Characterization and cost–benefit analysis of automated bioreactor‐expanded mesenchymal stem cells for clinical applications
BACKGROUND Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities. STUDY DESIGN AND METHODS We evaluated options for scaling up large q...
Saved in:
Published in | Transfusion (Philadelphia, Pa.) Vol. 58; no. 10; pp. 2374 - 2382 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND
Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities.
STUDY DESIGN AND METHODS
We evaluated options for scaling up large quantities of bone marrow–derived MSCs (BM‐MSCs) using methods that can be performed in compliance with Good Manufacturing Practices (GMP). We expanded BM‐MSCs from fresh marrow aspirate in αMEM supplemented with 5% human platelet lysate using both an automated cell expansion system (Quantum, Terumo BCT) and a manual flask‐based method using multilayer flasks. We compared MSCs expanded using both methods and assessed their differentiation to adipogenic and osteogenic tissue, capacity to suppress T‐cell proliferation, cytokines, and growth factor secretion profile and cost‐effectiveness of manufacturing enough BM‐MSCs to administer a single dose of 100 × 106 cells per subject in a clinical trial of 100 subjects.
RESULTS
We have established that large quantities of clinical‐grade BM‐MSCs manufactured with an automated hollow‐fiber bioreactor were phenotypically (CD73, CD90, CD105) and functionally (adipogenic and osteogenic differentiation and cytokine and growth factor secretion) similar to manually expanded BM‐MSCs. In addition, MSC manufacturing costs significantly less and required less time and effort when using the Quantum automated cell expansion system over the manual multilayer flasks method.
CONCLUSION
MSCs manufactured by an automated bioreactor are physically and functionally equivalent to the MSCs manufactured by the manual flask method and have met the standards required for clinical application. |
---|---|
AbstractList | Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities.BACKGROUNDExpanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities.We evaluated options for scaling up large quantities of bone marrow-derived MSCs (BM-MSCs) using methods that can be performed in compliance with Good Manufacturing Practices (GMP). We expanded BM-MSCs from fresh marrow aspirate in αMEM supplemented with 5% human platelet lysate using both an automated cell expansion system (Quantum, Terumo BCT) and a manual flask-based method using multilayer flasks. We compared MSCs expanded using both methods and assessed their differentiation to adipogenic and osteogenic tissue, capacity to suppress T-cell proliferation, cytokines, and growth factor secretion profile and cost-effectiveness of manufacturing enough BM-MSCs to administer a single dose of 100 × 106 cells per subject in a clinical trial of 100 subjects.STUDY DESIGN AND METHODSWe evaluated options for scaling up large quantities of bone marrow-derived MSCs (BM-MSCs) using methods that can be performed in compliance with Good Manufacturing Practices (GMP). We expanded BM-MSCs from fresh marrow aspirate in αMEM supplemented with 5% human platelet lysate using both an automated cell expansion system (Quantum, Terumo BCT) and a manual flask-based method using multilayer flasks. We compared MSCs expanded using both methods and assessed their differentiation to adipogenic and osteogenic tissue, capacity to suppress T-cell proliferation, cytokines, and growth factor secretion profile and cost-effectiveness of manufacturing enough BM-MSCs to administer a single dose of 100 × 106 cells per subject in a clinical trial of 100 subjects.We have established that large quantities of clinical-grade BM-MSCs manufactured with an automated hollow-fiber bioreactor were phenotypically (CD73, CD90, CD105) and functionally (adipogenic and osteogenic differentiation and cytokine and growth factor secretion) similar to manually expanded BM-MSCs. In addition, MSC manufacturing costs significantly less and required less time and effort when using the Quantum automated cell expansion system over the manual multilayer flasks method.RESULTSWe have established that large quantities of clinical-grade BM-MSCs manufactured with an automated hollow-fiber bioreactor were phenotypically (CD73, CD90, CD105) and functionally (adipogenic and osteogenic differentiation and cytokine and growth factor secretion) similar to manually expanded BM-MSCs. In addition, MSC manufacturing costs significantly less and required less time and effort when using the Quantum automated cell expansion system over the manual multilayer flasks method.MSCs manufactured by an automated bioreactor are physically and functionally equivalent to the MSCs manufactured by the manual flask method and have met the standards required for clinical application.CONCLUSIONMSCs manufactured by an automated bioreactor are physically and functionally equivalent to the MSCs manufactured by the manual flask method and have met the standards required for clinical application. Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities. We evaluated options for scaling up large quantities of bone marrow-derived MSCs (BM-MSCs) using methods that can be performed in compliance with Good Manufacturing Practices (GMP). We expanded BM-MSCs from fresh marrow aspirate in αMEM supplemented with 5% human platelet lysate using both an automated cell expansion system (Quantum, Terumo BCT) and a manual flask-based method using multilayer flasks. We compared MSCs expanded using both methods and assessed their differentiation to adipogenic and osteogenic tissue, capacity to suppress T-cell proliferation, cytokines, and growth factor secretion profile and cost-effectiveness of manufacturing enough BM-MSCs to administer a single dose of 100 × 10 cells per subject in a clinical trial of 100 subjects. We have established that large quantities of clinical-grade BM-MSCs manufactured with an automated hollow-fiber bioreactor were phenotypically (CD73, CD90, CD105) and functionally (adipogenic and osteogenic differentiation and cytokine and growth factor secretion) similar to manually expanded BM-MSCs. In addition, MSC manufacturing costs significantly less and required less time and effort when using the Quantum automated cell expansion system over the manual multilayer flasks method. MSCs manufactured by an automated bioreactor are physically and functionally equivalent to the MSCs manufactured by the manual flask method and have met the standards required for clinical application. BACKGROUND Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities. STUDY DESIGN AND METHODS We evaluated options for scaling up large quantities of bone marrow–derived MSCs (BM‐MSCs) using methods that can be performed in compliance with Good Manufacturing Practices (GMP). We expanded BM‐MSCs from fresh marrow aspirate in αMEM supplemented with 5% human platelet lysate using both an automated cell expansion system (Quantum, Terumo BCT) and a manual flask‐based method using multilayer flasks. We compared MSCs expanded using both methods and assessed their differentiation to adipogenic and osteogenic tissue, capacity to suppress T‐cell proliferation, cytokines, and growth factor secretion profile and cost‐effectiveness of manufacturing enough BM‐MSCs to administer a single dose of 100 × 106 cells per subject in a clinical trial of 100 subjects. RESULTS We have established that large quantities of clinical‐grade BM‐MSCs manufactured with an automated hollow‐fiber bioreactor were phenotypically (CD73, CD90, CD105) and functionally (adipogenic and osteogenic differentiation and cytokine and growth factor secretion) similar to manually expanded BM‐MSCs. In addition, MSC manufacturing costs significantly less and required less time and effort when using the Quantum automated cell expansion system over the manual multilayer flasks method. CONCLUSION MSCs manufactured by an automated bioreactor are physically and functionally equivalent to the MSCs manufactured by the manual flask method and have met the standards required for clinical application. |
Author | Lefavor, Rebecca C. Zubair, Abba C. Russell, Athena L. |
Author_xml | – sequence: 1 givenname: Athena L. surname: Russell fullname: Russell, Athena L. organization: Mayo Clinic – sequence: 2 givenname: Rebecca C. surname: Lefavor fullname: Lefavor, Rebecca C. organization: Mayo Clinic – sequence: 3 givenname: Abba C. surname: Zubair fullname: Zubair, Abba C. email: zubair.abba@mayo.edu organization: Mayo Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30203447$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFuGyEURVGUqnGSLvoDFct2MckDBntmWVlNWylSpSpZI8APhYgZpoDVuit_QqX-Yb6kOHY2VcIGdHXufcA9JcdjHJGQtwwuWF2XJbkL1nYgj8iMSbFoeN_LYzIDaFnDmOAn5DTnewDgPbDX5EQAB9G2ixnZLu900rZg8r918XGkelxRG3N52P41OKLzpUo6bLLPNDqq1yUOuuCKGh8TVmtMD9s_-GuqxqoOmHG0d5tBB5oLDtRiCJm6mKgNfvS26nqaQj3sxuVz8srpkPHNYT8jt1efbpZfmutvn78uP143VnApG9ZqCXPHe2NaZ9wCe9ODYNYKKcFIC610eg7Iet2xDsxCMjMHIbg23DhjxRl5v8-dUvyxxlzU4PPubnrEuM6KM-CCQ9dBRd8d0LUZcKWm5AedNurp1ypwuQdsijkndMr68vickrQPioHa9aJqL-qxl-r48J_jKfQ59pD-0wfcvAyqm-9Xe8c_PSuhIA |
CitedBy_id | crossref_primary_10_3390_cells10113101 crossref_primary_10_1016_j_msec_2018_10_081 crossref_primary_10_1093_stcltm_szac051 crossref_primary_10_3390_mps7020032 crossref_primary_10_1016_j_biotechadv_2020_107636 crossref_primary_10_1155_2022_4664917 crossref_primary_10_1002_bit_28228 crossref_primary_10_1016_j_jcyt_2019_05_001 crossref_primary_10_1016_j_retram_2023_103393 crossref_primary_10_3390_bioengineering8050068 crossref_primary_10_1016_j_bprint_2024_e00347 crossref_primary_10_1007_s10439_019_02400_3 crossref_primary_10_1016_j_colsurfa_2024_134620 crossref_primary_10_1016_j_heliyon_2023_e15946 crossref_primary_10_1016_j_jcyt_2024_03_001 crossref_primary_10_1007_s11064_019_02925_y crossref_primary_10_1007_s12975_023_01208_7 crossref_primary_10_1016_j_jcyt_2022_07_009 crossref_primary_10_1002_jcp_29803 crossref_primary_10_1186_s13287_024_03688_2 crossref_primary_10_3390_ijms21030708 crossref_primary_10_1093_cei_uxac016 crossref_primary_10_3390_life14091161 crossref_primary_10_4252_wjsc_v12_i12_1511 crossref_primary_10_1155_2020_8833725 crossref_primary_10_1016_j_jcyt_2023_04_004 crossref_primary_10_1186_s12967_019_2001_5 crossref_primary_10_1016_j_jcyt_2019_09_001 crossref_primary_10_1016_j_bej_2020_107601 crossref_primary_10_3390_biology14030313 crossref_primary_10_1093_biomethods_bpad018 crossref_primary_10_1155_2019_2608482 crossref_primary_10_3389_fbioe_2020_571777 crossref_primary_10_3389_fimmu_2020_609063 crossref_primary_10_1126_sciadv_aay2387 crossref_primary_10_1142_S0218957721400029 crossref_primary_10_3390_ijms24043745 crossref_primary_10_3390_pharmaceutics14010011 crossref_primary_10_1007_s12015_024_10812_5 crossref_primary_10_1089_ten_tec_2023_0037 crossref_primary_10_3389_fbioe_2022_834267 crossref_primary_10_1186_s40643_022_00550_2 crossref_primary_10_1186_s13287_019_1202_4 crossref_primary_10_3390_cells10092420 |
Cites_doi | 10.4172/2157-7633.1000222 10.1016/j.yexcr.2005.04.029 10.1080/14653240903080367 10.1111/trf.13567 10.1016/j.jcyt.2016.05.013 10.1016/j.jcyt.2013.05.024 10.1016/j.jcyt.2014.01.417 10.3727/096368915X689622 10.1016/j.yexcr.2006.03.019 10.1186/1472-6750-13-102 10.1016/j.bbrc.2003.10.010 10.1634/stemcells.2004-0125 10.1007/s10616-007-9091-2 10.1002/term.217 10.1634/stemcells.2004-0308 10.1155/2016/9176357 10.1038/nri2395 10.1097/00007890-197404000-00001 10.3727/096368912X657990 |
ContentType | Journal Article |
Copyright | 2018 AABB 2018 AABB. |
Copyright_xml | – notice: 2018 AABB – notice: 2018 AABB. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/trf.14805 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1537-2995 |
EndPage | 2382 |
ExternalDocumentID | 30203447 10_1111_trf_14805 TRF14805 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Center for Regenerative Medicine funderid: 94343014 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1OB 1OC 29Q 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABLJU ABPVW ABQWH ABXGK ACAHQ ACBNA ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EGARE EJD EMOBN ESX EX3 F00 F5P FUBAC G-S G.N GODZA H.X HF~ HGLYW HZI HZ~ H~9 IHE IX1 J0M J5H K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI TWZ UB1 UCJ V8K V9Y W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQJ WUP WVDHM WXI WXSBR X7M XG1 YFH YQI YQJ YUY ZGI ZXP ZZTAW ~IA ~WT AAYXX ABJNI AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3255-14a506f29bb4fbf7e9b9031cc3550b5c045fa60e19a8180b751b60332ab2bfbc3 |
IEDL.DBID | DR2 |
ISSN | 0041-1132 1537-2995 |
IngestDate | Thu Jul 10 22:58:17 EDT 2025 Thu Apr 03 07:01:19 EDT 2025 Tue Jul 01 00:28:27 EDT 2025 Thu Apr 24 22:52:07 EDT 2025 Wed Jan 22 16:26:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2018 AABB. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3255-14a506f29bb4fbf7e9b9031cc3550b5c045fa60e19a8180b751b60332ab2bfbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30203447 |
PQID | 2102320880 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2102320880 pubmed_primary_30203447 crossref_citationtrail_10_1111_trf_14805 crossref_primary_10_1111_trf_14805 wiley_primary_10_1111_trf_14805_TRF14805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States |
PublicationTitle | Transfusion (Philadelphia, Pa.) |
PublicationTitleAlternate | Transfusion |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2009; 11 2013; 15 2014; 4 2013; 22 2006; 24 2013; 13 2014; 16 2005; 308 2008; 8 2016; 2016 2016; 18 2003; 311 2007; 55 2010; 4 2016; 25 2005; 23 2006; 312 2016; 56 1974; 17 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 Lechanteur C (e_1_2_7_17_1) 2014; 4 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_20_1 |
References_xml | – volume: 16 start-page: 1048 year: 2014 end-page: 58 article-title: Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the quantum cell expansion system publication-title: Cytotherapy – volume: 23 start-page: 1012 year: 2005 end-page: 20 article-title: Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue publication-title: Stem Cells – volume: 18 start-page: 1219 year: 2016 end-page: 33 article-title: Large‐scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor publication-title: Cytotherapy – volume: 8 start-page: 726 year: 2008 end-page: 36 article-title: Mesenchymal stem cells in health and disease publication-title: Nat Rev Immunol – volume: 17 start-page: 331 year: 1974 end-page: 40 article-title: Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo publication-title: Transplantation – volume: 25 start-page: 829 year: 2016 end-page: 48 article-title: Clinical trials with mesenchymal stem cells: an update publication-title: Cell Transplant – volume: 22 start-page: 1981 year: 2013 end-page: 2000 article-title: GMP‐compliant isolation and expansion of bone marrow‐derived MSCs in the closed, automated device quantum cell expansion system publication-title: Cell Transplant – volume: 24 start-page: 679 year: 2006 end-page: 85 article-title: Disparate mesenchyme‐lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood publication-title: Stem Cells – volume: 4 start-page: 45 year: 2010 end-page: 54 article-title: Human cell culture process capability: a comparison of manual and automated production publication-title: J Tissue Eng Regen Med – volume: 308 start-page: 283 year: 2005 end-page: 90 article-title: Functional studies of mesenchymal stem cells derived from adult human adipose tissue publication-title: Exp Cell Res – volume: 4 start-page: 222 year: 2014 article-title: Large‐scale clinical expansion of mesenchymal stem cells in the GMP‐compliant, closed automated Quantum® cell expansion system: comparison with expansion in traditional T‐flasks publication-title: J Stem Cell Res Ther – volume: 15 start-page: 1323 year: 2013 end-page: 39 article-title: Genetic stability of bone marrow‐derived human mesenchymal stromal cells in the Quantum System publication-title: Cytotherapy – volume: 312 start-page: 2169 year: 2006 end-page: 79 article-title: Immune modulation by mesenchymal stem cells publication-title: Exp Cell Res – volume: 2016 start-page: 9176357 year: 2016 article-title: Spheroid culture of mesenchymal stem cells publication-title: Stem Cells Int – volume: 311 start-page: 391 year: 2003 end-page: 7 article-title: Functional characterization of human mesenchymal stem cell‐derived adipocytes publication-title: Biochem Biophys Res Commun – volume: 55 start-page: 31 year: 2007 end-page: 9 article-title: Manufacture of a human mesenchymal stem cell population using an automated cell culture platform publication-title: Cytotechnology – volume: 13 start-page: 102 year: 2013 article-title: Large‐scale cell production of stem cells for clinical application using the automated cell processing machine publication-title: BMC Biotechnol – volume: 11 start-page: 377 year: 2009 end-page: 91 article-title: Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration publication-title: Cytotherapy – volume: 56 start-page: 26S year: 2016 end-page: 8S article-title: Process automation in manufacturing of mesenchymal stromal cells publication-title: Transfusion – volume: 4 start-page: 222 year: 2014 ident: e_1_2_7_17_1 article-title: Large‐scale clinical expansion of mesenchymal stem cells in the GMP‐compliant, closed automated Quantum® cell expansion system: comparison with expansion in traditional T‐flasks publication-title: J Stem Cell Res Ther doi: 10.4172/2157-7633.1000222 – ident: e_1_2_7_2_1 doi: 10.1016/j.yexcr.2005.04.029 – ident: e_1_2_7_14_1 doi: 10.1080/14653240903080367 – ident: e_1_2_7_10_1 doi: 10.1111/trf.13567 – ident: e_1_2_7_15_1 doi: 10.1016/j.jcyt.2016.05.013 – ident: e_1_2_7_18_1 doi: 10.1016/j.jcyt.2013.05.024 – ident: e_1_2_7_16_1 doi: 10.1016/j.jcyt.2014.01.417 – ident: e_1_2_7_8_1 doi: 10.3727/096368915X689622 – ident: e_1_2_7_6_1 doi: 10.1016/j.yexcr.2006.03.019 – ident: e_1_2_7_11_1 doi: 10.1186/1472-6750-13-102 – ident: e_1_2_7_3_1 doi: 10.1016/j.bbrc.2003.10.010 – ident: e_1_2_7_5_1 doi: 10.1634/stemcells.2004-0125 – ident: e_1_2_7_12_1 doi: 10.1007/s10616-007-9091-2 – ident: e_1_2_7_13_1 doi: 10.1002/term.217 – ident: e_1_2_7_4_1 doi: 10.1634/stemcells.2004-0308 – ident: e_1_2_7_20_1 doi: 10.1155/2016/9176357 – ident: e_1_2_7_7_1 doi: 10.1038/nri2395 – ident: e_1_2_7_9_1 doi: 10.1097/00007890-197404000-00001 – ident: e_1_2_7_19_1 doi: 10.3727/096368912X657990 |
SSID | ssj0002901 |
Score | 2.4482038 |
Snippet | BACKGROUND
Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine... Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2374 |
SubjectTerms | Automation Bioreactors - economics Bioreactors - standards Bone Marrow Cells - cytology Cell Culture Techniques - methods Cell Culture Techniques - standards Cell Proliferation Cost-Benefit Analysis Humans Manufacturing and Industrial Facilities - standards Mesenchymal Stem Cells - cytology |
Title | Characterization and cost–benefit analysis of automated bioreactor‐expanded mesenchymal stem cells for clinical applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftrf.14805 https://www.ncbi.nlm.nih.gov/pubmed/30203447 https://www.proquest.com/docview/2102320880 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS-UwEA_iYfGi7vrvue4SxYOXStu0ry2eFvEhgh5EwYNQMmmCorbi6wP19D7Cgt_QT-JM0tb_IN5Km7ZJJpP5JZP5DWPraYJ2NRSJF2cFpTDzhQdZqD2lkyTVWVCkNn3b_kF_9zjaO4lPJthWGwvj-CG6DTfSDDtfk4JLGL5Q8vrGoJqnlr-UzmoRIDp8po4i_6DzLgceZVNvWIXoFE_35mtb9A5gvsar1uAMZthpW1V3zuRic1TDprp_w-L4zbbMsukGiPJ_buT8ZBO6_MV-7Deu9jk23u6onF2kJpdlwVU1rB_HD4AzpDmv8ZajNOGV4XJUVwh_dcHhvEIoSt6Ax_F_fXtN-9QFv6I4J3V2d4V_JfZoTj6DIUfQzNvwTP7SnT7Pjgc7R9u7XpOuwVMCFyZeEMnY75swA4gMmERngKIPlEJI40OsEDwa2fd1kEkKMIckDqDvCxFKCMGAEgtssqxKvcQ4EG0ZPlNRKCOhI2tChdEmlibzU9VjG63gctVwmVNKjcu8XdNgj-a2R3tsrSt67Qg8Piq02ko_R_Wi9stSV6NhTitiEeJU7PfYohsW3WcEeXGjKMHaWOF-_v386HBgL5a_XvQ3m0Jw5rh3gxU2Wd-M9B8EQDX8tSP9CeGlBH4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB0hkKAXKNCWLQUM6oFLUBInm0TqpVq6WgrLAS0SlyqyHVtFLQlis1LhtJ-A1D_cL-lMnKRAi1T1FiVOYns8nmeP5w3A-zhCu-rzyAmTjFKYudyRia8dpaMo1omXxVX6tuFpd3AefL4IL-bgQxMLY_kh2g030oxqviYFpw3pB1pe3hjU85gITBcoozcx5x-e_SaPIg-h9S97DuVTr3mF6BxP--pja_QHxHyMWCuT01-BL01l7UmTbweTUh6ouyc8jv_bmpewXGNR9tEOnlWY0_kaLA5rb_s6THstm7MN1mQiz5gqxuVs-lPiJGkuS7xlWU1YYZiYlAUiYJ0xeVkgGiWHwGx6r39c01Z1xq4o1El9vb3CvxKBNCO3wZghbmZNhCZ76FF_Bef9T6PewKkzNjiK49rE8QIRul3jJ1IGRppIJxKl7ymFqMaVoUL8aETX1V4iKMZcRqEnuy7nvpC-NFLx1zCfF7neACaJuQyfqcAXAddBZUW50SYUJnFj1YH9RnKpqunMKavG97RZ1mCPplWPdmCvLXptOTz-Vmi3EX-KGkbtF7kuJuOUFsXcx9nY7cAbOy7az3By5AZBhLWppPv899PRWb-6ePvvRXdgaTAanqQnR6fHm_ACsZql4vXewXx5M9FbiIdKuV0N-18RJAia |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hKiEuhZZCF_pjUA9cgpLY-VNPFXRFW0AVAokDUmQ7tkCFZMVmJdrTPkKlviFP0pk4SaEUCfUWJU5iezyezx7PNwDv0gTtasgTL8oKSmHmc09lofG0SZLUZEGRNunb9g_i3WPx-SQ6mYH3XSyM44foN9xIM5r5mhR8VNhbSl5fWVTzlPhLn4jYzyhvw87hH-4ochA693LgUTr1llaIjvH0r941RvcQ5l3A2lic4QKcdnV1B02-bU1qtaV__EXj-J-NWYSnLRJlH9zQeQYzpnwOc_utr30Jpts9l7ML1WSyLJiuxvXN9JfCKdKe13jLcZqwyjI5qSvEv6Zg6rxCLErugJvpT3M9oo3qgl1SoJM--36JfyX6aEZOgzFD1My6-Ex225_-Ao6HH4-2d702X4OnOa5MvEDIyI9tmCklrLKJyRTKPtAaMY2vIo3o0crYN0EmKcJcJVGgYp_zUKpQWaX5MsyWVWleAlPEW4bPtAil4EY0NpRbYyNpMz_VA9jsBJfrlsyccmpc5N2iBns0b3p0ABt90ZFj8PhXofVO-jnqF7VflqaajHNaEvMQ52J_ACtuWPSf4eTGFSLB2jTCffj7-dHhsLlYfXzRtzD3dWeY7306-LIG8wjUHA9v8Apm66uJeY1gqFZvmkH_GwDSB0k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+and+cost%E2%80%93benefit+analysis+of+automated+bioreactor%E2%80%90expanded+mesenchymal+stem+cells+for+clinical+applications&rft.jtitle=Transfusion+%28Philadelphia%2C+Pa.%29&rft.au=Russell%2C+Athena+L.&rft.au=Lefavor%2C+Rebecca+C.&rft.au=Zubair%2C+Abba+C.&rft.date=2018-10-01&rft.issn=0041-1132&rft.eissn=1537-2995&rft.volume=58&rft.issue=10&rft.spage=2374&rft.epage=2382&rft_id=info:doi/10.1111%2Ftrf.14805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_trf_14805 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-1132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-1132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-1132&client=summon |