GABA‐edited MEGA‐PRESS at 3 T: Does a measured macromolecule background improve linear combination modeling?

Purpose The J‐difference edited γ‐aminobutyric acid (GABA) signal is contaminated by other co‐edited signals—the largest of which originates from co‐edited macromolecules (MMs)—and is consequently often reported as “GABA+.” MM signals are broader and less well‐characterized than the metabolites, and...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 92; no. 4; pp. 1348 - 1362
Main Authors Davies‐Jenkins, Christopher W., Zöllner, Helge J., Simicic, Dunja, Hui, Steve C. N., Song, Yulu, Hupfeld, Kathleen E., Prisciandaro, James J., Edden, Richard A. E., Oeltzschner, Georg
Format Journal Article
LanguageEnglish
Published United States 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose The J‐difference edited γ‐aminobutyric acid (GABA) signal is contaminated by other co‐edited signals—the largest of which originates from co‐edited macromolecules (MMs)—and is consequently often reported as “GABA+.” MM signals are broader and less well‐characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus‐recommended alternative to parameterized modeling; however, they are relatively under‐studied in the context of edited MRS. Methods To address this limitation in the literature, we have acquired GABA‐edited MEGA‐PRESS data with pre‐inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single‐Gaussian parameterization, mean experimental MM spectrum and new multi‐Gaussian parameterization were compared in a three‐way analysis of a public MEGA‐PRESS dataset of 61 healthy participants. Results Both the experimental MMs and the multi‐Gaussian parameterization exhibited reduced fit residuals compared to the single‐Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single‐Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi‐Gaussian parameterization (58%), compared to the single‐Gaussian approach (50%). Conclusions Our results indicate that single‐Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.
AbstractList The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS. To address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants. Both the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%). Our results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.
Purpose The J‐difference edited γ‐aminobutyric acid (GABA) signal is contaminated by other co‐edited signals—the largest of which originates from co‐edited macromolecules (MMs)—and is consequently often reported as “GABA+.” MM signals are broader and less well‐characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus‐recommended alternative to parameterized modeling; however, they are relatively under‐studied in the context of edited MRS. Methods To address this limitation in the literature, we have acquired GABA‐edited MEGA‐PRESS data with pre‐inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single‐Gaussian parameterization, mean experimental MM spectrum and new multi‐Gaussian parameterization were compared in a three‐way analysis of a public MEGA‐PRESS dataset of 61 healthy participants. Results Both the experimental MMs and the multi‐Gaussian parameterization exhibited reduced fit residuals compared to the single‐Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single‐Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi‐Gaussian parameterization (58%), compared to the single‐Gaussian approach (50%). Conclusions Our results indicate that single‐Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.
The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS.PURPOSEThe J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS.To address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants.METHODSTo address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants.Both the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%).RESULTSBoth the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%).Our results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.CONCLUSIONSOur results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.
Author Simicic, Dunja
Oeltzschner, Georg
Hupfeld, Kathleen E.
Hui, Steve C. N.
Prisciandaro, James J.
Zöllner, Helge J.
Davies‐Jenkins, Christopher W.
Song, Yulu
Edden, Richard A. E.
Author_xml – sequence: 1
  givenname: Christopher W.
  orcidid: 0000-0002-6015-762X
  surname: Davies‐Jenkins
  fullname: Davies‐Jenkins, Christopher W.
  organization: Kennedy Krieger Institute
– sequence: 2
  givenname: Helge J.
  orcidid: 0000-0002-7148-292X
  surname: Zöllner
  fullname: Zöllner, Helge J.
  organization: Kennedy Krieger Institute
– sequence: 3
  givenname: Dunja
  orcidid: 0000-0002-6600-2696
  surname: Simicic
  fullname: Simicic, Dunja
  organization: Kennedy Krieger Institute
– sequence: 4
  givenname: Steve C. N.
  orcidid: 0000-0002-1523-4040
  surname: Hui
  fullname: Hui, Steve C. N.
  organization: The George Washington School of Medicine and Health Sciences
– sequence: 5
  givenname: Yulu
  orcidid: 0000-0002-4416-7959
  surname: Song
  fullname: Song, Yulu
  organization: Kennedy Krieger Institute
– sequence: 6
  givenname: Kathleen E.
  orcidid: 0000-0001-5086-4841
  surname: Hupfeld
  fullname: Hupfeld, Kathleen E.
  organization: Kennedy Krieger Institute
– sequence: 7
  givenname: James J.
  orcidid: 0000-0002-8877-7871
  surname: Prisciandaro
  fullname: Prisciandaro, James J.
  organization: Medical University of South Carolina
– sequence: 8
  givenname: Richard A. E.
  orcidid: 0000-0002-0671-7374
  surname: Edden
  fullname: Edden, Richard A. E.
  organization: Kennedy Krieger Institute
– sequence: 9
  givenname: Georg
  orcidid: 0000-0003-3083-9811
  surname: Oeltzschner
  fullname: Oeltzschner, Georg
  email: goeltzs1@jhmi.edu
  organization: Kennedy Krieger Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38818623$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1P3DAQhi1EVRbaA38A-UgPAX8lcXpBW7rdVmJFxcfZcuwJchvH1E5acePaW38jv6SGXS5VOY1m9LyvZubdRdtDGAChfUqOKCHs2Ed_xAkt5Raa0ZKxgpWN2EYzUgtScNqIHbSb0jdCSNPU4jXa4VJSWTE-Q3E5_zB_uP8D1o1g8WqxfOy-XiwuL7EeMX-4_331Hn8MkLDGHnSaYsa8NjH40IOZesCtNt9vYpgGi52_jeEn4N4NoCM2wbdu0KMLA_bBQh7fnLxBrzrdJ3i7qXvo-tPi6vRzcXa-_HI6PysMZ6UsRGepEJp1jWaMs5qZTpa2reoSBDU1laTWthWyMVoKW3UNyZOutdJ2lBjS8j10uPbNK_2YII3Ku2Sg7_UAYUqKk4qLSjSiyujBBp1aD1bdRud1vFPPf8rA8RrId6cUoVPGjU93jVG7XlGiHpNQOQn1lERWvPtH8Wz6P3bj_sv1cPcyqFYXq7XiL9hSmc4
CitedBy_id crossref_primary_10_1002_mrm_30423
Cites_doi 10.1002/mrm.28942
10.1002/nbm.4482
10.1016/j.neuroimage.2015.07.042
10.1002/nbm.4618
10.1002/nbm.4199
10.1006/jmre.1997.1244
10.1016/j.jneumeth.2020.108827
10.1002/nbm.4328
10.1002/1099‐1492(200005)13:3<129::AID‐NBM619>3.0.CO;2‐V
10.1002/mrm.27742
10.1002/mrm.21081
10.1002/(SICI)1099‐1492(199810)11:6<266::AID‐NBM530>3.0.CO;2‐J
10.1002/mrm.28484
10.1002/mrm.25009
10.1073/pnas.90.12.5662
10.1002/nbm.4484
10.1371/journal.pone.0060312
10.1002/mrm.22579
10.1002/jmri.23817
10.1006/jmre.1999.1895
10.1002/jmri.24478
10.1016/j.neuroimage.2012.12.004
10.1002/mrm.27824
10.1016/j.neuroimage.2017.07.021
10.1002/mrm.1910140104
10.1016/j.ab.2023.115113
10.1002/mrm.22022
10.1002/nbm.1688
10.1002/nbm.4411
10.1002/nbm.2896
10.1002/nbm.4393
10.1002/mrm.25549
10.1002/mrm.1910170202
10.1002/nbm.4368
10.1002/mrm.29370
10.1002/nbm.4197
10.1002/mrm.24391
10.1002/mrm.26103
10.1016/j.mri.2017.04.013
10.1002/nbm.4854
10.1152/jn.91060.2008
10.1016/j.ab.2020.113738
10.3174/ajnr.A3483
10.1002/mrm.27467
10.1002/mrm.24995
10.1002/mrm.10146
10.1002/ana.410440614
10.1002/mrm.25602
10.1002/1522‐2594(200103)45:3<517::AID‐MRM1068>3.0.CO;2‐6
10.1002/mrm.1910320304
10.1002/mrm.10246
10.1002/mrm.28910
10.1002/nbm.4364
10.1152/jn.00704.2012
10.1002/mrm.1269
10.1088/0957‐0233/20/10/104034
10.1002/mrm.26091
10.1002/mrm.29093
10.1002/nbm.5076
10.1002/mrm.1910300604
10.1002/nbm.698
10.1002/nbm.4702
10.1002/nbm.4257
10.1002/jmri.25304
10.1002/mrm.1910300107
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine
2024 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine
– notice: 2024 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mrm.30158
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1362
ExternalDocumentID 38818623
10_1002_mrm_30158
MRM30158
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National institutes of Health (USA)
  funderid: K99 AG080084; P41 EB031771; R00 AG062230; R01 EB016089; R01 EB023963; R21 EB033516; S10 OD021648
– fundername: NIA NIH HHS
  grantid: K99 AG080084
– fundername: NIBIB NIH HHS
  grantid: R01 EB023963
– fundername: NIA NIH HHS
  grantid: R00 AG062230
– fundername: NIBIB NIH HHS
  grantid: P41 EB031771
– fundername: NIAAA NIH HHS
  grantid: K24 AA030788
– fundername: NIDA NIH HHS
  grantid: R01 DA054275
– fundername: ODCDC CDC HHS
  grantid: S10 OD021648
– fundername: NIBIB NIH HHS
  grantid: R01 EB016089
– fundername: NIBIB NIH HHS
  grantid: R21 EB033516
– fundername: NIH HHS
  grantid: S10 OD021648
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3258-4fd144a2f9a223272cf85db675e41c71807adb489ca84d6f90807fbd8df10c0b3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Jul 10 23:50:35 EDT 2025
Wed Jul 23 01:46:39 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Tue Jul 01 04:27:10 EDT 2025
Wed Jan 22 17:18:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords macromolecules
GABA
metabolite‐nulled
GABA+
MEGA‐PRESS
Language English
License 2024 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3258-4fd144a2f9a223272cf85db675e41c71807adb489ca84d6f90807fbd8df10c0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0671-7374
0000-0002-7148-292X
0000-0003-3083-9811
0000-0002-6600-2696
0000-0002-6015-762X
0000-0002-1523-4040
0000-0001-5086-4841
0000-0002-8877-7871
0000-0002-4416-7959
PMID 38818623
PQID 3063464946
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3063464946
pubmed_primary_38818623
crossref_citationtrail_10_1002_mrm_30158
crossref_primary_10_1002_mrm_30158
wiley_primary_10_1002_mrm_30158_MRM30158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
2024-Oct
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
References 2017; 42
2013; 26
2023; 36
1991; 17
1990; 14
2015; 74
2016; 75
2023; 669
2001; 45
2013; 8
2001; 46
2017; 159
1998; 44
2002; 47
2002; 48
2021; 34
2000; 13
2024; 7
2017; 77
1993; 30
2022; 35
2011; 65
2011; 24
2012; 68
2021; 85
2001; 14
1998; 11
1994; 32
2016; 44
2009; 62
2021; 86
2009; 20
2013; 109
2006; 56
2011
2015; 121
1999; 141
2020; 343
1993; 90
2022; 87
2020; 33
2022; 88
2014; 40
2014; 86
2013; 37
2019; 82
2019; 81
1997; 129
2020
2013; 34
2019
2020; 599
2009; 101
2014; 72
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
RStudio Team (e_1_2_8_45_1) 2020
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – year: 2011
– volume: 599
  year: 2020
  article-title: Elevated homocarnosine and GABA in subject on isoniazid as assessed through 1H MRS at 7T
  publication-title: Anal Biochem
– volume: 14
  start-page: 260
  year: 2001
  end-page: 264
  article-title: Automatic quantitation of localized in vivo 1H spectra with LCModel
  publication-title: NMR Biomed
– volume: 8
  year: 2013
  article-title: Glutamate concentration in the medial prefrontal cortex predicts resting‐state cortical‐subcortical functional connectivity in humans
  publication-title: PLoS One
– volume: 33
  year: 2020
  article-title: Correcting frequency and phase offsets in MRS data using robust spectral registration
  publication-title: NMR Biomed
– volume: 81
  start-page: 746
  year: 2019
  end-page: 758
  article-title: Investigation of the influence of macromolecules and spline baseline in the fitting model of human brain spectra at 9.4T
  publication-title: Magn Reson Med
– volume: 109
  start-page: 1343
  year: 2013
  end-page: 1349
  article-title: Relationship between transcranial magnetic stimulation measures of intracortical inhibition and spectroscopy measures of GABA and glutamate+glutamine
  publication-title: J Neurophysiol
– volume: 36
  year: 2023
  article-title: Feasibility and implications of using subject‐specific macromolecular spectra to model short echo time magnetic resonance spectroscopy data
  publication-title: NMR Biomed
– volume: 77
  start-page: 23
  year: 2017
  end-page: 33
  article-title: Advanced processing and simulation of MRS data using the FID appliance (FID‐A) – an open source, MATLAB‐based toolkit
  publication-title: Magn Reson Med
– volume: 85
  start-page: 601
  year: 2021
  end-page: 614
  article-title: A novel method to measure T –relaxation times of macromolecules and quantification of the macromolecular resonances
  publication-title: Magn Reson Med
– volume: 46
  start-page: 855
  year: 2001
  end-page: 863
  article-title: Characterization of the macromolecule baseline in localized 1H‐MR spectra of human brain
  publication-title: Magn Reson Med
– volume: 47
  start-page: 1009
  year: 2002
  end-page: 1012
  article-title: Direct in vivo measurement of human cerebral GABA concentration using MEGA‐editing at 7 tesla
  publication-title: Magn Reson Med
– volume: 86
  start-page: 43
  year: 2014
  end-page: 52
  article-title: Current practice in the use of MEGA‐PRESS spectroscopy for the detection of GABA
  publication-title: Neuroimage
– volume: 82
  start-page: 1278
  year: 2019
  end-page: 1287
  article-title: Water removal in MR spectroscopic imaging with L2 regularization
  publication-title: Magn Reson Med
– volume: 90
  start-page: 5662
  year: 1993
  end-page: 5666
  article-title: Localized 1H NMR measurements of gamma‐aminobutyric acid in human brain in vivo
  publication-title: Proc Natl Acad Sci
– volume: 32
  start-page: 294
  year: 1994
  end-page: 302
  article-title: Analysis of macromolecule resonances in 1H NMR spectra of human brain
  publication-title: Magn Reson Med
– volume: 34
  year: 2021
  article-title: Motion correction methods for MRS: experts' consensus recommendations
  publication-title: NMR Biomed
– volume: 34
  year: 2021
  article-title: Minimum reporting standards for in vivo magnetic resonance spectroscopy (MRSinMRS): Experts' consensus recommendations
  publication-title: NMR Biomed
– volume: 48
  start-page: 440
  year: 2002
  end-page: 453
  article-title: Quantitative 1H‐magnetic resonance spectroscopy of human brain: influence of composition and parameterization of the basis set in linear combination model‐fitting
  publication-title: Magn Reson Med
– volume: 86
  start-page: 2384
  year: 2021
  end-page: 2401
  article-title: In vivo macromolecule signals in rat brain 1H‐MR spectra at 9.4T: parametrization, spline baseline estimation, and T relaxation times
  publication-title: Magn Reson Med
– volume: 17
  start-page: 285
  year: 1991
  end-page: 303
  article-title: Assignment of resonances in the 1H spectrum of rat brain by two‐dimensional shift correlated and j‐resolved NMR spectroscopy
  publication-title: Magn Reson Med
– volume: 101
  start-page: 2872
  year: 2009
  end-page: 2877
  article-title: Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy
  publication-title: J Neurophysiol
– volume: 77
  start-page: 34
  year: 2017
  end-page: 43
  article-title: Influence of macromolecule baseline on 1H MR spectroscopic imaging reproducibility
  publication-title: Magn Reson Med
– volume: 42
  start-page: 8
  year: 2017
  end-page: 15
  article-title: Normalizing data from GABA‐edited MEGA‐PRESS implementations at 3 tesla
  publication-title: Magn Reson Imaging
– volume: 44
  start-page: 1474
  year: 2016
  end-page: 1482
  article-title: Prospective frequency correction for macromolecule‐suppressed GABA editing at 3T
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 1277
  year: 2011
  end-page: 1285
  article-title: Efficient γ‐aminobutyric acid editing at 3T without macromolecule contamination: MEGA‐SPECIAL
  publication-title: NMR Biomed
– year: 2019
– volume: 87
  start-page: 1711
  year: 2022
  end-page: 1719
  article-title: The macromolecular MR spectrum does not change with healthy aging
  publication-title: Magn Reson Med
– volume: 14
  start-page: 26
  year: 1990
  end-page: 30
  article-title: In vivo proton spectroscopy in presence of eddy currents
  publication-title: Magn Reson Med
– volume: 74
  start-page: 1523
  year: 2015
  end-page: 1529
  article-title: Spectral‐editing measurements of GABA in the human brain with and without macromolecule suppression
  publication-title: Magn Reson Med
– volume: 121
  start-page: 126
  year: 2015
  end-page: 135
  article-title: Mapping of brain macromolecules and their use for spectral processing of 1H‐MRSI data with an ultra‐short acquisition delay at 7T
  publication-title: Neuroimage
– volume: 34
  year: 2021
  article-title: Spectral editing in 1H magnetic resonance spectroscopy: Experts' consensus recommendations
  publication-title: NMR Biomed
– volume: 34
  start-page: 1733
  year: 2013
  end-page: 1739
  article-title: Sensorimotor cortex gamma‐aminobutyric acid concentration correlates with impaired performance in patients with MS
  publication-title: Am J Neuroradiol
– volume: 30
  start-page: 672
  year: 1993
  end-page: 679
  article-title: Estimation of metabolite concentrations from localized in vivo proton NMR spectra
  publication-title: Magn Reson Med
– volume: 141
  start-page: 104
  year: 1999
  end-page: 120
  article-title: Toward an in vivo neurochemical profile: quantification of 18 metabolites in short‐Echo‐time 1H NMR spectra of the rat brain
  publication-title: J Magn Reson
– volume: 343
  year: 2020
  article-title: Osprey: open‐source processing, reconstruction & estimation of magnetic resonance spectroscopy data
  publication-title: J Neurosci Methods
– volume: 34
  year: 2021
  article-title: Influence of fitting approaches in LCModel on MRS quantification focusing on age‐specific macromolecules and the spline baseline
  publication-title: NMR Biomed
– volume: 45
  start-page: 517
  year: 2001
  end-page: 520
  article-title: Brain GABA editing without macromolecule contamination
  publication-title: Magn Reson Med
– volume: 20
  year: 2009
  article-title: Quantification of in vivo short echo‐time proton magnetic resonance spectra at 14.1 T using two different approaches of modelling the macromolecule spectrum
  publication-title: Meas Sci Technol
– volume: 40
  start-page: 1445
  year: 2014
  end-page: 1452
  article-title: Gannet: a batch‐processing tool for the quantitative analysis of gamma‐aminobutyric acid–edited MR spectroscopy spectra
  publication-title: J Magn Reson Imaging
– volume: 62
  start-page: 862
  year: 2009
  end-page: 867
  article-title: Comparison of T relaxation times of the neurochemical profile in rat brain at 9.4 tesla and 14.1 tesla
  publication-title: Magn Reson Med
– volume: 11
  start-page: 266
  year: 1998
  end-page: 272
  article-title: Simultaneous in vivo spectral editing and water suppression
  publication-title: NMR Biomed
– volume: 37
  start-page: 999
  year: 2013
  end-page: 1003
  article-title: Measuring the longitudinal relaxation time of GABA in vivo at 3 tesla
  publication-title: J Magn Reson Imaging
– volume: 7
  year: 2024
  article-title: Impact of acquisition and modeling parameters on the test–retest reproducibility of edited GABA+
  publication-title: NMR Biomed
– volume: 30
  start-page: 38
  year: 1993
  end-page: 44
  article-title: Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain
  publication-title: Magn Reson Med
– volume: 34
  year: 2021
  article-title: MEGA‐PRESS of GABA+: influences of acquisition parameters
  publication-title: NMR Biomed
– volume: 87
  start-page: 11
  year: 2022
  end-page: 32
  article-title: Team the 2016 IMSGFC. Results and interpretation of a fitting challenge for MR spectroscopy set up by the MRS study group of ISMRM
  publication-title: Magn Reson Med
– volume: 34
  year: 2021
  article-title: Contribution of macromolecules to brain 1H MR spectra: Experts' consensus recommendations
  publication-title: NMR Biomed
– volume: 26
  start-page: 593
  year: 2013
  end-page: 599
  article-title: Quantification of the neurochemical profile using simulated macromolecule resonances at 3 T
  publication-title: NMR Biomed
– volume: 72
  start-page: 934
  year: 2014
  end-page: 940
  article-title: Is the macromolecule signal tissue‐specific in healthy human brain? A 1H MRS study at 7 tesla in the occipital lobe
  publication-title: Magn Reson Med
– volume: 33
  year: 2020
  article-title: Parameterization of metabolite and macromolecule contributions in interrelated MR spectra of human brain using multidimensional modeling
  publication-title: NMR Biomed
– volume: 75
  start-page: 503
  year: 2016
  end-page: 514
  article-title: Metabolite and macromolecule T and T relaxation times in the rat brain in vivo at 17.2T
  publication-title: Magn Reson Med
– volume: 129
  start-page: 35
  year: 1997
  end-page: 43
  article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge
  publication-title: J Magn Reson
– volume: 13
  start-page: 129
  year: 2000
  end-page: 153
  article-title: Proton NMR chemical shifts and coupling constants for brain metabolites
  publication-title: NMR Biomed
– volume: 34
  year: 2021
  article-title: Preprocessing, analysis and quantification in single‐voxel magnetic resonance spectroscopy: experts' consensus recommendations
  publication-title: NMR Biomed
– volume: 34
  year: 2021
  article-title: Comparison of different linear‐combination modeling algorithms for short‐TE proton spectra
  publication-title: NMR Biomed
– volume: 159
  start-page: 32
  year: 2017
  end-page: 45
  article-title: Big GABA: edited MR spectroscopy at 24 research sites
  publication-title: Neuroimage
– volume: 88
  start-page: 1994
  year: 2022
  end-page: 2004
  article-title: MRSCloud: a cloud‐based MRS tool for basis set simulation
  publication-title: Magn Reson Med
– volume: 669
  year: 2023
  article-title: A comprehensive guide to MEGA‐PRESS for GABA measurement
  publication-title: Anal Biochem
– volume: 82
  start-page: 527
  year: 2019
  end-page: 550
  article-title: Methodological consensus on clinical proton MRS of the brain: review and recommendations
  publication-title: Magn Reson Med
– year: 2020
– volume: 68
  start-page: 657
  year: 2012
  end-page: 661
  article-title: Macromolecule‐suppressed GABA‐edited magnetic resonance spectroscopy at 3T
  publication-title: Magn Reson Med
– volume: 35
  year: 2022
  article-title: Comparison of seven modelling algorithms for γ‐aminobutyric acid–edited proton magnetic resonance spectroscopy
  publication-title: NMR Biomed
– volume: 44
  start-page: 948
  year: 1998
  end-page: 952
  article-title: Vigabatrin increases human brain homocarnosine and improves seizure control
  publication-title: Ann Neurol
– volume: 72
  start-page: 941
  year: 2014
  end-page: 948
  article-title: Impact of frequency drift on gamma‐aminobutyric acid‐edited MR spectroscopy
  publication-title: Magn Reson Med
– volume: 65
  start-page: 1
  year: 2011
  end-page: 12
  article-title: A constrained least‐squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data
  publication-title: Magn Reson Med
– volume: 35
  year: 2022
  article-title: Comparison of linear combination modeling strategies for edited magnetic resonance spectroscopy at 3 T
  publication-title: NMR Biomed
– volume: 56
  start-page: 1211
  year: 2006
  end-page: 1219
  article-title: An algorithm for the automated quantitation of metabolites in in vitro NMR signals
  publication-title: Magn Reson Med
– ident: e_1_2_8_48_1
  doi: 10.1002/mrm.28942
– ident: e_1_2_8_46_1
  doi: 10.1002/nbm.4482
– ident: e_1_2_8_70_1
  doi: 10.1016/j.neuroimage.2015.07.042
– ident: e_1_2_8_13_1
  doi: 10.1002/nbm.4618
– ident: e_1_2_8_42_1
  doi: 10.1002/nbm.4199
– ident: e_1_2_8_54_1
– ident: e_1_2_8_43_1
  doi: 10.1006/jmre.1997.1244
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jneumeth.2020.108827
– ident: e_1_2_8_63_1
  doi: 10.1002/nbm.4328
– ident: e_1_2_8_49_1
  doi: 10.1002/1099‐1492(200005)13:3<129::AID‐NBM619>3.0.CO;2‐V
– ident: e_1_2_8_37_1
  doi: 10.1002/mrm.27742
– ident: e_1_2_8_57_1
  doi: 10.1002/mrm.21081
– ident: e_1_2_8_3_1
  doi: 10.1002/(SICI)1099‐1492(199810)11:6<266::AID‐NBM530>3.0.CO;2‐J
– ident: e_1_2_8_33_1
  doi: 10.1002/mrm.28484
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.25009
– ident: e_1_2_8_4_1
  doi: 10.1073/pnas.90.12.5662
– ident: e_1_2_8_35_1
  doi: 10.1002/nbm.4484
– ident: e_1_2_8_27_1
  doi: 10.1371/journal.pone.0060312
– ident: e_1_2_8_56_1
  doi: 10.1002/mrm.22579
– ident: e_1_2_8_34_1
  doi: 10.1002/jmri.23817
– ident: e_1_2_8_16_1
  doi: 10.1006/jmre.1999.1895
– ident: e_1_2_8_55_1
  doi: 10.1002/jmri.24478
– ident: e_1_2_8_5_1
  doi: 10.1016/j.neuroimage.2012.12.004
– ident: e_1_2_8_41_1
  doi: 10.1002/mrm.27824
– ident: e_1_2_8_29_1
  doi: 10.1016/j.neuroimage.2017.07.021
– ident: e_1_2_8_39_1
  doi: 10.1002/mrm.1910140104
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ab.2023.115113
– ident: e_1_2_8_23_1
– ident: e_1_2_8_32_1
  doi: 10.1002/mrm.22022
– ident: e_1_2_8_60_1
  doi: 10.1002/nbm.1688
– ident: e_1_2_8_2_1
  doi: 10.1002/nbm.4411
– ident: e_1_2_8_19_1
  doi: 10.1002/nbm.2896
– ident: e_1_2_8_14_1
  doi: 10.1002/nbm.4393
– ident: e_1_2_8_61_1
  doi: 10.1002/mrm.25549
– ident: e_1_2_8_26_1
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.1910170202
– ident: e_1_2_8_40_1
  doi: 10.1002/nbm.4368
– ident: e_1_2_8_50_1
  doi: 10.1002/mrm.29370
– ident: e_1_2_8_47_1
  doi: 10.1002/nbm.4197
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.24391
– ident: e_1_2_8_20_1
  doi: 10.1002/mrm.26103
– volume-title: RStudio: Integrated Development Environment for R
  year: 2020
  ident: e_1_2_8_45_1
– ident: e_1_2_8_68_1
  doi: 10.1016/j.mri.2017.04.013
– ident: e_1_2_8_21_1
  doi: 10.1002/nbm.4854
– ident: e_1_2_8_25_1
  doi: 10.1152/jn.91060.2008
– ident: e_1_2_8_67_1
  doi: 10.1016/j.ab.2020.113738
– ident: e_1_2_8_65_1
  doi: 10.3174/ajnr.A3483
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.27467
– ident: e_1_2_8_71_1
  doi: 10.1002/mrm.24995
– ident: e_1_2_8_62_1
  doi: 10.1002/mrm.10146
– ident: e_1_2_8_66_1
  doi: 10.1002/ana.410440614
– ident: e_1_2_8_64_1
  doi: 10.1002/mrm.25602
– ident: e_1_2_8_7_1
  doi: 10.1002/1522‐2594(200103)45:3<517::AID‐MRM1068>3.0.CO;2‐6
– ident: e_1_2_8_52_1
  doi: 10.1002/mrm.1910320304
– ident: e_1_2_8_15_1
  doi: 10.1002/mrm.10246
– ident: e_1_2_8_44_1
  doi: 10.1002/mrm.28910
– ident: e_1_2_8_11_1
  doi: 10.1002/nbm.4364
– ident: e_1_2_8_24_1
– ident: e_1_2_8_28_1
  doi: 10.1152/jn.00704.2012
– ident: e_1_2_8_72_1
  doi: 10.1002/mrm.1269
– ident: e_1_2_8_17_1
  doi: 10.1088/0957‐0233/20/10/104034
– ident: e_1_2_8_51_1
  doi: 10.1002/mrm.26091
– ident: e_1_2_8_22_1
  doi: 10.1002/mrm.29093
– ident: e_1_2_8_30_1
– ident: e_1_2_8_69_1
  doi: 10.1002/nbm.5076
– ident: e_1_2_8_58_1
  doi: 10.1002/mrm.1910300604
– ident: e_1_2_8_59_1
  doi: 10.1002/nbm.698
– ident: e_1_2_8_12_1
  doi: 10.1002/nbm.4702
– ident: e_1_2_8_38_1
  doi: 10.1002/nbm.4257
– ident: e_1_2_8_9_1
  doi: 10.1002/jmri.25304
– ident: e_1_2_8_53_1
  doi: 10.1002/mrm.1910300107
SSID ssj0009974
Score 2.4615924
Snippet Purpose The J‐difference edited γ‐aminobutyric acid (GABA) signal is contaminated by other co‐edited signals—the largest of which originates from co‐edited...
The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1348
SubjectTerms Adult
Algorithms
Brain - diagnostic imaging
Brain - metabolism
Female
GABA
gamma-Aminobutyric Acid - metabolism
Humans
Linear Models
Macromolecular Substances - metabolism
macromolecules
Magnetic Resonance Spectroscopy
Male
MEGA‐PRESS
metabolite‐nulled
Normal Distribution
Young Adult
Title GABA‐edited MEGA‐PRESS at 3 T: Does a measured macromolecule background improve linear combination modeling?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30158
https://www.ncbi.nlm.nih.gov/pubmed/38818623
https://www.proquest.com/docview/3063464946
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoKGXPtJHNm2DWnroxRuvLNlSeyib5kXBPYQEcigYPSEk6y37uOSUa2_9jfklHUnrDWlTCL3JWBayZiR9I818A_C-NJR7z2RmK48GiuA80yJXmedCywEWmQqBwvW38vCEfT3lpyvwqYuFSfwQywO3MDPieh0muNLT7RvS0NFk1Eft5CHQN_hqBUB0dEMdJWViYK5YWGck61iFcrq9_PL2XvQXwLyNV-OGs_8YvnddTX4m5_35TPfN5R8sjv_5L0_g0QKIkmHSnKew4tp1WKsXV-3r8CD6hprpM5gcDHeG11e_8BXCU1LvHYSnKDqiZqS4vvp5_JHsjt2UKDJKZ46WjFT09IvJdx3RypyHAJLWkrN4jOFI6LWaEOwqGudRP0hMy4N76efncLK_d_zlMFukashMQbnImLdomSnqpUK8QStqvOBWozXi2MDg_pdXymompFGC2dJLBKqV11ZYP8hNrosXsNqOW7cBxDrnilx7pUvLfKk1C0TKXBhtrMgt78GHTmiNWfCYh3QaF01iYKYNjmYTR7MH75ZVfyTyjrsqve0k3-DUCvclqnXj-RRflwUrmWRlD14mlVg2U4hABUgL7E0U7L_bb-qjOhY271_1FTykCJ6S0-BrWJ1N5u4Ngp-Z3opa_hsXPgI-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHgXK8jSIA5dss46d2AgJLdB2gaaHaiv1giI_papsFu3j0lOvvfU39pd07Gy2Kg8JcXMUx5p4xp6Hx98AvMkN5d4zmdjCo4MiOE-0SFXiudCyh02mwkXhcjcf7LOvB_xgBd63d2EafIhlwC2sjLhfhwUeAtIbl6iho8moi-LJxTW4Hip6R4dq7xI8SsoGg7lgYaeRrMUVSunG8tOr2ug3E_OqxRpVztZd-N4S22SaHHXnM901x7_gOP7v39yDOwtblPQb4bkPK65eg5vl4rR9DW7E9FAzfQCT7f7H_vnJGb5CC5WUm9vhKXKPqBnJzk9Oh-_I57GbEkVGTdjRkpGKyX6x_q4jWpmjcIektuQwRjIcCWSrCUFa0T-PIkJiZR5Upx8ewv7W5vDTIFlUa0hMRrlImLfonCnqpUKTgxbUeMGtRofEsZ5BFZgWymompFGC2dxLtFULr62wvpeaVGePYLUe1-4xEOucy1Ltlc4t87nWLGApc2G0sSK1vANvW65VZgFlHipq_KgaEGZa4WxWcTY78HrZ9WeD3_GnTq9a1le4usKRiardeD7F13nGciZZ3oH1RiaWw2QioAHSDKmJnP37-FW5V8bGk3_v-hJuDYblTrXzZffbU7hN0ZZqcgifwepsMnfP0Raa6RdR5C8AJrwGWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouFMpreRrEgUu22cRO7HJAC9tteaRCVSv1gBT5KaGy2WofF069cutv7C_p2N5sVR4S4uYojuV4xp5v7PE3AK8KnTHnqEhM6dBB4YwliqcycYwr0cMilf6icLVX7B7Sj0fsaAXetHdhIj_EcsPNz4ywXvsJfmLc5iVp6Ggy6qJ2Mn4NrtMi5V6lB_uX3FFCRArmkvqFRtCWVijNNpefXjVGvyHMq4A1WJzhOnxt-xoDTY6785nq6h-_0Dj-58_chlsLJEr6UXXuwIptNmCtWpy1b8CNEByqp3dhstN_1z8_PcNXiE9Jtb3jn4LsiJyR_Pz058EWGYztlEgyipuOhoxkCPUL2XctUVIf-xskjSHfwj6GJb7XckKwq-idBwUhIS8PGtO39-BwuH3wfjdZ5GpIdJ4xnlBn0DWTmRMSAUdWZtpxZhS6I5b2NBrAtJRGUS605NQUTiBSLZ0y3LheqlOV34fVZtzYh0CMtTZPlZOqMNQVSlHPpMy4Vtrw1LAOvG6FVusFkbnPp_G9jhTMWY2jWYfR7MDLZdWTyN7xp0ovWsnXOLf8gYls7Hg-xddFTgsqaNGBB1Ells3k3HMBZjn2Jgj27-3X1X4VCo_-vepzWPsyGNafP-x9egw3MwRSMYDwCazOJnP7FIHQTD0LCn8BNWEFEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GABA-edited+MEGA-PRESS+at+3%E2%80%89T%3A+Does+a+measured+macromolecule+background+improve+linear+combination+modeling%3F&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Davies-Jenkins%2C+Christopher+W&rft.au=Z%C3%B6llner%2C+Helge+J&rft.au=Simicic%2C+Dunja&rft.au=Hui%2C+Steve+C+N&rft.date=2024-10-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=92&rft.issue=4&rft.spage=1348&rft_id=info:doi/10.1002%2Fmrm.30158&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon