Effect of threshold values on the combination of EMG time domain features: Surface versus intramuscular EMG

In myoelectric control, the calculation of a number of time domain features uses a threshold. However there is no consensus on the choice of the optimal threshold values. In this study, we investigate the effect of threshold selection on the classification for prosthetic use. Surface and intramuscul...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 45; pp. 267 - 273
Main Authors Waris, Asim, Kamavuako, Ernest Nlandu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2018
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2018.05.036

Cover

Abstract In myoelectric control, the calculation of a number of time domain features uses a threshold. However there is no consensus on the choice of the optimal threshold values. In this study, we investigate the effect of threshold selection on the classification for prosthetic use. Surface and intramuscular EMG were recorded concurrently from four forearm muscles on nine able-bodied subjects. Subjects were prompted to elicit comfortable and sustainable contractions corresponding to eight classes of motion. Four repetitions of three seconds were collected for each motion during medium level steady state contractions. The threshold for each feature was computed as a factor (R = 0:0.02:6) times the average root mean square of the baseline. For each threshold value, classification error was quantified using linear discriminant analysis (LDA) and k-nearest neighbor (KNN, k = 4) first for each individual feature and when combined. Three-way ANOVA revealed no significant difference between surface and intramuscular EMG (P = 0.997). However there was a significant difference between the features (P = 0.006) and between the classifiers (P < 0.001). The most dominant feature combination depended on the EMG (surface and intramuscular) and classifier. Results have demonstrated that using appropriate threshold value is very important to assure acceptable performance. For surface EMG, zero crossings (ZC) and slope sign changes (SSC) require no threshold, while a low threshold (R = 0.1:1) different from zero must be applied for willison amplitude (WAMP), myopulse percentage rate (MYOP) and cardinality (CARD). For intramuscular EMG, there is similar observation when using LDA as classifier. When using KNN, ZC SSC showed tendency to benefit from a low value threshold as well. Furthermore we propose the inclusion of a threshold that makes CARD robust to data precision.
AbstractList In myoelectric control, the calculation of a number of time domain features uses a threshold. However there is no consensus on the choice of the optimal threshold values. In this study, we investigate the effect of threshold selection on the classification for prosthetic use. Surface and intramuscular EMG were recorded concurrently from four forearm muscles on nine able-bodied subjects. Subjects were prompted to elicit comfortable and sustainable contractions corresponding to eight classes of motion. Four repetitions of three seconds were collected for each motion during medium level steady state contractions. The threshold for each feature was computed as a factor (R = 0:0.02:6) times the average root mean square of the baseline. For each threshold value, classification error was quantified using linear discriminant analysis (LDA) and k-nearest neighbor (KNN, k = 4) first for each individual feature and when combined. Three-way ANOVA revealed no significant difference between surface and intramuscular EMG (P = 0.997). However there was a significant difference between the features (P = 0.006) and between the classifiers (P < 0.001). The most dominant feature combination depended on the EMG (surface and intramuscular) and classifier. Results have demonstrated that using appropriate threshold value is very important to assure acceptable performance. For surface EMG, zero crossings (ZC) and slope sign changes (SSC) require no threshold, while a low threshold (R = 0.1:1) different from zero must be applied for willison amplitude (WAMP), myopulse percentage rate (MYOP) and cardinality (CARD). For intramuscular EMG, there is similar observation when using LDA as classifier. When using KNN, ZC SSC showed tendency to benefit from a low value threshold as well. Furthermore we propose the inclusion of a threshold that makes CARD robust to data precision.
Author Waris, Asim
Kamavuako, Ernest Nlandu
Author_xml – sequence: 1
  givenname: Asim
  orcidid: 0000-0002-0190-0700
  surname: Waris
  fullname: Waris, Asim
  organization: Department of Health Science and Technology, Aalborg University, Fredrik bajers vej 7 D3, 9220 Aalborg, Denmark
– sequence: 2
  givenname: Ernest Nlandu
  orcidid: 0000-0001-6846-2090
  surname: Kamavuako
  fullname: Kamavuako, Ernest Nlandu
  email: ernest.kamavuako@kcl.ac.uk
  organization: Department of Health Science and Technology, Aalborg University, Fredrik bajers vej 7 D3, 9220 Aalborg, Denmark
BookMark eNp9kMtOwzAQRS1UJNrCD7DyDzT4mbiIDapKQQKxANaW44fqksSVnVTi73EobFh05fFozujOmYFJFzoLwDVGBUa4vNkVddrrgiAsCsQLRMszMMUVKxcCIzH5q9GSXYBZSjuEmKgwm4LPtXNW9zA42G-jTdvQGHhQzWATDF3uWahDW_tO9T7_89j6ZQN731poQqt8B51V_ZDJW_g2RKe0hQcb05Cg7_qo2iHpoVFxxC7BuVNNsle_7xx8PKzfV4-L59fN0-r-eaEp4TmlYrjmVV07o1HtKKdccYK0qli1rAk3FTWlzqkJoZZRg7lwJXZKlIIsK2boHIjjXh1DStE6qX3_kz8H8o3ESI7S5E6O0uQoTSIus7SMkn_oPvpWxa_T0N0Rsvmog7dRJu1tp63xMbuVJvhT-Devx4mR
CitedBy_id crossref_primary_10_1088_1361_6501_ad93f2
crossref_primary_10_1145_3637213
crossref_primary_10_1109_ACCESS_2020_2994829
crossref_primary_10_1109_JSEN_2021_3095118
crossref_primary_10_32604_cmc_2022_027474
crossref_primary_10_3390_s21030799
crossref_primary_10_1109_TIM_2023_3243612
crossref_primary_10_1016_j_bspc_2023_105445
crossref_primary_10_1016_j_bspc_2023_105044
crossref_primary_10_1177_09544119221074770
crossref_primary_10_3390_s20123385
crossref_primary_10_1007_s13369_024_09138_8
crossref_primary_10_3233_JIFS_212715
crossref_primary_10_1016_j_medengphy_2023_104095
crossref_primary_10_3389_fnhum_2022_861270
crossref_primary_10_1016_j_physbeh_2022_113847
crossref_primary_10_1177_09544119211053669
crossref_primary_10_1016_j_bbe_2020_05_003
crossref_primary_10_1088_1741_2552_abcc7f
crossref_primary_10_3389_fphys_2022_965702
crossref_primary_10_1038_s41598_024_52405_9
crossref_primary_10_1109_ACCESS_2024_3378249
crossref_primary_10_3390_app8071126
crossref_primary_10_3390_s25051355
crossref_primary_10_3390_app10207146
crossref_primary_10_1007_s12065_020_00441_5
crossref_primary_10_1016_j_engreg_2022_11_003
crossref_primary_10_1016_j_bspc_2019_101699
crossref_primary_10_3390_bioengineering10060703
crossref_primary_10_1016_j_compbiomed_2023_107397
crossref_primary_10_3390_s22249849
crossref_primary_10_1109_ACCESS_2024_3365639
crossref_primary_10_1109_TBME_2021_3131297
crossref_primary_10_1109_TOH_2024_3428308
Cites_doi 10.1109/TNSRE.2013.2248750
10.1016/j.eswa.2013.02.023
10.1111/j.1469-1809.1936.tb02137.x
10.1109/TBME.2008.2005950
10.1109/TNSRE.2005.850423
10.1109/10.204774
10.1001/jama.2009.116
10.1016/j.bspc.2014.01.007
10.1088/1741-2560/13/4/046011
10.1097/PHM.0b013e3180383cc5
10.1016/S1350-4533(99)00066-1
10.1109/86.481972
10.1088/0967-3334/24/2/307
10.1109/TBME.2006.889192
10.1109/3468.925661
10.1109/TBME.2008.919734
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2018.05.036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
EndPage 273
ExternalDocumentID 10_1016_j_bspc_2018_05_036
S1746809418301447
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c3256-8a41b57bbfdc0bf3535a520ca7479b25d73d6cfec223e43d158f61fa8682974d3
IEDL.DBID AIKHN
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:04 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Fri Feb 23 02:28:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Population based optimum threshold
Electromyography
Subject based optimum threshold
Pattern recognition
Time domain features
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3256-8a41b57bbfdc0bf3535a520ca7479b25d73d6cfec223e43d158f61fa8682974d3
ORCID 0000-0002-0190-0700
0000-0001-6846-2090
OpenAccessLink https://kclpure.kcl.ac.uk/ws/files/97244972/Waris_Kamavuako_BSPC_2018_Final.pdf
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2018_05_036
crossref_primary_10_1016_j_bspc_2018_05_036
elsevier_sciencedirect_doi_10_1016_j_bspc_2018_05_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationTitle Biomedical signal processing and control
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Silverman, Jones (bib0125) 1981; 57
Kiguchi, Imada, Liyanage (bib0030) 2007
Phinyomark, Limsakul (bib0075) 2008
Phinyomark, Quaine, Charbonnier, Serviere, Tarpin-Bernard, Laurillau (bib0050) 2013; 40
Boostani, Moradi (bib0060) 2003; 24
Basmajian, De Luca (bib0005) 1985
Dipietro, Ferraro, Palazzolo, Krebs, Volpe, Hogan (bib0025) 2005; 13
Englehart, Hudgins, Parker, Stevenson (bib0070) 1999; 21
Phinyomark, Limsakul, Phukpattaranont (bib0110) 2009
Hargrove, Englehart, Hudgins (bib0080) 2007; 54
Stein, Narendran, McBean, Krebs, Hughes (bib0015) 2007; 86
Rosen, Brand, Fuchs, Arcan (bib0020) 2001; 31
Choi, Micera, Carpaneto, Kim (bib0035) 2009; 56
Kamavuako, Scheme, Englehart (bib0055) 2014; 10
Kamavuako, Scheme, Englehart (bib0115) 2016; 13
Zardoshti-Kermani, Wheeler, Badie, Hashemi (bib0090) 1995; 3
Scheme, Englehart (bib0100) 2014
Shin, Langari, Tafreshi (bib0040) 2014
Hudgins, Parker, Scott (bib0085) 1993; 40
Fisher (bib0120) 1936; 7
Kuiken, Li, Lock, Lipschutz, Miller, Stubblefield (bib0010) 2009; 301
Philipson (bib0095) 1987
Oskoei, Hu (bib0065) 2008; 55
Ortiz-Catalan (bib0105) 2015; 29
Kamavuako, Rosenvang, Horup, Jensen, Farina, Englehart (bib0045) 2013; 21
Englehart (10.1016/j.bspc.2018.05.036_bib0070) 1999; 21
Kuiken (10.1016/j.bspc.2018.05.036_bib0010) 2009; 301
Ortiz-Catalan (10.1016/j.bspc.2018.05.036_bib0105) 2015; 29
Fisher (10.1016/j.bspc.2018.05.036_bib0120) 1936; 7
Dipietro (10.1016/j.bspc.2018.05.036_bib0025) 2005; 13
Kiguchi (10.1016/j.bspc.2018.05.036_bib0030) 2007
Hudgins (10.1016/j.bspc.2018.05.036_bib0085) 1993; 40
Hargrove (10.1016/j.bspc.2018.05.036_bib0080) 2007; 54
Stein (10.1016/j.bspc.2018.05.036_bib0015) 2007; 86
Choi (10.1016/j.bspc.2018.05.036_bib0035) 2009; 56
Oskoei (10.1016/j.bspc.2018.05.036_bib0065) 2008; 55
Kamavuako (10.1016/j.bspc.2018.05.036_bib0045) 2013; 21
Scheme (10.1016/j.bspc.2018.05.036_bib0100) 2014
Kamavuako (10.1016/j.bspc.2018.05.036_bib0055) 2014; 10
Phinyomark (10.1016/j.bspc.2018.05.036_bib0075) 2008
Phinyomark (10.1016/j.bspc.2018.05.036_bib0110) 2009
Basmajian (10.1016/j.bspc.2018.05.036_bib0005) 1985
Boostani (10.1016/j.bspc.2018.05.036_bib0060) 2003; 24
Philipson (10.1016/j.bspc.2018.05.036_bib0095) 1987
Rosen (10.1016/j.bspc.2018.05.036_bib0020) 2001; 31
Phinyomark (10.1016/j.bspc.2018.05.036_bib0050) 2013; 40
Shin (10.1016/j.bspc.2018.05.036_bib0040) 2014
Kamavuako (10.1016/j.bspc.2018.05.036_bib0115) 2016; 13
Silverman (10.1016/j.bspc.2018.05.036_bib0125) 1981; 57
Zardoshti-Kermani (10.1016/j.bspc.2018.05.036_bib0090) 1995; 3
References_xml – volume: 86
  start-page: 255
  year: 2007
  end-page: 261
  ident: bib0015
  article-title: Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke
  publication-title: Am J. Phys. Med. Rehabil.
– start-page: 178
  year: 2008
  end-page: 183
  ident: bib0075
  article-title: Phukpattaranont P EMG feature extraction for tolerance of white Gaussian noise
  publication-title: Proc. International Workshop and Symposium Science Technology
– year: 1987
  ident: bib0095
  article-title: The Electromyographic Signal Used for Control of Upper Extremity Prostheses and for Quantification of motor Blockade During Epidural Anaesthesia
– volume: 13
  start-page: 325
  year: 2005
  end-page: 334
  ident: bib0025
  article-title: Customized interactive robotic treatment for stroke: EMG-triggered therapy
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 3
  start-page: 324
  year: 1995
  end-page: 333
  ident: bib0090
  article-title: EMG feature evaluation for movement control of upper extremity prostheses
  publication-title: IEEE Trans. Rehabil. Eng.
– year: 2009
  ident: bib0110
  article-title: A novel feature extraction for robust EMG pattern recognition
  publication-title: J. Comput.: 0912.3973
– year: 2007
  ident: bib0030
  article-title: EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. Engineering in medicine and biology society, 2007. EMBS 2007
  publication-title: 29th Annual International Conference of the IEEE
– volume: 54
  start-page: 847
  year: 2007
  end-page: 853
  ident: bib0080
  article-title: A comparison of surface and intramuscular myoelectric signal classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 21
  start-page: 992
  year: 2013
  end-page: 998
  ident: bib0045
  article-title: Surface versus untargeted intramuscular EMG based classification of simultaneous and dynamically changing movements
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 40
  start-page: 4832
  year: 2013
  end-page: 4840
  ident: bib0050
  article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 309
  year: 2003
  ident: bib0060
  article-title: Evaluation of the forearm EMG signal features for the control of a prosthetic hand
  publication-title: Physiol. Meas.
– year: 2014
  ident: bib0040
  article-title: A performance comparison of emg classification methods for hand and finger motion
  publication-title: ASME 2014 Dynamic Systems and Control Conference
– volume: 10
  start-page: 102
  year: 2014
  end-page: 107
  ident: bib0055
  article-title: Combined surface and intramuscular EMG for improved real-time myoelectric control performance
  publication-title: Biomed. Signal Process. Control
– volume: 55
  start-page: 1956
  year: 2008
  end-page: 1965
  ident: bib0065
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 21
  start-page: 431
  year: 1999
  end-page: 438
  ident: bib0070
  article-title: Classification of the myoelectric signal using time-frequency based representations
  publication-title: Med. Eng. Phys.
– volume: 57
  start-page: 233
  year: 1981
  end-page: 238
  ident: bib0125
  article-title: An important contribution to nonparametric discriminant analysis and density estimation: commentary on Fix and Hodges (1951)
  publication-title: Int. Stat.
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: bib0120
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
– year: 1985
  ident: bib0005
  article-title: Muscles Alive: Their Functions Revealed by Electromyography
– volume: 301
  start-page: 619
  year: 2009
  end-page: 628
  ident: bib0010
  article-title: Targeted muscle reinnervation for Real-time myoelectric control of multifunction artificial arms
  publication-title: JAMA: J. Am. Med. Assoc.
– volume: 29
  start-page: 416
  year: 2015
  ident: bib0105
  article-title: Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition
  publication-title: Front. Neurosci.
– volume: 56
  start-page: 188
  year: 2009
  end-page: 191
  ident: bib0035
  article-title: Development and quantitative performance evaluation of a noninvasive EMG computer interface
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 40
  start-page: 82
  year: 1993
  end-page: 94
  ident: bib0085
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2014
  ident: bib0100
  article-title: On the robustness of EMG features for pattern recognition based myoelectric control; a multi-dataset comparison
  publication-title: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE
– volume: 13
  start-page: 046011
  year: 2016
  ident: bib0115
  article-title: Determination of optimum threshold values for EMG time domain features; a multi-dataset investigation
  publication-title: J. Neural Eng.
– volume: 31
  start-page: 210
  year: 2001
  end-page: 222
  ident: bib0020
  article-title: A myosignal-based powered exoskeleton system
  publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
– volume: 21
  start-page: 992
  issue: 6
  year: 2013
  ident: 10.1016/j.bspc.2018.05.036_bib0045
  article-title: Surface versus untargeted intramuscular EMG based classification of simultaneous and dynamically changing movements
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2248750
– volume: 40
  start-page: 4832
  issue: 12
  year: 2013
  ident: 10.1016/j.bspc.2018.05.036_bib0050
  article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.02.023
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: 10.1016/j.bspc.2018.05.036_bib0120
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– year: 1987
  ident: 10.1016/j.bspc.2018.05.036_bib0095
– volume: 56
  start-page: 188
  issue: 1
  year: 2009
  ident: 10.1016/j.bspc.2018.05.036_bib0035
  article-title: Development and quantitative performance evaluation of a noninvasive EMG computer interface
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2005950
– volume: 13
  start-page: 325
  issue: 3
  year: 2005
  ident: 10.1016/j.bspc.2018.05.036_bib0025
  article-title: Customized interactive robotic treatment for stroke: EMG-triggered therapy
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2005.850423
– volume: 40
  start-page: 82
  issue: 1
  year: 1993
  ident: 10.1016/j.bspc.2018.05.036_bib0085
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– volume: 301
  start-page: 619
  issue: 6
  year: 2009
  ident: 10.1016/j.bspc.2018.05.036_bib0010
  article-title: Targeted muscle reinnervation for Real-time myoelectric control of multifunction artificial arms
  publication-title: JAMA: J. Am. Med. Assoc.
  doi: 10.1001/jama.2009.116
– year: 2007
  ident: 10.1016/j.bspc.2018.05.036_bib0030
  article-title: EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. Engineering in medicine and biology society, 2007. EMBS 2007
– volume: 10
  start-page: 102
  year: 2014
  ident: 10.1016/j.bspc.2018.05.036_bib0055
  article-title: Combined surface and intramuscular EMG for improved real-time myoelectric control performance
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.01.007
– start-page: 178
  year: 2008
  ident: 10.1016/j.bspc.2018.05.036_bib0075
  article-title: Phukpattaranont P EMG feature extraction for tolerance of white Gaussian noise
– volume: 13
  start-page: 046011
  issue: 4
  year: 2016
  ident: 10.1016/j.bspc.2018.05.036_bib0115
  article-title: Determination of optimum threshold values for EMG time domain features; a multi-dataset investigation
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/4/046011
– volume: 86
  start-page: 255
  issue: April (4)
  year: 2007
  ident: 10.1016/j.bspc.2018.05.036_bib0015
  article-title: Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke
  publication-title: Am J. Phys. Med. Rehabil.
  doi: 10.1097/PHM.0b013e3180383cc5
– volume: 21
  start-page: 431
  issue: 6
  year: 1999
  ident: 10.1016/j.bspc.2018.05.036_bib0070
  article-title: Classification of the myoelectric signal using time-frequency based representations
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(99)00066-1
– year: 2014
  ident: 10.1016/j.bspc.2018.05.036_bib0100
  article-title: On the robustness of EMG features for pattern recognition based myoelectric control; a multi-dataset comparison
– year: 1985
  ident: 10.1016/j.bspc.2018.05.036_bib0005
– year: 2009
  ident: 10.1016/j.bspc.2018.05.036_bib0110
  article-title: A novel feature extraction for robust EMG pattern recognition
  publication-title: J. Comput.: 0912.3973
– volume: 3
  start-page: 324
  issue: 4
  year: 1995
  ident: 10.1016/j.bspc.2018.05.036_bib0090
  article-title: EMG feature evaluation for movement control of upper extremity prostheses
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.481972
– volume: 24
  start-page: 309
  issue: 2
  year: 2003
  ident: 10.1016/j.bspc.2018.05.036_bib0060
  article-title: Evaluation of the forearm EMG signal features for the control of a prosthetic hand
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/24/2/307
– volume: 54
  start-page: 847
  issue: 5
  year: 2007
  ident: 10.1016/j.bspc.2018.05.036_bib0080
  article-title: A comparison of surface and intramuscular myoelectric signal classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889192
– volume: 31
  start-page: 210
  issue: 3
  year: 2001
  ident: 10.1016/j.bspc.2018.05.036_bib0020
  article-title: A myosignal-based powered exoskeleton system
  publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
  doi: 10.1109/3468.925661
– volume: 55
  start-page: 1956
  issue: 8
  year: 2008
  ident: 10.1016/j.bspc.2018.05.036_bib0065
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.919734
– volume: 29
  start-page: 416
  issue: October (9)
  year: 2015
  ident: 10.1016/j.bspc.2018.05.036_bib0105
  article-title: Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition
  publication-title: Front. Neurosci.
– year: 2014
  ident: 10.1016/j.bspc.2018.05.036_bib0040
  article-title: A performance comparison of emg classification methods for hand and finger motion
– volume: 57
  start-page: 233
  issue: 3 (December)
  year: 1981
  ident: 10.1016/j.bspc.2018.05.036_bib0125
  article-title: An important contribution to nonparametric discriminant analysis and density estimation: commentary on Fix and Hodges (1951)
  publication-title: Int. Stat.
SSID ssj0048714
Score 2.337974
Snippet In myoelectric control, the calculation of a number of time domain features uses a threshold. However there is no consensus on the choice of the optimal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 267
SubjectTerms Electromyography
Pattern recognition
Population based optimum threshold
Subject based optimum threshold
Time domain features
Title Effect of threshold values on the combination of EMG time domain features: Surface versus intramuscular EMG
URI https://dx.doi.org/10.1016/j.bspc.2018.05.036
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLagLDAgnuKtG9hQaJLLpRc2VFEKqCyA1C26p1QeaUXald-OnQcCCTEw5nSWLrbl-5zYnwFObcxdJqwIMpXEQUIkmAqBaKA9ZtqpFNZVxPOj-3T4lNyOxXgJ-m0vDJVVNrG_julVtG5Wuo02u7PJpPuAWDqVmJ2gU1Ja0FuGlZhnqejAyuXN3fC-DcgIySuKb9ofkEDTO1OXeelyRkyGkawIPCum5l_up293zmAD1huwyC7r82zCkiu2YO0bheA2vNT0w2zq2RzNUtLfJEYM3q5k0wLXHMNXw_S3sgBtuxpdM5ooz-z0TU0K5l3F7VlesIfFu1fGMarUWJRsQt993xZ1pSqJ7cDT4OqxPwyaAQqB4QhlAqmSSIue1t6aUHsuuFAiDo3CHCLTsbA9blODp0SM4BJuIyF9GnklU2q4TSzfhU4xLdwesFCYXmwsz7TkSWaUdlZ6k_LQRVIiqtyHqFVbbhp2cRpy8Zq3ZWTPOak6J1XnochR1ftw9iUzq7k1_twtWmvkPzwkx-D_h9zBP-UOYZWe6mK_I-jM3xfuGAHIXJ_A8vlHdNK42Scn89oP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIry9MCGQpM4Thw2hIDyKEuLxGb5KRVoWjXtym_nLkkRSIiB1bmTnLN1_i757jMhpzZmLueWB7lK4iBBEUwFQDTQHirtVHDrKuH57lPaeU7uX_jLArma98IgrbLJ_XVOr7J1M9JuotkeDwbtHmDpVEB1ApsSy4JskSwnnGXI6zv_-OJ5ACCvBL7ROkDzpnOmJnnpcow6hpGo5DsrneZfTqdvJ87NBllvoCK9rGezSRZcsUXWvgkIbpO3WnyYjjydwqKU-C-Jon63K-mogDFH4cWg-K3ij2bX3VuK98lTOxqqQUG9q5Q9ywvam028Mo4iT2NW0gF-9R3Oap4quu2Q55vr_lUnaK5PCAwDIBMIlUSaZ1p7a0LtGWdc8Tg0CiqIXMfcZsymBmYJCMElzEZc-DTySqTYbptYtkuWilHh9ggNucliY1muBUtyo7SzwpuUhS4SAjBli0TzsEnTaIvjFRfvck4ie5UYaomhliGXEOoWOfvyGdfKGn9a8_lqyB_7Q0Lq_8Nv_59-J2Sl0-8-yse7p4cDsopPatrfIVmaTmbuCKDIVB9XW-0T_Nja2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+threshold+values+on+the+combination+of+EMG+time+domain+features%3A+Surface+versus+intramuscular+EMG&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Waris%2C+Asim&rft.au=Kamavuako%2C+Ernest+Nlandu&rft.date=2018-08-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=45&rft.spage=267&rft.epage=273&rft_id=info:doi/10.1016%2Fj.bspc.2018.05.036&rft.externalDocID=S1746809418301447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon