Characterization and cost–benefit analysis of automated bioreactor‐expanded mesenchymal stem cells for clinical applications

BACKGROUND Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities. STUDY DESIGN AND METHODS We evaluated options for scaling up large q...

Full description

Saved in:
Bibliographic Details
Published inTransfusion (Philadelphia, Pa.) Vol. 58; no. 10; pp. 2374 - 2382
Main Authors Russell, Athena L., Lefavor, Rebecca C., Zubair, Abba C.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities. STUDY DESIGN AND METHODS We evaluated options for scaling up large quantities of bone marrow–derived MSCs (BM‐MSCs) using methods that can be performed in compliance with Good Manufacturing Practices (GMP). We expanded BM‐MSCs from fresh marrow aspirate in αMEM supplemented with 5% human platelet lysate using both an automated cell expansion system (Quantum, Terumo BCT) and a manual flask‐based method using multilayer flasks. We compared MSCs expanded using both methods and assessed their differentiation to adipogenic and osteogenic tissue, capacity to suppress T‐cell proliferation, cytokines, and growth factor secretion profile and cost‐effectiveness of manufacturing enough BM‐MSCs to administer a single dose of 100 × 106 cells per subject in a clinical trial of 100 subjects. RESULTS We have established that large quantities of clinical‐grade BM‐MSCs manufactured with an automated hollow‐fiber bioreactor were phenotypically (CD73, CD90, CD105) and functionally (adipogenic and osteogenic differentiation and cytokine and growth factor secretion) similar to manually expanded BM‐MSCs. In addition, MSC manufacturing costs significantly less and required less time and effort when using the Quantum automated cell expansion system over the manual multilayer flasks method. CONCLUSION MSCs manufactured by an automated bioreactor are physically and functionally equivalent to the MSCs manufactured by the manual flask method and have met the standards required for clinical application.
AbstractList Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities.BACKGROUNDExpanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities.We evaluated options for scaling up large quantities of bone marrow-derived MSCs (BM-MSCs) using methods that can be performed in compliance with Good Manufacturing Practices (GMP). We expanded BM-MSCs from fresh marrow aspirate in αMEM supplemented with 5% human platelet lysate using both an automated cell expansion system (Quantum, Terumo BCT) and a manual flask-based method using multilayer flasks. We compared MSCs expanded using both methods and assessed their differentiation to adipogenic and osteogenic tissue, capacity to suppress T-cell proliferation, cytokines, and growth factor secretion profile and cost-effectiveness of manufacturing enough BM-MSCs to administer a single dose of 100 × 106 cells per subject in a clinical trial of 100 subjects.STUDY DESIGN AND METHODSWe evaluated options for scaling up large quantities of bone marrow-derived MSCs (BM-MSCs) using methods that can be performed in compliance with Good Manufacturing Practices (GMP). We expanded BM-MSCs from fresh marrow aspirate in αMEM supplemented with 5% human platelet lysate using both an automated cell expansion system (Quantum, Terumo BCT) and a manual flask-based method using multilayer flasks. We compared MSCs expanded using both methods and assessed their differentiation to adipogenic and osteogenic tissue, capacity to suppress T-cell proliferation, cytokines, and growth factor secretion profile and cost-effectiveness of manufacturing enough BM-MSCs to administer a single dose of 100 × 106 cells per subject in a clinical trial of 100 subjects.We have established that large quantities of clinical-grade BM-MSCs manufactured with an automated hollow-fiber bioreactor were phenotypically (CD73, CD90, CD105) and functionally (adipogenic and osteogenic differentiation and cytokine and growth factor secretion) similar to manually expanded BM-MSCs. In addition, MSC manufacturing costs significantly less and required less time and effort when using the Quantum automated cell expansion system over the manual multilayer flasks method.RESULTSWe have established that large quantities of clinical-grade BM-MSCs manufactured with an automated hollow-fiber bioreactor were phenotypically (CD73, CD90, CD105) and functionally (adipogenic and osteogenic differentiation and cytokine and growth factor secretion) similar to manually expanded BM-MSCs. In addition, MSC manufacturing costs significantly less and required less time and effort when using the Quantum automated cell expansion system over the manual multilayer flasks method.MSCs manufactured by an automated bioreactor are physically and functionally equivalent to the MSCs manufactured by the manual flask method and have met the standards required for clinical application.CONCLUSIONMSCs manufactured by an automated bioreactor are physically and functionally equivalent to the MSCs manufactured by the manual flask method and have met the standards required for clinical application.
Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities. We evaluated options for scaling up large quantities of bone marrow-derived MSCs (BM-MSCs) using methods that can be performed in compliance with Good Manufacturing Practices (GMP). We expanded BM-MSCs from fresh marrow aspirate in αMEM supplemented with 5% human platelet lysate using both an automated cell expansion system (Quantum, Terumo BCT) and a manual flask-based method using multilayer flasks. We compared MSCs expanded using both methods and assessed their differentiation to adipogenic and osteogenic tissue, capacity to suppress T-cell proliferation, cytokines, and growth factor secretion profile and cost-effectiveness of manufacturing enough BM-MSCs to administer a single dose of 100 × 10 cells per subject in a clinical trial of 100 subjects. We have established that large quantities of clinical-grade BM-MSCs manufactured with an automated hollow-fiber bioreactor were phenotypically (CD73, CD90, CD105) and functionally (adipogenic and osteogenic differentiation and cytokine and growth factor secretion) similar to manually expanded BM-MSCs. In addition, MSC manufacturing costs significantly less and required less time and effort when using the Quantum automated cell expansion system over the manual multilayer flasks method. MSCs manufactured by an automated bioreactor are physically and functionally equivalent to the MSCs manufactured by the manual flask method and have met the standards required for clinical application.
BACKGROUND Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical trials is an ongoing challenge for cell manufacturing facilities. STUDY DESIGN AND METHODS We evaluated options for scaling up large quantities of bone marrow–derived MSCs (BM‐MSCs) using methods that can be performed in compliance with Good Manufacturing Practices (GMP). We expanded BM‐MSCs from fresh marrow aspirate in αMEM supplemented with 5% human platelet lysate using both an automated cell expansion system (Quantum, Terumo BCT) and a manual flask‐based method using multilayer flasks. We compared MSCs expanded using both methods and assessed their differentiation to adipogenic and osteogenic tissue, capacity to suppress T‐cell proliferation, cytokines, and growth factor secretion profile and cost‐effectiveness of manufacturing enough BM‐MSCs to administer a single dose of 100 × 106 cells per subject in a clinical trial of 100 subjects. RESULTS We have established that large quantities of clinical‐grade BM‐MSCs manufactured with an automated hollow‐fiber bioreactor were phenotypically (CD73, CD90, CD105) and functionally (adipogenic and osteogenic differentiation and cytokine and growth factor secretion) similar to manually expanded BM‐MSCs. In addition, MSC manufacturing costs significantly less and required less time and effort when using the Quantum automated cell expansion system over the manual multilayer flasks method. CONCLUSION MSCs manufactured by an automated bioreactor are physically and functionally equivalent to the MSCs manufactured by the manual flask method and have met the standards required for clinical application.
Author Lefavor, Rebecca C.
Zubair, Abba C.
Russell, Athena L.
Author_xml – sequence: 1
  givenname: Athena L.
  surname: Russell
  fullname: Russell, Athena L.
  organization: Mayo Clinic
– sequence: 2
  givenname: Rebecca C.
  surname: Lefavor
  fullname: Lefavor, Rebecca C.
  organization: Mayo Clinic
– sequence: 3
  givenname: Abba C.
  surname: Zubair
  fullname: Zubair, Abba C.
  email: zubair.abba@mayo.edu
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30203447$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFuGyEURVGUqnGSLvoDFct2MckDBntmWVlNWylSpSpZI8APhYgZpoDVuit_QqX-Yb6kOHY2VcIGdHXufcA9JcdjHJGQtwwuWF2XJbkL1nYgj8iMSbFoeN_LYzIDaFnDmOAn5DTnewDgPbDX5EQAB9G2ixnZLu900rZg8r918XGkelxRG3N52P41OKLzpUo6bLLPNDqq1yUOuuCKGh8TVmtMD9s_-GuqxqoOmHG0d5tBB5oLDtRiCJm6mKgNfvS26nqaQj3sxuVz8srpkPHNYT8jt1efbpZfmutvn78uP143VnApG9ZqCXPHe2NaZ9wCe9ODYNYKKcFIC610eg7Iet2xDsxCMjMHIbg23DhjxRl5v8-dUvyxxlzU4PPubnrEuM6KM-CCQ9dBRd8d0LUZcKWm5AedNurp1ypwuQdsijkndMr68vickrQPioHa9aJqL-qxl-r48J_jKfQ59pD-0wfcvAyqm-9Xe8c_PSuhIA
CitedBy_id crossref_primary_10_3390_cells10113101
crossref_primary_10_1016_j_msec_2018_10_081
crossref_primary_10_1093_stcltm_szac051
crossref_primary_10_3390_mps7020032
crossref_primary_10_1016_j_biotechadv_2020_107636
crossref_primary_10_1155_2022_4664917
crossref_primary_10_1002_bit_28228
crossref_primary_10_1016_j_jcyt_2019_05_001
crossref_primary_10_1016_j_retram_2023_103393
crossref_primary_10_3390_bioengineering8050068
crossref_primary_10_1016_j_bprint_2024_e00347
crossref_primary_10_1007_s10439_019_02400_3
crossref_primary_10_1016_j_colsurfa_2024_134620
crossref_primary_10_1016_j_heliyon_2023_e15946
crossref_primary_10_1016_j_jcyt_2024_03_001
crossref_primary_10_1007_s11064_019_02925_y
crossref_primary_10_1007_s12975_023_01208_7
crossref_primary_10_1016_j_jcyt_2022_07_009
crossref_primary_10_1002_jcp_29803
crossref_primary_10_1186_s13287_024_03688_2
crossref_primary_10_3390_ijms21030708
crossref_primary_10_1093_cei_uxac016
crossref_primary_10_3390_life14091161
crossref_primary_10_4252_wjsc_v12_i12_1511
crossref_primary_10_1155_2020_8833725
crossref_primary_10_1016_j_jcyt_2023_04_004
crossref_primary_10_1186_s12967_019_2001_5
crossref_primary_10_1016_j_jcyt_2019_09_001
crossref_primary_10_1016_j_bej_2020_107601
crossref_primary_10_3390_biology14030313
crossref_primary_10_1093_biomethods_bpad018
crossref_primary_10_1155_2019_2608482
crossref_primary_10_3389_fbioe_2020_571777
crossref_primary_10_3389_fimmu_2020_609063
crossref_primary_10_1126_sciadv_aay2387
crossref_primary_10_1142_S0218957721400029
crossref_primary_10_3390_ijms24043745
crossref_primary_10_3390_pharmaceutics14010011
crossref_primary_10_1007_s12015_024_10812_5
crossref_primary_10_1089_ten_tec_2023_0037
crossref_primary_10_3389_fbioe_2022_834267
crossref_primary_10_1186_s40643_022_00550_2
crossref_primary_10_1186_s13287_019_1202_4
crossref_primary_10_3390_cells10092420
Cites_doi 10.4172/2157-7633.1000222
10.1016/j.yexcr.2005.04.029
10.1080/14653240903080367
10.1111/trf.13567
10.1016/j.jcyt.2016.05.013
10.1016/j.jcyt.2013.05.024
10.1016/j.jcyt.2014.01.417
10.3727/096368915X689622
10.1016/j.yexcr.2006.03.019
10.1186/1472-6750-13-102
10.1016/j.bbrc.2003.10.010
10.1634/stemcells.2004-0125
10.1007/s10616-007-9091-2
10.1002/term.217
10.1634/stemcells.2004-0308
10.1155/2016/9176357
10.1038/nri2395
10.1097/00007890-197404000-00001
10.3727/096368912X657990
ContentType Journal Article
Copyright 2018 AABB
2018 AABB.
Copyright_xml – notice: 2018 AABB
– notice: 2018 AABB.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/trf.14805
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1537-2995
EndPage 2382
ExternalDocumentID 30203447
10_1111_trf_14805
TRF14805
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Center for Regenerative Medicine
  funderid: 94343014
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBNA
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EGARE
EJD
EMOBN
ESX
EX3
F00
F5P
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HZI
HZ~
H~9
IHE
IX1
J0M
J5H
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
TWZ
UB1
UCJ
V8K
V9Y
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YQI
YQJ
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ABJNI
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3255-14a506f29bb4fbf7e9b9031cc3550b5c045fa60e19a8180b751b60332ab2bfbc3
IEDL.DBID DR2
ISSN 0041-1132
1537-2995
IngestDate Thu Jul 10 22:58:17 EDT 2025
Thu Apr 03 07:01:19 EDT 2025
Tue Jul 01 00:28:27 EDT 2025
Thu Apr 24 22:52:07 EDT 2025
Wed Jan 22 16:26:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2018 AABB.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3255-14a506f29bb4fbf7e9b9031cc3550b5c045fa60e19a8180b751b60332ab2bfbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30203447
PQID 2102320880
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2102320880
pubmed_primary_30203447
crossref_citationtrail_10_1111_trf_14805
crossref_primary_10_1111_trf_14805
wiley_primary_10_1111_trf_14805_TRF14805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
PublicationTitle Transfusion (Philadelphia, Pa.)
PublicationTitleAlternate Transfusion
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 11
2013; 15
2014; 4
2013; 22
2006; 24
2013; 13
2014; 16
2005; 308
2008; 8
2016; 2016
2016; 18
2003; 311
2007; 55
2010; 4
2016; 25
2005; 23
2006; 312
2016; 56
1974; 17
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
Lechanteur C (e_1_2_7_17_1) 2014; 4
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_20_1
References_xml – volume: 16
  start-page: 1048
  year: 2014
  end-page: 58
  article-title: Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the quantum cell expansion system
  publication-title: Cytotherapy
– volume: 23
  start-page: 1012
  year: 2005
  end-page: 20
  article-title: Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue
  publication-title: Stem Cells
– volume: 18
  start-page: 1219
  year: 2016
  end-page: 33
  article-title: Large‐scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor
  publication-title: Cytotherapy
– volume: 8
  start-page: 726
  year: 2008
  end-page: 36
  article-title: Mesenchymal stem cells in health and disease
  publication-title: Nat Rev Immunol
– volume: 17
  start-page: 331
  year: 1974
  end-page: 40
  article-title: Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo
  publication-title: Transplantation
– volume: 25
  start-page: 829
  year: 2016
  end-page: 48
  article-title: Clinical trials with mesenchymal stem cells: an update
  publication-title: Cell Transplant
– volume: 22
  start-page: 1981
  year: 2013
  end-page: 2000
  article-title: GMP‐compliant isolation and expansion of bone marrow‐derived MSCs in the closed, automated device quantum cell expansion system
  publication-title: Cell Transplant
– volume: 24
  start-page: 679
  year: 2006
  end-page: 85
  article-title: Disparate mesenchyme‐lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood
  publication-title: Stem Cells
– volume: 4
  start-page: 45
  year: 2010
  end-page: 54
  article-title: Human cell culture process capability: a comparison of manual and automated production
  publication-title: J Tissue Eng Regen Med
– volume: 308
  start-page: 283
  year: 2005
  end-page: 90
  article-title: Functional studies of mesenchymal stem cells derived from adult human adipose tissue
  publication-title: Exp Cell Res
– volume: 4
  start-page: 222
  year: 2014
  article-title: Large‐scale clinical expansion of mesenchymal stem cells in the GMP‐compliant, closed automated Quantum® cell expansion system: comparison with expansion in traditional T‐flasks
  publication-title: J Stem Cell Res Ther
– volume: 15
  start-page: 1323
  year: 2013
  end-page: 39
  article-title: Genetic stability of bone marrow‐derived human mesenchymal stromal cells in the Quantum System
  publication-title: Cytotherapy
– volume: 312
  start-page: 2169
  year: 2006
  end-page: 79
  article-title: Immune modulation by mesenchymal stem cells
  publication-title: Exp Cell Res
– volume: 2016
  start-page: 9176357
  year: 2016
  article-title: Spheroid culture of mesenchymal stem cells
  publication-title: Stem Cells Int
– volume: 311
  start-page: 391
  year: 2003
  end-page: 7
  article-title: Functional characterization of human mesenchymal stem cell‐derived adipocytes
  publication-title: Biochem Biophys Res Commun
– volume: 55
  start-page: 31
  year: 2007
  end-page: 9
  article-title: Manufacture of a human mesenchymal stem cell population using an automated cell culture platform
  publication-title: Cytotechnology
– volume: 13
  start-page: 102
  year: 2013
  article-title: Large‐scale cell production of stem cells for clinical application using the automated cell processing machine
  publication-title: BMC Biotechnol
– volume: 11
  start-page: 377
  year: 2009
  end-page: 91
  article-title: Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration
  publication-title: Cytotherapy
– volume: 56
  start-page: 26S
  year: 2016
  end-page: 8S
  article-title: Process automation in manufacturing of mesenchymal stromal cells
  publication-title: Transfusion
– volume: 4
  start-page: 222
  year: 2014
  ident: e_1_2_7_17_1
  article-title: Large‐scale clinical expansion of mesenchymal stem cells in the GMP‐compliant, closed automated Quantum® cell expansion system: comparison with expansion in traditional T‐flasks
  publication-title: J Stem Cell Res Ther
  doi: 10.4172/2157-7633.1000222
– ident: e_1_2_7_2_1
  doi: 10.1016/j.yexcr.2005.04.029
– ident: e_1_2_7_14_1
  doi: 10.1080/14653240903080367
– ident: e_1_2_7_10_1
  doi: 10.1111/trf.13567
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jcyt.2016.05.013
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jcyt.2013.05.024
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jcyt.2014.01.417
– ident: e_1_2_7_8_1
  doi: 10.3727/096368915X689622
– ident: e_1_2_7_6_1
  doi: 10.1016/j.yexcr.2006.03.019
– ident: e_1_2_7_11_1
  doi: 10.1186/1472-6750-13-102
– ident: e_1_2_7_3_1
  doi: 10.1016/j.bbrc.2003.10.010
– ident: e_1_2_7_5_1
  doi: 10.1634/stemcells.2004-0125
– ident: e_1_2_7_12_1
  doi: 10.1007/s10616-007-9091-2
– ident: e_1_2_7_13_1
  doi: 10.1002/term.217
– ident: e_1_2_7_4_1
  doi: 10.1634/stemcells.2004-0308
– ident: e_1_2_7_20_1
  doi: 10.1155/2016/9176357
– ident: e_1_2_7_7_1
  doi: 10.1038/nri2395
– ident: e_1_2_7_9_1
  doi: 10.1097/00007890-197404000-00001
– ident: e_1_2_7_19_1
  doi: 10.3727/096368912X657990
SSID ssj0002901
Score 2.4482038
Snippet BACKGROUND Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine...
Expanding quantities of mesenchymal stem cells (MSCs) sufficient to treat large numbers of patients in cellular therapy and regenerative medicine clinical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2374
SubjectTerms Automation
Bioreactors - economics
Bioreactors - standards
Bone Marrow Cells - cytology
Cell Culture Techniques - methods
Cell Culture Techniques - standards
Cell Proliferation
Cost-Benefit Analysis
Humans
Manufacturing and Industrial Facilities - standards
Mesenchymal Stem Cells - cytology
Title Characterization and cost–benefit analysis of automated bioreactor‐expanded mesenchymal stem cells for clinical applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftrf.14805
https://www.ncbi.nlm.nih.gov/pubmed/30203447
https://www.proquest.com/docview/2102320880
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS-UwEA_iYfGi7vrvue4SxYOXStu0ry2eFvEhgh5EwYNQMmmCorbi6wP19D7Cgt_QT-JM0tb_IN5Km7ZJJpP5JZP5DWPraYJ2NRSJF2cFpTDzhQdZqD2lkyTVWVCkNn3b_kF_9zjaO4lPJthWGwvj-CG6DTfSDDtfk4JLGL5Q8vrGoJqnlr-UzmoRIDp8po4i_6DzLgceZVNvWIXoFE_35mtb9A5gvsar1uAMZthpW1V3zuRic1TDprp_w-L4zbbMsukGiPJ_buT8ZBO6_MV-7Deu9jk23u6onF2kJpdlwVU1rB_HD4AzpDmv8ZajNOGV4XJUVwh_dcHhvEIoSt6Ax_F_fXtN-9QFv6I4J3V2d4V_JfZoTj6DIUfQzNvwTP7SnT7Pjgc7R9u7XpOuwVMCFyZeEMnY75swA4gMmERngKIPlEJI40OsEDwa2fd1kEkKMIckDqDvCxFKCMGAEgtssqxKvcQ4EG0ZPlNRKCOhI2tChdEmlibzU9VjG63gctVwmVNKjcu8XdNgj-a2R3tsrSt67Qg8Piq02ko_R_Wi9stSV6NhTitiEeJU7PfYohsW3WcEeXGjKMHaWOF-_v386HBgL5a_XvQ3m0Jw5rh3gxU2Wd-M9B8EQDX8tSP9CeGlBH4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB0hkKAXKNCWLQUM6oFLUBInm0TqpVq6WgrLAS0SlyqyHVtFLQlis1LhtJ-A1D_cL-lMnKRAi1T1FiVOYns8nmeP5w3A-zhCu-rzyAmTjFKYudyRia8dpaMo1omXxVX6tuFpd3AefL4IL-bgQxMLY_kh2g030oxqviYFpw3pB1pe3hjU85gITBcoozcx5x-e_SaPIg-h9S97DuVTr3mF6BxP--pja_QHxHyMWCuT01-BL01l7UmTbweTUh6ouyc8jv_bmpewXGNR9tEOnlWY0_kaLA5rb_s6THstm7MN1mQiz5gqxuVs-lPiJGkuS7xlWU1YYZiYlAUiYJ0xeVkgGiWHwGx6r39c01Z1xq4o1El9vb3CvxKBNCO3wZghbmZNhCZ76FF_Bef9T6PewKkzNjiK49rE8QIRul3jJ1IGRppIJxKl7ymFqMaVoUL8aETX1V4iKMZcRqEnuy7nvpC-NFLx1zCfF7neACaJuQyfqcAXAddBZUW50SYUJnFj1YH9RnKpqunMKavG97RZ1mCPplWPdmCvLXptOTz-Vmi3EX-KGkbtF7kuJuOUFsXcx9nY7cAbOy7az3By5AZBhLWppPv899PRWb-6ePvvRXdgaTAanqQnR6fHm_ACsZql4vXewXx5M9FbiIdKuV0N-18RJAia
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hKiEuhZZCF_pjUA9cgpLY-VNPFXRFW0AVAokDUmQ7tkCFZMVmJdrTPkKlviFP0pk4SaEUCfUWJU5iezyezx7PNwDv0gTtasgTL8oKSmHmc09lofG0SZLUZEGRNunb9g_i3WPx-SQ6mYH3XSyM44foN9xIM5r5mhR8VNhbSl5fWVTzlPhLn4jYzyhvw87hH-4ochA693LgUTr1llaIjvH0r941RvcQ5l3A2lic4QKcdnV1B02-bU1qtaV__EXj-J-NWYSnLRJlH9zQeQYzpnwOc_utr30Jpts9l7ML1WSyLJiuxvXN9JfCKdKe13jLcZqwyjI5qSvEv6Zg6rxCLErugJvpT3M9oo3qgl1SoJM--36JfyX6aEZOgzFD1My6-Ex225_-Ao6HH4-2d702X4OnOa5MvEDIyI9tmCklrLKJyRTKPtAaMY2vIo3o0crYN0EmKcJcJVGgYp_zUKpQWaX5MsyWVWleAlPEW4bPtAil4EY0NpRbYyNpMz_VA9jsBJfrlsyccmpc5N2iBns0b3p0ABt90ZFj8PhXofVO-jnqF7VflqaajHNaEvMQ52J_ACtuWPSf4eTGFSLB2jTCffj7-dHhsLlYfXzRtzD3dWeY7306-LIG8wjUHA9v8Apm66uJeY1gqFZvmkH_GwDSB0k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+and+cost%E2%80%93benefit+analysis+of+automated+bioreactor%E2%80%90expanded+mesenchymal+stem+cells+for+clinical+applications&rft.jtitle=Transfusion+%28Philadelphia%2C+Pa.%29&rft.au=Russell%2C+Athena+L.&rft.au=Lefavor%2C+Rebecca+C.&rft.au=Zubair%2C+Abba+C.&rft.date=2018-10-01&rft.issn=0041-1132&rft.eissn=1537-2995&rft.volume=58&rft.issue=10&rft.spage=2374&rft.epage=2382&rft_id=info:doi/10.1111%2Ftrf.14805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_trf_14805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-1132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-1132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-1132&client=summon