Effect of threshold values on the combination of EMG time domain features: Surface versus intramuscular EMG
In myoelectric control, the calculation of a number of time domain features uses a threshold. However there is no consensus on the choice of the optimal threshold values. In this study, we investigate the effect of threshold selection on the classification for prosthetic use. Surface and intramuscul...
Saved in:
Published in | Biomedical signal processing and control Vol. 45; pp. 267 - 273 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2018.05.036 |
Cover
Abstract | In myoelectric control, the calculation of a number of time domain features uses a threshold. However there is no consensus on the choice of the optimal threshold values. In this study, we investigate the effect of threshold selection on the classification for prosthetic use. Surface and intramuscular EMG were recorded concurrently from four forearm muscles on nine able-bodied subjects. Subjects were prompted to elicit comfortable and sustainable contractions corresponding to eight classes of motion. Four repetitions of three seconds were collected for each motion during medium level steady state contractions. The threshold for each feature was computed as a factor (R = 0:0.02:6) times the average root mean square of the baseline. For each threshold value, classification error was quantified using linear discriminant analysis (LDA) and k-nearest neighbor (KNN, k = 4) first for each individual feature and when combined. Three-way ANOVA revealed no significant difference between surface and intramuscular EMG (P = 0.997). However there was a significant difference between the features (P = 0.006) and between the classifiers (P < 0.001). The most dominant feature combination depended on the EMG (surface and intramuscular) and classifier. Results have demonstrated that using appropriate threshold value is very important to assure acceptable performance. For surface EMG, zero crossings (ZC) and slope sign changes (SSC) require no threshold, while a low threshold (R = 0.1:1) different from zero must be applied for willison amplitude (WAMP), myopulse percentage rate (MYOP) and cardinality (CARD). For intramuscular EMG, there is similar observation when using LDA as classifier. When using KNN, ZC SSC showed tendency to benefit from a low value threshold as well. Furthermore we propose the inclusion of a threshold that makes CARD robust to data precision. |
---|---|
AbstractList | In myoelectric control, the calculation of a number of time domain features uses a threshold. However there is no consensus on the choice of the optimal threshold values. In this study, we investigate the effect of threshold selection on the classification for prosthetic use. Surface and intramuscular EMG were recorded concurrently from four forearm muscles on nine able-bodied subjects. Subjects were prompted to elicit comfortable and sustainable contractions corresponding to eight classes of motion. Four repetitions of three seconds were collected for each motion during medium level steady state contractions. The threshold for each feature was computed as a factor (R = 0:0.02:6) times the average root mean square of the baseline. For each threshold value, classification error was quantified using linear discriminant analysis (LDA) and k-nearest neighbor (KNN, k = 4) first for each individual feature and when combined. Three-way ANOVA revealed no significant difference between surface and intramuscular EMG (P = 0.997). However there was a significant difference between the features (P = 0.006) and between the classifiers (P < 0.001). The most dominant feature combination depended on the EMG (surface and intramuscular) and classifier. Results have demonstrated that using appropriate threshold value is very important to assure acceptable performance. For surface EMG, zero crossings (ZC) and slope sign changes (SSC) require no threshold, while a low threshold (R = 0.1:1) different from zero must be applied for willison amplitude (WAMP), myopulse percentage rate (MYOP) and cardinality (CARD). For intramuscular EMG, there is similar observation when using LDA as classifier. When using KNN, ZC SSC showed tendency to benefit from a low value threshold as well. Furthermore we propose the inclusion of a threshold that makes CARD robust to data precision. |
Author | Waris, Asim Kamavuako, Ernest Nlandu |
Author_xml | – sequence: 1 givenname: Asim orcidid: 0000-0002-0190-0700 surname: Waris fullname: Waris, Asim organization: Department of Health Science and Technology, Aalborg University, Fredrik bajers vej 7 D3, 9220 Aalborg, Denmark – sequence: 2 givenname: Ernest Nlandu orcidid: 0000-0001-6846-2090 surname: Kamavuako fullname: Kamavuako, Ernest Nlandu email: ernest.kamavuako@kcl.ac.uk organization: Department of Health Science and Technology, Aalborg University, Fredrik bajers vej 7 D3, 9220 Aalborg, Denmark |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DyDzT4mbiIDapKQQKxANaW44fqksSVnVTi73EobFh05fFozujOmYFJFzoLwDVGBUa4vNkVddrrgiAsCsQLRMszMMUVKxcCIzH5q9GSXYBZSjuEmKgwm4LPtXNW9zA42G-jTdvQGHhQzWATDF3uWahDW_tO9T7_89j6ZQN731poQqt8B51V_ZDJW_g2RKe0hQcb05Cg7_qo2iHpoVFxxC7BuVNNsle_7xx8PKzfV4-L59fN0-r-eaEp4TmlYrjmVV07o1HtKKdccYK0qli1rAk3FTWlzqkJoZZRg7lwJXZKlIIsK2boHIjjXh1DStE6qX3_kz8H8o3ESI7S5E6O0uQoTSIus7SMkn_oPvpWxa_T0N0Rsvmog7dRJu1tp63xMbuVJvhT-Devx4mR |
CitedBy_id | crossref_primary_10_1088_1361_6501_ad93f2 crossref_primary_10_1145_3637213 crossref_primary_10_1109_ACCESS_2020_2994829 crossref_primary_10_1109_JSEN_2021_3095118 crossref_primary_10_32604_cmc_2022_027474 crossref_primary_10_3390_s21030799 crossref_primary_10_1109_TIM_2023_3243612 crossref_primary_10_1016_j_bspc_2023_105445 crossref_primary_10_1016_j_bspc_2023_105044 crossref_primary_10_1177_09544119221074770 crossref_primary_10_3390_s20123385 crossref_primary_10_1007_s13369_024_09138_8 crossref_primary_10_3233_JIFS_212715 crossref_primary_10_1016_j_medengphy_2023_104095 crossref_primary_10_3389_fnhum_2022_861270 crossref_primary_10_1016_j_physbeh_2022_113847 crossref_primary_10_1177_09544119211053669 crossref_primary_10_1016_j_bbe_2020_05_003 crossref_primary_10_1088_1741_2552_abcc7f crossref_primary_10_3389_fphys_2022_965702 crossref_primary_10_1038_s41598_024_52405_9 crossref_primary_10_1109_ACCESS_2024_3378249 crossref_primary_10_3390_app8071126 crossref_primary_10_3390_s25051355 crossref_primary_10_3390_app10207146 crossref_primary_10_1007_s12065_020_00441_5 crossref_primary_10_1016_j_engreg_2022_11_003 crossref_primary_10_1016_j_bspc_2019_101699 crossref_primary_10_3390_bioengineering10060703 crossref_primary_10_1016_j_compbiomed_2023_107397 crossref_primary_10_3390_s22249849 crossref_primary_10_1109_ACCESS_2024_3365639 crossref_primary_10_1109_TBME_2021_3131297 crossref_primary_10_1109_TOH_2024_3428308 |
Cites_doi | 10.1109/TNSRE.2013.2248750 10.1016/j.eswa.2013.02.023 10.1111/j.1469-1809.1936.tb02137.x 10.1109/TBME.2008.2005950 10.1109/TNSRE.2005.850423 10.1109/10.204774 10.1001/jama.2009.116 10.1016/j.bspc.2014.01.007 10.1088/1741-2560/13/4/046011 10.1097/PHM.0b013e3180383cc5 10.1016/S1350-4533(99)00066-1 10.1109/86.481972 10.1088/0967-3334/24/2/307 10.1109/TBME.2006.889192 10.1109/3468.925661 10.1109/TBME.2008.919734 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2018.05.036 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
EndPage | 273 |
ExternalDocumentID | 10_1016_j_bspc_2018_05_036 S1746809418301447 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c3256-8a41b57bbfdc0bf3535a520ca7479b25d73d6cfec223e43d158f61fa8682974d3 |
IEDL.DBID | AIKHN |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:04 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Fri Feb 23 02:28:23 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Population based optimum threshold Electromyography Subject based optimum threshold Pattern recognition Time domain features |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3256-8a41b57bbfdc0bf3535a520ca7479b25d73d6cfec223e43d158f61fa8682974d3 |
ORCID | 0000-0002-0190-0700 0000-0001-6846-2090 |
OpenAccessLink | https://kclpure.kcl.ac.uk/ws/files/97244972/Waris_Kamavuako_BSPC_2018_Final.pdf |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2018_05_036 crossref_primary_10_1016_j_bspc_2018_05_036 elsevier_sciencedirect_doi_10_1016_j_bspc_2018_05_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Silverman, Jones (bib0125) 1981; 57 Kiguchi, Imada, Liyanage (bib0030) 2007 Phinyomark, Limsakul (bib0075) 2008 Phinyomark, Quaine, Charbonnier, Serviere, Tarpin-Bernard, Laurillau (bib0050) 2013; 40 Boostani, Moradi (bib0060) 2003; 24 Basmajian, De Luca (bib0005) 1985 Dipietro, Ferraro, Palazzolo, Krebs, Volpe, Hogan (bib0025) 2005; 13 Englehart, Hudgins, Parker, Stevenson (bib0070) 1999; 21 Phinyomark, Limsakul, Phukpattaranont (bib0110) 2009 Hargrove, Englehart, Hudgins (bib0080) 2007; 54 Stein, Narendran, McBean, Krebs, Hughes (bib0015) 2007; 86 Rosen, Brand, Fuchs, Arcan (bib0020) 2001; 31 Choi, Micera, Carpaneto, Kim (bib0035) 2009; 56 Kamavuako, Scheme, Englehart (bib0055) 2014; 10 Kamavuako, Scheme, Englehart (bib0115) 2016; 13 Zardoshti-Kermani, Wheeler, Badie, Hashemi (bib0090) 1995; 3 Scheme, Englehart (bib0100) 2014 Shin, Langari, Tafreshi (bib0040) 2014 Hudgins, Parker, Scott (bib0085) 1993; 40 Fisher (bib0120) 1936; 7 Kuiken, Li, Lock, Lipschutz, Miller, Stubblefield (bib0010) 2009; 301 Philipson (bib0095) 1987 Oskoei, Hu (bib0065) 2008; 55 Ortiz-Catalan (bib0105) 2015; 29 Kamavuako, Rosenvang, Horup, Jensen, Farina, Englehart (bib0045) 2013; 21 Englehart (10.1016/j.bspc.2018.05.036_bib0070) 1999; 21 Kuiken (10.1016/j.bspc.2018.05.036_bib0010) 2009; 301 Ortiz-Catalan (10.1016/j.bspc.2018.05.036_bib0105) 2015; 29 Fisher (10.1016/j.bspc.2018.05.036_bib0120) 1936; 7 Dipietro (10.1016/j.bspc.2018.05.036_bib0025) 2005; 13 Kiguchi (10.1016/j.bspc.2018.05.036_bib0030) 2007 Hudgins (10.1016/j.bspc.2018.05.036_bib0085) 1993; 40 Hargrove (10.1016/j.bspc.2018.05.036_bib0080) 2007; 54 Stein (10.1016/j.bspc.2018.05.036_bib0015) 2007; 86 Choi (10.1016/j.bspc.2018.05.036_bib0035) 2009; 56 Oskoei (10.1016/j.bspc.2018.05.036_bib0065) 2008; 55 Kamavuako (10.1016/j.bspc.2018.05.036_bib0045) 2013; 21 Scheme (10.1016/j.bspc.2018.05.036_bib0100) 2014 Kamavuako (10.1016/j.bspc.2018.05.036_bib0055) 2014; 10 Phinyomark (10.1016/j.bspc.2018.05.036_bib0075) 2008 Phinyomark (10.1016/j.bspc.2018.05.036_bib0110) 2009 Basmajian (10.1016/j.bspc.2018.05.036_bib0005) 1985 Boostani (10.1016/j.bspc.2018.05.036_bib0060) 2003; 24 Philipson (10.1016/j.bspc.2018.05.036_bib0095) 1987 Rosen (10.1016/j.bspc.2018.05.036_bib0020) 2001; 31 Phinyomark (10.1016/j.bspc.2018.05.036_bib0050) 2013; 40 Shin (10.1016/j.bspc.2018.05.036_bib0040) 2014 Kamavuako (10.1016/j.bspc.2018.05.036_bib0115) 2016; 13 Silverman (10.1016/j.bspc.2018.05.036_bib0125) 1981; 57 Zardoshti-Kermani (10.1016/j.bspc.2018.05.036_bib0090) 1995; 3 |
References_xml | – volume: 86 start-page: 255 year: 2007 end-page: 261 ident: bib0015 article-title: Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke publication-title: Am J. Phys. Med. Rehabil. – start-page: 178 year: 2008 end-page: 183 ident: bib0075 article-title: Phukpattaranont P EMG feature extraction for tolerance of white Gaussian noise publication-title: Proc. International Workshop and Symposium Science Technology – year: 1987 ident: bib0095 article-title: The Electromyographic Signal Used for Control of Upper Extremity Prostheses and for Quantification of motor Blockade During Epidural Anaesthesia – volume: 13 start-page: 325 year: 2005 end-page: 334 ident: bib0025 article-title: Customized interactive robotic treatment for stroke: EMG-triggered therapy publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 3 start-page: 324 year: 1995 end-page: 333 ident: bib0090 article-title: EMG feature evaluation for movement control of upper extremity prostheses publication-title: IEEE Trans. Rehabil. Eng. – year: 2009 ident: bib0110 article-title: A novel feature extraction for robust EMG pattern recognition publication-title: J. Comput.: 0912.3973 – year: 2007 ident: bib0030 article-title: EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. Engineering in medicine and biology society, 2007. EMBS 2007 publication-title: 29th Annual International Conference of the IEEE – volume: 54 start-page: 847 year: 2007 end-page: 853 ident: bib0080 article-title: A comparison of surface and intramuscular myoelectric signal classification publication-title: IEEE Trans. Biomed. Eng. – volume: 21 start-page: 992 year: 2013 end-page: 998 ident: bib0045 article-title: Surface versus untargeted intramuscular EMG based classification of simultaneous and dynamically changing movements publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 40 start-page: 4832 year: 2013 end-page: 4840 ident: bib0050 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Expert Syst. Appl. – volume: 24 start-page: 309 year: 2003 ident: bib0060 article-title: Evaluation of the forearm EMG signal features for the control of a prosthetic hand publication-title: Physiol. Meas. – year: 2014 ident: bib0040 article-title: A performance comparison of emg classification methods for hand and finger motion publication-title: ASME 2014 Dynamic Systems and Control Conference – volume: 10 start-page: 102 year: 2014 end-page: 107 ident: bib0055 article-title: Combined surface and intramuscular EMG for improved real-time myoelectric control performance publication-title: Biomed. Signal Process. Control – volume: 55 start-page: 1956 year: 2008 end-page: 1965 ident: bib0065 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Trans. Biomed. Eng. – volume: 21 start-page: 431 year: 1999 end-page: 438 ident: bib0070 article-title: Classification of the myoelectric signal using time-frequency based representations publication-title: Med. Eng. Phys. – volume: 57 start-page: 233 year: 1981 end-page: 238 ident: bib0125 article-title: An important contribution to nonparametric discriminant analysis and density estimation: commentary on Fix and Hodges (1951) publication-title: Int. Stat. – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: bib0120 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. – year: 1985 ident: bib0005 article-title: Muscles Alive: Their Functions Revealed by Electromyography – volume: 301 start-page: 619 year: 2009 end-page: 628 ident: bib0010 article-title: Targeted muscle reinnervation for Real-time myoelectric control of multifunction artificial arms publication-title: JAMA: J. Am. Med. Assoc. – volume: 29 start-page: 416 year: 2015 ident: bib0105 article-title: Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition publication-title: Front. Neurosci. – volume: 56 start-page: 188 year: 2009 end-page: 191 ident: bib0035 article-title: Development and quantitative performance evaluation of a noninvasive EMG computer interface publication-title: IEEE Trans. Biomed. Eng. – volume: 40 start-page: 82 year: 1993 end-page: 94 ident: bib0085 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. – year: 2014 ident: bib0100 article-title: On the robustness of EMG features for pattern recognition based myoelectric control; a multi-dataset comparison publication-title: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE – volume: 13 start-page: 046011 year: 2016 ident: bib0115 article-title: Determination of optimum threshold values for EMG time domain features; a multi-dataset investigation publication-title: J. Neural Eng. – volume: 31 start-page: 210 year: 2001 end-page: 222 ident: bib0020 article-title: A myosignal-based powered exoskeleton system publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. – volume: 21 start-page: 992 issue: 6 year: 2013 ident: 10.1016/j.bspc.2018.05.036_bib0045 article-title: Surface versus untargeted intramuscular EMG based classification of simultaneous and dynamically changing movements publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2248750 – volume: 40 start-page: 4832 issue: 12 year: 2013 ident: 10.1016/j.bspc.2018.05.036_bib0050 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.02.023 – volume: 7 start-page: 179 issue: 2 year: 1936 ident: 10.1016/j.bspc.2018.05.036_bib0120 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1936.tb02137.x – year: 1987 ident: 10.1016/j.bspc.2018.05.036_bib0095 – volume: 56 start-page: 188 issue: 1 year: 2009 ident: 10.1016/j.bspc.2018.05.036_bib0035 article-title: Development and quantitative performance evaluation of a noninvasive EMG computer interface publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2005950 – volume: 13 start-page: 325 issue: 3 year: 2005 ident: 10.1016/j.bspc.2018.05.036_bib0025 article-title: Customized interactive robotic treatment for stroke: EMG-triggered therapy publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2005.850423 – volume: 40 start-page: 82 issue: 1 year: 1993 ident: 10.1016/j.bspc.2018.05.036_bib0085 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.204774 – volume: 301 start-page: 619 issue: 6 year: 2009 ident: 10.1016/j.bspc.2018.05.036_bib0010 article-title: Targeted muscle reinnervation for Real-time myoelectric control of multifunction artificial arms publication-title: JAMA: J. Am. Med. Assoc. doi: 10.1001/jama.2009.116 – year: 2007 ident: 10.1016/j.bspc.2018.05.036_bib0030 article-title: EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. Engineering in medicine and biology society, 2007. EMBS 2007 – volume: 10 start-page: 102 year: 2014 ident: 10.1016/j.bspc.2018.05.036_bib0055 article-title: Combined surface and intramuscular EMG for improved real-time myoelectric control performance publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.01.007 – start-page: 178 year: 2008 ident: 10.1016/j.bspc.2018.05.036_bib0075 article-title: Phukpattaranont P EMG feature extraction for tolerance of white Gaussian noise – volume: 13 start-page: 046011 issue: 4 year: 2016 ident: 10.1016/j.bspc.2018.05.036_bib0115 article-title: Determination of optimum threshold values for EMG time domain features; a multi-dataset investigation publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/4/046011 – volume: 86 start-page: 255 issue: April (4) year: 2007 ident: 10.1016/j.bspc.2018.05.036_bib0015 article-title: Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke publication-title: Am J. Phys. Med. Rehabil. doi: 10.1097/PHM.0b013e3180383cc5 – volume: 21 start-page: 431 issue: 6 year: 1999 ident: 10.1016/j.bspc.2018.05.036_bib0070 article-title: Classification of the myoelectric signal using time-frequency based representations publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(99)00066-1 – year: 2014 ident: 10.1016/j.bspc.2018.05.036_bib0100 article-title: On the robustness of EMG features for pattern recognition based myoelectric control; a multi-dataset comparison – year: 1985 ident: 10.1016/j.bspc.2018.05.036_bib0005 – year: 2009 ident: 10.1016/j.bspc.2018.05.036_bib0110 article-title: A novel feature extraction for robust EMG pattern recognition publication-title: J. Comput.: 0912.3973 – volume: 3 start-page: 324 issue: 4 year: 1995 ident: 10.1016/j.bspc.2018.05.036_bib0090 article-title: EMG feature evaluation for movement control of upper extremity prostheses publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.481972 – volume: 24 start-page: 309 issue: 2 year: 2003 ident: 10.1016/j.bspc.2018.05.036_bib0060 article-title: Evaluation of the forearm EMG signal features for the control of a prosthetic hand publication-title: Physiol. Meas. doi: 10.1088/0967-3334/24/2/307 – volume: 54 start-page: 847 issue: 5 year: 2007 ident: 10.1016/j.bspc.2018.05.036_bib0080 article-title: A comparison of surface and intramuscular myoelectric signal classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889192 – volume: 31 start-page: 210 issue: 3 year: 2001 ident: 10.1016/j.bspc.2018.05.036_bib0020 article-title: A myosignal-based powered exoskeleton system publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. doi: 10.1109/3468.925661 – volume: 55 start-page: 1956 issue: 8 year: 2008 ident: 10.1016/j.bspc.2018.05.036_bib0065 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.919734 – volume: 29 start-page: 416 issue: October (9) year: 2015 ident: 10.1016/j.bspc.2018.05.036_bib0105 article-title: Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition publication-title: Front. Neurosci. – year: 2014 ident: 10.1016/j.bspc.2018.05.036_bib0040 article-title: A performance comparison of emg classification methods for hand and finger motion – volume: 57 start-page: 233 issue: 3 (December) year: 1981 ident: 10.1016/j.bspc.2018.05.036_bib0125 article-title: An important contribution to nonparametric discriminant analysis and density estimation: commentary on Fix and Hodges (1951) publication-title: Int. Stat. |
SSID | ssj0048714 |
Score | 2.337974 |
Snippet | In myoelectric control, the calculation of a number of time domain features uses a threshold. However there is no consensus on the choice of the optimal... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 267 |
SubjectTerms | Electromyography Pattern recognition Population based optimum threshold Subject based optimum threshold Time domain features |
Title | Effect of threshold values on the combination of EMG time domain features: Surface versus intramuscular EMG |
URI | https://dx.doi.org/10.1016/j.bspc.2018.05.036 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLagLDAgnuKtG9hQaJLLpRc2VFEKqCyA1C26p1QeaUXald-OnQcCCTEw5nSWLrbl-5zYnwFObcxdJqwIMpXEQUIkmAqBaKA9ZtqpFNZVxPOj-3T4lNyOxXgJ-m0vDJVVNrG_julVtG5Wuo02u7PJpPuAWDqVmJ2gU1Ja0FuGlZhnqejAyuXN3fC-DcgIySuKb9ofkEDTO1OXeelyRkyGkawIPCum5l_up293zmAD1huwyC7r82zCkiu2YO0bheA2vNT0w2zq2RzNUtLfJEYM3q5k0wLXHMNXw_S3sgBtuxpdM5ooz-z0TU0K5l3F7VlesIfFu1fGMarUWJRsQt993xZ1pSqJ7cDT4OqxPwyaAQqB4QhlAqmSSIue1t6aUHsuuFAiDo3CHCLTsbA9blODp0SM4BJuIyF9GnklU2q4TSzfhU4xLdwesFCYXmwsz7TkSWaUdlZ6k_LQRVIiqtyHqFVbbhp2cRpy8Zq3ZWTPOak6J1XnochR1ftw9iUzq7k1_twtWmvkPzwkx-D_h9zBP-UOYZWe6mK_I-jM3xfuGAHIXJ_A8vlHdNK42Scn89oP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIry9MCGQpM4Thw2hIDyKEuLxGb5KRVoWjXtym_nLkkRSIiB1bmTnLN1_i757jMhpzZmLueWB7lK4iBBEUwFQDTQHirtVHDrKuH57lPaeU7uX_jLArma98IgrbLJ_XVOr7J1M9JuotkeDwbtHmDpVEB1ApsSy4JskSwnnGXI6zv_-OJ5ACCvBL7ROkDzpnOmJnnpcow6hpGo5DsrneZfTqdvJ87NBllvoCK9rGezSRZcsUXWvgkIbpO3WnyYjjydwqKU-C-Jon63K-mogDFH4cWg-K3ij2bX3VuK98lTOxqqQUG9q5Q9ywvam028Mo4iT2NW0gF-9R3Oap4quu2Q55vr_lUnaK5PCAwDIBMIlUSaZ1p7a0LtGWdc8Tg0CiqIXMfcZsymBmYJCMElzEZc-DTySqTYbptYtkuWilHh9ggNucliY1muBUtyo7SzwpuUhS4SAjBli0TzsEnTaIvjFRfvck4ie5UYaomhliGXEOoWOfvyGdfKGn9a8_lqyB_7Q0Lq_8Nv_59-J2Sl0-8-yse7p4cDsopPatrfIVmaTmbuCKDIVB9XW-0T_Nja2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+threshold+values+on+the+combination+of+EMG+time+domain+features%3A+Surface+versus+intramuscular+EMG&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Waris%2C+Asim&rft.au=Kamavuako%2C+Ernest+Nlandu&rft.date=2018-08-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=45&rft.spage=267&rft.epage=273&rft_id=info:doi/10.1016%2Fj.bspc.2018.05.036&rft.externalDocID=S1746809418301447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |