In vitro visualization and quantitative characterization of Pseudomonas aeruginosa biofilm growth dynamics on polyether ether ketone
Prevention and treatment of orthopedic device‐related infection (ODRI) is complicated by the formation of bacterial biofilms. Biofilm formation involves dynamic production of macromolecules that contribute to the structure of the biofilm over time. Limitations to clinically relevant and translationa...
Saved in:
Published in | Journal of orthopaedic research Vol. 40; no. 10; pp. 2448 - 2456 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Prevention and treatment of orthopedic device‐related infection (ODRI) is complicated by the formation of bacterial biofilms. Biofilm formation involves dynamic production of macromolecules that contribute to the structure of the biofilm over time. Limitations to clinically relevant and translational biofilm visualization and measurement hamper advances in this area of research. In this paper, we present a multimodal methodology for improved characterization of Pseudomonas aeruginosa grown on polyether ether ketone (PEEK) as a model for ODRI. PEEK discs were inoculated with P. aeruginosa, incubated for 4−48 h time intervals, and fixed with 10% neutral‐buffered formalin. Samples were stained with fluorescent dyes to measure biofilm components, imaged with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), and quantified. We were able to visualize and quantify P. aeruginosa biofilm growth on PEEK implants over 48 h. Based on imaging data, we propose a generalized growth cycle that can inform orthopedic diagnostic and treatment for this pathogen on PEEK. These results demonstrate the potential of using a combined CLSM and SEM approach for determining biofilm structure, composition, post‐adherence development on orthopedic materials. This model may be used for quantitative biofilm analysis for other pathogens and other materials of orthopedic relevance for translational study of ODRI. |
---|---|
AbstractList | Prevention and treatment of orthopedic device‐related infection (ODRI) is complicated by the formation of bacterial biofilms. Biofilm formation involves dynamic production of macromolecules that contribute to the structure of the biofilm over time. Limitations to clinically relevant and translational biofilm visualization and measurement hamper advances in this area of research. In this paper, we present a multimodal methodology for improved characterization of Pseudomonas aeruginosa grown on polyether ether ketone (PEEK) as a model for ODRI. PEEK discs were inoculated with P. aeruginosa, incubated for 4−48 h time intervals, and fixed with 10% neutral‐buffered formalin. Samples were stained with fluorescent dyes to measure biofilm components, imaged with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), and quantified. We were able to visualize and quantify P. aeruginosa biofilm growth on PEEK implants over 48 h. Based on imaging data, we propose a generalized growth cycle that can inform orthopedic diagnostic and treatment for this pathogen on PEEK. These results demonstrate the potential of using a combined CLSM and SEM approach for determining biofilm structure, composition, post‐adherence development on orthopedic materials. This model may be used for quantitative biofilm analysis for other pathogens and other materials of orthopedic relevance for translational study of ODRI. Prevention and treatment of orthopedic device‐related infection (ODRI) is complicated by the formation of bacterial biofilms. Biofilm formation involves dynamic production of macromolecules that contribute to the structure of the biofilm over time. Limitations to clinically relevant and translational biofilm visualization and measurement hamper advances in this area of research. In this paper, we present a multimodal methodology for improved characterization of Pseudomonas aeruginosa grown on polyether ether ketone (PEEK) as a model for ODRI. PEEK discs were inoculated with P. aeruginosa , incubated for 4−48 h time intervals, and fixed with 10% neutral‐buffered formalin. Samples were stained with fluorescent dyes to measure biofilm components, imaged with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), and quantified. We were able to visualize and quantify P. aeruginosa biofilm growth on PEEK implants over 48 h. Based on imaging data, we propose a generalized growth cycle that can inform orthopedic diagnostic and treatment for this pathogen on PEEK. These results demonstrate the potential of using a combined CLSM and SEM approach for determining biofilm structure, composition, post‐adherence development on orthopedic materials. This model may be used for quantitative biofilm analysis for other pathogens and other materials of orthopedic relevance for translational study of ODRI. Prevention and treatment of orthopedic device-related infection (ODRI) is complicated by the formation of bacterial biofilms. Biofilm formation involves dynamic production of macromolecules that contribute to the structure of the biofilm over time. Limitations to clinically relevant and translational biofilm visualization and measurement hamper advances in this area of research. In this paper, we present a multimodal methodology for improved characterization of Pseudomonas aeruginosa grown on polyether ether ketone (PEEK) as a model for ODRI. PEEK discs were inoculated with P. aeruginosa, incubated for 4-48 h time intervals, and fixed with 10% neutral-buffered formalin. Samples were stained with fluorescent dyes to measure biofilm components, imaged with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), and quantified. We were able to visualize and quantify P. aeruginosa biofilm growth on PEEK implants over 48 h. Based on imaging data, we propose a generalized growth cycle that can inform orthopedic diagnostic and treatment for this pathogen on PEEK. These results demonstrate the potential of using a combined CLSM and SEM approach for determining biofilm structure, composition, post-adherence development on orthopedic materials. This model may be used for quantitative biofilm analysis for other pathogens and other materials of orthopedic relevance for translational study of ODRI. |
Author | Sahakian, Lori Glasser, Jillian Born, Christopher T. Garcia, Dioscaris R. Berns, Ellis M. Barrett, Caitlin Antoci, Valentin Turcu, Adrian Barber, Douglas Spake, Carole S. L. Clayton, Ahsia |
Author_xml | – sequence: 1 givenname: Carole S. L. surname: Spake fullname: Spake, Carole S. L. organization: Rhode Island Hospital – sequence: 2 givenname: Ellis M. orcidid: 0000-0003-1269-7186 surname: Berns fullname: Berns, Ellis M. organization: Rhode Island Hospital – sequence: 3 givenname: Lori surname: Sahakian fullname: Sahakian, Lori organization: Brown University – sequence: 4 givenname: Adrian surname: Turcu fullname: Turcu, Adrian organization: Rhode Island Hospital – sequence: 5 givenname: Ahsia surname: Clayton fullname: Clayton, Ahsia organization: Rhode Island Hospital – sequence: 6 givenname: Jillian orcidid: 0000-0002-1311-0984 surname: Glasser fullname: Glasser, Jillian organization: Rhode Island Hospital – sequence: 7 givenname: Caitlin surname: Barrett fullname: Barrett, Caitlin organization: Brown University – sequence: 8 givenname: Douglas surname: Barber fullname: Barber, Douglas organization: Yale School of Medicine – sequence: 9 givenname: Valentin surname: Antoci fullname: Antoci, Valentin organization: Warren Alpert Medical School of Brown University – sequence: 10 givenname: Christopher T. surname: Born fullname: Born, Christopher T. organization: Warren Alpert Medical School of Brown University – sequence: 11 givenname: Dioscaris R. orcidid: 0000-0002-9001-6262 surname: Garcia fullname: Garcia, Dioscaris R. email: Dioscaris_garcia@Brown.edu organization: Warren Alpert Medical School of Brown University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34935196$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM9u1DAQhy1URLeFAy-AfIRD2rGdxNkjqvhTVKkIgcQtmjiTrktib21nq-UBeI4-S58MQ1puaKQZafTNJ83viB0474ixlwJOBIA8vfbhRFa5nrCVqKqyqKT-fsBWoFVdgKzrQ3YU4zUAaCGbZ-xQlWtViXW9Yr_OHd_ZFPz93c7GGUf7E5P1jqPr-c2MLtmUFzviZoMBTaLwSPiBf440937yDuP9HVKYr6zzEXln_WDHiV8Ff5s2vN87nKyJPF9t_bintKHAl_6DUn7mOXs64BjpxcM8Zt_ev_t69rG4uPxwfvb2ojAqv1d0AE0nVdOX2MG6QSIhoVODNkBlo7VRQpeiByUF9FjKdQUlGdn1sqobrJQ6Zq8X7zb4m5liaicbDY0jOvJzbGUtpFaqFjqjbxbUBB9joKHdBjth2LcC2j-xtzn29m_smX31oJ27ifp_5GPOGThdgFs70v7_pvbT5ZdF-RtPoZMF |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_2c03933 crossref_primary_10_2106_JBJS_23_00225 crossref_primary_10_1002_admt_202201533 |
Cites_doi | 10.1016/j.jbiotec.2014.09.003 10.22203/eCM.v008a05 10.1007/s43390-020-00054-z 10.1128/AEM.00637-11 10.1086/502033 10.1099/00221287-148-4-923 10.1007/BF01569816 10.1111/1574-6941.12168 10.1002/jor.23903 10.1007/978-1-4939-0467-9_8 10.1038/nrmicro1838 10.1017/S1479050505001699 10.1126/science.284.5418.1318 10.1089/sur.2018.161 10.1016/j.jiph.2019.10.010 10.1128/CMR.00111-13 10.1128/JB.00314-08 10.1371/journal.pone.0107588 10.1016/j.spinee.2020.01.001 10.1126/science.295.5559.1487 10.1016/j.arth.2013.12.012 10.1128/AEM.02073-07 10.1080/08927014.2020.1869725 10.1002/jor.24924 10.1056/NEJMra035415 10.1128/AAC.03676-14 10.1016/j.mib.2006.02.004 10.1007/978-1-4939-9000-9_14 10.1128/AEM.68.9.4457-4464.2002 10.1128/AEM.67.12.5608-5613.2001 10.12968/jowc.2016.25.1.12 10.1128/AAC.27.4.619 10.1128/AEM.02361-09 10.1007/s12275-016-5528-7 10.1007/s11999-016-4720-8 10.1111/j.1600-0463.2007.apm_630.x 10.1038/nature05514 10.1128/AAC.01746-18 10.1086/322972 10.3389/fcimb.2015.00040 10.1007/978-3-319-11038-7_9 10.1128/AEM.03119-09 |
ContentType | Journal Article |
Copyright | 2021 Orthopaedic Research Society. Published by Wiley Periodicals LLC 2021 Orthopaedic Research Society. Published by Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Orthopaedic Research Society. Published by Wiley Periodicals LLC – notice: 2021 Orthopaedic Research Society. Published by Wiley Periodicals LLC. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1002/jor.25252 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1554-527X |
EndPage | 2456 |
ExternalDocumentID | 10_1002_jor_25252 34935196 JOR25252 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: The Sipprelle Family Foundation – fundername: Diane N Weiss – fundername: FOT Grant funderid: 5019‐8 – fundername: FOT Grant grantid: 5019-8 |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1B1 1KJ 1L6 1OB 1OC 1ZS 1~5 24P 29L 31~ 33P 3SF 3V. 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 7-5 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8FI 8FJ 8R4 8R5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AANLZ AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABMAC ABPVW ABQWH ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIUM ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMUD ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BPHCQ BQCPF BROTX BRXPI BVXVI BY8 C45 CCPQU CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 DWQXO EBD EBS EJD EMOBN F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC FYUFA G-S G.N GNP GNUQQ GODZA H.X HBH HCIFZ HF~ HGLYW HHY HHZ HMCUK HVGLF HZ~ IHE IX1 J0M JPC KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M41 M56 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K R2- RIG RIWAO RJQFR RNS ROL RPZ RWI RWL RWR RX1 RXW RYL SAMSI SEW SSZ SUPJJ SV3 TAE TEORI UB1 UKHRP UPT V2E V8K W8V W99 WBKPD WIB WIH WIJ WIK WIN WJL WNSPC WOHZO WQJ WRC WXI WXSBR WYB WYISQ X7M XG1 XV2 YCJ YQT ZGI ZXP ZZTAW ~IA ~WT NPM AAMNL AAYXX ACRPL ACYXJ ADNMO CITATION 7X8 |
ID | FETCH-LOGICAL-c3252-b008b238d4ab098aee120b3f7c0e4877c31741d03210da429504ec2bd2568a533 |
IEDL.DBID | DR2 |
ISSN | 0736-0266 |
IngestDate | Wed Dec 04 14:48:11 EST 2024 Fri Dec 06 00:52:02 EST 2024 Sat Sep 28 08:24:38 EDT 2024 Sat Aug 24 00:52:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | scanning electron microscopy Pseudomonas aeruginosa orthopedic implant bacterial biofilms confocal laser scanning microscopy |
Language | English |
License | 2021 Orthopaedic Research Society. Published by Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3252-b008b238d4ab098aee120b3f7c0e4877c31741d03210da429504ec2bd2568a533 |
Notes | Carole S. L. Spake and Ellis M. Berns contributed equally to this study and are considered co‐first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9001-6262 0000-0002-1311-0984 0000-0003-1269-7186 |
PMID | 34935196 |
PQID | 2612733617 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2612733617 crossref_primary_10_1002_jor_25252 pubmed_primary_34935196 wiley_primary_10_1002_jor_25252_JOR25252 |
PublicationCentury | 2000 |
PublicationDate | October 2022 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of orthopaedic research |
PublicationTitleAlternate | J Orthop Res |
PublicationYear | 2022 |
References | 2021; 8 2007; 445 2015; 59 2008; 190 2010; 76 2015; 5 2010; 2010 2020; 20 1995; 15 2002; 295 2004; 8 2006; 9 2013; 86 2014; 27 2016; 54 2014; 191 2011; 77 1999; 284 2020; 13 2018; 84 2008; 6 2014; 29 2008; 74 2001; 67 2014; 1147 1985; 27 2007; 115 2021; 37 2019; 20 2015; 830 2019; 63 2019; 1918 2004; 350 2002; 23 2021; 39 2002; 68 2018 2016; 474 2002; 148 2005; 2 2001; 33 2014; 9 2016; 25 2018; 36 2005; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Gillespie WJ (e_1_2_8_3_1) 2010; 2010 Branda SS (e_1_2_8_43_1) 2005; 13 ThermoFisher Scientific. (e_1_2_8_20_1) 2018 Hutchison J (e_1_2_8_29_1) 2018; 84 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 115 start-page: 891 year: 2007 end-page: 899 article-title: Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by publication-title: APMIS – volume: 15 start-page: 137 year: 1995 end-page: 140 article-title: Overview of microbial biofilms publication-title: J Ind Microbiol – volume: 445 start-page: 533 year: 2007 end-page: 536 article-title: Evolution of species interactions in a biofilm community publication-title: Nature – volume: 6 start-page: 199 year: 2008 end-page: 210 article-title: Physiological heterogeneity in biofilms publication-title: Nat Rev Microbiol – volume: 8 start-page: 351 issue: 3 year: 2021 end-page: 359 article-title: Analysis of growth and biofilm formation of bacterial pathogens on frequently used spinal implant materials publication-title: Spine Deform – volume: 1147 start-page: 105 year: 2014 end-page: 126 article-title: Imaging bacteria and biofilms on hardware and periprosthetic tissue in orthopedic infections publication-title: Methods Mol Biol – volume: 1918 start-page: 171 year: 2019 end-page: 182 article-title: High content screening confocal laser microscopy (HCS‐CLM) to characterize biofilm 4D structural dynamic of foodborne pathogens publication-title: Methods Mol Biol – volume: 2 start-page: 37 year: 2005 end-page: 61 article-title: Transcriptome analysis of biofilm development: anaerobic respiration and iron limitation publication-title: Biofilms – volume: 33 start-page: 1387 year: 2001 end-page: 1392 article-title: Biofilm formation: a clinically relevant microbiological process publication-title: Clin Infect Dis – volume: 474 start-page: 1649 year: 2016 end-page: 1656 article-title: Antibiotic‐tolerant biofilm persists on arthroplasty materials publication-title: Clin Orthop Relat Res – volume: 36 start-page: 2349 year: 2018 end-page: 2354 article-title: Antibiotic loaded calcium sulfate bead and pulse lavage eradicates biofilms on metal implant materials in vitro publication-title: J Orthop Res – volume: 68 start-page: 4457 year: 2002 end-page: 4464 article-title: Influence of hydrodynamics and cell signaling on the structure and behavior of biofilms publication-title: Appl Environ Microbiol – volume: 67 start-page: 5608 year: 2001 end-page: 5613 article-title: Growth and detachment of cell clusters from mature mixed‐species biofilms publication-title: Appl Environ Microbiol – volume: 39 start-page: 299 year: 2021 end-page: 307 article-title: Fluorescent‐conjugated antibodies as rapid ex vivo markers for bacterial presence on orthopedic surgical explants and synovium: a pilot study publication-title: J Orthop Res – volume: 13 start-page: 20 year: 2005 end-page: 26 article-title: Biofilms: the matrix revisited publication-title: TIM – volume: 284 start-page: 1318 year: 1999 end-page: 1322 article-title: Bacterial biofilms: a common cause of persistent infections publication-title: Science – volume: 191 start-page: 121 year: 2014 end-page: 130 article-title: Antibiotic resistance in biofilms: towards the development of novel anti‐biofilm therapies publication-title: J Biotechnol – volume: 148 start-page: 923 year: 2002 end-page: 932 article-title: Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in PAO1 publication-title: Microbiology – volume: 86 start-page: 394 year: 2013 end-page: 403 article-title: Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study publication-title: FEMS Microbiol Ecol – year: 2018 – volume: 9 year: 2014 article-title: Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study publication-title: PLoS One – volume: 830 start-page: 137 year: 2015 end-page: 155 article-title: Microbial composition and antibiotic resistance of biofilms recovered from endotracheal tubes of mechanically ventilated patients publication-title: Adv Exp Med Biol – volume: 8 start-page: 37 year: 2004 end-page: 57 article-title: Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria‐material interactions publication-title: Eur Cells Mater – volume: 29 start-page: 1128 year: 2014 end-page: 1132 article-title: Pulse lavage is inadequate at removal of biofilm from the surface of total knee arthroplasty materials publication-title: J Arthroplasty – volume: 5 year: 2015 article-title: Extracellular matrix‐associated proteins form an integral and dynamic system during biofilm development publication-title: Front Cell Infect Microbiol – volume: 77 start-page: 5238 year: 2011 end-page: 5246 article-title: Role of exopolysaccharides in biofilm formation and architecture publication-title: Appl Environ Microbiol – volume: 37 start-page: 1 issue: 1 year: 2021 end-page: 35 article-title: New developments in anti‐biofilm intervention towards effective management of orthopedic device related infections (ODRI's) publication-title: Biofouling – volume: 54 start-page: 71 issue: 2 year: 2016 end-page: 85 article-title: Biofilm dispersion in publication-title: J Microbiol – volume: 20 start-page: 341 year: 2019 end-page: 350 article-title: Commonly encountered skin biome‐derived pathogens after orthopedic surgery publication-title: Surg Infect (Larchmt) – volume: 190 start-page: 5690 year: 2008 end-page: 5698 article-title: Regulation of autolysis‐dependent extracellular DNA release by extracellular proteases influences biofilm development publication-title: J Bacteriol – volume: 13 start-page: 791 issue: 5 year: 2020 end-page: 799 article-title: In vitro and in vivo anti‐biofilm activity of pyran derivative against and publication-title: J Infect Public Health – volume: 27 start-page: 619 year: 1985 end-page: 624 article-title: Tobramycin resistance of cells growing as a biofilm on urinary catheter material publication-title: Antimicrob Agents Chemother – volume: 59 start-page: 111 year: 2015 end-page: 120 article-title: Antibiotic‐loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections publication-title: Antimicrob Agents Chemother – volume: 350 start-page: 1422 year: 2004 end-page: 1429 article-title: Treatment of infections associated with surgical implants publication-title: N Engl J Med – volume: 76 start-page: 2271 year: 2010 end-page: 2279 article-title: Role of extracellular DNA during biofilm formation by publication-title: Appl Environ Microbiol – volume: 27 start-page: 302 year: 2014 end-page: 345 article-title: Prosthetic joint infection publication-title: Clin Microbiol Rev – volume: 76 start-page: 3405 year: 2010 end-page: 3408 article-title: Role of extracellular DNA in initial bacterial adhesion and surface aggregation publication-title: Appl Environ Microbiol – volume: 2010 issue: 3 year: 2010 article-title: Antibiotic prophylaxis for surgery for proximal femoral and other closed long bone fractures publication-title: Cochrane Database Syst Rev – volume: 9 start-page: 133 year: 2006 end-page: 137 article-title: Quorum sensing and DNA release in bacterial biofilms publication-title: Curr Opin Microbiol – volume: 84 start-page: 762 year: 2018 end-page: 770 article-title: Increased production of the extracellular polysaccharide Psl can give a growth advantage to in low‐iron conditions publication-title: bioRxiv – volume: 63 year: 2019 article-title: Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and in orthopedic‐device‐related infections publication-title: Antimicrob Agents Chemother – volume: 295 year: 2002 article-title: Extracellular DNA required for bacterial biofilm formation publication-title: Science – volume: 20 start-page: 981 issue: 6 year: 2020 end-page: 987 article-title: Early adherence and biofilm formation of (formerly ) on spinal implant materials publication-title: Spine J – volume: 74 start-page: 470 year: 2008 end-page: 476 article-title: Differential roles of poly‐N‐acetylglucosamine surface polysaccharide and extracellular DNA in and biofilms publication-title: Appl Environ Microbiol – volume: 25 start-page: 12 year: 2016 article-title: Microbiology of corneal wounds after cataract surgery: biofilm formation and antibiotic resistance patterns publication-title: J Wound Care – volume: 23 start-page: 183 issue: 4 year: 2002 end-page: 189 article-title: The impact of surgical‐site infections following orthopedic surgery at a community hospital and a university hospital adverse quality of life, excess length of stay, and extra cost publication-title: Infect Control Hosp Epidemiol – ident: e_1_2_8_10_1 doi: 10.1016/j.jbiotec.2014.09.003 – ident: e_1_2_8_16_1 doi: 10.22203/eCM.v008a05 – ident: e_1_2_8_17_1 doi: 10.1007/s43390-020-00054-z – ident: e_1_2_8_42_1 doi: 10.1128/AEM.00637-11 – volume-title: Dimeric Cyanine Nucleic Acid Stains: User Guide year: 2018 ident: e_1_2_8_20_1 contributor: fullname: ThermoFisher Scientific. – ident: e_1_2_8_4_1 doi: 10.1086/502033 – ident: e_1_2_8_30_1 doi: 10.1099/00221287-148-4-923 – ident: e_1_2_8_7_1 doi: 10.1007/BF01569816 – ident: e_1_2_8_22_1 doi: 10.1111/1574-6941.12168 – ident: e_1_2_8_23_1 doi: 10.1002/jor.23903 – ident: e_1_2_8_24_1 doi: 10.1007/978-1-4939-0467-9_8 – ident: e_1_2_8_33_1 doi: 10.1038/nrmicro1838 – ident: e_1_2_8_31_1 doi: 10.1017/S1479050505001699 – ident: e_1_2_8_5_1 doi: 10.1126/science.284.5418.1318 – ident: e_1_2_8_19_1 doi: 10.1089/sur.2018.161 – ident: e_1_2_8_47_1 doi: 10.1016/j.jiph.2019.10.010 – ident: e_1_2_8_13_1 doi: 10.1128/CMR.00111-13 – ident: e_1_2_8_38_1 doi: 10.1128/JB.00314-08 – ident: e_1_2_8_45_1 doi: 10.1371/journal.pone.0107588 – ident: e_1_2_8_18_1 doi: 10.1016/j.spinee.2020.01.001 – volume: 84 start-page: 762 year: 2018 ident: e_1_2_8_29_1 article-title: Increased production of the extracellular polysaccharide Psl can give a growth advantage to Pseudomonas aeruginosa in low‐iron conditions publication-title: bioRxiv contributor: fullname: Hutchison J – ident: e_1_2_8_36_1 doi: 10.1126/science.295.5559.1487 – ident: e_1_2_8_26_1 doi: 10.1016/j.arth.2013.12.012 – ident: e_1_2_8_37_1 doi: 10.1128/AEM.02073-07 – ident: e_1_2_8_44_1 doi: 10.1080/08927014.2020.1869725 – ident: e_1_2_8_15_1 doi: 10.1002/jor.24924 – ident: e_1_2_8_2_1 doi: 10.1056/NEJMra035415 – ident: e_1_2_8_27_1 doi: 10.1128/AAC.03676-14 – ident: e_1_2_8_21_1 doi: 10.1016/j.mib.2006.02.004 – ident: e_1_2_8_25_1 doi: 10.1007/978-1-4939-9000-9_14 – ident: e_1_2_8_34_1 doi: 10.1128/AEM.68.9.4457-4464.2002 – ident: e_1_2_8_32_1 doi: 10.1128/AEM.67.12.5608-5613.2001 – ident: e_1_2_8_11_1 doi: 10.12968/jowc.2016.25.1.12 – ident: e_1_2_8_12_1 doi: 10.1128/AAC.27.4.619 – ident: e_1_2_8_39_1 doi: 10.1128/AEM.02361-09 – volume: 13 start-page: 20 year: 2005 ident: e_1_2_8_43_1 article-title: Biofilms: the matrix revisited publication-title: TIM contributor: fullname: Branda SS – ident: e_1_2_8_14_1 doi: 10.1007/s12275-016-5528-7 – ident: e_1_2_8_28_1 doi: 10.1007/s11999-016-4720-8 – volume: 2010 start-page: CD000244 issue: 3 year: 2010 ident: e_1_2_8_3_1 article-title: Antibiotic prophylaxis for surgery for proximal femoral and other closed long bone fractures publication-title: Cochrane Database Syst Rev contributor: fullname: Gillespie WJ – ident: e_1_2_8_6_1 doi: 10.1111/j.1600-0463.2007.apm_630.x – ident: e_1_2_8_35_1 doi: 10.1038/nature05514 – ident: e_1_2_8_46_1 doi: 10.1128/AAC.01746-18 – ident: e_1_2_8_8_1 doi: 10.1086/322972 – ident: e_1_2_8_41_1 doi: 10.3389/fcimb.2015.00040 – ident: e_1_2_8_9_1 doi: 10.1007/978-3-319-11038-7_9 – ident: e_1_2_8_40_1 doi: 10.1128/AEM.03119-09 |
SSID | ssj0007128 |
Score | 2.4608445 |
Snippet | Prevention and treatment of orthopedic device‐related infection (ODRI) is complicated by the formation of bacterial biofilms. Biofilm formation involves... Prevention and treatment of orthopedic device-related infection (ODRI) is complicated by the formation of bacterial biofilms. Biofilm formation involves... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2448 |
SubjectTerms | bacterial biofilms confocal laser scanning microscopy orthopedic implant Pseudomonas aeruginosa scanning electron microscopy |
Title | In vitro visualization and quantitative characterization of Pseudomonas aeruginosa biofilm growth dynamics on polyether ether ketone |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.25252 https://www.ncbi.nlm.nih.gov/pubmed/34935196 https://search.proquest.com/docview/2612733617 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF5Kn3zxwKterOKDL2lzJ8Un8aAWPCgW-iCEvaK1NtEcQv0B_o7-Fn-Zs5umpYogEgh52F02O7Mz3yYz3yB0CIgi9E3BNDjQCs0WjGrU54ZmcZNZXFBObZnvfHXttrp2u-f0Kui4zIUp-CGmH9zkzlD2Wm5wQtPGjDT0KU7qpgMX2F_D8mQ431lnRh3lGaquKmiwDLJ13ZJVSDcb057zvugHwJzHq8rhXCyh-3KqRZzJoJ5ntM7ev7E4_vNdltHiBIjik0JzVlBFRKvo4zLCb_0siT_Hb_1U5lsWWZqYRBy_5iRSKWlgIDGbEj1PWsQhvk1FzmPQa5J-jolIcphqnBJM-7Iu-BA_wJE_e8R8FJFhn6UYer3EzyOVcoyL-0BIcvA11L04vzttaZNKDRqzYNayio9Pwflzm1C96RMhDFOnVugxXcCJyGOAUmyD6zJhiBNwgY4OamFSDoDLJ4A411E1guE3EXbBQHgGAS0JQzvktEktgEihy5jjuNywauiglFnwUhByBAX1shnAMgZqGWtov5RmANtF_gMhkYjzNJCMaZIB0vBqaKMQ83QYy27KcoVuDR0pYf0-ftC-6aiHrb833UYLpkydUIGAO6iaJbnYBUCT0T2luV9XJPcs |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1cDnpxwW1cW_HgJWP2ZMCLuDDuIgpeJPQWHUcTnSSCfoDf4bf4ZVZ3JiMqgkgg5NBpOl1VXa87Va8AVhFRxKEtuYEbWmm4kjODhcIyHGFzR0gmmKvynY-O_eaFu3_pXfbBRpULU_JD9A7clGXo9VoZuDqQXv9kDb1NO3Xbw6sfBtHcLRXQtX32SR4VWLqyKuqwCrP1_YpXyLTXe69-9UY_IOZXxKpdzu4oXFWDLSNN2vUiZ3X-8o3H8b9fMwYjXSxKNkvlGYc-mUzA615Cnlp5J31_e2plKuWyTNQkNBHksaCJzkrDNZLwHtdzt0Uak9NMFiJF1abZ-xuVnQLHmmaUsJYqDX5PrnHXn98Q8ZzQ-xbPCL71kN4966xjUt7bUvGDT8LF7s75VtPoFmswuIOjVoV8Qob-X7iUmY2QSmnZJnPigJsSN0UBR6DiWsJUOUOCohf0TNQMmwnEXCFF0DkFAwl2PwPExzUisCgqShy7sWAN5iBKin3OPc8XllODlUpo0UPJyRGV7Mt2hNMY6WmswXIlzggtRv0GoYlMiyxSpGmKBNIKajBdyrnXjeM2VMVCvwZrWlq_9x_tn5zph9m_N12Coeb50WF0uHd8MAfDtsqk0HGB8zCQdwq5gPgmZ4tajT8AwZn7TQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFD4qQ0LcwBBjFBgYtAtu0ibOb8XVtFK1ZRvTtEq9QIr8F-i6JqVJJo0H4Dn2LH0yjp2mU4cmIRQpyoVtOT7HPp8Tf98B2EdEkURUCQs3tMrylOAWj6RjuZIKVyouuaf5zscnQX_kDcf-uAGfai5MpQ-x_uCmZ4ZZr_UEn8ukfSsaepEtWtTH6wE89ALa0cL53bNb7ajQMYlV0YX1KdsgqGWFbNpeV90MRn8hzE3AaiJO7yl8q_taHTSZtsqCt8SvOzKO__ky2_BkhUTJQeU6z6Ch0ufwe5CSq0mxyJY3V5NcEy4rmiZhqSQ_S5YaThqukESslZ5XJbKEnOaqlBk6NsuXN0wtSuxqljPCJzox-Ix8xz1_8YPI65TNJiInWGueXV4bzjGp7lOl1cF3YNT7fH7Yt1apGizhYq91Gp-IY_SXHuN2J2JKOdTmbhIKW-GWKBQIUzxH2poxJBnGQN9Gv6BcIuKKGELOF7CVYvMvgQS4QoQOQzdJEi-RvMNdxEhJIITvB9Jxm_Chtlk8rxQ54kp7mcY4jLEZxia8r60Z43zRP0FYqrIyj7VkmpaAdMIm7FZmXjfjeh2drzBowkdjrPvbj4dfz8zDq38v-g4enXZ78dHg5MtreEw1jcIcCnwDW8WiVHsIbgr-1jjxH-jW-fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro%C2%A0visualization+and+quantitative+characterization+of+Pseudomonas%C2%A0aeruginosa+biofilm+growth+dynamics+on+polyether+ether+ketone&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Spake%2C+Carole+S.+L.&rft.au=Berns%2C+Ellis+M.&rft.au=Sahakian%2C+Lori&rft.au=Turcu%2C+Adrian&rft.date=2022-10-01&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=40&rft.issue=10&rft.spage=2448&rft.epage=2456&rft_id=info:doi/10.1002%2Fjor.25252&rft.externalDBID=10.1002%252Fjor.25252&rft.externalDocID=JOR25252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon |