Site‐Selective trans‐Hydrostannation of 1,3‐ and 1,n‐Diynes: Application to the Total Synthesis of Typhonosides E and F, and a Fluorinated Cerebroside Analogue

Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very rea...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 24; no. 38; pp. 9667 - 9674
Main Authors Mo, Xiaobin, Letort, Aurélien, Roşca, Dragoş‐Adrian, Higashida, Kosuke, Fürstner, Alois
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 05.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one ‐OH group to site‐selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site‐selectivity, whereas per‐stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3‐diyne substrate by two metal centers. The preparative relevance of site‐selective trans‐hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late‐stage modification of a bioactive target compound. Counterintuitive: That the selectivity for site‐selective mono‐stannation increases at higher temperature is not obvious at first sight, but can be explained based on spectroscopic, computational, and crystallographic data. This transformation gained a strategic role in the total synthesis of two isomeric cerebroside derivatives and a non‐natural fluoro‐alkene analogue thereof.
AbstractList Propargyl alcohols are privileged substrates for stereochemically unorthodox trans ‐hydrostannation reactions catalyzed by [Cp*RuCl] 4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one ‐OH group to site‐selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site‐selectivity, whereas per‐stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11 . The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3‐diyne substrate by two metal centers. The preparative relevance of site‐selective trans ‐hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late‐stage modification of a bioactive target compound.
Propargyl alcohols are privileged substrates for stereochemically unorthodox trans-hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the -OH group and the polarized [Ru-Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one -OH group to site-selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site-selectivity, whereas per-stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3-diyne substrate by two metal centers. The preparative relevance of site-selective trans-hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late-stage modification of a bioactive target compound.Propargyl alcohols are privileged substrates for stereochemically unorthodox trans-hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the -OH group and the polarized [Ru-Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one -OH group to site-selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site-selectivity, whereas per-stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3-diyne substrate by two metal centers. The preparative relevance of site-selective trans-hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late-stage modification of a bioactive target compound.
Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one ‐OH group to site‐selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site‐selectivity, whereas per‐stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3‐diyne substrate by two metal centers. The preparative relevance of site‐selective trans‐hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late‐stage modification of a bioactive target compound. Counterintuitive: That the selectivity for site‐selective mono‐stannation increases at higher temperature is not obvious at first sight, but can be explained based on spectroscopic, computational, and crystallographic data. This transformation gained a strategic role in the total synthesis of two isomeric cerebroside derivatives and a non‐natural fluoro‐alkene analogue thereof.
Propargyl alcohols are privileged substrates for stereochemically unorthodox trans-hydrostannation reactions catalyzed by [Cp*RuCl] (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the -OH group and the polarized [Ru-Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one -OH group to site-selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site-selectivity, whereas per-stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3-diyne substrate by two metal centers. The preparative relevance of site-selective trans-hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late-stage modification of a bioactive target compound.
Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one ‐OH group to site‐selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site‐selectivity, whereas per‐stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3‐diyne substrate by two metal centers. The preparative relevance of site‐selective trans‐hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late‐stage modification of a bioactive target compound.
Author Letort, Aurélien
Roşca, Dragoş‐Adrian
Mo, Xiaobin
Higashida, Kosuke
Fürstner, Alois
Author_xml – sequence: 1
  givenname: Xiaobin
  surname: Mo
  fullname: Mo, Xiaobin
  organization: Max-Planck-Institut für Kohlenforschung
– sequence: 2
  givenname: Aurélien
  surname: Letort
  fullname: Letort, Aurélien
  organization: Max-Planck-Institut für Kohlenforschung
– sequence: 3
  givenname: Dragoş‐Adrian
  surname: Roşca
  fullname: Roşca, Dragoş‐Adrian
  organization: Max-Planck-Institut für Kohlenforschung
– sequence: 4
  givenname: Kosuke
  surname: Higashida
  fullname: Higashida, Kosuke
  organization: Max-Planck-Institut für Kohlenforschung
– sequence: 5
  givenname: Alois
  orcidid: 0000-0003-0098-3417
  surname: Fürstner
  fullname: Fürstner, Alois
  email: fuerstner@kofo.mpg.de
  organization: Max-Planck-Institut für Kohlenforschung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29676822$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2O0zAUhS00iOkMbFkiS2xYTIr_4sTsqtJSpEEsWtaRa99Qj1I7xMmg7Niw5zV4LZ4Et50BaSTE6l7b3znX9rlAZz54QOg5JVNKCHttdrCfMkJLQrkQj9CE5oxmvJD5GZoQJYpM5lydo4sYbwghSnL-BJ0zJQtZMjZBP9euh1_ffqyhAdO7W8B9p31MO6vRdiH22nvdu-BxqDG94ukAa29T61P71o0e4hs8a9vGmRPXB9zvAG9Crxu8Hn1aRBcP8s3Y7oIP0VlIA74vjkbLq2PReNkMoXNpGFg8hw623ZHEM6-b8HmAp-hxrZsIz-7qJfq0XGzmq-z647v389l1ZjjLRVYUVEvJjZLM1tTwgufAc0lyqqzQoqxLYkxhqBZWUEtKDTVTlqmtZExYrvklenXybbvwZYDYV3sXDTSN9hCGWDHCSiVUTlRCXz5Ab8LQpfseKCmKnHPCEvXijhq2e7BV27m97sbqPoQEiBNg0pNjB3VlXH_8zJSFaypKqkPW1SHr6k_WSTZ9ILt3_qdAnQRfXQPjf-hqvlp8-Kv9Dd_UwLE
CitedBy_id crossref_primary_10_1021_acs_orglett_1c02865
crossref_primary_10_1002_ange_202007030
crossref_primary_10_1002_anie_202004377
crossref_primary_10_1002_ange_202424212
crossref_primary_10_1039_D1CS00485A
crossref_primary_10_1002_anie_202016475
crossref_primary_10_1002_chem_202101901
crossref_primary_10_1021_acscatal_9b00482
crossref_primary_10_1039_D0SC02542A
crossref_primary_10_1021_jacs_8b09782
crossref_primary_10_1002_ange_201812096
crossref_primary_10_1002_ange_202105732
crossref_primary_10_1002_anie_202007030
crossref_primary_10_1002_ange_202004377
crossref_primary_10_1016_j_phytol_2020_07_002
crossref_primary_10_1002_chem_202000081
crossref_primary_10_1021_jacs_0c08582
crossref_primary_10_1002_adsc_201900939
crossref_primary_10_1002_ange_202016475
crossref_primary_10_1002_chem_201804988
crossref_primary_10_1002_chem_202005397
crossref_primary_10_1002_anie_202113827
crossref_primary_10_1002_anie_202424212
crossref_primary_10_1002_chem_201804987
crossref_primary_10_1002_ange_202113827
crossref_primary_10_1002_anie_202105732
crossref_primary_10_1016_j_ccr_2019_213051
crossref_primary_10_1002_anie_201812096
crossref_primary_10_1002_chem_201902228
crossref_primary_10_1021_jacs_3c06573
crossref_primary_10_1002_adsc_202200540
Cites_doi 10.1021/ja00142a036
10.1021/jacs.6b12517
10.1002/ejoc.200600456
10.1002/anie.201307584
10.1002/anie.201506075
10.1021/ol051996r
10.1016/S0040-4039(01)94157-7
10.1002/hlca.19880710208
10.1002/ange.201205946
10.1016/S0040-4039(02)00583-X
10.1021/om00156a025
10.3998/ark.5550190.0008.a14
10.1002/ange.201411618
10.1016/S0040-4039(01)01131-5
10.3987/REV-10-689
10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-U
10.1016/j.jfluchem.2012.06.005
10.1002/(SICI)1521-3757(19990601)111:11<1632::AID-ANGE1632>3.0.CO;2-A
10.1002/anie.201700342
10.15227/orgsyn.077.0064
10.1016/S0040-4039(00)97608-1
10.1002/ange.200502071
10.1002/anie.201205946
10.1002/anie.201411618
10.1021/ja991361l
10.1002/ange.19820940304
10.1016/j.tet.2005.07.066
10.1021/jm900121d
10.1002/ange.201402719
10.1002/ange.201700342
10.1002/anie.201701391
10.1021/acs.jnatprod.6b00954
10.1002/anie.201000775
10.3762/bjoc.9.300
10.1021/np960670b
10.1002/ange.201311080
10.1002/ange.201501608
10.1016/0040-4020(96)00672-2
10.1002/ejoc.200200518
10.1021/om0342006
10.1021/ol070608d
10.1002/chem.201501765
10.1021/jacs.8b00665
10.1055/s-1998-4494
10.1021/np960201
10.3762/bjoc.4.12
10.1002/anie.198201553
10.1021/ja068901g
10.1039/a900943d
10.1021/ja0528580
10.1002/ange.201506075
10.1002/ange.201307584
10.1016/S0960-894X(99)00553-3
10.1039/a709014e
10.1021/jo00253a039
10.1021/ja0121033
10.1021/jf302085u
10.1002/chem.201702470
10.1002/chem.200305588
10.1021/jo9800098
10.1016/S0960-894X(99)00554-5
10.1002/1521-3757(20020617)114:12<2203::AID-ANGE2203>3.0.CO;2-M
10.1021/jo971918k
10.1002/1521-3773(20020617)41:12<2097::AID-ANIE2097>3.0.CO;2-T
10.1021/ja910656b
10.1055/s-2005-861874
10.1016/j.tet.2005.02.075
10.1246/bcsj.20150317
10.1021/ja2031085
10.1002/anie.201311080
10.1002/anie.201501608
10.1111/j.1469-8137.2004.00992.x
10.1055/s-0036-1591867
10.1021/jacs.5b01475
10.1002/chem.201605444
10.3109/09687688.2010.538731
10.1002/chem.201601163
10.1021/jo0012952
10.1002/anie.200502071
10.1002/ejoc.200300728
10.1021/ja036521e
10.1002/chem.200901449
10.1002/anie.201402719
10.1021/ja804105m
10.1038/nrm2329
10.1021/ja00187a024
10.1080/10286020108040367
10.1002/ange.201701391
10.1039/b307243f
10.1002/ange.201000775
10.1021/acs.orglett.6b01431
10.1002/chem.201705550
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201801344
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 9674
ExternalDocumentID 29676822
10_1002_chem_201801344
CHEM201801344
Genre article
Journal Article
GrantInformation_xml – fundername: Max-Planck-Gesellschaft
– fundername: Alexander von Humboldt-Stiftung
– fundername: Japan Society for the Promotion of Science
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3254-771a663c962df1c3735e3560519d4a48f80cc7c1a4d41d08aef29d29b6224d3a3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 05:51:26 EDT 2025
Fri Jul 25 10:32:16 EDT 2025
Thu Apr 03 07:01:02 EDT 2025
Tue Jul 01 01:29:33 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
Wed Jan 22 16:21:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords natural products
ruthenium
glycolipids
cooperativity
organotin compounds
trans-hydrometalation
alkynes
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3254-771a663c962df1c3735e3560519d4a48f80cc7c1a4d41d08aef29d29b6224d3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0098-3417
PMID 29676822
PQID 2064753302
PQPubID 986340
PageCount 8
ParticipantIDs proquest_miscellaneous_2028949509
proquest_journals_2064753302
pubmed_primary_29676822
crossref_citationtrail_10_1002_chem_201801344
crossref_primary_10_1002_chem_201801344
wiley_primary_10_1002_chem_201801344_CHEM201801344
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 5, 2018
PublicationDateYYYYMMDD 2018-07-05
PublicationDate_xml – month: 07
  year: 2018
  text: July 5, 2018
  day: 05
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2012; 60
2017; 80
1999 1999; 38 111
2004; 23
2004; 161
1989; 111
2008; 9
1999; 121
2005; 61
2008; 4
1988; 71
2013 2013; 52 125
2001; 42
2013; 9
2009; 52
2015; 137
2002 2002; 41 114
2002; 43
2007; 9
2015 2015; 54 127
2011; 28
2003; 125
1972; 13
1982 1982; 21 94
2009; 15
2016; 89
1990; 31
2012; 141
2001; 123
2007; 129
2000; 29
2018; 140
1997; 60
1990; 39
2000; 65
2017; 23
2011; 83
1998
1995; 117
2009
1996; 52
2007
2006
2005
2010 2010; 49 122
2004
2003
2017 2017; 56 129
1988; 53
2016; 18
1998; 63
1996; 59
2011; 133
2017; 139
2018; 24
1999; 9
2004; 10
2006 2006; 45 118
2000; 77
2005; 127
2015; 21
2010; 132
2018
2005; 7
2017
2001; 3
2015
2018; 50
1990; 9
2008; 130
2003; 20
2016; 22
e_1_2_7_3_3
e_1_2_7_3_2
e_1_2_7_104_1
e_1_2_7_7_2
Tidwell T. T. (e_1_2_7_81_1) 1990; 39
e_1_2_7_19_1
e_1_2_7_83_1
e_1_2_7_100_2
e_1_2_7_60_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_87_2
e_1_2_7_11_3
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_1
e_1_2_7_68_3
e_1_2_7_26_1
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_90_1
e_1_2_7_94_2
e_1_2_7_71_1
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_52_1
e_1_2_7_33_1
Schaubach S. (e_1_2_7_23_2) 2017
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_37_2
e_1_2_7_4_3
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
Bressy C. (e_1_2_7_57_2) 2009
e_1_2_7_48_2
e_1_2_7_93_1
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_97_1
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_20_3
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_2
e_1_2_7_17_3
e_1_2_7_17_2
e_1_2_7_62_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_28_1
e_1_2_7_28_2
Lumb J.-P. (e_1_2_7_29_1) 2015
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_92_1
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_21_3
e_1_2_7_31_3
e_1_2_7_96_1
e_1_2_7_21_2
e_1_2_7_35_1
e_1_2_7_77_2
e_1_2_7_58_1
e_1_2_7_77_3
e_1_2_7_39_1
e_1_2_7_107_1
e_1_2_7_103_2
e_1_2_7_80_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_10_3
e_1_2_7_10_2
e_1_2_7_46_1
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_27_1
e_1_2_7_91_1
Meng Z. (e_1_2_7_25_2) 2018
e_1_2_7_72_2
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_95_2
e_1_2_7_34_1
e_1_2_7_99_2
e_1_2_7_38_1
References_xml – volume: 129
  start-page: 1906
  year: 2007
  end-page: 1907
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 11970
  year: 2008
  end-page: 11978
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 7814
  year: 1999
  end-page: 7821
  publication-title: J. Am. Chem. Soc.
– start-page: 4463
  year: 2006
  end-page: 4472
  publication-title: Eur. J. Org. Chem.
– volume: 23
  start-page: 12412
  year: 2017
  end-page: 12419
  publication-title: Chem. Eur. J.
– volume: 80
  start-page: 1734
  year: 2017
  end-page: 1741
  publication-title: J. Nat. Prod.
– volume: 54 127
  start-page: 6241 6339
  year: 2015 2015
  end-page: 6245 6343
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 161
  start-page: 677
  year: 2004
  end-page: 702
  publication-title: New Phytol.
– volume: 45 118
  start-page: 1034 1050
  year: 2006 2006
  end-page: 1057 1073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 83
  start-page: 951
  year: 2011
  end-page: 1003
  publication-title: Heterocycles
– volume: 4
  start-page: 12
  year: 2008
  publication-title: Beilstein J. Org. Chem.
– volume: 77
  start-page: 64
  year: 2000
  end-page: 77
  publication-title: Org. Synth.
– volume: 132
  start-page: 5186
  year: 2010
  end-page: 5192
  publication-title: J. Am. Chem. Soc.
– start-page: 853
  year: 2005
  end-page: 887
  publication-title: Synthesis
– volume: 52 125
  start-page: 14050 14300
  year: 2013 2013
  end-page: 14054 14304
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39
  start-page: 297
  year: 1990
  end-page: 572
  publication-title: Org. React.
– start-page: 202
  year: 2017
  end-page: 208
  publication-title: Synthesis
– volume: 125
  start-page: 13132
  year: 2003
  end-page: 13142
  publication-title: J. Am. Chem. Soc.
– volume: 63
  start-page: 424
  year: 1998
  end-page: 425
  publication-title: J. Org. Chem.
– volume: 43
  start-page: 3529
  year: 2002
  end-page: 3532
  publication-title: Tetrahedron Lett.
– volume: 52
  start-page: 11673
  year: 1996
  end-page: 11694
  publication-title: Tetrahedron
– volume: 10
  start-page: 2214
  year: 2004
  end-page: 2222
  publication-title: Chem. Eur. J.
– volume: 38 111
  start-page: 1532 1632
  year: 1999 1999
  end-page: 1568 1670
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 2641
  year: 2013
  end-page: 2659
  publication-title: Beilstein J. Org. Chem.
– volume: 141
  start-page: 49
  year: 2012
  end-page: 57
  publication-title: J. Fluorine Chem.
– volume: 28
  start-page: 145
  year: 2011
  end-page: 154
  publication-title: Mol. Membr. Biol.
– volume: 29
  start-page: 201
  year: 2000
  end-page: 216
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 3159
  year: 1999
  end-page: 3164
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 13
  start-page: 3769
  year: 1972
  end-page: 3772
  publication-title: Tetrahedron Lett.
– volume: 63
  start-page: 3072
  year: 1998
  end-page: 3080
  publication-title: J. Org. Chem.
– volume: 56 129
  start-page: 6161 6257
  year: 2017 2017
  end-page: 6165 6261
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 4309
  year: 1990
  end-page: 4312
  publication-title: Tetrahedron Lett.
– volume: 89
  start-page: 135
  year: 2016
  end-page: 160
  publication-title: Bull. Chem. Soc. Jpn.
– start-page: 335
  year: 2015
  end-page: 363
– volume: 59
  start-page: 319
  year: 1996
  end-page: 322
  publication-title: J. Nat. Prod.
– volume: 52 125
  start-page: 355 373
  year: 2013 2013
  end-page: 360 378
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60
  start-page: 274
  year: 1997
  end-page: 276
  publication-title: J. Nat. Prod.
– start-page: 232
  year: 2007
  end-page: 244
  publication-title: ARKIVOC
– volume: 23
  start-page: 280
  year: 2004
  end-page: 287
  publication-title: Organometallics
– volume: 60
  start-page: 7204
  year: 2012
  end-page: 7210
  publication-title: J. Agric. Food Chem.
– volume: 9
  start-page: 2127
  year: 2007
  end-page: 2130
  publication-title: Org. Lett.
– start-page: 1075
  year: 1998
  end-page: 1091
  publication-title: Synthesis
– year: 2018
  publication-title: J. Org. Chem.
– volume: 65
  start-page: 8758
  year: 2000
  end-page: 8762
  publication-title: J. Org. Chem.
– start-page: 565
  year: 2009
  end-page: 568
  publication-title: Synlett
– volume: 123
  start-page: 12726
  year: 2001
  end-page: 12727
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 3978 4050
  year: 2015 2015
  end-page: 3982 4054
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61
  start-page: 4715
  year: 2005
  end-page: 4733
  publication-title: Tetrahedron
– volume: 111
  start-page: 1698
  year: 1989
  end-page: 1719
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 8587 8728
  year: 2014 2014
  end-page: 8598 8740
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 1843
  year: 1990
  end-page: 1852
  publication-title: Organometallics
– volume: 22
  start-page: 8494
  year: 2016
  end-page: 8507
  publication-title: Chem. Eur. J.
– volume: 52
  start-page: 3618
  year: 2009
  end-page: 3626
  publication-title: J. Med. Chem.
– volume: 15
  start-page: 9697
  year: 2009
  end-page: 9706
  publication-title: Chem. Eur. J.
– volume: 54 127
  start-page: 12431 12608
  year: 2015 2015
  end-page: 12436 12613
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 3626 3700
  year: 2014 2014
  end-page: 3630 3704
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 139
  year: 2008
  end-page: 150
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 61
  start-page: 9233
  year: 2005
  end-page: 9241
  publication-title: Tetrahedron
– volume: 50
  start-page: 881
  year: 2018
  end-page: 955
  publication-title: Synthesis
– volume: 56 129
  start-page: 3599 3653
  year: 2017 2017
  end-page: 3604 3658
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 2021
  year: 2003
  end-page: 2034
  publication-title: Eur. J. Org. Chem.
– volume: 42
  start-page: 5825
  year: 2001
  end-page: 5827
  publication-title: Tetrahedron Lett.
– volume: 117
  start-page: 9586
  year: 1995
  end-page: 9587
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 277
  year: 2001
  end-page: 283
  publication-title: J. Asian Nat. Prod. Res.
– volume: 41 114
  start-page: 2097 2203
  year: 2002 2002
  end-page: 2101 2206
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 2443
  year: 2017
  end-page: 2455
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 5506
  year: 2015
  end-page: 5519
  publication-title: J. Am. Chem. Soc.
– volume: 71
  start-page: 354
  year: 1988
  end-page: 362
  publication-title: Helv. Chim. Acta
– volume: 20
  start-page: 509
  year: 2003
  end-page: 534
  publication-title: Nat. Prod. Rep.
– volume: 9
  start-page: 3175
  year: 1999
  end-page: 3180
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 23
  start-page: 558
  year: 2017
  end-page: 562
  publication-title: Chem. Eur. J.
– volume: 140
  start-page: 3156
  year: 2018
  end-page: 3169
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 3210
  year: 2016
  end-page: 3213
  publication-title: Org. Lett.
– start-page: 943
  year: 2004
  end-page: 958
  publication-title: Eur. J. Org. Chem.
– volume: 7
  start-page: 4995
  year: 2005
  end-page: 4998
  publication-title: Org. Lett.
– volume: 49 122
  start-page: 6032 6168
  year: 2010 2010
  end-page: 6056 6193
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21 94
  start-page: 155 184
  year: 1982 1982
  end-page: 173 201
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– start-page: 653
  year: 1998
  end-page: 654
  publication-title: Chem. Commun.
– volume: 53
  start-page: 4395
  year: 1988
  end-page: 4398
  publication-title: J. Org. Chem.
– volume: 127
  start-page: 17644
  year: 2005
  end-page: 17655
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 109
  year: 2018
  end-page: 114
  publication-title: Chem. Eur. J.
– volume: 133
  start-page: 9232
  year: 2011
  end-page: 9235
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 11387
  year: 2015
  end-page: 11392
  publication-title: Chem. Eur. J.
– ident: e_1_2_7_42_2
  doi: 10.1021/ja00142a036
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.6b12517
– ident: e_1_2_7_101_2
  doi: 10.1002/ejoc.200600456
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.201307584
– ident: e_1_2_7_4_2
  doi: 10.1002/anie.201506075
– ident: e_1_2_7_96_1
  doi: 10.1021/ol051996r
– ident: e_1_2_7_82_1
  doi: 10.1016/S0040-4039(01)94157-7
– ident: e_1_2_7_87_2
  doi: 10.1002/hlca.19880710208
– ident: e_1_2_7_3_3
  doi: 10.1002/ange.201205946
– ident: e_1_2_7_47_2
  doi: 10.1016/S0040-4039(02)00583-X
– ident: e_1_2_7_36_2
  doi: 10.1021/om00156a025
– ident: e_1_2_7_102_2
  doi: 10.3998/ark.5550190.0008.a14
– ident: e_1_2_7_26_2
  doi: 10.1002/ange.201411618
– ident: e_1_2_7_41_1
– ident: e_1_2_7_30_1
– ident: e_1_2_7_80_1
  doi: 10.1016/S0040-4039(01)01131-5
– ident: e_1_2_7_38_1
– ident: e_1_2_7_63_2
  doi: 10.3987/REV-10-689
– ident: e_1_2_7_68_2
  doi: 10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-U
– ident: e_1_2_7_103_2
  doi: 10.1016/j.jfluchem.2012.06.005
– ident: e_1_2_7_68_3
  doi: 10.1002/(SICI)1521-3757(19990601)111:11<1632::AID-ANGE1632>3.0.CO;2-A
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.201700342
– ident: e_1_2_7_85_2
  doi: 10.15227/orgsyn.077.0064
– ident: e_1_2_7_98_2
  doi: 10.1016/S0040-4039(00)97608-1
– ident: e_1_2_7_31_3
  doi: 10.1002/ange.200502071
– ident: e_1_2_7_3_2
  doi: 10.1002/anie.201205946
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201411618
– ident: e_1_2_7_75_2
  doi: 10.1021/ja991361l
– ident: e_1_2_7_92_2
  doi: 10.1002/ange.19820940304
– ident: e_1_2_7_93_1
– ident: e_1_2_7_91_1
  doi: 10.1016/j.tet.2005.07.066
– ident: e_1_2_7_89_2
  doi: 10.1021/jm900121d
– ident: e_1_2_7_11_3
  doi: 10.1002/ange.201402719
– ident: e_1_2_7_17_3
  doi: 10.1002/ange.201700342
– ident: e_1_2_7_67_1
– ident: e_1_2_7_71_1
– year: 2018
  ident: e_1_2_7_25_2
  publication-title: J. Org. Chem.
– ident: e_1_2_7_21_2
  doi: 10.1002/anie.201701391
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.jnatprod.6b00954
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.201000775
– ident: e_1_2_7_90_1
  doi: 10.3762/bjoc.9.300
– volume: 39
  start-page: 297
  year: 1990
  ident: e_1_2_7_81_1
  publication-title: Org. React.
– ident: e_1_2_7_83_1
– ident: e_1_2_7_86_1
– ident: e_1_2_7_50_2
  doi: 10.1021/np960670b
– ident: e_1_2_7_10_3
  doi: 10.1002/ange.201311080
– ident: e_1_2_7_20_3
  doi: 10.1002/ange.201501608
– ident: e_1_2_7_88_2
  doi: 10.1016/0040-4020(96)00672-2
– ident: e_1_2_7_9_1
– start-page: 335
  volume-title: Modern Alkyne Chemistry. Catalytic and Atom-Economic Tranformations
  year: 2015
  ident: e_1_2_7_29_1
– ident: e_1_2_7_66_1
  doi: 10.1002/ejoc.200200518
– ident: e_1_2_7_18_2
  doi: 10.1021/om0342006
– ident: e_1_2_7_34_1
– ident: e_1_2_7_58_1
  doi: 10.1021/ol070608d
– ident: e_1_2_7_32_2
  doi: 10.1002/chem.201501765
– ident: e_1_2_7_14_1
  doi: 10.1021/jacs.8b00665
– ident: e_1_2_7_65_2
  doi: 10.1055/s-1998-4494
– ident: e_1_2_7_49_2
  doi: 10.1021/np960201
– start-page: 565
  year: 2009
  ident: e_1_2_7_57_2
  publication-title: Synlett
– ident: e_1_2_7_104_1
  doi: 10.3762/bjoc.4.12
– ident: e_1_2_7_33_1
– ident: e_1_2_7_92_1
  doi: 10.1002/anie.198201553
– ident: e_1_2_7_55_2
  doi: 10.1021/ja068901g
– ident: e_1_2_7_64_2
  doi: 10.1039/a900943d
– ident: e_1_2_7_94_2
  doi: 10.1021/ja0528580
– ident: e_1_2_7_5_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_2_1
– ident: e_1_2_7_4_3
  doi: 10.1002/ange.201506075
– ident: e_1_2_7_8_2
  doi: 10.1002/ange.201307584
– ident: e_1_2_7_35_1
– ident: e_1_2_7_99_2
  doi: 10.1016/S0960-894X(99)00553-3
– ident: e_1_2_7_19_1
– ident: e_1_2_7_46_1
– ident: e_1_2_7_39_1
  doi: 10.1039/a709014e
– ident: e_1_2_7_84_2
  doi: 10.1021/jo00253a039
– ident: e_1_2_7_6_2
  doi: 10.1021/ja0121033
– ident: e_1_2_7_51_2
  doi: 10.1021/jf302085u
– ident: e_1_2_7_27_1
  doi: 10.1002/chem.201702470
– ident: e_1_2_7_79_2
  doi: 10.1002/chem.200305588
– ident: e_1_2_7_74_2
  doi: 10.1021/jo9800098
– ident: e_1_2_7_100_2
  doi: 10.1016/S0960-894X(99)00554-5
– ident: e_1_2_7_77_3
  doi: 10.1002/1521-3757(20020617)114:12<2203::AID-ANGE2203>3.0.CO;2-M
– ident: e_1_2_7_73_2
  doi: 10.1021/jo971918k
– ident: e_1_2_7_77_2
  doi: 10.1002/1521-3773(20020617)41:12<2097::AID-ANIE2097>3.0.CO;2-T
– ident: e_1_2_7_95_2
  doi: 10.1021/ja910656b
– ident: e_1_2_7_62_1
– ident: e_1_2_7_7_2
  doi: 10.1055/s-2005-861874
– ident: e_1_2_7_61_2
  doi: 10.1016/j.tet.2005.02.075
– ident: e_1_2_7_15_1
  doi: 10.1246/bcsj.20150317
– ident: e_1_2_7_59_1
– ident: e_1_2_7_54_2
  doi: 10.1021/ja2031085
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.201311080
– ident: e_1_2_7_40_1
– ident: e_1_2_7_20_2
  doi: 10.1002/anie.201501608
– ident: e_1_2_7_70_2
  doi: 10.1111/j.1469-8137.2004.00992.x
– ident: e_1_2_7_106_1
  doi: 10.1055/s-0036-1591867
– start-page: 202
  year: 2017
  ident: e_1_2_7_23_2
  publication-title: Synthesis
– ident: e_1_2_7_12_1
  doi: 10.1021/jacs.5b01475
– ident: e_1_2_7_1_1
– ident: e_1_2_7_105_1
  doi: 10.1002/chem.201605444
– ident: e_1_2_7_52_1
  doi: 10.3109/09687688.2010.538731
– ident: e_1_2_7_44_1
  doi: 10.1002/chem.201601163
– ident: e_1_2_7_76_2
  doi: 10.1021/jo0012952
– ident: e_1_2_7_97_1
– ident: e_1_2_7_31_2
  doi: 10.1002/anie.200502071
– ident: e_1_2_7_72_2
  doi: 10.1002/ejoc.200300728
– ident: e_1_2_7_78_2
  doi: 10.1021/ja036521e
– ident: e_1_2_7_56_2
  doi: 10.1002/chem.200901449
– ident: e_1_2_7_11_2
  doi: 10.1002/anie.201402719
– ident: e_1_2_7_43_2
  doi: 10.1021/ja804105m
– ident: e_1_2_7_69_2
  doi: 10.1038/nrm2329
– ident: e_1_2_7_53_1
– ident: e_1_2_7_37_2
  doi: 10.1021/ja00187a024
– ident: e_1_2_7_48_2
  doi: 10.1080/10286020108040367
– ident: e_1_2_7_21_3
  doi: 10.1002/ange.201701391
– ident: e_1_2_7_60_2
  doi: 10.1039/b307243f
– ident: e_1_2_7_107_1
– ident: e_1_2_7_28_2
  doi: 10.1002/ange.201000775
– ident: e_1_2_7_22_2
  doi: 10.1021/acs.orglett.6b01431
– ident: e_1_2_7_24_2
  doi: 10.1002/chem.201705550
SSID ssj0009633
Score 2.3826659
Snippet Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4...
Propargyl alcohols are privileged substrates for stereochemically unorthodox trans ‐hydrostannation reactions catalyzed by [Cp*RuCl] 4...
Propargyl alcohols are privileged substrates for stereochemically unorthodox trans-hydrostannation reactions catalyzed by [Cp*RuCl]...
Propargyl alcohols are privileged substrates for stereochemically unorthodox trans-hydrostannation reactions catalyzed by [Cp*RuCl]4...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9667
SubjectTerms Acetylene
Alcohols
alkynes
Bimetals
Chemical reactions
Chemistry
cooperativity
Data processing
Fluorination
Glycolipids
Hydrogen bonds
Isomerization
natural products
Neuroprotection
organotin compounds
ruthenium
Substrates
Synthesis
Temperature dependence
Tin
trans-hydrometalation
Title Site‐Selective trans‐Hydrostannation of 1,3‐ and 1,n‐Diynes: Application to the Total Synthesis of Typhonosides E and F, and a Fluorinated Cerebroside Analogue
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201801344
https://www.ncbi.nlm.nih.gov/pubmed/29676822
https://www.proquest.com/docview/2064753302
https://www.proquest.com/docview/2028949509
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQl3KhLaV0C0WuhMSFQGI7zqY3tGW1QoIDCxK3yPGPQCCnYrOH7YlL732NvlafpDPOJttthZDa09prOz-a8fgbZ_wNIXt5rBNtyzKyfZFGQro0KpkRkXOayRTk7MIJubNzOboSp9fp9W-n-Bt-iG7DDWdGsNc4wVU5OVqQhsI74UnyBEwsF0gIigFbiIouFvxRoF1NLnmRRcjB2rI2xuxoefjyqvQX1FxGrmHpGb4kqn3oJuLk7nBal4f66x98jv_zVq_I-hyX0uNGkV6TFes3yItBmw7uDfkxBnD68_H7OCTOARtJa1zm4J_RzODREeWbjUVaOZoccGigyhsoeih-vp2BTf1Ejxffy2ldUUCf9LIC_E_HMw-Vye0Eh4NzfFP5CjOJwg2-nYQLDQ_Cj6LD-ylGDQJINnRgH8CpDz0p8qvgRtQmuRqeXA5G0TzPQ6Q5-KcA8BMFwEfnkhmXaJ7x1HJAYgAujVCi7_qx1plOlDAiMXFfWcdyw_JSAv4wXPG3ZNVX3r4jVGWa59wK65QUksd57EoNigD1RIC-9kjUyrnQcxJ0zMVxXzT0zaxAARSdAHpkv-v_paH_eLLnTqs2xdwMTKBVigzjd1mPfOyaQXD4VUZ5W02xD_i84KbGeY9sNerW3YrlEtxBBqNZUJpnnqFAGo2u9v5fBm2TNSyHgOR0h6zWD1P7AWBXXe6GqfULiYopPw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb8pCASMhcWnaxHacDbdq6WqBtgd2K3GLHD9ERZWgbvawnLhw52_wt_glzDibrBaEkOCUOLbz0IzH3zjjbwCe57FJjCvLyA1lGknl06jkVkbeG65SlLMPO-ROTtXkTL55n3bRhLQXpuWH6BfcaGQEe00DnBakD9asofhRtJU8QRsrpLwK1yitd_Cq3q0ZpFC_2mzyMouIhbXjbYz5wWb_zXnpN7C5iV3D5DO-CWX32m3Mycf9RVPum8-_MDr-13fdghsraMoOW126DVdcdQe2R11GuLvwfYr49MeXb9OQOwfNJGtopsMrk6Wl3SO6atcWWe1ZsiewgunK4mmFp6_Ol2hWX7LD9S9z1tQMASib1egCsOmywsL8fE7d0T_-UFc1JRPFB3w9Cjca74WDZuOLBQUOIk62bOQu0a8PLRlRrNBa1D04Gx_NRpNoleohMgJdVMT4iUbsY3LFrU-MyETqBIIxxJdWajn0w9iYzCRaWpnYeKid57nleakQglihxX3YqurKPQCmMyNy4aTzWkkl4jz2pUFNwHIiUWUHEHWCLsyKB53ScVwULYMzL0gARS-AAbzo239qGUD-2HK305tiZQnmWKtkRiG8fADP-moUHP2Y0ZWrF9QG3V70VON8ADutvvWP4rlCj5Bjbx605i_vUBCTRl96-C-dnsL2ZHZyXBy_Pn37CK7T9RCfnO7CVnO5cI8RhTXlkzDOfgL8ZS1a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNALb9qFAkZC4tK0ie04Cbdqt9HyqhDbSr1Fjh-iapVU3exhOXHhzt_o3-ovYcbZZFkQQoJT4thObM14_I1jf0PIyyzUkbZlGdhUxIGQLg5KZkTgnGYyBjk7f0Luw4EcH4m3x_HxT6f4W36IfsENR4a31zjAz43bXZKGQp_wJHkEJpYLcZ3cEDJMUa9Hn5YEUqBebTB5kQRIwtrRNoZsd7X-6rT0G9Zcha5-7snvENW1ut1ycroza8od_eUXQsf_6dZdcnsBTOleq0n3yDVb3Se3hl08uAfkcgLo9Orr94mPnANGkjY4z8GT8dzg2RFVtSuLtHY02uaQQVVl4LaC29HJHIzqa7q3_GFOm5oC_KSHNTgAdDKvIDE9mWJ18I4_11WNoUThA9_2_YvybX9RND-b4bZBQMmGDu0FePW-JEWCFVyJekiO8v3D4ThYBHoINAcHFRB-pAD56Ewy4yLNEx5bDlAM0KURSqQuDbVOdKSEEZEJU2UdywzLSgkAxHDFH5G1qq7sJqEq0TzjVlinpJA8zEJXalAESEcCFHZAgk7OhV6woGMwjrOi5W9mBQqg6AUwIK_68uct_8cfS251alMs7MAUcqVIcAMvG5AXfTYIDn_LqMrWMywDTi_4qWE2IButuvWfYpkEf5BBbeaV5i9tKJBHo089_pdKz8nNj6O8eP_m4N0Tso6P_ebkeIusNRcz-xQgWFM-86PsB3VDLBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site%E2%80%90Selective+trans+%E2%80%90Hydrostannation+of+1%2C3%E2%80%90+and+1%2C+n+%E2%80%90Diynes%3A+Application+to+the+Total+Synthesis+of+Typhonosides%E2%80%85E+and+F%2C+and+a+Fluorinated+Cerebroside+Analogue&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Mo%2C+Xiaobin&rft.au=Letort%2C+Aur%C3%A9lien&rft.au=Ro%C5%9Fca%2C+Drago%C5%9F%E2%80%90Adrian&rft.au=Higashida%2C+Kosuke&rft.date=2018-07-05&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=24&rft.issue=38&rft.spage=9667&rft.epage=9674&rft_id=info:doi/10.1002%2Fchem.201801344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201801344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon