Site‐Selective trans‐Hydrostannation of 1,3‐ and 1,n‐Diynes: Application to the Total Synthesis of Typhonosides E and F, and a Fluorinated Cerebroside Analogue
Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very rea...
Saved in:
Published in | Chemistry : a European journal Vol. 24; no. 38; pp. 9667 - 9674 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
05.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one ‐OH group to site‐selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site‐selectivity, whereas per‐stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3‐diyne substrate by two metal centers. The preparative relevance of site‐selective trans‐hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late‐stage modification of a bioactive target compound.
Counterintuitive: That the selectivity for site‐selective mono‐stannation increases at higher temperature is not obvious at first sight, but can be explained based on spectroscopic, computational, and crystallographic data. This transformation gained a strategic role in the total synthesis of two isomeric cerebroside derivatives and a non‐natural fluoro‐alkene analogue thereof. |
---|---|
AbstractList | Propargyl alcohols are privileged substrates for stereochemically unorthodox
trans
‐hydrostannation reactions catalyzed by [Cp*RuCl]
4
(Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one ‐OH group to site‐selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site‐selectivity, whereas per‐stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex
11
. The bridging fulvene and enynyl ligands in
11
are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3‐diyne substrate by two metal centers. The preparative relevance of site‐selective
trans
‐hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late‐stage modification of a bioactive target compound. Propargyl alcohols are privileged substrates for stereochemically unorthodox trans-hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the -OH group and the polarized [Ru-Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one -OH group to site-selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site-selectivity, whereas per-stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3-diyne substrate by two metal centers. The preparative relevance of site-selective trans-hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late-stage modification of a bioactive target compound.Propargyl alcohols are privileged substrates for stereochemically unorthodox trans-hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the -OH group and the polarized [Ru-Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one -OH group to site-selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site-selectivity, whereas per-stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3-diyne substrate by two metal centers. The preparative relevance of site-selective trans-hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late-stage modification of a bioactive target compound. Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one ‐OH group to site‐selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site‐selectivity, whereas per‐stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3‐diyne substrate by two metal centers. The preparative relevance of site‐selective trans‐hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late‐stage modification of a bioactive target compound. Counterintuitive: That the selectivity for site‐selective mono‐stannation increases at higher temperature is not obvious at first sight, but can be explained based on spectroscopic, computational, and crystallographic data. This transformation gained a strategic role in the total synthesis of two isomeric cerebroside derivatives and a non‐natural fluoro‐alkene analogue thereof. Propargyl alcohols are privileged substrates for stereochemically unorthodox trans-hydrostannation reactions catalyzed by [Cp*RuCl] (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the -OH group and the polarized [Ru-Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one -OH group to site-selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site-selectivity, whereas per-stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3-diyne substrate by two metal centers. The preparative relevance of site-selective trans-hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late-stage modification of a bioactive target compound. Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one ‐OH group to site‐selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site‐selectivity, whereas per‐stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3‐diyne substrate by two metal centers. The preparative relevance of site‐selective trans‐hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late‐stage modification of a bioactive target compound. |
Author | Letort, Aurélien Roşca, Dragoş‐Adrian Mo, Xiaobin Higashida, Kosuke Fürstner, Alois |
Author_xml | – sequence: 1 givenname: Xiaobin surname: Mo fullname: Mo, Xiaobin organization: Max-Planck-Institut für Kohlenforschung – sequence: 2 givenname: Aurélien surname: Letort fullname: Letort, Aurélien organization: Max-Planck-Institut für Kohlenforschung – sequence: 3 givenname: Dragoş‐Adrian surname: Roşca fullname: Roşca, Dragoş‐Adrian organization: Max-Planck-Institut für Kohlenforschung – sequence: 4 givenname: Kosuke surname: Higashida fullname: Higashida, Kosuke organization: Max-Planck-Institut für Kohlenforschung – sequence: 5 givenname: Alois orcidid: 0000-0003-0098-3417 surname: Fürstner fullname: Fürstner, Alois email: fuerstner@kofo.mpg.de organization: Max-Planck-Institut für Kohlenforschung |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29676822$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc2O0zAUhS00iOkMbFkiS2xYTIr_4sTsqtJSpEEsWtaRa99Qj1I7xMmg7Niw5zV4LZ4Et50BaSTE6l7b3znX9rlAZz54QOg5JVNKCHttdrCfMkJLQrkQj9CE5oxmvJD5GZoQJYpM5lydo4sYbwghSnL-BJ0zJQtZMjZBP9euh1_ffqyhAdO7W8B9p31MO6vRdiH22nvdu-BxqDG94ukAa29T61P71o0e4hs8a9vGmRPXB9zvAG9Crxu8Hn1aRBcP8s3Y7oIP0VlIA74vjkbLq2PReNkMoXNpGFg8hw623ZHEM6-b8HmAp-hxrZsIz-7qJfq0XGzmq-z647v389l1ZjjLRVYUVEvJjZLM1tTwgufAc0lyqqzQoqxLYkxhqBZWUEtKDTVTlqmtZExYrvklenXybbvwZYDYV3sXDTSN9hCGWDHCSiVUTlRCXz5Ab8LQpfseKCmKnHPCEvXijhq2e7BV27m97sbqPoQEiBNg0pNjB3VlXH_8zJSFaypKqkPW1SHr6k_WSTZ9ILt3_qdAnQRfXQPjf-hqvlp8-Kv9Dd_UwLE |
CitedBy_id | crossref_primary_10_1021_acs_orglett_1c02865 crossref_primary_10_1002_ange_202007030 crossref_primary_10_1002_anie_202004377 crossref_primary_10_1002_ange_202424212 crossref_primary_10_1039_D1CS00485A crossref_primary_10_1002_anie_202016475 crossref_primary_10_1002_chem_202101901 crossref_primary_10_1021_acscatal_9b00482 crossref_primary_10_1039_D0SC02542A crossref_primary_10_1021_jacs_8b09782 crossref_primary_10_1002_ange_201812096 crossref_primary_10_1002_ange_202105732 crossref_primary_10_1002_anie_202007030 crossref_primary_10_1002_ange_202004377 crossref_primary_10_1016_j_phytol_2020_07_002 crossref_primary_10_1002_chem_202000081 crossref_primary_10_1021_jacs_0c08582 crossref_primary_10_1002_adsc_201900939 crossref_primary_10_1002_ange_202016475 crossref_primary_10_1002_chem_201804988 crossref_primary_10_1002_chem_202005397 crossref_primary_10_1002_anie_202113827 crossref_primary_10_1002_anie_202424212 crossref_primary_10_1002_chem_201804987 crossref_primary_10_1002_ange_202113827 crossref_primary_10_1002_anie_202105732 crossref_primary_10_1016_j_ccr_2019_213051 crossref_primary_10_1002_anie_201812096 crossref_primary_10_1002_chem_201902228 crossref_primary_10_1021_jacs_3c06573 crossref_primary_10_1002_adsc_202200540 |
Cites_doi | 10.1021/ja00142a036 10.1021/jacs.6b12517 10.1002/ejoc.200600456 10.1002/anie.201307584 10.1002/anie.201506075 10.1021/ol051996r 10.1016/S0040-4039(01)94157-7 10.1002/hlca.19880710208 10.1002/ange.201205946 10.1016/S0040-4039(02)00583-X 10.1021/om00156a025 10.3998/ark.5550190.0008.a14 10.1002/ange.201411618 10.1016/S0040-4039(01)01131-5 10.3987/REV-10-689 10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-U 10.1016/j.jfluchem.2012.06.005 10.1002/(SICI)1521-3757(19990601)111:11<1632::AID-ANGE1632>3.0.CO;2-A 10.1002/anie.201700342 10.15227/orgsyn.077.0064 10.1016/S0040-4039(00)97608-1 10.1002/ange.200502071 10.1002/anie.201205946 10.1002/anie.201411618 10.1021/ja991361l 10.1002/ange.19820940304 10.1016/j.tet.2005.07.066 10.1021/jm900121d 10.1002/ange.201402719 10.1002/ange.201700342 10.1002/anie.201701391 10.1021/acs.jnatprod.6b00954 10.1002/anie.201000775 10.3762/bjoc.9.300 10.1021/np960670b 10.1002/ange.201311080 10.1002/ange.201501608 10.1016/0040-4020(96)00672-2 10.1002/ejoc.200200518 10.1021/om0342006 10.1021/ol070608d 10.1002/chem.201501765 10.1021/jacs.8b00665 10.1055/s-1998-4494 10.1021/np960201 10.3762/bjoc.4.12 10.1002/anie.198201553 10.1021/ja068901g 10.1039/a900943d 10.1021/ja0528580 10.1002/ange.201506075 10.1002/ange.201307584 10.1016/S0960-894X(99)00553-3 10.1039/a709014e 10.1021/jo00253a039 10.1021/ja0121033 10.1021/jf302085u 10.1002/chem.201702470 10.1002/chem.200305588 10.1021/jo9800098 10.1016/S0960-894X(99)00554-5 10.1002/1521-3757(20020617)114:12<2203::AID-ANGE2203>3.0.CO;2-M 10.1021/jo971918k 10.1002/1521-3773(20020617)41:12<2097::AID-ANIE2097>3.0.CO;2-T 10.1021/ja910656b 10.1055/s-2005-861874 10.1016/j.tet.2005.02.075 10.1246/bcsj.20150317 10.1021/ja2031085 10.1002/anie.201311080 10.1002/anie.201501608 10.1111/j.1469-8137.2004.00992.x 10.1055/s-0036-1591867 10.1021/jacs.5b01475 10.1002/chem.201605444 10.3109/09687688.2010.538731 10.1002/chem.201601163 10.1021/jo0012952 10.1002/anie.200502071 10.1002/ejoc.200300728 10.1021/ja036521e 10.1002/chem.200901449 10.1002/anie.201402719 10.1021/ja804105m 10.1038/nrm2329 10.1021/ja00187a024 10.1080/10286020108040367 10.1002/ange.201701391 10.1039/b307243f 10.1002/ange.201000775 10.1021/acs.orglett.6b01431 10.1002/chem.201705550 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201801344 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 9674 |
ExternalDocumentID | 29676822 10_1002_chem_201801344 CHEM201801344 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Max-Planck-Gesellschaft – fundername: Alexander von Humboldt-Stiftung – fundername: Japan Society for the Promotion of Science |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3254-771a663c962df1c3735e3560519d4a48f80cc7c1a4d41d08aef29d29b6224d3a3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 05:51:26 EDT 2025 Fri Jul 25 10:32:16 EDT 2025 Thu Apr 03 07:01:02 EDT 2025 Tue Jul 01 01:29:33 EDT 2025 Thu Apr 24 23:12:08 EDT 2025 Wed Jan 22 16:21:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | natural products ruthenium glycolipids cooperativity organotin compounds trans-hydrometalation alkynes |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3254-771a663c962df1c3735e3560519d4a48f80cc7c1a4d41d08aef29d29b6224d3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0098-3417 |
PMID | 29676822 |
PQID | 2064753302 |
PQPubID | 986340 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2028949509 proquest_journals_2064753302 pubmed_primary_29676822 crossref_citationtrail_10_1002_chem_201801344 crossref_primary_10_1002_chem_201801344 wiley_primary_10_1002_chem_201801344_CHEM201801344 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 5, 2018 |
PublicationDateYYYYMMDD | 2018-07-05 |
PublicationDate_xml | – month: 07 year: 2018 text: July 5, 2018 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2012; 60 2017; 80 1999 1999; 38 111 2004; 23 2004; 161 1989; 111 2008; 9 1999; 121 2005; 61 2008; 4 1988; 71 2013 2013; 52 125 2001; 42 2013; 9 2009; 52 2015; 137 2002 2002; 41 114 2002; 43 2007; 9 2015 2015; 54 127 2011; 28 2003; 125 1972; 13 1982 1982; 21 94 2009; 15 2016; 89 1990; 31 2012; 141 2001; 123 2007; 129 2000; 29 2018; 140 1997; 60 1990; 39 2000; 65 2017; 23 2011; 83 1998 1995; 117 2009 1996; 52 2007 2006 2005 2010 2010; 49 122 2004 2003 2017 2017; 56 129 1988; 53 2016; 18 1998; 63 1996; 59 2011; 133 2017; 139 2018; 24 1999; 9 2004; 10 2006 2006; 45 118 2000; 77 2005; 127 2015; 21 2010; 132 2018 2005; 7 2017 2001; 3 2015 2018; 50 1990; 9 2008; 130 2003; 20 2016; 22 e_1_2_7_3_3 e_1_2_7_3_2 e_1_2_7_104_1 e_1_2_7_7_2 Tidwell T. T. (e_1_2_7_81_1) 1990; 39 e_1_2_7_19_1 e_1_2_7_83_1 e_1_2_7_100_2 e_1_2_7_60_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_87_2 e_1_2_7_11_3 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_1 e_1_2_7_68_3 e_1_2_7_26_1 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_90_1 e_1_2_7_94_2 e_1_2_7_71_1 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_52_1 e_1_2_7_33_1 Schaubach S. (e_1_2_7_23_2) 2017 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_37_2 e_1_2_7_4_3 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 Bressy C. (e_1_2_7_57_2) 2009 e_1_2_7_48_2 e_1_2_7_93_1 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_1 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_2 e_1_2_7_17_3 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_28_1 e_1_2_7_28_2 Lumb J.-P. (e_1_2_7_29_1) 2015 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_92_1 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_21_3 e_1_2_7_31_3 e_1_2_7_96_1 e_1_2_7_21_2 e_1_2_7_35_1 e_1_2_7_77_2 e_1_2_7_58_1 e_1_2_7_77_3 e_1_2_7_39_1 e_1_2_7_107_1 e_1_2_7_103_2 e_1_2_7_80_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_10_3 e_1_2_7_10_2 e_1_2_7_46_1 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_27_1 e_1_2_7_91_1 Meng Z. (e_1_2_7_25_2) 2018 e_1_2_7_72_2 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_95_2 e_1_2_7_34_1 e_1_2_7_99_2 e_1_2_7_38_1 |
References_xml | – volume: 129 start-page: 1906 year: 2007 end-page: 1907 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 11970 year: 2008 end-page: 11978 publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 7814 year: 1999 end-page: 7821 publication-title: J. Am. Chem. Soc. – start-page: 4463 year: 2006 end-page: 4472 publication-title: Eur. J. Org. Chem. – volume: 23 start-page: 12412 year: 2017 end-page: 12419 publication-title: Chem. Eur. J. – volume: 80 start-page: 1734 year: 2017 end-page: 1741 publication-title: J. Nat. Prod. – volume: 54 127 start-page: 6241 6339 year: 2015 2015 end-page: 6245 6343 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 161 start-page: 677 year: 2004 end-page: 702 publication-title: New Phytol. – volume: 45 118 start-page: 1034 1050 year: 2006 2006 end-page: 1057 1073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 83 start-page: 951 year: 2011 end-page: 1003 publication-title: Heterocycles – volume: 4 start-page: 12 year: 2008 publication-title: Beilstein J. Org. Chem. – volume: 77 start-page: 64 year: 2000 end-page: 77 publication-title: Org. Synth. – volume: 132 start-page: 5186 year: 2010 end-page: 5192 publication-title: J. Am. Chem. Soc. – start-page: 853 year: 2005 end-page: 887 publication-title: Synthesis – volume: 52 125 start-page: 14050 14300 year: 2013 2013 end-page: 14054 14304 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 start-page: 297 year: 1990 end-page: 572 publication-title: Org. React. – start-page: 202 year: 2017 end-page: 208 publication-title: Synthesis – volume: 125 start-page: 13132 year: 2003 end-page: 13142 publication-title: J. Am. Chem. Soc. – volume: 63 start-page: 424 year: 1998 end-page: 425 publication-title: J. Org. Chem. – volume: 43 start-page: 3529 year: 2002 end-page: 3532 publication-title: Tetrahedron Lett. – volume: 52 start-page: 11673 year: 1996 end-page: 11694 publication-title: Tetrahedron – volume: 10 start-page: 2214 year: 2004 end-page: 2222 publication-title: Chem. Eur. J. – volume: 38 111 start-page: 1532 1632 year: 1999 1999 end-page: 1568 1670 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 2641 year: 2013 end-page: 2659 publication-title: Beilstein J. Org. Chem. – volume: 141 start-page: 49 year: 2012 end-page: 57 publication-title: J. Fluorine Chem. – volume: 28 start-page: 145 year: 2011 end-page: 154 publication-title: Mol. Membr. Biol. – volume: 29 start-page: 201 year: 2000 end-page: 216 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 3159 year: 1999 end-page: 3164 publication-title: Bioorg. Med. Chem. Lett. – volume: 13 start-page: 3769 year: 1972 end-page: 3772 publication-title: Tetrahedron Lett. – volume: 63 start-page: 3072 year: 1998 end-page: 3080 publication-title: J. Org. Chem. – volume: 56 129 start-page: 6161 6257 year: 2017 2017 end-page: 6165 6261 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 start-page: 4309 year: 1990 end-page: 4312 publication-title: Tetrahedron Lett. – volume: 89 start-page: 135 year: 2016 end-page: 160 publication-title: Bull. Chem. Soc. Jpn. – start-page: 335 year: 2015 end-page: 363 – volume: 59 start-page: 319 year: 1996 end-page: 322 publication-title: J. Nat. Prod. – volume: 52 125 start-page: 355 373 year: 2013 2013 end-page: 360 378 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 start-page: 274 year: 1997 end-page: 276 publication-title: J. Nat. Prod. – start-page: 232 year: 2007 end-page: 244 publication-title: ARKIVOC – volume: 23 start-page: 280 year: 2004 end-page: 287 publication-title: Organometallics – volume: 60 start-page: 7204 year: 2012 end-page: 7210 publication-title: J. Agric. Food Chem. – volume: 9 start-page: 2127 year: 2007 end-page: 2130 publication-title: Org. Lett. – start-page: 1075 year: 1998 end-page: 1091 publication-title: Synthesis – year: 2018 publication-title: J. Org. Chem. – volume: 65 start-page: 8758 year: 2000 end-page: 8762 publication-title: J. Org. Chem. – start-page: 565 year: 2009 end-page: 568 publication-title: Synlett – volume: 123 start-page: 12726 year: 2001 end-page: 12727 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 3978 4050 year: 2015 2015 end-page: 3982 4054 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 start-page: 4715 year: 2005 end-page: 4733 publication-title: Tetrahedron – volume: 111 start-page: 1698 year: 1989 end-page: 1719 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 8587 8728 year: 2014 2014 end-page: 8598 8740 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 1843 year: 1990 end-page: 1852 publication-title: Organometallics – volume: 22 start-page: 8494 year: 2016 end-page: 8507 publication-title: Chem. Eur. J. – volume: 52 start-page: 3618 year: 2009 end-page: 3626 publication-title: J. Med. Chem. – volume: 15 start-page: 9697 year: 2009 end-page: 9706 publication-title: Chem. Eur. J. – volume: 54 127 start-page: 12431 12608 year: 2015 2015 end-page: 12436 12613 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 3626 3700 year: 2014 2014 end-page: 3630 3704 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 139 year: 2008 end-page: 150 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 61 start-page: 9233 year: 2005 end-page: 9241 publication-title: Tetrahedron – volume: 50 start-page: 881 year: 2018 end-page: 955 publication-title: Synthesis – volume: 56 129 start-page: 3599 3653 year: 2017 2017 end-page: 3604 3658 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 2021 year: 2003 end-page: 2034 publication-title: Eur. J. Org. Chem. – volume: 42 start-page: 5825 year: 2001 end-page: 5827 publication-title: Tetrahedron Lett. – volume: 117 start-page: 9586 year: 1995 end-page: 9587 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 277 year: 2001 end-page: 283 publication-title: J. Asian Nat. Prod. Res. – volume: 41 114 start-page: 2097 2203 year: 2002 2002 end-page: 2101 2206 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 2443 year: 2017 end-page: 2455 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 5506 year: 2015 end-page: 5519 publication-title: J. Am. Chem. Soc. – volume: 71 start-page: 354 year: 1988 end-page: 362 publication-title: Helv. Chim. Acta – volume: 20 start-page: 509 year: 2003 end-page: 534 publication-title: Nat. Prod. Rep. – volume: 9 start-page: 3175 year: 1999 end-page: 3180 publication-title: Bioorg. Med. Chem. Lett. – volume: 23 start-page: 558 year: 2017 end-page: 562 publication-title: Chem. Eur. J. – volume: 140 start-page: 3156 year: 2018 end-page: 3169 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 3210 year: 2016 end-page: 3213 publication-title: Org. Lett. – start-page: 943 year: 2004 end-page: 958 publication-title: Eur. J. Org. Chem. – volume: 7 start-page: 4995 year: 2005 end-page: 4998 publication-title: Org. Lett. – volume: 49 122 start-page: 6032 6168 year: 2010 2010 end-page: 6056 6193 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 94 start-page: 155 184 year: 1982 1982 end-page: 173 201 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – start-page: 653 year: 1998 end-page: 654 publication-title: Chem. Commun. – volume: 53 start-page: 4395 year: 1988 end-page: 4398 publication-title: J. Org. Chem. – volume: 127 start-page: 17644 year: 2005 end-page: 17655 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 109 year: 2018 end-page: 114 publication-title: Chem. Eur. J. – volume: 133 start-page: 9232 year: 2011 end-page: 9235 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 11387 year: 2015 end-page: 11392 publication-title: Chem. Eur. J. – ident: e_1_2_7_42_2 doi: 10.1021/ja00142a036 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.6b12517 – ident: e_1_2_7_101_2 doi: 10.1002/ejoc.200600456 – ident: e_1_2_7_8_1 doi: 10.1002/anie.201307584 – ident: e_1_2_7_4_2 doi: 10.1002/anie.201506075 – ident: e_1_2_7_96_1 doi: 10.1021/ol051996r – ident: e_1_2_7_82_1 doi: 10.1016/S0040-4039(01)94157-7 – ident: e_1_2_7_87_2 doi: 10.1002/hlca.19880710208 – ident: e_1_2_7_3_3 doi: 10.1002/ange.201205946 – ident: e_1_2_7_47_2 doi: 10.1016/S0040-4039(02)00583-X – ident: e_1_2_7_36_2 doi: 10.1021/om00156a025 – ident: e_1_2_7_102_2 doi: 10.3998/ark.5550190.0008.a14 – ident: e_1_2_7_26_2 doi: 10.1002/ange.201411618 – ident: e_1_2_7_41_1 – ident: e_1_2_7_30_1 – ident: e_1_2_7_80_1 doi: 10.1016/S0040-4039(01)01131-5 – ident: e_1_2_7_38_1 – ident: e_1_2_7_63_2 doi: 10.3987/REV-10-689 – ident: e_1_2_7_68_2 doi: 10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-U – ident: e_1_2_7_103_2 doi: 10.1016/j.jfluchem.2012.06.005 – ident: e_1_2_7_68_3 doi: 10.1002/(SICI)1521-3757(19990601)111:11<1632::AID-ANGE1632>3.0.CO;2-A – ident: e_1_2_7_17_2 doi: 10.1002/anie.201700342 – ident: e_1_2_7_85_2 doi: 10.15227/orgsyn.077.0064 – ident: e_1_2_7_98_2 doi: 10.1016/S0040-4039(00)97608-1 – ident: e_1_2_7_31_3 doi: 10.1002/ange.200502071 – ident: e_1_2_7_3_2 doi: 10.1002/anie.201205946 – ident: e_1_2_7_26_1 doi: 10.1002/anie.201411618 – ident: e_1_2_7_75_2 doi: 10.1021/ja991361l – ident: e_1_2_7_92_2 doi: 10.1002/ange.19820940304 – ident: e_1_2_7_93_1 – ident: e_1_2_7_91_1 doi: 10.1016/j.tet.2005.07.066 – ident: e_1_2_7_89_2 doi: 10.1021/jm900121d – ident: e_1_2_7_11_3 doi: 10.1002/ange.201402719 – ident: e_1_2_7_17_3 doi: 10.1002/ange.201700342 – ident: e_1_2_7_67_1 – ident: e_1_2_7_71_1 – year: 2018 ident: e_1_2_7_25_2 publication-title: J. Org. Chem. – ident: e_1_2_7_21_2 doi: 10.1002/anie.201701391 – ident: e_1_2_7_45_1 doi: 10.1021/acs.jnatprod.6b00954 – ident: e_1_2_7_28_1 doi: 10.1002/anie.201000775 – ident: e_1_2_7_90_1 doi: 10.3762/bjoc.9.300 – volume: 39 start-page: 297 year: 1990 ident: e_1_2_7_81_1 publication-title: Org. React. – ident: e_1_2_7_83_1 – ident: e_1_2_7_86_1 – ident: e_1_2_7_50_2 doi: 10.1021/np960670b – ident: e_1_2_7_10_3 doi: 10.1002/ange.201311080 – ident: e_1_2_7_20_3 doi: 10.1002/ange.201501608 – ident: e_1_2_7_88_2 doi: 10.1016/0040-4020(96)00672-2 – ident: e_1_2_7_9_1 – start-page: 335 volume-title: Modern Alkyne Chemistry. Catalytic and Atom-Economic Tranformations year: 2015 ident: e_1_2_7_29_1 – ident: e_1_2_7_66_1 doi: 10.1002/ejoc.200200518 – ident: e_1_2_7_18_2 doi: 10.1021/om0342006 – ident: e_1_2_7_34_1 – ident: e_1_2_7_58_1 doi: 10.1021/ol070608d – ident: e_1_2_7_32_2 doi: 10.1002/chem.201501765 – ident: e_1_2_7_14_1 doi: 10.1021/jacs.8b00665 – ident: e_1_2_7_65_2 doi: 10.1055/s-1998-4494 – ident: e_1_2_7_49_2 doi: 10.1021/np960201 – start-page: 565 year: 2009 ident: e_1_2_7_57_2 publication-title: Synlett – ident: e_1_2_7_104_1 doi: 10.3762/bjoc.4.12 – ident: e_1_2_7_33_1 – ident: e_1_2_7_92_1 doi: 10.1002/anie.198201553 – ident: e_1_2_7_55_2 doi: 10.1021/ja068901g – ident: e_1_2_7_64_2 doi: 10.1039/a900943d – ident: e_1_2_7_94_2 doi: 10.1021/ja0528580 – ident: e_1_2_7_5_1 – ident: e_1_2_7_16_1 – ident: e_1_2_7_2_1 – ident: e_1_2_7_4_3 doi: 10.1002/ange.201506075 – ident: e_1_2_7_8_2 doi: 10.1002/ange.201307584 – ident: e_1_2_7_35_1 – ident: e_1_2_7_99_2 doi: 10.1016/S0960-894X(99)00553-3 – ident: e_1_2_7_19_1 – ident: e_1_2_7_46_1 – ident: e_1_2_7_39_1 doi: 10.1039/a709014e – ident: e_1_2_7_84_2 doi: 10.1021/jo00253a039 – ident: e_1_2_7_6_2 doi: 10.1021/ja0121033 – ident: e_1_2_7_51_2 doi: 10.1021/jf302085u – ident: e_1_2_7_27_1 doi: 10.1002/chem.201702470 – ident: e_1_2_7_79_2 doi: 10.1002/chem.200305588 – ident: e_1_2_7_74_2 doi: 10.1021/jo9800098 – ident: e_1_2_7_100_2 doi: 10.1016/S0960-894X(99)00554-5 – ident: e_1_2_7_77_3 doi: 10.1002/1521-3757(20020617)114:12<2203::AID-ANGE2203>3.0.CO;2-M – ident: e_1_2_7_73_2 doi: 10.1021/jo971918k – ident: e_1_2_7_77_2 doi: 10.1002/1521-3773(20020617)41:12<2097::AID-ANIE2097>3.0.CO;2-T – ident: e_1_2_7_95_2 doi: 10.1021/ja910656b – ident: e_1_2_7_62_1 – ident: e_1_2_7_7_2 doi: 10.1055/s-2005-861874 – ident: e_1_2_7_61_2 doi: 10.1016/j.tet.2005.02.075 – ident: e_1_2_7_15_1 doi: 10.1246/bcsj.20150317 – ident: e_1_2_7_59_1 – ident: e_1_2_7_54_2 doi: 10.1021/ja2031085 – ident: e_1_2_7_10_2 doi: 10.1002/anie.201311080 – ident: e_1_2_7_40_1 – ident: e_1_2_7_20_2 doi: 10.1002/anie.201501608 – ident: e_1_2_7_70_2 doi: 10.1111/j.1469-8137.2004.00992.x – ident: e_1_2_7_106_1 doi: 10.1055/s-0036-1591867 – start-page: 202 year: 2017 ident: e_1_2_7_23_2 publication-title: Synthesis – ident: e_1_2_7_12_1 doi: 10.1021/jacs.5b01475 – ident: e_1_2_7_1_1 – ident: e_1_2_7_105_1 doi: 10.1002/chem.201605444 – ident: e_1_2_7_52_1 doi: 10.3109/09687688.2010.538731 – ident: e_1_2_7_44_1 doi: 10.1002/chem.201601163 – ident: e_1_2_7_76_2 doi: 10.1021/jo0012952 – ident: e_1_2_7_97_1 – ident: e_1_2_7_31_2 doi: 10.1002/anie.200502071 – ident: e_1_2_7_72_2 doi: 10.1002/ejoc.200300728 – ident: e_1_2_7_78_2 doi: 10.1021/ja036521e – ident: e_1_2_7_56_2 doi: 10.1002/chem.200901449 – ident: e_1_2_7_11_2 doi: 10.1002/anie.201402719 – ident: e_1_2_7_43_2 doi: 10.1021/ja804105m – ident: e_1_2_7_69_2 doi: 10.1038/nrm2329 – ident: e_1_2_7_53_1 – ident: e_1_2_7_37_2 doi: 10.1021/ja00187a024 – ident: e_1_2_7_48_2 doi: 10.1080/10286020108040367 – ident: e_1_2_7_21_3 doi: 10.1002/ange.201701391 – ident: e_1_2_7_60_2 doi: 10.1039/b307243f – ident: e_1_2_7_107_1 – ident: e_1_2_7_28_2 doi: 10.1002/ange.201000775 – ident: e_1_2_7_22_2 doi: 10.1021/acs.orglett.6b01431 – ident: e_1_2_7_24_2 doi: 10.1002/chem.201705550 |
SSID | ssj0009633 |
Score | 2.3826659 |
Snippet | Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4... Propargyl alcohols are privileged substrates for stereochemically unorthodox trans ‐hydrostannation reactions catalyzed by [Cp*RuCl] 4... Propargyl alcohols are privileged substrates for stereochemically unorthodox trans-hydrostannation reactions catalyzed by [Cp*RuCl]... Propargyl alcohols are privileged substrates for stereochemically unorthodox trans-hydrostannation reactions catalyzed by [Cp*RuCl]4... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9667 |
SubjectTerms | Acetylene Alcohols alkynes Bimetals Chemical reactions Chemistry cooperativity Data processing Fluorination Glycolipids Hydrogen bonds Isomerization natural products Neuroprotection organotin compounds ruthenium Substrates Synthesis Temperature dependence Tin trans-hydrometalation |
Title | Site‐Selective trans‐Hydrostannation of 1,3‐ and 1,n‐Diynes: Application to the Total Synthesis of Typhonosides E and F, and a Fluorinated Cerebroside Analogue |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201801344 https://www.ncbi.nlm.nih.gov/pubmed/29676822 https://www.proquest.com/docview/2064753302 https://www.proquest.com/docview/2028949509 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQl3KhLaV0C0WuhMSFQGI7zqY3tGW1QoIDCxK3yPGPQCCnYrOH7YlL732NvlafpDPOJttthZDa09prOz-a8fgbZ_wNIXt5rBNtyzKyfZFGQro0KpkRkXOayRTk7MIJubNzOboSp9fp9W-n-Bt-iG7DDWdGsNc4wVU5OVqQhsI74UnyBEwsF0gIigFbiIouFvxRoF1NLnmRRcjB2rI2xuxoefjyqvQX1FxGrmHpGb4kqn3oJuLk7nBal4f66x98jv_zVq_I-hyX0uNGkV6TFes3yItBmw7uDfkxBnD68_H7OCTOARtJa1zm4J_RzODREeWbjUVaOZoccGigyhsoeih-vp2BTf1Ejxffy2ldUUCf9LIC_E_HMw-Vye0Eh4NzfFP5CjOJwg2-nYQLDQ_Cj6LD-ylGDQJINnRgH8CpDz0p8qvgRtQmuRqeXA5G0TzPQ6Q5-KcA8BMFwEfnkhmXaJ7x1HJAYgAujVCi7_qx1plOlDAiMXFfWcdyw_JSAv4wXPG3ZNVX3r4jVGWa59wK65QUksd57EoNigD1RIC-9kjUyrnQcxJ0zMVxXzT0zaxAARSdAHpkv-v_paH_eLLnTqs2xdwMTKBVigzjd1mPfOyaQXD4VUZ5W02xD_i84KbGeY9sNerW3YrlEtxBBqNZUJpnnqFAGo2u9v5fBm2TNSyHgOR0h6zWD1P7AWBXXe6GqfULiYopPw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb8pCASMhcWnaxHacDbdq6WqBtgd2K3GLHD9ERZWgbvawnLhw52_wt_glzDibrBaEkOCUOLbz0IzH3zjjbwCe57FJjCvLyA1lGknl06jkVkbeG65SlLMPO-ROTtXkTL55n3bRhLQXpuWH6BfcaGQEe00DnBakD9asofhRtJU8QRsrpLwK1yitd_Cq3q0ZpFC_2mzyMouIhbXjbYz5wWb_zXnpN7C5iV3D5DO-CWX32m3Mycf9RVPum8-_MDr-13fdghsraMoOW126DVdcdQe2R11GuLvwfYr49MeXb9OQOwfNJGtopsMrk6Wl3SO6atcWWe1ZsiewgunK4mmFp6_Ol2hWX7LD9S9z1tQMASib1egCsOmywsL8fE7d0T_-UFc1JRPFB3w9Cjca74WDZuOLBQUOIk62bOQu0a8PLRlRrNBa1D04Gx_NRpNoleohMgJdVMT4iUbsY3LFrU-MyETqBIIxxJdWajn0w9iYzCRaWpnYeKid57nleakQglihxX3YqurKPQCmMyNy4aTzWkkl4jz2pUFNwHIiUWUHEHWCLsyKB53ScVwULYMzL0gARS-AAbzo239qGUD-2HK305tiZQnmWKtkRiG8fADP-moUHP2Y0ZWrF9QG3V70VON8ADutvvWP4rlCj5Bjbx605i_vUBCTRl96-C-dnsL2ZHZyXBy_Pn37CK7T9RCfnO7CVnO5cI8RhTXlkzDOfgL8ZS1a |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNALb9qFAkZC4tK0ie04Cbdqt9HyqhDbSr1Fjh-iapVU3exhOXHhzt_o3-ovYcbZZFkQQoJT4thObM14_I1jf0PIyyzUkbZlGdhUxIGQLg5KZkTgnGYyBjk7f0Luw4EcH4m3x_HxT6f4W36IfsENR4a31zjAz43bXZKGQp_wJHkEJpYLcZ3cEDJMUa9Hn5YEUqBebTB5kQRIwtrRNoZsd7X-6rT0G9Zcha5-7snvENW1ut1ycroza8od_eUXQsf_6dZdcnsBTOleq0n3yDVb3Se3hl08uAfkcgLo9Orr94mPnANGkjY4z8GT8dzg2RFVtSuLtHY02uaQQVVl4LaC29HJHIzqa7q3_GFOm5oC_KSHNTgAdDKvIDE9mWJ18I4_11WNoUThA9_2_YvybX9RND-b4bZBQMmGDu0FePW-JEWCFVyJekiO8v3D4ThYBHoINAcHFRB-pAD56Ewy4yLNEx5bDlAM0KURSqQuDbVOdKSEEZEJU2UdywzLSgkAxHDFH5G1qq7sJqEq0TzjVlinpJA8zEJXalAESEcCFHZAgk7OhV6woGMwjrOi5W9mBQqg6AUwIK_68uct_8cfS251alMs7MAUcqVIcAMvG5AXfTYIDn_LqMrWMywDTi_4qWE2IButuvWfYpkEf5BBbeaV5i9tKJBHo089_pdKz8nNj6O8eP_m4N0Tso6P_ebkeIusNRcz-xQgWFM-86PsB3VDLBI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site%E2%80%90Selective+trans+%E2%80%90Hydrostannation+of+1%2C3%E2%80%90+and+1%2C+n+%E2%80%90Diynes%3A+Application+to+the+Total+Synthesis+of+Typhonosides%E2%80%85E+and+F%2C+and+a+Fluorinated+Cerebroside+Analogue&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Mo%2C+Xiaobin&rft.au=Letort%2C+Aur%C3%A9lien&rft.au=Ro%C5%9Fca%2C+Drago%C5%9F%E2%80%90Adrian&rft.au=Higashida%2C+Kosuke&rft.date=2018-07-05&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=24&rft.issue=38&rft.spage=9667&rft.epage=9674&rft_id=info:doi/10.1002%2Fchem.201801344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201801344 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |