Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts

The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen‐based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 11; no. 16; pp. 2643 - 2653
Main Authors Ruqia, Bibi, Choi, Sang‐Il
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 22.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen‐based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is limited in alkaline solutions owing to a slow rate for water dissociation. Therefore, many research groups have intensively investigated reaction mechanisms and developed system designs and efficient Pt‐based catalysts to enhance the alkaline HER. Herein, we summarize the catalytic surface specificity of Pt and Pt–Ni(OH)2 materials to control the kinetics of the alkaline HER. In particular, we increase our understanding of Ni(OH)2‐modified Pt surfaces and the corresponding nanoscaled Pt–Ni(OH)2 electrocatalysts to improve the sluggish water‐dissociation step, and this knowledge will guide us to future sustainable energy applications of advanced nanomaterials. Alkaline hydrogen: The alkaline hydrogen evolution reaction (HER) at Pt surfaces proceeds through Volmer–Heyrovsky and Volmer–Tafel mechanisms. If the Pt surface is modified with Ni(OH)2 clusters, the Volmer–Tafel mechanism with a promoted rate‐determining Volmer step and subsequent H2 generation will dominate. Benefitting from bifunctionality, the nanoscaled Pt–Ni(OH)2‐based electrocatalyst shows highly improved HER performance in alkaline electrolytes.
AbstractList The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen‐based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is limited in alkaline solutions owing to a slow rate for water dissociation. Therefore, many research groups have intensively investigated reaction mechanisms and developed system designs and efficient Pt‐based catalysts to enhance the alkaline HER. Herein, we summarize the catalytic surface specificity of Pt and Pt–Ni(OH)2 materials to control the kinetics of the alkaline HER. In particular, we increase our understanding of Ni(OH)2‐modified Pt surfaces and the corresponding nanoscaled Pt–Ni(OH)2 electrocatalysts to improve the sluggish water‐dissociation step, and this knowledge will guide us to future sustainable energy applications of advanced nanomaterials.
The design and synthesis of Pt-based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen-based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is limited in alkaline solutions owing to a slow rate for water dissociation. Therefore, many research groups have intensively investigated reaction mechanisms and developed system designs and efficient Pt-based catalysts to enhance the alkaline HER. Herein, we summarize the catalytic surface specificity of Pt and Pt-Ni(OH) materials to control the kinetics of the alkaline HER. In particular, we increase our understanding of Ni(OH) -modified Pt surfaces and the corresponding nanoscaled Pt-Ni(OH) electrocatalysts to improve the sluggish water-dissociation step, and this knowledge will guide us to future sustainable energy applications of advanced nanomaterials.
Abstract The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen‐based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is limited in alkaline solutions owing to a slow rate for water dissociation. Therefore, many research groups have intensively investigated reaction mechanisms and developed system designs and efficient Pt‐based catalysts to enhance the alkaline HER. Herein, we summarize the catalytic surface specificity of Pt and Pt–Ni(OH) 2 materials to control the kinetics of the alkaline HER. In particular, we increase our understanding of Ni(OH) 2 ‐modified Pt surfaces and the corresponding nanoscaled Pt–Ni(OH) 2 electrocatalysts to improve the sluggish water‐dissociation step, and this knowledge will guide us to future sustainable energy applications of advanced nanomaterials.
The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen‐based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is limited in alkaline solutions owing to a slow rate for water dissociation. Therefore, many research groups have intensively investigated reaction mechanisms and developed system designs and efficient Pt‐based catalysts to enhance the alkaline HER. Herein, we summarize the catalytic surface specificity of Pt and Pt–Ni(OH)2 materials to control the kinetics of the alkaline HER. In particular, we increase our understanding of Ni(OH)2‐modified Pt surfaces and the corresponding nanoscaled Pt–Ni(OH)2 electrocatalysts to improve the sluggish water‐dissociation step, and this knowledge will guide us to future sustainable energy applications of advanced nanomaterials. Alkaline hydrogen: The alkaline hydrogen evolution reaction (HER) at Pt surfaces proceeds through Volmer–Heyrovsky and Volmer–Tafel mechanisms. If the Pt surface is modified with Ni(OH)2 clusters, the Volmer–Tafel mechanism with a promoted rate‐determining Volmer step and subsequent H2 generation will dominate. Benefitting from bifunctionality, the nanoscaled Pt–Ni(OH)2‐based electrocatalyst shows highly improved HER performance in alkaline electrolytes.
Author Choi, Sang‐Il
Ruqia, Bibi
Author_xml – sequence: 1
  givenname: Bibi
  orcidid: 0000-0003-3326-8997
  surname: Ruqia
  fullname: Ruqia, Bibi
  organization: Kyungpook National University
– sequence: 2
  givenname: Sang‐Il
  orcidid: 0000-0002-8280-3100
  surname: Choi
  fullname: Choi, Sang‐Il
  email: sichoi@knu.ac.kr
  organization: Kyungpook National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29943506$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URH9gyxJZYlMWCdf2eGIvqygQpKqtaJHYjRzPNZ3i2MX2gGYHz8Ab8iRMSBMkNqzuWXzn05XOMTkIMSAhzxlMGQB_bXO2Uw5MAcwUe0SOmKqriayrjwf7LNghOc75DqAGXddPyCHXuhIS6iPy46pQE1p6VX59_3nRnV4uX3G68GhLii1m6mKi5RbpcmhT_ISBLr5G35cuBvoejf0TukDP_Gfju4C7qh_KWN6Ib26xS_TChJit8djuCGuK8UMu-Sl57IzP-OzhnpAPbxY38-Xk_PLtu_nZ-cQKLtmkBQvGORSwAsWqVcVrA6Ct0gDOaWcU11w645QQtjKotVOGVyA4zGaSzcQJOd1671P80mMuzbrLFr03AWOfGw5Sy0oJkCP68h_0LvYpjN-NlGZSAqvFSE23lE0x54SuuU_d2qShYdBsxmk24zT7ccbCiwdtv1pju8d3a4yA3gLfOo_Df3TN_Pp6_lf-G39Inf4
CitedBy_id crossref_primary_10_1002_celc_202100703
crossref_primary_10_1016_j_electacta_2024_144451
crossref_primary_10_1016_j_gee_2021_04_003
crossref_primary_10_1039_D3TA05519A
crossref_primary_10_20964_2021_07_38
crossref_primary_10_1007_s11051_020_04980_x
crossref_primary_10_1016_j_jssc_2020_121596
crossref_primary_10_1007_s11581_023_05269_4
crossref_primary_10_1016_j_coelec_2022_101121
crossref_primary_10_1002_advs_202301098
crossref_primary_10_1002_adma_202105248
crossref_primary_10_1039_D1TC04197E
crossref_primary_10_1039_D3QI01656K
crossref_primary_10_1039_D3NR01940C
crossref_primary_10_1016_j_cej_2020_127275
crossref_primary_10_1039_D2NJ05946K
crossref_primary_10_1002_aenm_202003188
crossref_primary_10_34133_2020_9068270
crossref_primary_10_1088_1361_6528_acca23
crossref_primary_10_1039_D1TA00640A
crossref_primary_10_3390_catal13071064
crossref_primary_10_1021_acscatal_0c02301
crossref_primary_10_1038_s41467_023_43118_0
crossref_primary_10_3390_ijms25074034
crossref_primary_10_1016_j_ijhydene_2024_06_073
crossref_primary_10_1016_j_nanoen_2021_105850
crossref_primary_10_1002_ange_202000383
crossref_primary_10_1039_D1TA06548C
crossref_primary_10_1039_D3RA00340J
crossref_primary_10_1039_C9TA03220G
crossref_primary_10_1016_j_gee_2020_10_013
crossref_primary_10_3390_jcs7080328
crossref_primary_10_3390_c7020032
crossref_primary_10_1002_adfm_202106149
crossref_primary_10_1007_s12274_021_3582_x
crossref_primary_10_1039_D1TA10519A
crossref_primary_10_1016_j_coelec_2023_101303
crossref_primary_10_1016_j_apenergy_2023_121755
crossref_primary_10_1016_j_ijhydene_2023_01_169
crossref_primary_10_1002_cssc_201901539
crossref_primary_10_1016_j_jelechem_2024_118029
crossref_primary_10_1016_j_apcatb_2022_121434
crossref_primary_10_1021_jacs_9b09229
crossref_primary_10_1016_j_mcat_2022_112481
crossref_primary_10_1016_j_electacta_2019_134680
crossref_primary_10_1002_adfm_202209134
crossref_primary_10_1016_j_apcatb_2020_118988
crossref_primary_10_1016_j_cej_2023_145630
crossref_primary_10_1016_j_pnsc_2019_05_009
crossref_primary_10_1021_acs_jpcc_1c02770
crossref_primary_10_1557_mrs_2020_169
crossref_primary_10_1021_acs_iecr_2c03965
crossref_primary_10_1016_j_ijhydene_2022_09_111
crossref_primary_10_3389_fchem_2022_1073175
crossref_primary_10_1016_j_apcatb_2023_122814
crossref_primary_10_1016_j_ijhydene_2020_07_047
crossref_primary_10_1021_acsomega_9b03550
crossref_primary_10_3390_nano13182613
crossref_primary_10_1016_j_apcatb_2021_120434
crossref_primary_10_1039_D2NR04407B
crossref_primary_10_1002_slct_202200654
crossref_primary_10_1021_acssuschemeng_1c02421
crossref_primary_10_1038_s41467_022_31561_4
crossref_primary_10_1002_celc_201900507
crossref_primary_10_1002_adfm_202306100
crossref_primary_10_1016_j_cej_2021_130483
crossref_primary_10_1002_nano_202000189
crossref_primary_10_1016_j_apcatb_2022_121654
crossref_primary_10_1002_sstr_202100153
crossref_primary_10_1002_smll_202201333
crossref_primary_10_1016_j_apcatb_2024_124074
crossref_primary_10_1039_C9NR03401C
crossref_primary_10_1016_j_solidstatesciences_2020_106143
crossref_primary_10_1039_D3SE00403A
crossref_primary_10_1002_cjoc_202300414
crossref_primary_10_1016_j_ijhydene_2022_06_036
crossref_primary_10_1016_j_apsusc_2022_155523
crossref_primary_10_1039_D0TA10235K
crossref_primary_10_1021_acs_jpclett_2c02132
crossref_primary_10_1134_S1023193524700095
crossref_primary_10_1021_acsaem_0c02505
crossref_primary_10_1016_j_matchemphys_2024_129553
crossref_primary_10_1039_D2NR05881B
crossref_primary_10_1016_j_rser_2022_112323
crossref_primary_10_1016_j_apcatb_2019_118567
crossref_primary_10_1039_D1RA02240G
crossref_primary_10_1016_j_surfin_2024_103903
crossref_primary_10_1039_D2NJ00664B
crossref_primary_10_1002_anie_202000383
crossref_primary_10_1039_D3CS00292F
crossref_primary_10_1016_j_apsusc_2023_157433
crossref_primary_10_1021_acssuschemeng_1c04472
crossref_primary_10_1016_j_ijhydene_2022_03_196
crossref_primary_10_1007_s11426_022_1371_x
crossref_primary_10_1039_D3QM00600J
crossref_primary_10_1016_j_ijhydene_2021_10_076
crossref_primary_10_1002_aenm_202003192
crossref_primary_10_1039_D0CC03016C
crossref_primary_10_1039_D2CP00792D
Cites_doi 10.1016/S0022-0728(72)80485-6
10.1002/ange.201204842
10.1016/S0079-6816(97)00032-4
10.1016/j.ijhydene.2005.04.038
10.1149/2.0501414jes
10.1149/06403.1069ecst
10.1038/ncomms11741
10.1016/S0022-0728(98)00161-2
10.1016/S0360-3199(03)00043-0
10.1016/S0022-0728(75)80205-1
10.1016/j.ijhydene.2017.10.045
10.1039/ft9959103311
10.1016/j.jcat.2004.02.034
10.1038/ncomms7430
10.1016/j.pecs.2009.11.002
10.1021/acs.jpclett.5b00306
10.1126/science.1085721
10.1016/j.jpowsour.2005.07.044
10.1038/253257a0
10.1038/nmat3313
10.1002/aenm.201601390
10.1016/0167-5729(87)90001-X
10.1038/ncomms15437
10.1063/1.1740527
10.1149/2.0271611jes
10.1116/1.574303
10.1021/ja302439z
10.1016/j.ijhydene.2018.01.051
10.1016/S0167-2738(02)00266-7
10.1021/acsami.5b00679
10.1126/science.1211934
10.1021/cr100246c
10.1021/ja026014h
10.1038/ncomms15131
10.1021/cr8003828
10.1016/S0360-3199(97)00109-2
10.1038/nchem.1574
10.1002/smll.200701295
10.1051/jcp/1991881423
10.1016/j.ijhydene.2007.05.027
10.1021/ef060491u
10.1149/1.1856988
10.1039/FT9969203719
10.2298/JSC131118136D
10.1007/s40843-017-9035-8
10.1021/acs.chemrev.5b00462
10.1038/s41598-018-21396-9
10.1016/j.susc.2008.11.014
10.1007/BF00246950
10.1016/S0013-4686(02)00329-8
10.1016/0360-3199(87)90090-5
10.1016/S0013-4686(00)00523-5
10.1126/science.285.5428.687
10.1149/2.0251713jes
10.1007/0-306-48624-5_3
10.1016/j.nanoen.2016.11.048
10.1126/science.1150038
10.1038/nchem.367
10.1002/advs.201700464
10.1002/9780470999479
10.1021/cs501835c
10.1149/1.3483106
10.1016/j.jscs.2011.01.015
10.1021/ja01134a013
10.1002/anie.201204842
10.1016/j.nanoen.2016.04.017
10.1021/jz201215u
10.1039/c0cp00104j
10.1021/jp9533382
10.1039/C7NR09116H
10.1149/1.1837955
10.1021/jp991826u
10.1038/nenergy.2017.31
10.1016/j.ijhydene.2007.04.037
10.1039/c2ee21754f
10.1021/ja00379a002
10.1016/S0167-5729(01)00020-6
10.1126/science.1249061
10.1007/s10563-011-9130-z
10.1007/BF01112480
10.1021/acscatal.7b01800
10.1007/BF00251324
10.1016/S0360-3199(97)00122-5
10.1039/C5RA06778B
10.1016/S0360-3199(01)00154-9
10.1038/nchem.330
10.1021/nl101807g
10.1038/nmat1752
10.1039/C6TA05411K
10.1016/S0360-3199(01)00177-X
10.1021/ja303191r
10.1016/S0022-0728(73)80452-8
10.1098/rsta.2002.1126
10.1021/jp970930d
10.1016/j.apcatb.2017.11.054
10.1016/0013-4686(94)85159-X
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201800781
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 2653
ExternalDocumentID 10_1002_cssc_201800781
29943506
CSSC201800781
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3251-d0c0affe30b0814b426a009c8900ff9fa82925faf833c4ae99f8a240320775173
IEDL.DBID DR2
ISSN 1864-5631
IngestDate Wed Jul 24 13:14:32 EDT 2024
Thu Oct 10 18:31:02 EDT 2024
Fri Aug 23 02:27:26 EDT 2024
Sat Sep 28 08:36:24 EDT 2024
Sat Aug 24 01:03:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords bifunctional catalysts
nickel
platinum
hydrogen
electrolytes
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3251-d0c0affe30b0814b426a009c8900ff9fa82925faf833c4ae99f8a240320775173
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-8280-3100
0000-0003-3326-8997
PMID 29943506
PQID 2091550163
PQPubID 986333
PageCount 11
ParticipantIDs proquest_miscellaneous_2059548305
proquest_journals_2091550163
crossref_primary_10_1002_cssc_201800781
pubmed_primary_29943506
wiley_primary_10_1002_cssc_201800781_CSSC201800781
PublicationCentury 2000
PublicationDate August 22, 2018
PublicationDateYYYYMMDD 2018-08-22
PublicationDate_xml – month: 08
  year: 2018
  text: August 22, 2018
  day: 22
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2017; 7
2017; 42
2010; 10
1993; 23
2017; 8
2006; 31
2002; 150
2017; 2
2000; 45
1987; 5
1952; 74
1987; 7
1999; 285
1996; 100
1982; 104
2012; 16
2008; 4
2007; 32
2013; 5
2018; 43
2012; 11
2014; 64
2002; 47
2017; 31
2018; 8
2018; 5
2012; 134
2001
1997; 55
1991; 88
2012 2012; 51 124
2002; 46
1973; 47
1997; 144
1997; 101
2010; 157
2010; 110
2014; 161
1982
2016; 116
2017; 164
1994; 39
2007; 21
2009; 603
1996; 26
1979; 9
2003; 361
2011; 334
1987; 12
2015; 6
2015; 5
2010; 36
2017; 60
2005; 152
2011; 2
1995; 91
2004; 224
2010
2018; 225
1999; 461
2006; 5
2005
1994
1999; 103
2003
1996; 92
1975; 253
2015; 7
1998; 23
1955; 23
2016; 163
2006; 157
2002; 27
2016; 4
2016; 7
2013; 78
2002; 124
2003; 28
1975; 60
2016; 29
2003; 301
2007; 318
2018; 10
2009; 1
2009; 109
2012; 5
1972; 39
2014; 343
e_1_2_9_52_2
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Henrich V. E. (e_1_2_9_45_1) 1994
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
Moorhouse J. (e_1_2_9_12_1) 2001
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
Barteau M. (e_1_2_9_89_1) 1982
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
Lasia A. (e_1_2_9_9_1) 2003
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
O'Brien T. (e_1_2_9_11_1) 2005
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Breiter M. W. (e_1_2_9_68_1) 2010
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 157
  start-page: 411
  year: 2006
  end-page: 421
  publication-title: J. Power Sources
– volume: 28
  start-page: 1345
  year: 2003
  end-page: 1352
  publication-title: Int. J. Hydrogen Energy
– volume: 1
  start-page: 552
  year: 2009
  end-page: 556
  publication-title: Nat. Chem.
– volume: 27
  start-page: 731
  year: 2002
  end-page: 740
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 53381
  year: 2015
  end-page: 53403
  publication-title: RSC Adv.
– volume: 224
  start-page: 206
  year: 2004
  end-page: 217
  publication-title: J. Catal.
– volume: 116
  start-page: 3594
  year: 2016
  end-page: 3657
  publication-title: Chem. Rev.
– volume: 32
  start-page: 1605
  year: 2007
  end-page: 1610
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 310
  year: 2008
  end-page: 325
  publication-title: Small
– volume: 124
  start-page: 12302
  year: 2002
  end-page: 12311
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 761
  year: 1998
  end-page: 765
  publication-title: Int. J. Hydrogen Energy
– start-page: 1
  year: 2001
  end-page: 15
– volume: 39
  start-page: 163
  year: 1972
  end-page: 184
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 134
  start-page: 9054
  year: 2012
  end-page: 9057
  publication-title: J. Am. Chem. Soc.
– volume: 92
  start-page: 3719
  year: 1996
  end-page: 3725
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 285
  start-page: 687
  year: 1999
  end-page: 689
  publication-title: Science
– volume: 55
  start-page: 271
  year: 1997
  end-page: 340
  publication-title: Prog. Surf. Sci.
– volume: 4
  start-page: 12392
  year: 2016
  end-page: 12397
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 1121
  year: 2017
  end-page: 1128
  publication-title: Sci. China Mater.
– volume: 5
  start-page: 909
  year: 2006
  end-page: 913
  publication-title: Nat. Mater.
– volume: 5
  start-page: 3801
  year: 2015
  end-page: 3806
  publication-title: ACS Catal.
– volume: 157
  start-page: 1529
  year: 2010
  end-page: 1536
  publication-title: J. Electrochem. Soc.
– volume: 318
  start-page: 1757
  year: 2007
  end-page: 1760
  publication-title: Science
– volume: 23
  start-page: 135
  year: 1993
  end-page: 140
  publication-title: J. Appl. Electrochem.
– volume: 225
  start-page: 238
  year: 2018
  end-page: 242
  publication-title: Appl. Catal. B
– volume: 10
  start-page: 2289
  year: 2010
  end-page: 2295
  publication-title: Nano Lett.
– volume: 78
  start-page: 2007
  year: 2013
  end-page: 2015
  publication-title: J. Serb. Chem. Soc.
– volume: 100
  start-page: 6715
  year: 1996
  end-page: 6721
  publication-title: J. Phys. Chem.
– volume: 31
  start-page: 456
  year: 2017
  end-page: 561
  publication-title: Nano Energy
– volume: 361
  start-page: 241
  year: 2003
  end-page: 257
  publication-title: Philos. Trans. R. Soc. London Ser. A
– volume: 7
  start-page: 7196
  year: 2017
  end-page: 7225
  publication-title: ACS Catal.
– volume: 5
  start-page: 9246
  year: 2012
  end-page: 9256
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 1
  year: 2002
  end-page: 308
  publication-title: Surf. Sci. Rep.
– volume: 134
  start-page: 10228
  year: 2012
  end-page: 10236
  publication-title: J. Am. Chem. Soc.
– volume: 103
  start-page: 8568
  year: 1999
  end-page: 8577
  publication-title: J. Phys. Chem. B
– start-page: 95
  year: 1982
– volume: 16
  start-page: 14
  year: 2012
  end-page: 27
  publication-title: Catal. Surv. Asia
– volume: 91
  start-page: 3311
  year: 1995
  end-page: 3325
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 144
  start-page: 3034
  year: 1997
  end-page: 3041
  publication-title: J. Electrochem. Soc.
– start-page: 37
  year: 2005
  end-page: 442
– volume: 2
  start-page: 2733
  year: 2011
  end-page: 2736
  publication-title: J. Phys. Chem. Lett.
– volume: 110
  start-page: 6474
  year: 2010
  end-page: 6502
  publication-title: Chem. Rev.
– volume: 47
  start-page: 255
  year: 1973
  end-page: 264
  publication-title: J. Electroanal. Chem.
– volume: 6
  start-page: 6430
  year: 2015
  publication-title: Nat. Commun.
– volume: 11
  start-page: 550
  year: 2012
  end-page: 557
  publication-title: Nat. Mater.
– volume: 109
  start-page: 1346
  year: 2009
  end-page: 1370
  publication-title: Chem. Rev.
– volume: 12
  start-page: 727
  year: 1987
  end-page: 752
  publication-title: Int. J. Hydrogen Energy
– volume: 161
  start-page: 1448
  year: 2014
  end-page: 1457
  publication-title: J. Electrochem. Soc.
– volume: 36
  start-page: 307
  year: 2010
  end-page: 326
  publication-title: Prog. Energy Combust. Sci.
– volume: 104
  start-page: 4044
  year: 1982
  end-page: 4052
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 1739
  year: 1994
  end-page: 1747
  publication-title: Electrochim. Acta
– volume: 64
  start-page: 1069
  year: 2014
  end-page: 1080
  publication-title: ECS Trans.
– volume: 88
  start-page: 1423
  year: 1991
  end-page: 1452
  publication-title: J. Chim. Phys.
– volume: 2
  start-page: 17031
  year: 2017
  publication-title: Nat. Energy
– volume: 8
  start-page: 15437
  year: 2017
  publication-title: Nat. Commun.
– volume: 8
  start-page: 15131
  year: 2017
  publication-title: Nat. Commun.
– volume: 253
  start-page: 257
  year: 1975
  end-page: 258
  publication-title: Nature
– volume: 32
  start-page: 3797
  year: 2007
  end-page: 3810
  publication-title: Int. J. Hydrogen Energy
– volume: 47
  start-page: 3571
  year: 2002
  end-page: 3594
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 11741
  year: 2016
  publication-title: Nat. Commun.
– volume: 6
  start-page: 951
  year: 2015
  end-page: 957
  publication-title: J. Phys. Chem. Lett.
– volume: 101
  start-page: 5405
  year: 1997
  end-page: 5413
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 944
  year: 1987
  end-page: 947
  publication-title: J. Vac. Sci. Technol. A
– volume: 603
  start-page: L15
  year: 2009
  end-page: L18
  publication-title: Surf. Sci.
– year: 1994
– volume: 23
  start-page: 661
  year: 1998
  end-page: 666
  publication-title: Int. J. Hydrogen Energy
– volume: 26
  start-page: 397
  year: 1996
  end-page: 402
  publication-title: J. Appl. Electrochem.
– volume: 21
  start-page: 1699
  year: 2007
  end-page: 1706
  publication-title: Energy Fuels
– volume: 461
  start-page: 80
  year: 1999
  end-page: 89
  publication-title: J. Electroanal. Chem.
– volume: 5
  start-page: 300
  year: 2013
  end-page: 306
  publication-title: Nat. Chem.
– volume: 7
  start-page: 15716
  year: 2015
  end-page: 15725
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 2986
  year: 2018
  publication-title: Sci. Rep.
– volume: 27
  start-page: 611
  year: 2002
  end-page: 619
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  start-page: 1601390
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 164
  start-page: 1307
  year: 2017
  end-page: 1315
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 269
  year: 1979
  end-page: 283
  publication-title: J. Appl. Electrochem.
– volume: 7
  start-page: 211
  year: 1987
  end-page: 385
  publication-title: Surf. Sci. Rep.
– volume: 163
  start-page: 3197
  year: 2016
  end-page: 3208
  publication-title: J. Electrochem. Soc.
– volume: 150
  start-page: 93
  year: 2002
  end-page: 103
  publication-title: Solid State Ionics
– volume: 343
  start-page: 1339
  year: 2014
  end-page: 1343
  publication-title: Science
– volume: 334
  start-page: 1256
  year: 2011
  end-page: 1260
  publication-title: Science
– year: 2003
– volume: 12
  start-page: 15217
  year: 2010
  end-page: 15224
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 466
  year: 2009
  end-page: 472
  publication-title: Nat. Chem.
– volume: 60
  start-page: 89
  year: 1975
  end-page: 96
  publication-title: J. Electroanal. Chem.
– volume: 10
  start-page: 5072
  year: 2018
  end-page: 5077
  publication-title: Nanoscale
– volume: 45
  start-page: 4075
  year: 2000
  end-page: 4083
  publication-title: Electrochim. Acta
– volume: 43
  start-page: 4265
  year: 2018
  end-page: 4275
  publication-title: Int. J. Hydrogen Energy
– volume: 301
  start-page: 935
  year: 2003
  end-page: 938
  publication-title: Science
– volume: 5
  start-page: 1700464
  year: 2018
  publication-title: Adv. Sci.
– volume: 42
  start-page: 30470
  year: 2017
  end-page: 30492
  publication-title: Int. J. Hydrogen Energy
– volume: 31
  start-page: 171
  year: 2006
  end-page: 175
  publication-title: Int. J. Hydrogen Energy
– volume: 152
  start-page: 23
  year: 2005
  end-page: 26
  publication-title: J. Electrochem. Soc.
– volume: 29
  start-page: 29
  year: 2016
  publication-title: Nano Energy
– volume: 51 124
  start-page: 12495 12663
  year: 2012 2012
  end-page: 12498 12666
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 307
  year: 2012
  end-page: 325
  publication-title: J. Saudi Chem. Soc.
– volume: 74
  start-page: 3497
  year: 1952
  end-page: 3500
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 195
  year: 1955
  end-page: 199
  publication-title: J. Chem. Phys.
– start-page: 361
  year: 2010
  end-page: 367
– ident: e_1_2_9_24_1
  doi: 10.1016/S0022-0728(72)80485-6
– ident: e_1_2_9_52_2
  doi: 10.1002/ange.201204842
– ident: e_1_2_9_83_1
  doi: 10.1016/S0079-6816(97)00032-4
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ijhydene.2005.04.038
– ident: e_1_2_9_72_1
  doi: 10.1149/2.0501414jes
– ident: e_1_2_9_76_1
  doi: 10.1149/06403.1069ecst
– start-page: 95
  volume-title: The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis
  year: 1982
  ident: e_1_2_9_89_1
  contributor:
    fullname: Barteau M.
– ident: e_1_2_9_21_1
  doi: 10.1038/ncomms11741
– ident: e_1_2_9_14_1
  doi: 10.1016/S0022-0728(98)00161-2
– ident: e_1_2_9_33_1
  doi: 10.1016/S0360-3199(03)00043-0
– ident: e_1_2_9_13_1
  doi: 10.1016/S0022-0728(75)80205-1
– ident: e_1_2_9_70_1
  doi: 10.1016/j.ijhydene.2017.10.045
– ident: e_1_2_9_92_1
  doi: 10.1039/ft9959103311
– ident: e_1_2_9_93_1
  doi: 10.1016/j.jcat.2004.02.034
– ident: e_1_2_9_59_1
  doi: 10.1038/ncomms7430
– start-page: 361
  volume-title: Handbook of Fuel Cells
  year: 2010
  ident: e_1_2_9_68_1
  contributor:
    fullname: Breiter M. W.
– ident: e_1_2_9_16_1
  doi: 10.1016/j.pecs.2009.11.002
– ident: e_1_2_9_26_1
  doi: 10.1021/acs.jpclett.5b00306
– ident: e_1_2_9_48_1
  doi: 10.1126/science.1085721
– ident: e_1_2_9_5_1
  doi: 10.1016/j.jpowsour.2005.07.044
– ident: e_1_2_9_25_1
  doi: 10.1038/253257a0
– ident: e_1_2_9_51_1
  doi: 10.1038/nmat3313
– ident: e_1_2_9_61_1
  doi: 10.1002/aenm.201601390
– ident: e_1_2_9_43_1
  doi: 10.1016/0167-5729(87)90001-X
– ident: e_1_2_9_35_1
  doi: 10.1038/ncomms15437
– ident: e_1_2_9_23_1
  doi: 10.1063/1.1740527
– ident: e_1_2_9_67_1
  doi: 10.1149/2.0271611jes
– ident: e_1_2_9_81_1
  doi: 10.1116/1.574303
– ident: e_1_2_9_20_1
  doi: 10.1021/ja302439z
– ident: e_1_2_9_71_1
  doi: 10.1016/j.ijhydene.2018.01.051
– ident: e_1_2_9_28_1
  doi: 10.1016/S0167-2738(02)00266-7
– ident: e_1_2_9_62_1
  doi: 10.1021/acsami.5b00679
– ident: e_1_2_9_53_1
  doi: 10.1126/science.1211934
– ident: e_1_2_9_69_1
  doi: 10.1021/cr100246c
– ident: e_1_2_9_86_1
  doi: 10.1021/ja026014h
– ident: e_1_2_9_65_1
  doi: 10.1038/ncomms15131
– ident: e_1_2_9_87_1
  doi: 10.1021/cr8003828
– ident: e_1_2_9_6_1
  doi: 10.1016/S0360-3199(97)00109-2
– ident: e_1_2_9_50_1
  doi: 10.1038/nchem.1574
– ident: e_1_2_9_97_1
  doi: 10.1002/smll.200701295
– ident: e_1_2_9_80_1
  doi: 10.1051/jcp/1991881423
– ident: e_1_2_9_2_1
  doi: 10.1016/j.ijhydene.2007.05.027
– ident: e_1_2_9_10_1
  doi: 10.1021/ef060491u
– ident: e_1_2_9_73_1
  doi: 10.1149/1.1856988
– ident: e_1_2_9_37_1
  doi: 10.1039/FT9969203719
– ident: e_1_2_9_15_1
  doi: 10.2298/JSC131118136D
– ident: e_1_2_9_60_1
  doi: 10.1007/s40843-017-9035-8
– ident: e_1_2_9_91_1
  doi: 10.1021/acs.chemrev.5b00462
– ident: e_1_2_9_58_1
  doi: 10.1038/s41598-018-21396-9
– ident: e_1_2_9_47_1
  doi: 10.1016/j.susc.2008.11.014
– ident: e_1_2_9_31_1
  doi: 10.1007/BF00246950
– ident: e_1_2_9_41_1
  doi: 10.1016/S0013-4686(02)00329-8
– ident: e_1_2_9_32_1
  doi: 10.1016/0360-3199(87)90090-5
– ident: e_1_2_9_40_1
  doi: 10.1016/S0013-4686(00)00523-5
– ident: e_1_2_9_1_1
  doi: 10.1126/science.285.5428.687
– ident: e_1_2_9_54_1
  doi: 10.1149/2.0251713jes
– start-page: 37
  volume-title: Handbook of Chlor-Alkali Technology, Vol. 1
  year: 2005
  ident: e_1_2_9_11_1
  doi: 10.1007/0-306-48624-5_3
  contributor:
    fullname: O'Brien T.
– ident: e_1_2_9_57_1
  doi: 10.1016/j.nanoen.2016.11.048
– ident: e_1_2_9_46_1
  doi: 10.1126/science.1150038
– ident: e_1_2_9_74_1
  doi: 10.1038/nchem.367
– ident: e_1_2_9_19_1
  doi: 10.1002/advs.201700464
– start-page: 1
  volume-title: Modern Chlor-Alkali Technology, Vol. 4
  year: 2001
  ident: e_1_2_9_12_1
  doi: 10.1002/9780470999479
  contributor:
    fullname: Moorhouse J.
– ident: e_1_2_9_55_1
  doi: 10.1021/cs501835c
– ident: e_1_2_9_39_1
  doi: 10.1149/1.3483106
– ident: e_1_2_9_95_1
  doi: 10.1016/j.jscs.2011.01.015
– ident: e_1_2_9_22_1
  doi: 10.1021/ja01134a013
– ident: e_1_2_9_52_1
  doi: 10.1002/anie.201204842
– ident: e_1_2_9_29_1
  doi: 10.1016/j.nanoen.2016.04.017
– ident: e_1_2_9_85_1
  doi: 10.1021/jz201215u
– ident: e_1_2_9_77_1
  doi: 10.1039/c0cp00104j
– ident: e_1_2_9_84_1
  doi: 10.1021/jp9533382
– ident: e_1_2_9_66_1
  doi: 10.1039/C7NR09116H
– ident: e_1_2_9_79_1
  doi: 10.1149/1.1837955
– ident: e_1_2_9_75_1
  doi: 10.1021/jp991826u
– ident: e_1_2_9_78_1
  doi: 10.1038/nenergy.2017.31
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ijhydene.2007.04.037
– ident: e_1_2_9_27_1
  doi: 10.1039/c2ee21754f
– ident: e_1_2_9_90_1
  doi: 10.1021/ja00379a002
– ident: e_1_2_9_44_1
  doi: 10.1016/S0167-5729(01)00020-6
– ident: e_1_2_9_64_1
  doi: 10.1126/science.1249061
– volume-title: The Surface Science of Metal Oxides
  year: 1994
  ident: e_1_2_9_45_1
  contributor:
    fullname: Henrich V. E.
– ident: e_1_2_9_98_1
  doi: 10.1007/s10563-011-9130-z
– ident: e_1_2_9_18_1
  doi: 10.1007/BF01112480
– ident: e_1_2_9_34_1
  doi: 10.1021/acscatal.7b01800
– ident: e_1_2_9_30_1
  doi: 10.1007/BF00251324
– ident: e_1_2_9_17_1
  doi: 10.1016/S0360-3199(97)00122-5
– ident: e_1_2_9_96_1
  doi: 10.1039/C5RA06778B
– ident: e_1_2_9_7_1
  doi: 10.1016/S0360-3199(01)00154-9
– volume-title: Handbook of Fuel Cells: Fundamentals, Technology and Applications
  year: 2003
  ident: e_1_2_9_9_1
  contributor:
    fullname: Lasia A.
– ident: e_1_2_9_88_1
  doi: 10.1038/nchem.330
– ident: e_1_2_9_94_1
  doi: 10.1021/nl101807g
– ident: e_1_2_9_42_1
  doi: 10.1038/nmat1752
– ident: e_1_2_9_63_1
  doi: 10.1039/C6TA05411K
– ident: e_1_2_9_3_1
  doi: 10.1016/S0360-3199(01)00177-X
– ident: e_1_2_9_49_1
  doi: 10.1021/ja303191r
– ident: e_1_2_9_82_1
  doi: 10.1016/S0022-0728(73)80452-8
– ident: e_1_2_9_99_1
  doi: 10.1098/rsta.2002.1126
– ident: e_1_2_9_38_1
  doi: 10.1021/jp970930d
– ident: e_1_2_9_56_1
  doi: 10.1016/j.apcatb.2017.11.054
– ident: e_1_2_9_36_1
  doi: 10.1016/0013-4686(94)85159-X
SSID ssj0060966
Score 2.5634341
SecondaryResourceType review_article
Snippet The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of...
The design and synthesis of Pt-based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of...
Abstract The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2643
SubjectTerms Alternative energy
bifunctional catalysts
Catalysis
Catalysts
Chemical synthesis
Electrocatalysts
electrolytes
Energy of dissociation
Energy technology
hydrogen
Hydrogen evolution reactions
Hydrogen-based energy
Nanomaterials
nickel
Nickel compounds
platinum
Reaction kinetics
Reaction mechanisms
Title Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201800781
https://www.ncbi.nlm.nih.gov/pubmed/29943506
https://www.proquest.com/docview/2091550163
https://search.proquest.com/docview/2059548305
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA3iRje-H-OLCIK6qLZJm0mXMs4wCI7iA9yVNE1AlI7YjjCu9Bv8Q7_Ee9tpdXQh6K4lSXub3MdpbnJCyE7iBiYQIQdL08zxtUkcCHrM8ZpGBrHxGNOY0T3tie61f3IT3HzZxV_yQ9QTbmgZhb9GA1dxdvhJGqqzDCkIPYlRDv9_PN7ENV3HFzV_lAB8XmwvksJ3AsG9irXRZYfjzcej0g-oOY5ci9DTmSWqErpccXJ3MMjjA_38jc_xP181R2ZGuJQelYo0TyZMukCmWtVxcIvk9TynKk3oef7-8ta73Tvr7jPaLg_RSUxGAfxSAJO0O0we-6CVtP000mp6YcrdE_Q2pUf3dwqlrJreDwHrFg--wpQFBW_fz0BvTFLVKCaYhlmeLZHrTvuq1XVG5zc4mgNschJXu8paw90YgIcfAxhQAOm0DF3X2tAqyUIWWGUl59pXJgytVMgPyJCXz2vyZTKZ9lOzSmhorPFCGfi2qXythAJXIoz00KFooUWD7FbjFz2UNB1RScjMIuzSqO7SBtmohjcamWsGpUiTD-iXN8h2XQwdjNkTlZr-AOsESI4H_rFBVkq1qF8FMR1gpwtisGJwf5Ehal1etuq7tb80WifTeI2z24xtkMn8cWA2AR7l8VZhAh-cJgcW
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5V9EAvbSltWQqtkZDaHgKJnXidI1oWpS0sCBapt8hxbAmBshXJIm1P8Ay8IU_CTLJJte2hUntMbCcTe36-jO3PANu5H9lIxgItzXAvNDb3MOhxL-hbFWU24NzQjO7RSCbn4dfvUbuakPbCNPwQXcKNLKP212TglJDe_cUaasqSOAgDRWEOf4Ceos0LOr1h_7RjkJKI0OsNRkqGXiRF0PI2-nx3sf1iXPoDbC5i1zr4HLyArBW7WXNyuTOtsh3z8zdGx__6rpfwfA5N2V6jSyvwxBavYHnQngi3CncnFdNFzk6qh9v70cWn4-QzZ8PmHJ3clgzxL0M8yZJZfj1BxWTDm7lis1PbbKBgFwXbu7rUJGbb9GqGcLd-8JhmLRg6_EmJqmPztkadY5qVVfkazg-G40HizY9w8IxA5OTlvvG1c1b4GWKPMEM8oBHVGRX7vnOx04rHPHLaKSFMqG0cO6WJIpATNV_QF29gqZgUdg1YbJ0NYhWFrq9Do6VGbyKtCsinGGlkDz62A5j-aJg60oaTmafUpWnXpT3YaMc3nVtsiaXElI8AWPRgqyvGDqYJFF3YyZTqRMSPhy6yB28bvehehWEdkaePYvB6dP8iQzo4Oxt0V-v_0ugDLCfjo8P08Mvo2zt4Rvcp2c35BixV11O7iWipyt7X9vAIAQwLLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bT9swFMePEEhsL1w2BmXAjDRp4yElcRLXeURdq46xruIi8RY5ji0hUIpIOql72j7DvuE-yc5JmoyOByR4TGM3rn0uv9j13wDvUzc0oYh89DTNnUCb1MGkxx2vY2SYGI9zTSu6X4dicBEcX4aX93bxV_oQzYQbeUYZr8nBb1N7-E80VOc5SRB6krIcvv8sBQLxl7DotBGQEgjo5f4iKQInFL5Xyza6_HC-_nxaesCa8-ha5p7-Kqi61dVfTq7bkyJp6x__CTo-52etwcoMTNlRZUnrsGCyV_CiW58H9xp-jQqmspSNij8_fw-vPn4bHHDWq07RSU3OkH4Z0iQbTNO7MZol632fmTU7NdX2CXaVsaOba0WtrKveTBF2yy8-pzULhuF-nKPhmLQuUc4wTfMi34CLfu-8O3BmBzg42kduclJXu8pa47sJkkeQIA0oZDotI9e1NrJK8oiHVlnp-zpQJoqsVCQQyEmYz-v4b2AxG2dmC1hkrPEiGQa2owKthMJYIoz0KKJooUULPtTjF99WOh1xpcjMY-rSuOnSFuzUwxvP_DXHu6STj_jrt2C_uY0dTMsnKjPjCZUJSR0PA2QLNiuzaB6FSR2508Vm8HJwH2lD3D076zZX20-p9A6WR5_68cnn4Ze38JI-ppluzndgsbibmF1EpSLZK73hL9KmCd0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pt+and+Pt-Ni%28OH%29+2+Electrodes+for+the+Hydrogen+Evolution+Reaction+in+Alkaline+Electrolytes+and+Their+Nanoscaled+Electrocatalysts&rft.jtitle=ChemSusChem&rft.au=Ruqia%2C+Bibi&rft.au=Choi%2C+Sang-Il&rft.date=2018-08-22&rft.eissn=1864-564X&rft.volume=11&rft.issue=16&rft.spage=2643&rft_id=info:doi/10.1002%2Fcssc.201800781&rft_id=info%3Apmid%2F29943506&rft.externalDocID=29943506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon