4β‐Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells

Reactive oxygen species (ROS) induction had been previously reported in 4β‐hydroxywithanolide (4βHWE)‐induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental toxicology Vol. 33; no. 3; pp. 295 - 304
Main Authors Tang, Jen‐Yang, Huang, Hurng‐Wern, Wang, Hui‐Ru, Chan, Ya‐Ching, Haung, Jo‐Wen, Shu, Chih‐Wen, Wu, Yang‐Chang, Chang, Hsueh‐Wei
Format Journal Article
LanguageEnglish
Published United States 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reactive oxygen species (ROS) induction had been previously reported in 4β‐hydroxywithanolide (4βHWE)‐induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8‐oxo‐2′deoxyguanosine [8‐oxodG]) were detected in 4βHWE‐treated oral cancer (Ca9‐22) and/or normal (HGF‐1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N‐acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE‐treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine‐DNA glycolyase (Fpg)‐based comet assay and 8‐oxodG‐based flow cytometry, the 8‐oxodG expressions were higher in 4βHWE‐treated oral cancer cells than in oral normal cells. All the 4βHWE‐induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS‐mediated selective killing of oral cancer cells.
AbstractList Reactive oxygen species (ROS) induction had been previously reported in 4β‐hydroxywithanolide (4βHWE)‐induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8‐oxo‐2′deoxyguanosine [8‐oxodG]) were detected in 4βHWE‐treated oral cancer (Ca9‐22) and/or normal (HGF‐1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N‐acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE‐treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine‐DNA glycolyase (Fpg)‐based comet assay and 8‐oxodG‐based flow cytometry, the 8‐oxodG expressions were higher in 4βHWE‐treated oral cancer cells than in oral normal cells. All the 4βHWE‐induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS‐mediated selective killing of oral cancer cells.
Reactive oxygen species (ROS) induction had been previously reported in 4β‐hydroxywithanolide (4βHWE)‐induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8‐oxo‐2′deoxyguanosine [8‐oxodG]) were detected in 4βHWE‐treated oral cancer (Ca9‐22) and/or normal (HGF‐1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N ‐acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE‐treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine‐DNA glycolyase (Fpg)‐based comet assay and 8‐oxodG‐based flow cytometry, the 8‐oxodG expressions were higher in 4βHWE‐treated oral cancer cells than in oral normal cells. All the 4βHWE‐induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS‐mediated selective killing of oral cancer cells.
Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells.Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells.
Author Wang, Hui‐Ru
Shu, Chih‐Wen
Chan, Ya‐Ching
Wu, Yang‐Chang
Tang, Jen‐Yang
Haung, Jo‐Wen
Huang, Hurng‐Wern
Chang, Hsueh‐Wei
Author_xml – sequence: 1
  givenname: Jen‐Yang
  surname: Tang
  fullname: Tang, Jen‐Yang
  organization: Kaohsiung Municipal Ta‐Tung Hospital
– sequence: 2
  givenname: Hurng‐Wern
  surname: Huang
  fullname: Huang, Hurng‐Wern
  organization: National Sun Yat‐Sen University
– sequence: 3
  givenname: Hui‐Ru
  surname: Wang
  fullname: Wang, Hui‐Ru
  organization: National Sun Yat‐Sen University
– sequence: 4
  givenname: Ya‐Ching
  surname: Chan
  fullname: Chan, Ya‐Ching
  organization: Kaohsiung Medical University
– sequence: 5
  givenname: Jo‐Wen
  surname: Haung
  fullname: Haung, Jo‐Wen
  organization: Kaohsiung Medical University
– sequence: 6
  givenname: Chih‐Wen
  surname: Shu
  fullname: Shu, Chih‐Wen
  organization: Kaohsiung Veterans General Hospital
– sequence: 7
  givenname: Yang‐Chang
  surname: Wu
  fullname: Wu, Yang‐Chang
  email: yachwu@mail.cmu.edu.tw
  organization: Kaohsiung Medical University
– sequence: 8
  givenname: Hsueh‐Wei
  orcidid: 0000-0003-0068-2366
  surname: Chang
  fullname: Chang, Hsueh‐Wei
  email: changhw@kmu.edu.tw
  organization: Kaohsiung Medical University Hospital, Kaohsiung Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29165875$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1OHDEQhS0ECj_JggtEXiaLBtvddruXiH8JwQak7CyPXSZOPDaxe8L0jiNwFg7CIXKS9DCDkFCyqlLpe0-l97bRekwRENqlZI8Swvb7NN9jjFOxhrYoZ6xqWSvXX3ZSNUTSTbRdyg9CSCe4-IA2WUcFly3fQrF5fvrz8Hg22Jzmw73vv-uYgreAj3GBAKb3vyEM2Ec7M1BwmnurFzd8dHmArZ7qW8Au5TcY__Qh-HiLk8Mp64CNjgYyNhBC-Yg2nA4FPq3mDro5Ob4-PKsurk7PDw8uKlMzLipBtexES4jWRpqaG010x2rnWssJ4yCtnXAnDXedk4I1ra6Z4ZNaNI2hE6jrHfRl6XuX068ZlF5NfVl8oCOkWVF0dG8ElZKN6OcVOptMwaq77Kc6D-o1oxHYXwImp1IyOGV8P2aQYp-1D4oStWhBjS2olxZGxdd3ilfTf7Er93sfYPg_qK6vvi0VfwG1jZlM
CitedBy_id crossref_primary_10_3389_fgene_2024_1440430
crossref_primary_10_1038_s41598_021_84207_8
crossref_primary_10_3390_antiox11030587
crossref_primary_10_3390_antiox11050911
crossref_primary_10_1002_tox_22767
crossref_primary_10_1002_tox_22986
crossref_primary_10_1590_fst_38520
crossref_primary_10_2174_0113892010291998240321074920
crossref_primary_10_1111_bph_14652
crossref_primary_10_3390_cells11040641
crossref_primary_10_1002_tox_22625
crossref_primary_10_3390_ijms23062981
crossref_primary_10_3390_ijms21030876
crossref_primary_10_1016_j_semcancer_2018_08_010
crossref_primary_10_3390_antiox9090873
crossref_primary_10_3390_cells11060961
crossref_primary_10_3390_molecules23040849
crossref_primary_10_1080_01635581_2022_2157024
crossref_primary_10_3390_ijms21176443
Cites_doi 10.1371/journal.pone.0099242
10.1186/s12985-016-0526-2
10.1016/j.bmcl.2016.04.077
10.1093/nar/12.4.2137
10.1016/j.lfs.2003.09.058
10.4161/cbt.6.5.4092
10.1038/nrd2803
10.1039/np9910800415
10.1038/sj.onc.1206979
10.1021/acs.biochem.6b00703
10.1016/j.molmed.2006.07.007
10.1016/j.ctrv.2008.07.004
10.3390/md12115408
10.1186/1472-6882-12-142
10.1016/j.toxlet.2006.09.007
10.1093/toxsci/kfm201
10.1371/journal.pone.0001057
10.1089/dna.2009.0852
10.1385/MB:26:3:249
10.1016/j.archoralbio.2016.02.019
10.1016/j.fct.2013.12.026
10.4161/cbt.18921
10.1016/j.ccr.2006.08.009
10.3390/toxins8110319
10.1016/j.mrgentox.2012.06.003
10.1016/j.toxlet.2003.09.010
10.1038/onc.2010.249
10.1002/tox.22238
10.1016/j.febslet.2010.07.029
10.1002/tox.22190
10.1556/004.2016.013
10.1074/jbc.C100466200
10.1371/journal.pone.0044419
10.1371/journal.pone.0064739
10.1007/s00412-009-0242-4
10.1371/journal.pone.0013536
10.1096/fj.02-0752rev
10.1142/S0192415X16500348
10.1007/s00412-009-0234-4
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/tox.22516
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Oceanography
EISSN 1522-7278
EndPage 304
ExternalDocumentID 29165875
10_1002_tox_22516
TOX22516
Genre article
Journal Article
GrantInformation_xml – fundername: Health and welfare surcharge of tobacco products, the Ministry of Health and Welfare, Taiwan, Republic of China,
  funderid: MOHW106‐TDU‐B‐212‐144007
– fundername: Kaohsiung Medical University Hospital
  funderid: KMUH105‐5R61
– fundername: Chimei‐KMU jointed project
  funderid: 106CM‐KMU‐05
– fundername: Ministry of Science and Technology
  funderid: MOST 104‐2320‐B‐037‐013‐MY3 ; MOST 105‐2314‐B‐037‐036
– fundername: National Sun Yat‐sen University‐KMU Joint Research Project
  funderid: NSYSUKMU 106‐P001
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GWYGA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3256-61a896700aac8c35ca0a923ff7d5025e8ddb5f8c5f9f86247a32c5b3644c1be33
IEDL.DBID DR2
ISSN 1520-4081
1522-7278
IngestDate Fri Jul 11 12:36:03 EDT 2025
Thu Apr 03 07:00:35 EDT 2025
Tue Jul 01 01:50:03 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Wed Jan 22 17:08:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords selective killing
4β-hydroxywithanolide E
DNA double strand break
oxidative DNA damage
reactive oxygen species
Language English
License 2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3256-61a896700aac8c35ca0a923ff7d5025e8ddb5f8c5f9f86247a32c5b3644c1be33
Notes Funding information
Jen‐Yang Tang and Hurng‐Wern Huang contributed equally to this study.
Ministry of Science and Technology, Grant/Award Number: (MOST 104‐2320‐B‐037‐013‐MY3, MOST 106‐2320‐B‐037‐007‐MY3 and MOST 105‐2314‐B‐037‐036); the Chimei‐KMU jointed project, Grant/Award Number:106CM‐KMU‐05; the National Sun Yat‐sen University‐KMU Joint Research Project, Grant/Award Number: NSYSUKMU 106‐P001; the Kaohsiung Medical University: SH000198; Grant/Award Number: KMUH105‐5R61; the Health and welfare surcharge of tobacco products, the Ministry of Health and Welfare, Taiwan, Republic of China, Grant/Award Number: MOHW106‐TDU‐B‐212‐144007 and MOHW106‐TDU‐B‐212‐113006.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0068-2366
PMID 29165875
PQID 1967461882
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1967461882
pubmed_primary_29165875
crossref_citationtrail_10_1002_tox_22516
crossref_primary_10_1002_tox_22516
wiley_primary_10_1002_tox_22516_TOX22516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
2018-Mar
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Environmental toxicology
PublicationTitleAlternate Environ Toxicol
PublicationYear 2018
References 2010; 10
2004; 146
2006; 12
2017; 2017
2006; 10
2007; 100
2004; 26
2016; 31
2010; 584
2003; 17
2012; 17
2009; 118
2013; 8
2012; 13
2012; 12
1991; 8
2016; 13
2014; 65
2012; 747
2016; 55
2009; 28
2001; 276
2004; 74
2009; 35
2013; 2013
2010; 119
2010; 29
2017; 32
1984; 12
2016; 64
2007; 6
2009; 8
2008; 22
2007; 2
2014; 9
2012; 7
2010; 5
2016; 26
2014; 12
2016; 8
2006; 167
2003; 22
2016; 66
2016; 44
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Peng CY (e_1_2_6_45_1) 2016; 44
e_1_2_6_19_1
Tsai YC (e_1_2_6_25_1) 2017; 2017
Yeh CC (e_1_2_6_21_1) 2012; 17
e_1_2_6_13_1
Kuo LJ (e_1_2_6_34_1) 2008; 22
e_1_2_6_36_1
e_1_2_6_14_1
Tsai YC (e_1_2_6_24_1) 2013; 2013
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
Chen XJ (e_1_2_6_42_1) 2016; 13
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Nagy S (e_1_2_6_29_1) 2016; 64
Speit G (e_1_2_6_35_1) 2004; 146
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Glotter E. (e_1_2_6_37_1) 1991; 8
e_1_2_6_3_1
Yen CY (e_1_2_6_17_1) 2010; 10
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 8
  start-page: e64739
  issue: 5
  year: 2013
  article-title: Golden berry‐derived 4beta‐hydroxywithanolide E for selectively killing oral cancer cells by generating ROS, DNA damage, and apoptotic pathways
  publication-title: PLoS One.
– volume: 74
  start-page: 2061
  issue: 16
  year: 2004
  end-page: 2073
  article-title: Antihepatoma activity of and extracts and their effects on apoptosis in human Hep G2 cells
  publication-title: Life Sci.
– volume: 2
  start-page: e1057
  issue: 10
  year: 2007
  article-title: gammaH2AX foci form preferentially in euchromatin after ionising‐radiation
  publication-title: PLoS One.
– volume: 17
  start-page: 9):10916
  issue: 12
  year: 2012
  end-page: 10927
  article-title: Antiproliferation and induction of apoptosis in Ca9–22 oral cancer cells by ethanolic extract of
  publication-title: Molecules.
– volume: 22
  start-page: 305
  issue: 3
  year: 2008
  end-page: 309
  article-title: Gamma‐H2AX ‐ a novel biomarker for DNA double‐strand breaks
  publication-title: In Vivo.
– volume: 13
  start-page: 81
  issue: 1
  year: 2016
  article-title: Absence of high‐risk HPV 16 and 18 in Chinese patients with oral squamous cell carcinoma and oral potentially malignant disorders
  publication-title: Virol J.
– volume: 100
  start-page: 66
  issue: 1
  year: 2007
  end-page: 74
  article-title: Characterization of arecoline‐induced effects on cytotoxicity in normal human gingival fibroblasts by global gene expression profiling
  publication-title: Toxicol Sci.
– volume: 22
  start-page: 8168
  issue: 50
  year: 2003
  end-page: 8177
  article-title: DNA‐damaging reagents induce apoptosis through reactive oxygen species‐dependent Fas aggregation
  publication-title: Oncogene.
– volume: 31
  start-page: 1888
  issue: 12
  year: 2016
  end-page: 1898
  article-title: Reactive oxygen species mediate Terbufos‐induced apoptosis in mouse testicular cell lines via the modulation of cell cycle and pro‐apoptotic proteins
  publication-title: Environ Toxicol.
– volume: 119
  start-page: 115
  issue: 2
  year: 2010
  end-page: 135
  article-title: MRN and the race to the break
  publication-title: Chromosoma.
– volume: 8
  start-page: 415
  issue: 4
  year: 1991
  end-page: 440
  article-title: Withanolides and related ergostane‐type steroids
  publication-title: Nat Prod Rep.
– volume: 44
  start-page: 617
  issue: 3
  year: 2016
  end-page: 636
  article-title: The roles of 4beta‐hydroxywithanolide E from on the Nrf2‐anti‐oxidant system and the cell cycle in breast cancer cells
  publication-title: Am J Chin Med.
– volume: 276
  start-page: 42462
  issue: 45
  year: 2001
  end-page: 42467
  article-title: ATM phosphorylates histone H2AX in response to DNA double‐strand breaks
  publication-title: J Biol Chem.
– volume: 55
  start-page: 5341
  issue: 38
  year: 2016
  end-page: 5352
  article-title: Excessive reactive oxygen species and exotic DNA lesions as an exploitable liability
  publication-title: Biochemistry.
– volume: 12
  start-page: 440
  issue: 9
  year: 2006
  end-page: 450
  article-title: DNA damage‐induced cell death by apoptosis
  publication-title: Trends Mol Med.
– volume: 5
  start-page: e13536
  issue: 10
  year: 2010
  article-title: Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling
  publication-title: PLoS One.
– volume: 118
  start-page: 683
  issue: 6
  year: 2009
  end-page: 692
  article-title: H2AX: functional roles and potential applications
  publication-title: Chromosoma.
– volume: 32
  start-page: 329
  issue: 1
  year: 2017
  end-page: 343
  article-title: Tetrandrine induces programmed cell death in human oral cancer CAL 27 cells through the reactive oxygen species production and caspase‐dependent pathways and associated with beclin‐1‐induced cell autophagy
  publication-title: Environ Toxicol.
– volume: 66
  start-page: 147
  year: 2016
  end-page: 154
  article-title: Sinuleptolide inhibits proliferation of oral cancer Ca9–22 cells involving apoptosis, oxidative stress, and DNA damage
  publication-title: Arch Oral Biol.
– volume: 26
  start-page: 2755
  issue: 12
  year: 2016
  end-page: 2759
  article-title: Withanolides derived from (Poha) with potential anti‐inflammatory activity
  publication-title: Bioorg Med Chem Lett.
– volume: 167
  start-page: 191
  issue: 3
  year: 2006
  end-page: 200
  article-title: CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial‐dependent pathways and inhibition of survival signals
  publication-title: Toxicol Lett.
– volume: 65
  start-page: 205
  year: 2014
  end-page: 212
  article-title: Non‐homologous end joining pathway is the major route of protection against 4beta‐hydroxywithanolide E‐induced DNA damage in MCF‐7 cells
  publication-title: Food Chem Toxicol.
– volume: 747
  start-page: 253
  issue: 2
  year: 2012
  end-page: 258
  article-title: Antiproliferative effects of goniothalamin on Ca9–22 oral cancer cells through apoptosis, DNA damage and ROS induction
  publication-title: Mutat Res.
– volume: 7
  start-page: e44419
  issue: 9
  year: 2012
  article-title: Differential activities of the two closely related withanolides, Withaferin A and Withanone: bioinformatics and experimental evidences
  publication-title: PLoS One.
– volume: 12
  start-page: 5408
  issue: 11
  year: 2014
  end-page: 5424
  article-title: Reactive oxygen species and autophagy modulation in non‐marine drugs and marine drugs
  publication-title: Mar Drugs.
– volume: 64
  start-page: 120
  issue: 1
  year: 2016
  end-page: 124
  article-title: Flow cytometric detection of oxidative DNA damage in fish spermatozoa exposed to cadmium ‐ Short communication
  publication-title: Acta Vet Hung.
– volume: 8
  start-page: 579
  issue: 7
  year: 2009
  end-page: 591
  article-title: Targeting cancer cells by ROS‐mediated mechanisms: a radical therapeutic approach?
  publication-title: Nat Rev Drug Discov.
– volume: 17
  start-page: 1195
  issue: 10
  year: 2003
  end-page: 1214
  article-title: Oxidative DNA damage: mechanisms, mutation, and disease
  publication-title: Faseb J.
– volume: 26
  start-page: 249
  issue: 3
  year: 2004
  end-page: 261
  article-title: The comet assay for DNA damage and repair: principles, applications, and limitations
  publication-title: Mol Biotechnol.
– volume: 10
  start-page: 241
  issue: 3
  year: 2006
  end-page: 252
  article-title: Selective killing of oncogenically transformed cells through a ROS‐mediated mechanism by beta‐phenylethyl isothiocyanate
  publication-title: Cancer Cell.
– volume: 13
  start-page: 239
  issue: 5
  year: 2012
  end-page: 246
  article-title: Selective tumor killing based on specific DNA‐damage response deficiencies
  publication-title: Cancer Biol Ther.
– volume: 28
  start-page: 501
  issue: 10
  year: 2009
  end-page: 506
  article-title: Fern plant‐derived protoapigenone leads to DNA damage, apoptosis, and G(2)/M arrest in lung cancer cell line H1299
  publication-title: DNA Cell Biol.
– volume: 584
  start-page: 3682
  issue: 17
  year: 2010
  end-page: 3695
  article-title: The MRN complex in double‐strand break repair and telomere maintenance
  publication-title: FEBS Lett.
– volume: 6
  start-page: 646
  issue: 5
  year: 2007
  end-page: 647
  article-title: Targeting ROS: selective killing of cancer cells by a cruciferous vegetable derived pro‐oxidant compound
  publication-title: Cancer Biol Ther.
– volume: 12
  start-page: 2137
  issue: 4
  year: 1984
  end-page: 2145
  article-title: Hydroxylation of deoxyguanosine at the C‐8 position by ascorbic acid and other reducing agents
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 4beta
  issue: 1
  year: 2010
  end-page: 4be46
  article-title: Hydroxywithanolide E from (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest
  publication-title: BMC Cancer.
– volume: 35
  start-page: 32
  issue: 1
  year: 2009
  end-page: 46
  article-title: Elevated copper and oxidative stress in cancer cells as a target for cancer treatment
  publication-title: Cancer Treat Rev.
– volume: 29
  start-page: 5095
  issue: 36
  year: 2010
  end-page: 5102
  article-title: Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas
  publication-title: Oncogene.
– volume: 2013
  start-page: 237583
  year: 2013
  article-title: Is the oxidative DNA damage level of human lymphocyte correlated with the antioxidant capacity of serum or the base excision repair activity of lymphocyte?
  publication-title: Oxid Med Cell Longev.
– volume: 8
  start-page: 319
  issue: 11
  year: 2016
  article-title: Tenuifolide B from stem selectively inhibits proliferation of oral cancer cells via apoptosis, ROS generation, mitochondrial depolarization, and DNA damage
  publication-title: Toxins (Basel).
– volume: 146
  start-page: 151
  issue: 2
  year: 2004
  end-page: 158
  article-title: Sensitivity of the FPG protein towards alkylation damage in the comet assay
  publication-title: Toxicol Lett.
– volume: 2017
  start-page: 8154646
  year: 2017
  article-title: Overexpression of PCNA attenuates oxidative stress‐caused delay of gap‐filling during repair of UV‐induced DNA damage
  publication-title: J Nucleic Acids.
– volume: 12
  start-page: 142
  issue: 1
  year: 2012
  article-title: Anti‐proliferative effect of methanolic extract of on oral cancer cells involves apoptosis, DNA damage, and oxidative stress
  publication-title: BMC Complement Altern Med.
– volume: 9
  start-page: e99242
  issue: 6
  year: 2014
  article-title: An increase in reactive oxygen species by deregulation of ARNT enhances chemotherapeutic drug‐induced cancer cell death
  publication-title: PLoS One.
– ident: e_1_2_6_31_1
  doi: 10.1371/journal.pone.0099242
– volume: 13
  start-page: 81
  issue: 1
  year: 2016
  ident: e_1_2_6_42_1
  article-title: Absence of high‐risk HPV 16 and 18 in Chinese patients with oral squamous cell carcinoma and oral potentially malignant disorders
  publication-title: Virol J.
  doi: 10.1186/s12985-016-0526-2
– ident: e_1_2_6_14_1
  doi: 10.1016/j.bmcl.2016.04.077
– ident: e_1_2_6_36_1
  doi: 10.1093/nar/12.4.2137
– ident: e_1_2_6_15_1
  doi: 10.1016/j.lfs.2003.09.058
– ident: e_1_2_6_8_1
  doi: 10.4161/cbt.6.5.4092
– ident: e_1_2_6_3_1
  doi: 10.1038/nrd2803
– volume: 8
  start-page: 415
  issue: 4
  year: 1991
  ident: e_1_2_6_37_1
  article-title: Withanolides and related ergostane‐type steroids
  publication-title: Nat Prod Rep.
  doi: 10.1039/np9910800415
– ident: e_1_2_6_12_1
  doi: 10.1038/sj.onc.1206979
– ident: e_1_2_6_10_1
  doi: 10.1021/acs.biochem.6b00703
– ident: e_1_2_6_11_1
  doi: 10.1016/j.molmed.2006.07.007
– ident: e_1_2_6_2_1
  doi: 10.1016/j.ctrv.2008.07.004
– ident: e_1_2_6_5_1
  doi: 10.3390/md12115408
– ident: e_1_2_6_20_1
  doi: 10.1186/1472-6882-12-142
– ident: e_1_2_6_30_1
  doi: 10.1016/j.toxlet.2006.09.007
– ident: e_1_2_6_22_1
  doi: 10.1093/toxsci/kfm201
– ident: e_1_2_6_23_1
  doi: 10.1371/journal.pone.0001057
– ident: e_1_2_6_26_1
  doi: 10.1089/dna.2009.0852
– volume: 10
  start-page: 4beta
  issue: 1
  year: 2010
  ident: e_1_2_6_17_1
  article-title: Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest
  publication-title: BMC Cancer.
– ident: e_1_2_6_27_1
  doi: 10.1385/MB:26:3:249
– ident: e_1_2_6_7_1
  doi: 10.1016/j.archoralbio.2016.02.019
– ident: e_1_2_6_16_1
  doi: 10.1016/j.fct.2013.12.026
– volume: 22
  start-page: 305
  issue: 3
  year: 2008
  ident: e_1_2_6_34_1
  article-title: Gamma‐H2AX ‐ a novel biomarker for DNA double‐strand breaks
  publication-title: In Vivo.
– ident: e_1_2_6_44_1
  doi: 10.4161/cbt.18921
– volume: 2013
  start-page: 237583
  year: 2013
  ident: e_1_2_6_24_1
  article-title: Is the oxidative DNA damage level of human lymphocyte correlated with the antioxidant capacity of serum or the base excision repair activity of lymphocyte?
  publication-title: Oxid Med Cell Longev.
– ident: e_1_2_6_9_1
  doi: 10.1016/j.ccr.2006.08.009
– volume: 2017
  start-page: 8154646
  year: 2017
  ident: e_1_2_6_25_1
  article-title: Overexpression of PCNA attenuates oxidative stress‐caused delay of gap‐filling during repair of UV‐induced DNA damage
  publication-title: J Nucleic Acids.
– ident: e_1_2_6_6_1
  doi: 10.3390/toxins8110319
– ident: e_1_2_6_19_1
  doi: 10.1016/j.mrgentox.2012.06.003
– volume: 146
  start-page: 151
  issue: 2
  year: 2004
  ident: e_1_2_6_35_1
  article-title: Sensitivity of the FPG protein towards alkylation damage in the comet assay
  publication-title: Toxicol Lett.
  doi: 10.1016/j.toxlet.2003.09.010
– ident: e_1_2_6_28_1
  doi: 10.1038/onc.2010.249
– ident: e_1_2_6_33_1
  doi: 10.1002/tox.22238
– ident: e_1_2_6_43_1
  doi: 10.1016/j.febslet.2010.07.029
– volume: 17
  start-page: 9):10916
  issue: 12
  year: 2012
  ident: e_1_2_6_21_1
  article-title: Antiproliferation and induction of apoptosis in Ca9–22 oral cancer cells by ethanolic extract of Gracilaria tenuistipitata
  publication-title: Molecules.
– ident: e_1_2_6_32_1
  doi: 10.1002/tox.22190
– volume: 64
  start-page: 120
  issue: 1
  year: 2016
  ident: e_1_2_6_29_1
  article-title: Flow cytometric detection of oxidative DNA damage in fish spermatozoa exposed to cadmium ‐ Short communication
  publication-title: Acta Vet Hung.
  doi: 10.1556/004.2016.013
– ident: e_1_2_6_41_1
  doi: 10.1074/jbc.C100466200
– ident: e_1_2_6_18_1
  doi: 10.1371/journal.pone.0044419
– ident: e_1_2_6_4_1
  doi: 10.1371/journal.pone.0064739
– ident: e_1_2_6_39_1
  doi: 10.1007/s00412-009-0242-4
– ident: e_1_2_6_38_1
  doi: 10.1371/journal.pone.0013536
– ident: e_1_2_6_13_1
  doi: 10.1096/fj.02-0752rev
– volume: 44
  start-page: 617
  issue: 3
  year: 2016
  ident: e_1_2_6_45_1
  article-title: The roles of 4beta‐hydroxywithanolide E from Physalis peruviana on the Nrf2‐anti‐oxidant system and the cell cycle in breast cancer cells
  publication-title: Am J Chin Med.
  doi: 10.1142/S0192415X16500348
– ident: e_1_2_6_40_1
  doi: 10.1007/s00412-009-0234-4
SSID ssj0009656
Score 2.2836235
Snippet Reactive oxygen species (ROS) induction had been previously reported in 4β‐hydroxywithanolide (4βHWE)‐induced selective killing of oral cancer cells, but the...
Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 295
SubjectTerms 4β‐hydroxywithanolide E
Acetylcysteine - pharmacology
Antineoplastic Agents, Phytogenic - pharmacology
Cell Line, Tumor
Cell Survival - drug effects
Deoxyguanosine - analogs & derivatives
Deoxyguanosine - metabolism
DNA Breaks, Double-Stranded - drug effects
DNA Damage - drug effects
DNA double strand break
Free Radical Scavengers - pharmacology
Gingival Neoplasms
Humans
Oxidation-Reduction
oxidative DNA damage
Oxidative Stress - drug effects
Plant Extracts - pharmacology
reactive oxygen species
Reactive Oxygen Species - metabolism
selective killing
Signal Transduction
Title 4β‐Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftox.22516
https://www.ncbi.nlm.nih.gov/pubmed/29165875
https://www.proquest.com/docview/1967461882
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CIFAKbZr-bdsUtfTQize2JVk2PYV0w1JoAiWBPRSMNJJhycYu8S5ke-oj9Fn6IH2IPklH8nqX9AdKbwaPhX5mRt_Imm8AXhnHE-MSjFxWmUgUPI4KRYYnjEUnUBIo9tnI70-y8bl4N5GTLXjT58J0_BDrAzdvGcFfewPXpj3YkIbOm-shKWPi6bb9XS0PiD5sqKOKLFRupe0pphgpT3pWoTg9WH95cy_6DWDexKthwzm-Cx_7rnb3TC6Gi7kZ4udfWBz_cyy7cGcFRNlhpzn3YMvVe7AzCiTWyz24fYpO1ys-6_tQi-_ffnz5Ol5a3x1_eEsvZ1Pr2Ii1oZQOec3ZklGET7rSsuZ6agOlOHt7csisviS3xQgfb4TZxTTQgbOmYp4lgKHXvyvm_yS0D-D8eHR2NI5WpRoi5ASaKADVeeEzfrTGHLlEHWuCjlWlrCRU5XJrjaxylFVR-ZQUpXmK0nBCY0i6wvlD2K6b2j0GprhMkFyFzpQVCrNCYexylaYoCNw4MYDX_aKVuOIx9-U0ZmXHwJyWNJtlmM0BvFyLfurIO_4k9KJf-ZJMy49S165ZtCU5JyWyhGKQATzqVGLdTEqwWlKsR70JC_v39suz00l4ePLvok_hFgGzvLvr9gy251cLt0_gZ26eBy3_CcQpAkM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3battAEB2SlNJS6CW9uddtyENf5EjaXa0EfQmtg9smDhQH_FLEanYFJq5UYhviPvUT-i39kH5Ev6SzK8smvUDJm0CjZS8zs2dWO2cAdgvLo8JGGNikLAKR8TDIFBmeKAxagZJAsctGPhok_RPxbiRHG_CqzYVp-CFWB27OMry_dgbuDqT31qyhs_q8S9oYJZtwxVX09gHVhzV5VJb42q20QYUUJaVRyysUxnurTy_uRn9AzIuI1W85B7fgY9vZ5qbJaXc-K7r45Tcex8uO5jbcXGJRtt8ozx3YsNU2XO15HuvFNtw4RqurJaX1XajEj-8_v37rL4zrjzu_pZeTsbGsx6a-mg45zsmCUZBP6jJl9fnYeFZx9mawz4z-RJ6LEUReC7PTsWcEZ3XJHFEAQ6eCZ8z9TJjeg5OD3vB1P1hWawiQE26iGFSnmUv60RpT5BJ1qAk9lqUykoCVTY0pZJmiLLPSZaUozWOUBSdAhqQunN-Hraqu7ENgissIyVvoRBmhMMkUhjZVcYyC8I0VHXjZrlqOSypzV1FjkjckzHFOs5n72ezAzkr0c8Pf8TehF-3S52RdbpS6svV8mpN_UiKJKAzpwINGJ1bNxISsJYV71Bu_sv9uPx8ej_zDo_8XfQ7X-sOjw_zw7eD9Y7hOOC1trr49ga3Z2dw-JSw0K555lf8F1JkGXg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bitswEB22W1pKoZftLb2qpQ99cda2JMumT0uTkN6ypexCHhaMPJIhbGovmwQ2feon9Fv6If2IfklHcpywvUDpm8FjocvM6IysOQPwvLA8KmyEgU3KIhAZD4NMkeGJwqAVKAkUu2zk96NkeCjejOV4C162uTANP8T6wM1ZhvfXzsBPTLm7IQ2d12ddUsYouQAXRRKmTqV7HzfcUVniS7fS_hRSkJRGLa1QGO-uPz2_Gf2GMM8DVr_jDK7DUdvX5qLJcXcxL7r4-Rcax_8czA24tkKibK9RnZuwZasduNT3LNbLHbi6j1ZXK0LrW1CJ799-fPk6XBrXHXd6Sy-nE2NZn818LR1ym9MloxCflGXG6rOJ8ZzirDfaY0Z_Ir_FCCBvhNnxxPOBs7pkjiaAoVPAU-Z-Jcxuw-Ggf_BqGKxqNQTICTVRBKrTzKX8aI0pcok61IQdy1IZSbDKpsYUskxRllnpclKU5jHKghMcQ1IWzu_AdlVX9h4wxWWE5Ct0ooxQmGQKQ5uqOEZB6MaKDrxoFy3HFZG5q6cxzRsK5jin2cz9bHbg2Vr0pGHv-JPQ03blc7ItN0pd2Xoxy8k7KZFEFIR04G6jEutmYsLVkoI96o1f2L-3nx_sj_3D_X8XfQKXP_QG-bvXo7cP4AqBtLS59_YQtuenC_uIgNC8eOwV_ifioAUW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4%CE%B2%E2%80%90Hydroxywithanolide+E+selectively+induces+oxidative+DNA+damage+for+selective+killing+of+oral+cancer+cells&rft.jtitle=Environmental+toxicology&rft.au=Tang%2C+Jen%E2%80%90Yang&rft.au=Huang%2C+Hurng%E2%80%90Wern&rft.au=Wang%2C+Hui%E2%80%90Ru&rft.au=Chan%2C+Ya%E2%80%90Ching&rft.date=2018-03-01&rft.issn=1520-4081&rft.eissn=1522-7278&rft.volume=33&rft.issue=3&rft.spage=295&rft.epage=304&rft_id=info:doi/10.1002%2Ftox.22516&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tox_22516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4081&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4081&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4081&client=summon