3483 10.1002/mrm.27467 10.1002/mrm.24995 10.1002/mrm.10146 10.1002/ana.410440614 10.1002/mrm.25602 10.1002/1522‐2594(200103)45:3<517::AID‐MRM1068>3.0.CO;2‐6 10.1002/mrm.1910320304 10.1002/mrm.10246 10.1002/mrm.28910 10.1002/nbm.4364 10.1152/jn.00704.2012 10.1002/mrm.1269 10.1088/0957‐0233/20/10/104034 10.1002/mrm.26091 10.1002/mrm.29093 10.1002/nbm.5076 10.1002/mrm.1910300604 10.1002/nbm.698 10.1002/nbm.4702 10.1002/nbm.4257 10.1002/jmri.25304 10.1002/mrm.1910300107 |
ContentType | Journal Article |
Copyright | 2024 International Society for Magnetic Resonance in Medicine 2024 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2024 International Society for Magnetic Resonance in Medicine – notice: 2024 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mrm.30158 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1362 |
ExternalDocumentID | 38818623 10_1002_mrm_30158 MRM30158 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National institutes of Health (USA) funderid: K99 AG080084; P41 EB031771; R00 AG062230; R01 EB016089; R01 EB023963; R21 EB033516; S10 OD021648 – fundername: NIA NIH HHS grantid: K99 AG080084 – fundername: NIBIB NIH HHS grantid: R01 EB023963 – fundername: NIA NIH HHS grantid: R00 AG062230 – fundername: NIBIB NIH HHS grantid: P41 EB031771 – fundername: NIAAA NIH HHS grantid: K24 AA030788 – fundername: NIDA NIH HHS grantid: R01 DA054275 – fundername: ODCDC CDC HHS grantid: S10 OD021648 – fundername: NIBIB NIH HHS grantid: R01 EB016089 – fundername: NIBIB NIH HHS grantid: R21 EB033516 – fundername: NIH HHS grantid: S10 OD021648 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3258-4fd144a2f9a223272cf85db675e41c71807adb489ca84d6f90807fbd8df10c0b3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Jul 10 23:50:35 EDT 2025 Wed Jul 23 01:46:39 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Tue Jul 01 04:27:10 EDT 2025 Wed Jan 22 17:18:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | macromolecules GABA metabolite‐nulled GABA+ MEGA‐PRESS |
Language | English |
License | 2024 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3258-4fd144a2f9a223272cf85db675e41c71807adb489ca84d6f90807fbd8df10c0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0671-7374 0000-0002-7148-292X 0000-0003-3083-9811 0000-0002-6600-2696 0000-0002-6015-762X 0000-0002-1523-4040 0000-0001-5086-4841 0000-0002-8877-7871 0000-0002-4416-7959 |
PMID | 38818623 |
PQID | 3063464946 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3063464946 pubmed_primary_38818623 crossref_citationtrail_10_1002_mrm_30158 crossref_primary_10_1002_mrm_30158 wiley_primary_10_1002_mrm_30158_MRM30158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 2024-10-00 2024-Oct 20241001 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2024 |
References | 2017; 42 2013; 26 2023; 36 1991; 17 1990; 14 2015; 74 2016; 75 2023; 669 2001; 45 2013; 8 2001; 46 2017; 159 1998; 44 2002; 47 2002; 48 2021; 34 2000; 13 2024; 7 2017; 77 1993; 30 2022; 35 2011; 65 2011; 24 2012; 68 2021; 85 2001; 14 1998; 11 1994; 32 2016; 44 2009; 62 2021; 86 2009; 20 2013; 109 2006; 56 2011 2015; 121 1999; 141 2020; 343 1993; 90 2022; 87 2020; 33 2022; 88 2014; 40 2014; 86 2013; 37 2019; 82 2019; 81 1997; 129 2020 2013; 34 2019 2020; 599 2009; 101 2014; 72 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 RStudio Team (e_1_2_8_45_1) 2020 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – year: 2011 – volume: 599 year: 2020 article-title: Elevated homocarnosine and GABA in subject on isoniazid as assessed through 1H MRS at 7T publication-title: Anal Biochem – volume: 14 start-page: 260 year: 2001 end-page: 264 article-title: Automatic quantitation of localized in vivo 1H spectra with LCModel publication-title: NMR Biomed – volume: 8 year: 2013 article-title: Glutamate concentration in the medial prefrontal cortex predicts resting‐state cortical‐subcortical functional connectivity in humans publication-title: PLoS One – volume: 33 year: 2020 article-title: Correcting frequency and phase offsets in MRS data using robust spectral registration publication-title: NMR Biomed – volume: 81 start-page: 746 year: 2019 end-page: 758 article-title: Investigation of the influence of macromolecules and spline baseline in the fitting model of human brain spectra at 9.4T publication-title: Magn Reson Med – volume: 109 start-page: 1343 year: 2013 end-page: 1349 article-title: Relationship between transcranial magnetic stimulation measures of intracortical inhibition and spectroscopy measures of GABA and glutamate+glutamine publication-title: J Neurophysiol – volume: 36 year: 2023 article-title: Feasibility and implications of using subject‐specific macromolecular spectra to model short echo time magnetic resonance spectroscopy data publication-title: NMR Biomed – volume: 77 start-page: 23 year: 2017 end-page: 33 article-title: Advanced processing and simulation of MRS data using the FID appliance (FID‐A) – an open source, MATLAB‐based toolkit publication-title: Magn Reson Med – volume: 85 start-page: 601 year: 2021 end-page: 614 article-title: A novel method to measure T –relaxation times of macromolecules and quantification of the macromolecular resonances publication-title: Magn Reson Med – volume: 46 start-page: 855 year: 2001 end-page: 863 article-title: Characterization of the macromolecule baseline in localized 1H‐MR spectra of human brain publication-title: Magn Reson Med – volume: 47 start-page: 1009 year: 2002 end-page: 1012 article-title: Direct in vivo measurement of human cerebral GABA concentration using MEGA‐editing at 7 tesla publication-title: Magn Reson Med – volume: 86 start-page: 43 year: 2014 end-page: 52 article-title: Current practice in the use of MEGA‐PRESS spectroscopy for the detection of GABA publication-title: Neuroimage – volume: 82 start-page: 1278 year: 2019 end-page: 1287 article-title: Water removal in MR spectroscopic imaging with L2 regularization publication-title: Magn Reson Med – volume: 90 start-page: 5662 year: 1993 end-page: 5666 article-title: Localized 1H NMR measurements of gamma‐aminobutyric acid in human brain in vivo publication-title: Proc Natl Acad Sci – volume: 32 start-page: 294 year: 1994 end-page: 302 article-title: Analysis of macromolecule resonances in 1H NMR spectra of human brain publication-title: Magn Reson Med – volume: 34 year: 2021 article-title: Motion correction methods for MRS: experts' consensus recommendations publication-title: NMR Biomed – volume: 34 year: 2021 article-title: Minimum reporting standards for in vivo magnetic resonance spectroscopy (MRSinMRS): Experts' consensus recommendations publication-title: NMR Biomed – volume: 48 start-page: 440 year: 2002 end-page: 453 article-title: Quantitative 1H‐magnetic resonance spectroscopy of human brain: influence of composition and parameterization of the basis set in linear combination model‐fitting publication-title: Magn Reson Med – volume: 86 start-page: 2384 year: 2021 end-page: 2401 article-title: In vivo macromolecule signals in rat brain 1H‐MR spectra at 9.4T: parametrization, spline baseline estimation, and T relaxation times publication-title: Magn Reson Med – volume: 17 start-page: 285 year: 1991 end-page: 303 article-title: Assignment of resonances in the 1H spectrum of rat brain by two‐dimensional shift correlated and j‐resolved NMR spectroscopy publication-title: Magn Reson Med – volume: 101 start-page: 2872 year: 2009 end-page: 2877 article-title: Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy publication-title: J Neurophysiol – volume: 77 start-page: 34 year: 2017 end-page: 43 article-title: Influence of macromolecule baseline on 1H MR spectroscopic imaging reproducibility publication-title: Magn Reson Med – volume: 42 start-page: 8 year: 2017 end-page: 15 article-title: Normalizing data from GABA‐edited MEGA‐PRESS implementations at 3 tesla publication-title: Magn Reson Imaging – volume: 44 start-page: 1474 year: 2016 end-page: 1482 article-title: Prospective frequency correction for macromolecule‐suppressed GABA editing at 3T publication-title: J Magn Reson Imaging – volume: 24 start-page: 1277 year: 2011 end-page: 1285 article-title: Efficient γ‐aminobutyric acid editing at 3T without macromolecule contamination: MEGA‐SPECIAL publication-title: NMR Biomed – year: 2019 – volume: 87 start-page: 1711 year: 2022 end-page: 1719 article-title: The macromolecular MR spectrum does not change with healthy aging publication-title: Magn Reson Med – volume: 14 start-page: 26 year: 1990 end-page: 30 article-title: In vivo proton spectroscopy in presence of eddy currents publication-title: Magn Reson Med – volume: 74 start-page: 1523 year: 2015 end-page: 1529 article-title: Spectral‐editing measurements of GABA in the human brain with and without macromolecule suppression publication-title: Magn Reson Med – volume: 121 start-page: 126 year: 2015 end-page: 135 article-title: Mapping of brain macromolecules and their use for spectral processing of 1H‐MRSI data with an ultra‐short acquisition delay at 7T publication-title: Neuroimage – volume: 34 year: 2021 article-title: Spectral editing in 1H magnetic resonance spectroscopy: Experts' consensus recommendations publication-title: NMR Biomed – volume: 34 start-page: 1733 year: 2013 end-page: 1739 article-title: Sensorimotor cortex gamma‐aminobutyric acid concentration correlates with impaired performance in patients with MS publication-title: Am J Neuroradiol – volume: 30 start-page: 672 year: 1993 end-page: 679 article-title: Estimation of metabolite concentrations from localized in vivo proton NMR spectra publication-title: Magn Reson Med – volume: 141 start-page: 104 year: 1999 end-page: 120 article-title: Toward an in vivo neurochemical profile: quantification of 18 metabolites in short‐Echo‐time 1H NMR spectra of the rat brain publication-title: J Magn Reson – volume: 343 year: 2020 article-title: Osprey: open‐source processing, reconstruction & estimation of magnetic resonance spectroscopy data publication-title: J Neurosci Methods – volume: 34 year: 2021 article-title: Influence of fitting approaches in LCModel on MRS quantification focusing on age‐specific macromolecules and the spline baseline publication-title: NMR Biomed – volume: 45 start-page: 517 year: 2001 end-page: 520 article-title: Brain GABA editing without macromolecule contamination publication-title: Magn Reson Med – volume: 20 year: 2009 article-title: Quantification of in vivo short echo‐time proton magnetic resonance spectra at 14.1 T using two different approaches of modelling the macromolecule spectrum publication-title: Meas Sci Technol – volume: 40 start-page: 1445 year: 2014 end-page: 1452 article-title: Gannet: a batch‐processing tool for the quantitative analysis of gamma‐aminobutyric acid–edited MR spectroscopy spectra publication-title: J Magn Reson Imaging – volume: 62 start-page: 862 year: 2009 end-page: 867 article-title: Comparison of T relaxation times of the neurochemical profile in rat brain at 9.4 tesla and 14.1 tesla publication-title: Magn Reson Med – volume: 11 start-page: 266 year: 1998 end-page: 272 article-title: Simultaneous in vivo spectral editing and water suppression publication-title: NMR Biomed – volume: 37 start-page: 999 year: 2013 end-page: 1003 article-title: Measuring the longitudinal relaxation time of GABA in vivo at 3 tesla publication-title: J Magn Reson Imaging – volume: 7 year: 2024 article-title: Impact of acquisition and modeling parameters on the test–retest reproducibility of edited GABA+ publication-title: NMR Biomed – volume: 30 start-page: 38 year: 1993 end-page: 44 article-title: Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain publication-title: Magn Reson Med – volume: 34 year: 2021 article-title: MEGA‐PRESS of GABA+: influences of acquisition parameters publication-title: NMR Biomed – volume: 87 start-page: 11 year: 2022 end-page: 32 article-title: Team the 2016 IMSGFC. Results and interpretation of a fitting challenge for MR spectroscopy set up by the MRS study group of ISMRM publication-title: Magn Reson Med – volume: 34 year: 2021 article-title: Contribution of macromolecules to brain 1H MR spectra: Experts' consensus recommendations publication-title: NMR Biomed – volume: 26 start-page: 593 year: 2013 end-page: 599 article-title: Quantification of the neurochemical profile using simulated macromolecule resonances at 3 T publication-title: NMR Biomed – volume: 72 start-page: 934 year: 2014 end-page: 940 article-title: Is the macromolecule signal tissue‐specific in healthy human brain? A 1H MRS study at 7 tesla in the occipital lobe publication-title: Magn Reson Med – volume: 33 year: 2020 article-title: Parameterization of metabolite and macromolecule contributions in interrelated MR spectra of human brain using multidimensional modeling publication-title: NMR Biomed – volume: 75 start-page: 503 year: 2016 end-page: 514 article-title: Metabolite and macromolecule T and T relaxation times in the rat brain in vivo at 17.2T publication-title: Magn Reson Med – volume: 129 start-page: 35 year: 1997 end-page: 43 article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge publication-title: J Magn Reson – volume: 13 start-page: 129 year: 2000 end-page: 153 article-title: Proton NMR chemical shifts and coupling constants for brain metabolites publication-title: NMR Biomed – volume: 34 year: 2021 article-title: Preprocessing, analysis and quantification in single‐voxel magnetic resonance spectroscopy: experts' consensus recommendations publication-title: NMR Biomed – volume: 34 year: 2021 article-title: Comparison of different linear‐combination modeling algorithms for short‐TE proton spectra publication-title: NMR Biomed – volume: 159 start-page: 32 year: 2017 end-page: 45 article-title: Big GABA: edited MR spectroscopy at 24 research sites publication-title: Neuroimage – volume: 88 start-page: 1994 year: 2022 end-page: 2004 article-title: MRSCloud: a cloud‐based MRS tool for basis set simulation publication-title: Magn Reson Med – volume: 669 year: 2023 article-title: A comprehensive guide to MEGA‐PRESS for GABA measurement publication-title: Anal Biochem – volume: 82 start-page: 527 year: 2019 end-page: 550 article-title: Methodological consensus on clinical proton MRS of the brain: review and recommendations publication-title: Magn Reson Med – year: 2020 – volume: 68 start-page: 657 year: 2012 end-page: 661 article-title: Macromolecule‐suppressed GABA‐edited magnetic resonance spectroscopy at 3T publication-title: Magn Reson Med – volume: 35 year: 2022 article-title: Comparison of seven modelling algorithms for γ‐aminobutyric acid–edited proton magnetic resonance spectroscopy publication-title: NMR Biomed – volume: 44 start-page: 948 year: 1998 end-page: 952 article-title: Vigabatrin increases human brain homocarnosine and improves seizure control publication-title: Ann Neurol – volume: 72 start-page: 941 year: 2014 end-page: 948 article-title: Impact of frequency drift on gamma‐aminobutyric acid‐edited MR spectroscopy publication-title: Magn Reson Med – volume: 65 start-page: 1 year: 2011 end-page: 12 article-title: A constrained least‐squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data publication-title: Magn Reson Med – volume: 35 year: 2022 article-title: Comparison of linear combination modeling strategies for edited magnetic resonance spectroscopy at 3 T publication-title: NMR Biomed – volume: 56 start-page: 1211 year: 2006 end-page: 1219 article-title: An algorithm for the automated quantitation of metabolites in in vitro NMR signals publication-title: Magn Reson Med – ident: e_1_2_8_48_1 doi: 10.1002/mrm.28942 – ident: e_1_2_8_46_1 doi: 10.1002/nbm.4482 – ident: e_1_2_8_70_1 doi: 10.1016/j.neuroimage.2015.07.042 – ident: e_1_2_8_13_1 doi: 10.1002/nbm.4618 – ident: e_1_2_8_42_1 doi: 10.1002/nbm.4199 – ident: e_1_2_8_54_1 – ident: e_1_2_8_43_1 doi: 10.1006/jmre.1997.1244 – ident: e_1_2_8_36_1 doi: 10.1016/j.jneumeth.2020.108827 – ident: e_1_2_8_63_1 doi: 10.1002/nbm.4328 – ident: e_1_2_8_49_1 doi: 10.1002/1099‐1492(200005)13:3<129::AID‐NBM619>3.0.CO;2‐V – ident: e_1_2_8_37_1 doi: 10.1002/mrm.27742 – ident: e_1_2_8_57_1 doi: 10.1002/mrm.21081 – ident: e_1_2_8_3_1 doi: 10.1002/(SICI)1099‐1492(199810)11:6<266::AID‐NBM530>3.0.CO;2‐J – ident: e_1_2_8_33_1 doi: 10.1002/mrm.28484 – ident: e_1_2_8_10_1 doi: 10.1002/mrm.25009 – ident: e_1_2_8_4_1 doi: 10.1073/pnas.90.12.5662 – ident: e_1_2_8_35_1 doi: 10.1002/nbm.4484 – ident: e_1_2_8_27_1 doi: 10.1371/journal.pone.0060312 – ident: e_1_2_8_56_1 doi: 10.1002/mrm.22579 – ident: e_1_2_8_34_1 doi: 10.1002/jmri.23817 – ident: e_1_2_8_16_1 doi: 10.1006/jmre.1999.1895 – ident: e_1_2_8_55_1 doi: 10.1002/jmri.24478 – ident: e_1_2_8_5_1 doi: 10.1016/j.neuroimage.2012.12.004 – ident: e_1_2_8_41_1 doi: 10.1002/mrm.27824 – ident: e_1_2_8_29_1 doi: 10.1016/j.neuroimage.2017.07.021 – ident: e_1_2_8_39_1 doi: 10.1002/mrm.1910140104 – ident: e_1_2_8_6_1 doi: 10.1016/j.ab.2023.115113 – ident: e_1_2_8_23_1 – ident: e_1_2_8_32_1 doi: 10.1002/mrm.22022 – ident: e_1_2_8_60_1 doi: 10.1002/nbm.1688 – ident: e_1_2_8_2_1 doi: 10.1002/nbm.4411 – ident: e_1_2_8_19_1 doi: 10.1002/nbm.2896 – ident: e_1_2_8_14_1 doi: 10.1002/nbm.4393 – ident: e_1_2_8_61_1 doi: 10.1002/mrm.25549 – ident: e_1_2_8_26_1 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.1910170202 – ident: e_1_2_8_40_1 doi: 10.1002/nbm.4368 – ident: e_1_2_8_50_1 doi: 10.1002/mrm.29370 – ident: e_1_2_8_47_1 doi: 10.1002/nbm.4197 – ident: e_1_2_8_8_1 doi: 10.1002/mrm.24391 – ident: e_1_2_8_20_1 doi: 10.1002/mrm.26103 – volume-title: RStudio: Integrated Development Environment for R year: 2020 ident: e_1_2_8_45_1 – ident: e_1_2_8_68_1 doi: 10.1016/j.mri.2017.04.013 – ident: e_1_2_8_21_1 doi: 10.1002/nbm.4854 – ident: e_1_2_8_25_1 doi: 10.1152/jn.91060.2008 – ident: e_1_2_8_67_1 doi: 10.1016/j.ab.2020.113738 – ident: e_1_2_8_65_1 doi: 10.3174/ajnr.A3483 – ident: e_1_2_8_18_1 doi: 10.1002/mrm.27467 – ident: e_1_2_8_71_1 doi: 10.1002/mrm.24995 – ident: e_1_2_8_62_1 doi: 10.1002/mrm.10146 – ident: e_1_2_8_66_1 doi: 10.1002/ana.410440614 – ident: e_1_2_8_64_1 doi: 10.1002/mrm.25602 – ident: e_1_2_8_7_1 doi: 10.1002/1522‐2594(200103)45:3<517::AID‐MRM1068>3.0.CO;2‐6 – ident: e_1_2_8_52_1 doi: 10.1002/mrm.1910320304 – ident: e_1_2_8_15_1 doi: 10.1002/mrm.10246 – ident: e_1_2_8_44_1 doi: 10.1002/mrm.28910 – ident: e_1_2_8_11_1 doi: 10.1002/nbm.4364 – ident: e_1_2_8_24_1 – ident: e_1_2_8_28_1 doi: 10.1152/jn.00704.2012 – ident: e_1_2_8_72_1 doi: 10.1002/mrm.1269 – ident: e_1_2_8_17_1 doi: 10.1088/0957‐0233/20/10/104034 – ident: e_1_2_8_51_1 doi: 10.1002/mrm.26091 – ident: e_1_2_8_22_1 doi: 10.1002/mrm.29093 – ident: e_1_2_8_30_1 – ident: e_1_2_8_69_1 doi: 10.1002/nbm.5076 – ident: e_1_2_8_58_1 doi: 10.1002/mrm.1910300604 – ident: e_1_2_8_59_1 doi: 10.1002/nbm.698 – ident: e_1_2_8_12_1 doi: 10.1002/nbm.4702 – ident: e_1_2_8_38_1 doi: 10.1002/nbm.4257 – ident: e_1_2_8_9_1 doi: 10.1002/jmri.25304 – ident: e_1_2_8_53_1 doi: 10.1002/mrm.1910300107 |
SSID | ssj0009974 |
Score | 2.4615924 |
Snippet | Purpose
The J‐difference edited γ‐aminobutyric acid (GABA) signal is contaminated by other co‐edited signals—the largest of which originates from co‐edited... The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1348 |
SubjectTerms | Adult Algorithms Brain - diagnostic imaging Brain - metabolism Female GABA gamma-Aminobutyric Acid - metabolism Humans Linear Models Macromolecular Substances - metabolism macromolecules Magnetic Resonance Spectroscopy Male MEGA‐PRESS metabolite‐nulled Normal Distribution Young Adult |
Title | GABA‐edited MEGA‐PRESS at 3 T: Does a measured macromolecule background improve linear combination modeling? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30158 https://www.ncbi.nlm.nih.gov/pubmed/38818623 https://www.proquest.com/docview/3063464946 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoKGXPtJHNm2DWnroxRuvLNlSeyib5kXBPYQEcigYPSEk6y37uOSUa2_9jfklHUnrDWlTCL3JWBayZiR9I818A_C-NJR7z2RmK48GiuA80yJXmedCywEWmQqBwvW38vCEfT3lpyvwqYuFSfwQywO3MDPieh0muNLT7RvS0NFk1Eft5CHQN_hqBUB0dEMdJWViYK5YWGck61iFcrq9_PL2XvQXwLyNV-OGs_8YvnddTX4m5_35TPfN5R8sjv_5L0_g0QKIkmHSnKew4tp1WKsXV-3r8CD6hprpM5gcDHeG11e_8BXCU1LvHYSnKDqiZqS4vvp5_JHsjt2UKDJKZ46WjFT09IvJdx3RypyHAJLWkrN4jOFI6LWaEOwqGudRP0hMy4N76efncLK_d_zlMFukashMQbnImLdomSnqpUK8QStqvOBWozXi2MDg_pdXymompFGC2dJLBKqV11ZYP8hNrosXsNqOW7cBxDrnilx7pUvLfKk1C0TKXBhtrMgt78GHTmiNWfCYh3QaF01iYKYNjmYTR7MH75ZVfyTyjrsqve0k3-DUCvclqnXj-RRflwUrmWRlD14mlVg2U4hABUgL7E0U7L_bb-qjOhY271_1FTykCJ6S0-BrWJ1N5u4Ngp-Z3opa_hsXPgI- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHgXK8jSIA5dss46d2AgJLdB2gaaHaiv1giI_papsFu3j0lOvvfU39pd07Gy2Kg8JcXMUx5p4xp6Hx98AvMkN5d4zmdjCo4MiOE-0SFXiudCyh02mwkXhcjcf7LOvB_xgBd63d2EafIhlwC2sjLhfhwUeAtIbl6iho8moi-LJxTW4Hip6R4dq7xI8SsoGg7lgYaeRrMUVSunG8tOr2ug3E_OqxRpVztZd-N4S22SaHHXnM901x7_gOP7v39yDOwtblPQb4bkPK65eg5vl4rR9DW7E9FAzfQCT7f7H_vnJGb5CC5WUm9vhKXKPqBnJzk9Oh-_I57GbEkVGTdjRkpGKyX6x_q4jWpmjcIektuQwRjIcCWSrCUFa0T-PIkJiZR5Upx8ewv7W5vDTIFlUa0hMRrlImLfonCnqpUKTgxbUeMGtRofEsZ5BFZgWymompFGC2dxLtFULr62wvpeaVGePYLUe1-4xEOucy1Ltlc4t87nWLGApc2G0sSK1vANvW65VZgFlHipq_KgaEGZa4WxWcTY78HrZ9WeD3_GnTq9a1le4usKRiardeD7F13nGciZZ3oH1RiaWw2QioAHSDKmJnP37-FW5V8bGk3_v-hJuDYblTrXzZffbU7hN0ZZqcgifwepsMnfP0Raa6RdR5C8AJrwGWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouFMpreRrEgUu22cRO7HJAC9tteaRCVSv1gBT5KaGy2WofF069cutv7C_p2N5sVR4S4uYojuV4xp5v7PE3AK8KnTHnqEhM6dBB4YwliqcycYwr0cMilf6icLVX7B7Sj0fsaAXetHdhIj_EcsPNz4ywXvsJfmLc5iVp6Ggy6qJ2Mn4NrtMi5V6lB_uX3FFCRArmkvqFRtCWVijNNpefXjVGvyHMq4A1WJzhOnxt-xoDTY6785nq6h-_0Dj-58_chlsLJEr6UXXuwIptNmCtWpy1b8CNEByqp3dhstN_1z8_PcNXiE9Jtb3jn4LsiJyR_Pz058EWGYztlEgyipuOhoxkCPUL2XctUVIf-xskjSHfwj6GJb7XckKwq-idBwUhIS8PGtO39-BwuH3wfjdZ5GpIdJ4xnlBn0DWTmRMSAUdWZtpxZhS6I5b2NBrAtJRGUS605NQUTiBSLZ0y3LheqlOV34fVZtzYh0CMtTZPlZOqMNQVSlHPpMy4Vtrw1LAOvG6FVusFkbnPp_G9jhTMWY2jWYfR7MDLZdWTyN7xp0ovWsnXOLf8gYls7Hg-xddFTgsqaNGBB1Ells3k3HMBZjn2Jgj27-3X1X4VCo_-vepzWPsyGNafP-x9egw3MwRSMYDwCazOJnP7FIHQTD0LCn8BNWEFEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GABA-edited+MEGA-PRESS+at+3%E2%80%89T%3A+Does+a+measured+macromolecule+background+improve+linear+combination+modeling%3F&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Davies-Jenkins%2C+Christopher+W&rft.au=Z%C3%B6llner%2C+Helge+J&rft.au=Simicic%2C+Dunja&rft.au=Hui%2C+Steve+C+N&rft.date=2024-10-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=92&rft.issue=4&rft.spage=1348&rft_id=info:doi/10.1002%2Fmrm.30158&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |