Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts
The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen‐based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is...
Saved in:
Published in | ChemSusChem Vol. 11; no. 16; pp. 2643 - 2653 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
22.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen‐based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is limited in alkaline solutions owing to a slow rate for water dissociation. Therefore, many research groups have intensively investigated reaction mechanisms and developed system designs and efficient Pt‐based catalysts to enhance the alkaline HER. Herein, we summarize the catalytic surface specificity of Pt and Pt–Ni(OH)2 materials to control the kinetics of the alkaline HER. In particular, we increase our understanding of Ni(OH)2‐modified Pt surfaces and the corresponding nanoscaled Pt–Ni(OH)2 electrocatalysts to improve the sluggish water‐dissociation step, and this knowledge will guide us to future sustainable energy applications of advanced nanomaterials.
Alkaline hydrogen: The alkaline hydrogen evolution reaction (HER) at Pt surfaces proceeds through Volmer–Heyrovsky and Volmer–Tafel mechanisms. If the Pt surface is modified with Ni(OH)2 clusters, the Volmer–Tafel mechanism with a promoted rate‐determining Volmer step and subsequent H2 generation will dominate. Benefitting from bifunctionality, the nanoscaled Pt–Ni(OH)2‐based electrocatalyst shows highly improved HER performance in alkaline electrolytes. |
---|---|
AbstractList | The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen‐based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is limited in alkaline solutions owing to a slow rate for water dissociation. Therefore, many research groups have intensively investigated reaction mechanisms and developed system designs and efficient Pt‐based catalysts to enhance the alkaline HER. Herein, we summarize the catalytic surface specificity of Pt and Pt–Ni(OH)2 materials to control the kinetics of the alkaline HER. In particular, we increase our understanding of Ni(OH)2‐modified Pt surfaces and the corresponding nanoscaled Pt–Ni(OH)2 electrocatalysts to improve the sluggish water‐dissociation step, and this knowledge will guide us to future sustainable energy applications of advanced nanomaterials. The design and synthesis of Pt-based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen-based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is limited in alkaline solutions owing to a slow rate for water dissociation. Therefore, many research groups have intensively investigated reaction mechanisms and developed system designs and efficient Pt-based catalysts to enhance the alkaline HER. Herein, we summarize the catalytic surface specificity of Pt and Pt-Ni(OH) materials to control the kinetics of the alkaline HER. In particular, we increase our understanding of Ni(OH) -modified Pt surfaces and the corresponding nanoscaled Pt-Ni(OH) electrocatalysts to improve the sluggish water-dissociation step, and this knowledge will guide us to future sustainable energy applications of advanced nanomaterials. Abstract The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen‐based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is limited in alkaline solutions owing to a slow rate for water dissociation. Therefore, many research groups have intensively investigated reaction mechanisms and developed system designs and efficient Pt‐based catalysts to enhance the alkaline HER. Herein, we summarize the catalytic surface specificity of Pt and Pt–Ni(OH) 2 materials to control the kinetics of the alkaline HER. In particular, we increase our understanding of Ni(OH) 2 ‐modified Pt surfaces and the corresponding nanoscaled Pt–Ni(OH) 2 electrocatalysts to improve the sluggish water‐dissociation step, and this knowledge will guide us to future sustainable energy applications of advanced nanomaterials. The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of hydrogen‐based alternative energy technologies. Although Pt is considered to be the most active catalyst for the HER, its reaction performance is limited in alkaline solutions owing to a slow rate for water dissociation. Therefore, many research groups have intensively investigated reaction mechanisms and developed system designs and efficient Pt‐based catalysts to enhance the alkaline HER. Herein, we summarize the catalytic surface specificity of Pt and Pt–Ni(OH)2 materials to control the kinetics of the alkaline HER. In particular, we increase our understanding of Ni(OH)2‐modified Pt surfaces and the corresponding nanoscaled Pt–Ni(OH)2 electrocatalysts to improve the sluggish water‐dissociation step, and this knowledge will guide us to future sustainable energy applications of advanced nanomaterials. Alkaline hydrogen: The alkaline hydrogen evolution reaction (HER) at Pt surfaces proceeds through Volmer–Heyrovsky and Volmer–Tafel mechanisms. If the Pt surface is modified with Ni(OH)2 clusters, the Volmer–Tafel mechanism with a promoted rate‐determining Volmer step and subsequent H2 generation will dominate. Benefitting from bifunctionality, the nanoscaled Pt–Ni(OH)2‐based electrocatalyst shows highly improved HER performance in alkaline electrolytes. |
Author | Choi, Sang‐Il Ruqia, Bibi |
Author_xml | – sequence: 1 givenname: Bibi orcidid: 0000-0003-3326-8997 surname: Ruqia fullname: Ruqia, Bibi organization: Kyungpook National University – sequence: 2 givenname: Sang‐Il orcidid: 0000-0002-8280-3100 surname: Choi fullname: Choi, Sang‐Il email: sichoi@knu.ac.kr organization: Kyungpook National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29943506$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URH9gyxJZYlMWCdf2eGIvqygQpKqtaJHYjRzPNZ3i2MX2gGYHz8Ab8iRMSBMkNqzuWXzn05XOMTkIMSAhzxlMGQB_bXO2Uw5MAcwUe0SOmKqriayrjwf7LNghOc75DqAGXddPyCHXuhIS6iPy46pQE1p6VX59_3nRnV4uX3G68GhLii1m6mKi5RbpcmhT_ISBLr5G35cuBvoejf0TukDP_Gfju4C7qh_KWN6Ib26xS_TChJit8djuCGuK8UMu-Sl57IzP-OzhnpAPbxY38-Xk_PLtu_nZ-cQKLtmkBQvGORSwAsWqVcVrA6Ct0gDOaWcU11w645QQtjKotVOGVyA4zGaSzcQJOd1671P80mMuzbrLFr03AWOfGw5Sy0oJkCP68h_0LvYpjN-NlGZSAqvFSE23lE0x54SuuU_d2qShYdBsxmk24zT7ccbCiwdtv1pju8d3a4yA3gLfOo_Df3TN_Pp6_lf-G39Inf4 |
CitedBy_id | crossref_primary_10_1002_celc_202100703 crossref_primary_10_1016_j_electacta_2024_144451 crossref_primary_10_1016_j_gee_2021_04_003 crossref_primary_10_1039_D3TA05519A crossref_primary_10_20964_2021_07_38 crossref_primary_10_1007_s11051_020_04980_x crossref_primary_10_1016_j_jssc_2020_121596 crossref_primary_10_1007_s11581_023_05269_4 crossref_primary_10_1016_j_coelec_2022_101121 crossref_primary_10_1002_advs_202301098 crossref_primary_10_1002_adma_202105248 crossref_primary_10_1039_D1TC04197E crossref_primary_10_1039_D3QI01656K crossref_primary_10_1039_D3NR01940C crossref_primary_10_1016_j_cej_2020_127275 crossref_primary_10_1039_D2NJ05946K crossref_primary_10_1002_aenm_202003188 crossref_primary_10_34133_2020_9068270 crossref_primary_10_1088_1361_6528_acca23 crossref_primary_10_1039_D1TA00640A crossref_primary_10_3390_catal13071064 crossref_primary_10_1021_acscatal_0c02301 crossref_primary_10_1038_s41467_023_43118_0 crossref_primary_10_3390_ijms25074034 crossref_primary_10_1016_j_ijhydene_2024_06_073 crossref_primary_10_1016_j_nanoen_2021_105850 crossref_primary_10_1002_ange_202000383 crossref_primary_10_1039_D1TA06548C crossref_primary_10_1039_D3RA00340J crossref_primary_10_1039_C9TA03220G crossref_primary_10_1016_j_gee_2020_10_013 crossref_primary_10_3390_jcs7080328 crossref_primary_10_3390_c7020032 crossref_primary_10_1002_adfm_202106149 crossref_primary_10_1007_s12274_021_3582_x crossref_primary_10_1039_D1TA10519A crossref_primary_10_1016_j_coelec_2023_101303 crossref_primary_10_1016_j_apenergy_2023_121755 crossref_primary_10_1016_j_ijhydene_2023_01_169 crossref_primary_10_1002_cssc_201901539 crossref_primary_10_1016_j_jelechem_2024_118029 crossref_primary_10_1016_j_apcatb_2022_121434 crossref_primary_10_1021_jacs_9b09229 crossref_primary_10_1016_j_mcat_2022_112481 crossref_primary_10_1016_j_electacta_2019_134680 crossref_primary_10_1002_adfm_202209134 crossref_primary_10_1016_j_apcatb_2020_118988 crossref_primary_10_1016_j_cej_2023_145630 crossref_primary_10_1016_j_pnsc_2019_05_009 crossref_primary_10_1021_acs_jpcc_1c02770 crossref_primary_10_1557_mrs_2020_169 crossref_primary_10_1021_acs_iecr_2c03965 crossref_primary_10_1016_j_ijhydene_2022_09_111 crossref_primary_10_3389_fchem_2022_1073175 crossref_primary_10_1016_j_apcatb_2023_122814 crossref_primary_10_1016_j_ijhydene_2020_07_047 crossref_primary_10_1021_acsomega_9b03550 crossref_primary_10_3390_nano13182613 crossref_primary_10_1016_j_apcatb_2021_120434 crossref_primary_10_1039_D2NR04407B crossref_primary_10_1002_slct_202200654 crossref_primary_10_1021_acssuschemeng_1c02421 crossref_primary_10_1038_s41467_022_31561_4 crossref_primary_10_1002_celc_201900507 crossref_primary_10_1002_adfm_202306100 crossref_primary_10_1016_j_cej_2021_130483 crossref_primary_10_1002_nano_202000189 crossref_primary_10_1016_j_apcatb_2022_121654 crossref_primary_10_1002_sstr_202100153 crossref_primary_10_1002_smll_202201333 crossref_primary_10_1016_j_apcatb_2024_124074 crossref_primary_10_1039_C9NR03401C crossref_primary_10_1016_j_solidstatesciences_2020_106143 crossref_primary_10_1039_D3SE00403A crossref_primary_10_1002_cjoc_202300414 crossref_primary_10_1016_j_ijhydene_2022_06_036 crossref_primary_10_1016_j_apsusc_2022_155523 crossref_primary_10_1039_D0TA10235K crossref_primary_10_1021_acs_jpclett_2c02132 crossref_primary_10_1134_S1023193524700095 crossref_primary_10_1021_acsaem_0c02505 crossref_primary_10_1016_j_matchemphys_2024_129553 crossref_primary_10_1039_D2NR05881B crossref_primary_10_1016_j_rser_2022_112323 crossref_primary_10_1016_j_apcatb_2019_118567 crossref_primary_10_1039_D1RA02240G crossref_primary_10_1016_j_surfin_2024_103903 crossref_primary_10_1039_D2NJ00664B crossref_primary_10_1002_anie_202000383 crossref_primary_10_1039_D3CS00292F crossref_primary_10_1016_j_apsusc_2023_157433 crossref_primary_10_1021_acssuschemeng_1c04472 crossref_primary_10_1016_j_ijhydene_2022_03_196 crossref_primary_10_1007_s11426_022_1371_x crossref_primary_10_1039_D3QM00600J crossref_primary_10_1016_j_ijhydene_2021_10_076 crossref_primary_10_1002_aenm_202003192 crossref_primary_10_1039_D0CC03016C crossref_primary_10_1039_D2CP00792D |
Cites_doi | 10.1016/S0022-0728(72)80485-6 10.1002/ange.201204842 10.1016/S0079-6816(97)00032-4 10.1016/j.ijhydene.2005.04.038 10.1149/2.0501414jes 10.1149/06403.1069ecst 10.1038/ncomms11741 10.1016/S0022-0728(98)00161-2 10.1016/S0360-3199(03)00043-0 10.1016/S0022-0728(75)80205-1 10.1016/j.ijhydene.2017.10.045 10.1039/ft9959103311 10.1016/j.jcat.2004.02.034 10.1038/ncomms7430 10.1016/j.pecs.2009.11.002 10.1021/acs.jpclett.5b00306 10.1126/science.1085721 10.1016/j.jpowsour.2005.07.044 10.1038/253257a0 10.1038/nmat3313 10.1002/aenm.201601390 10.1016/0167-5729(87)90001-X 10.1038/ncomms15437 10.1063/1.1740527 10.1149/2.0271611jes 10.1116/1.574303 10.1021/ja302439z 10.1016/j.ijhydene.2018.01.051 10.1016/S0167-2738(02)00266-7 10.1021/acsami.5b00679 10.1126/science.1211934 10.1021/cr100246c 10.1021/ja026014h 10.1038/ncomms15131 10.1021/cr8003828 10.1016/S0360-3199(97)00109-2 10.1038/nchem.1574 10.1002/smll.200701295 10.1051/jcp/1991881423 10.1016/j.ijhydene.2007.05.027 10.1021/ef060491u 10.1149/1.1856988 10.1039/FT9969203719 10.2298/JSC131118136D 10.1007/s40843-017-9035-8 10.1021/acs.chemrev.5b00462 10.1038/s41598-018-21396-9 10.1016/j.susc.2008.11.014 10.1007/BF00246950 10.1016/S0013-4686(02)00329-8 10.1016/0360-3199(87)90090-5 10.1016/S0013-4686(00)00523-5 10.1126/science.285.5428.687 10.1149/2.0251713jes 10.1007/0-306-48624-5_3 10.1016/j.nanoen.2016.11.048 10.1126/science.1150038 10.1038/nchem.367 10.1002/advs.201700464 10.1002/9780470999479 10.1021/cs501835c 10.1149/1.3483106 10.1016/j.jscs.2011.01.015 10.1021/ja01134a013 10.1002/anie.201204842 10.1016/j.nanoen.2016.04.017 10.1021/jz201215u 10.1039/c0cp00104j 10.1021/jp9533382 10.1039/C7NR09116H 10.1149/1.1837955 10.1021/jp991826u 10.1038/nenergy.2017.31 10.1016/j.ijhydene.2007.04.037 10.1039/c2ee21754f 10.1021/ja00379a002 10.1016/S0167-5729(01)00020-6 10.1126/science.1249061 10.1007/s10563-011-9130-z 10.1007/BF01112480 10.1021/acscatal.7b01800 10.1007/BF00251324 10.1016/S0360-3199(97)00122-5 10.1039/C5RA06778B 10.1016/S0360-3199(01)00154-9 10.1038/nchem.330 10.1021/nl101807g 10.1038/nmat1752 10.1039/C6TA05411K 10.1016/S0360-3199(01)00177-X 10.1021/ja303191r 10.1016/S0022-0728(73)80452-8 10.1098/rsta.2002.1126 10.1021/jp970930d 10.1016/j.apcatb.2017.11.054 10.1016/0013-4686(94)85159-X |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.201800781 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 2653 |
ExternalDocumentID | 10_1002_cssc_201800781 29943506 CSSC201800781 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3251-d0c0affe30b0814b426a009c8900ff9fa82925faf833c4ae99f8a240320775173 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 |
IngestDate | Wed Jul 24 13:14:32 EDT 2024 Thu Oct 10 18:31:02 EDT 2024 Fri Aug 23 02:27:26 EDT 2024 Sat Sep 28 08:36:24 EDT 2024 Sat Aug 24 01:03:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | bifunctional catalysts nickel platinum hydrogen electrolytes |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3251-d0c0affe30b0814b426a009c8900ff9fa82925faf833c4ae99f8a240320775173 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-8280-3100 0000-0003-3326-8997 |
PMID | 29943506 |
PQID | 2091550163 |
PQPubID | 986333 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2059548305 proquest_journals_2091550163 crossref_primary_10_1002_cssc_201800781 pubmed_primary_29943506 wiley_primary_10_1002_cssc_201800781_CSSC201800781 |
PublicationCentury | 2000 |
PublicationDate | August 22, 2018 |
PublicationDateYYYYMMDD | 2018-08-22 |
PublicationDate_xml | – month: 08 year: 2018 text: August 22, 2018 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 7 2017; 42 2010; 10 1993; 23 2017; 8 2006; 31 2002; 150 2017; 2 2000; 45 1987; 5 1952; 74 1987; 7 1999; 285 1996; 100 1982; 104 2012; 16 2008; 4 2007; 32 2013; 5 2018; 43 2012; 11 2014; 64 2002; 47 2017; 31 2018; 8 2018; 5 2012; 134 2001 1997; 55 1991; 88 2012 2012; 51 124 2002; 46 1973; 47 1997; 144 1997; 101 2010; 157 2010; 110 2014; 161 1982 2016; 116 2017; 164 1994; 39 2007; 21 2009; 603 1996; 26 1979; 9 2003; 361 2011; 334 1987; 12 2015; 6 2015; 5 2010; 36 2017; 60 2005; 152 2011; 2 1995; 91 2004; 224 2010 2018; 225 1999; 461 2006; 5 2005 1994 1999; 103 2003 1996; 92 1975; 253 2015; 7 1998; 23 1955; 23 2016; 163 2006; 157 2002; 27 2016; 4 2016; 7 2013; 78 2002; 124 2003; 28 1975; 60 2016; 29 2003; 301 2007; 318 2018; 10 2009; 1 2009; 109 2012; 5 1972; 39 2014; 343 e_1_2_9_52_2 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Henrich V. E. (e_1_2_9_45_1) 1994 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 Moorhouse J. (e_1_2_9_12_1) 2001 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 Barteau M. (e_1_2_9_89_1) 1982 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 Lasia A. (e_1_2_9_9_1) 2003 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 O'Brien T. (e_1_2_9_11_1) 2005 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 Breiter M. W. (e_1_2_9_68_1) 2010 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 157 start-page: 411 year: 2006 end-page: 421 publication-title: J. Power Sources – volume: 28 start-page: 1345 year: 2003 end-page: 1352 publication-title: Int. J. Hydrogen Energy – volume: 1 start-page: 552 year: 2009 end-page: 556 publication-title: Nat. Chem. – volume: 27 start-page: 731 year: 2002 end-page: 740 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 53381 year: 2015 end-page: 53403 publication-title: RSC Adv. – volume: 224 start-page: 206 year: 2004 end-page: 217 publication-title: J. Catal. – volume: 116 start-page: 3594 year: 2016 end-page: 3657 publication-title: Chem. Rev. – volume: 32 start-page: 1605 year: 2007 end-page: 1610 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 310 year: 2008 end-page: 325 publication-title: Small – volume: 124 start-page: 12302 year: 2002 end-page: 12311 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 761 year: 1998 end-page: 765 publication-title: Int. J. Hydrogen Energy – start-page: 1 year: 2001 end-page: 15 – volume: 39 start-page: 163 year: 1972 end-page: 184 publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 134 start-page: 9054 year: 2012 end-page: 9057 publication-title: J. Am. Chem. Soc. – volume: 92 start-page: 3719 year: 1996 end-page: 3725 publication-title: J. Chem. Soc. Faraday Trans. – volume: 285 start-page: 687 year: 1999 end-page: 689 publication-title: Science – volume: 55 start-page: 271 year: 1997 end-page: 340 publication-title: Prog. Surf. Sci. – volume: 4 start-page: 12392 year: 2016 end-page: 12397 publication-title: J. Mater. Chem. A – volume: 60 start-page: 1121 year: 2017 end-page: 1128 publication-title: Sci. China Mater. – volume: 5 start-page: 909 year: 2006 end-page: 913 publication-title: Nat. Mater. – volume: 5 start-page: 3801 year: 2015 end-page: 3806 publication-title: ACS Catal. – volume: 157 start-page: 1529 year: 2010 end-page: 1536 publication-title: J. Electrochem. Soc. – volume: 318 start-page: 1757 year: 2007 end-page: 1760 publication-title: Science – volume: 23 start-page: 135 year: 1993 end-page: 140 publication-title: J. Appl. Electrochem. – volume: 225 start-page: 238 year: 2018 end-page: 242 publication-title: Appl. Catal. B – volume: 10 start-page: 2289 year: 2010 end-page: 2295 publication-title: Nano Lett. – volume: 78 start-page: 2007 year: 2013 end-page: 2015 publication-title: J. Serb. Chem. Soc. – volume: 100 start-page: 6715 year: 1996 end-page: 6721 publication-title: J. Phys. Chem. – volume: 31 start-page: 456 year: 2017 end-page: 561 publication-title: Nano Energy – volume: 361 start-page: 241 year: 2003 end-page: 257 publication-title: Philos. Trans. R. Soc. London Ser. A – volume: 7 start-page: 7196 year: 2017 end-page: 7225 publication-title: ACS Catal. – volume: 5 start-page: 9246 year: 2012 end-page: 9256 publication-title: Energy Environ. Sci. – volume: 46 start-page: 1 year: 2002 end-page: 308 publication-title: Surf. Sci. Rep. – volume: 134 start-page: 10228 year: 2012 end-page: 10236 publication-title: J. Am. Chem. Soc. – volume: 103 start-page: 8568 year: 1999 end-page: 8577 publication-title: J. Phys. Chem. B – start-page: 95 year: 1982 – volume: 16 start-page: 14 year: 2012 end-page: 27 publication-title: Catal. Surv. Asia – volume: 91 start-page: 3311 year: 1995 end-page: 3325 publication-title: J. Chem. Soc. Faraday Trans. – volume: 144 start-page: 3034 year: 1997 end-page: 3041 publication-title: J. Electrochem. Soc. – start-page: 37 year: 2005 end-page: 442 – volume: 2 start-page: 2733 year: 2011 end-page: 2736 publication-title: J. Phys. Chem. Lett. – volume: 110 start-page: 6474 year: 2010 end-page: 6502 publication-title: Chem. Rev. – volume: 47 start-page: 255 year: 1973 end-page: 264 publication-title: J. Electroanal. Chem. – volume: 6 start-page: 6430 year: 2015 publication-title: Nat. Commun. – volume: 11 start-page: 550 year: 2012 end-page: 557 publication-title: Nat. Mater. – volume: 109 start-page: 1346 year: 2009 end-page: 1370 publication-title: Chem. Rev. – volume: 12 start-page: 727 year: 1987 end-page: 752 publication-title: Int. J. Hydrogen Energy – volume: 161 start-page: 1448 year: 2014 end-page: 1457 publication-title: J. Electrochem. Soc. – volume: 36 start-page: 307 year: 2010 end-page: 326 publication-title: Prog. Energy Combust. Sci. – volume: 104 start-page: 4044 year: 1982 end-page: 4052 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 1739 year: 1994 end-page: 1747 publication-title: Electrochim. Acta – volume: 64 start-page: 1069 year: 2014 end-page: 1080 publication-title: ECS Trans. – volume: 88 start-page: 1423 year: 1991 end-page: 1452 publication-title: J. Chim. Phys. – volume: 2 start-page: 17031 year: 2017 publication-title: Nat. Energy – volume: 8 start-page: 15437 year: 2017 publication-title: Nat. Commun. – volume: 8 start-page: 15131 year: 2017 publication-title: Nat. Commun. – volume: 253 start-page: 257 year: 1975 end-page: 258 publication-title: Nature – volume: 32 start-page: 3797 year: 2007 end-page: 3810 publication-title: Int. J. Hydrogen Energy – volume: 47 start-page: 3571 year: 2002 end-page: 3594 publication-title: Electrochim. Acta – volume: 7 start-page: 11741 year: 2016 publication-title: Nat. Commun. – volume: 6 start-page: 951 year: 2015 end-page: 957 publication-title: J. Phys. Chem. Lett. – volume: 101 start-page: 5405 year: 1997 end-page: 5413 publication-title: J. Phys. Chem. B – volume: 5 start-page: 944 year: 1987 end-page: 947 publication-title: J. Vac. Sci. Technol. A – volume: 603 start-page: L15 year: 2009 end-page: L18 publication-title: Surf. Sci. – year: 1994 – volume: 23 start-page: 661 year: 1998 end-page: 666 publication-title: Int. J. Hydrogen Energy – volume: 26 start-page: 397 year: 1996 end-page: 402 publication-title: J. Appl. Electrochem. – volume: 21 start-page: 1699 year: 2007 end-page: 1706 publication-title: Energy Fuels – volume: 461 start-page: 80 year: 1999 end-page: 89 publication-title: J. Electroanal. Chem. – volume: 5 start-page: 300 year: 2013 end-page: 306 publication-title: Nat. Chem. – volume: 7 start-page: 15716 year: 2015 end-page: 15725 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 2986 year: 2018 publication-title: Sci. Rep. – volume: 27 start-page: 611 year: 2002 end-page: 619 publication-title: Int. J. Hydrogen Energy – volume: 7 start-page: 1601390 year: 2017 publication-title: Adv. Energy Mater. – volume: 164 start-page: 1307 year: 2017 end-page: 1315 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 269 year: 1979 end-page: 283 publication-title: J. Appl. Electrochem. – volume: 7 start-page: 211 year: 1987 end-page: 385 publication-title: Surf. Sci. Rep. – volume: 163 start-page: 3197 year: 2016 end-page: 3208 publication-title: J. Electrochem. Soc. – volume: 150 start-page: 93 year: 2002 end-page: 103 publication-title: Solid State Ionics – volume: 343 start-page: 1339 year: 2014 end-page: 1343 publication-title: Science – volume: 334 start-page: 1256 year: 2011 end-page: 1260 publication-title: Science – year: 2003 – volume: 12 start-page: 15217 year: 2010 end-page: 15224 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 466 year: 2009 end-page: 472 publication-title: Nat. Chem. – volume: 60 start-page: 89 year: 1975 end-page: 96 publication-title: J. Electroanal. Chem. – volume: 10 start-page: 5072 year: 2018 end-page: 5077 publication-title: Nanoscale – volume: 45 start-page: 4075 year: 2000 end-page: 4083 publication-title: Electrochim. Acta – volume: 43 start-page: 4265 year: 2018 end-page: 4275 publication-title: Int. J. Hydrogen Energy – volume: 301 start-page: 935 year: 2003 end-page: 938 publication-title: Science – volume: 5 start-page: 1700464 year: 2018 publication-title: Adv. Sci. – volume: 42 start-page: 30470 year: 2017 end-page: 30492 publication-title: Int. J. Hydrogen Energy – volume: 31 start-page: 171 year: 2006 end-page: 175 publication-title: Int. J. Hydrogen Energy – volume: 152 start-page: 23 year: 2005 end-page: 26 publication-title: J. Electrochem. Soc. – volume: 29 start-page: 29 year: 2016 publication-title: Nano Energy – volume: 51 124 start-page: 12495 12663 year: 2012 2012 end-page: 12498 12666 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 307 year: 2012 end-page: 325 publication-title: J. Saudi Chem. Soc. – volume: 74 start-page: 3497 year: 1952 end-page: 3500 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 195 year: 1955 end-page: 199 publication-title: J. Chem. Phys. – start-page: 361 year: 2010 end-page: 367 – ident: e_1_2_9_24_1 doi: 10.1016/S0022-0728(72)80485-6 – ident: e_1_2_9_52_2 doi: 10.1002/ange.201204842 – ident: e_1_2_9_83_1 doi: 10.1016/S0079-6816(97)00032-4 – ident: e_1_2_9_4_1 doi: 10.1016/j.ijhydene.2005.04.038 – ident: e_1_2_9_72_1 doi: 10.1149/2.0501414jes – ident: e_1_2_9_76_1 doi: 10.1149/06403.1069ecst – start-page: 95 volume-title: The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis year: 1982 ident: e_1_2_9_89_1 contributor: fullname: Barteau M. – ident: e_1_2_9_21_1 doi: 10.1038/ncomms11741 – ident: e_1_2_9_14_1 doi: 10.1016/S0022-0728(98)00161-2 – ident: e_1_2_9_33_1 doi: 10.1016/S0360-3199(03)00043-0 – ident: e_1_2_9_13_1 doi: 10.1016/S0022-0728(75)80205-1 – ident: e_1_2_9_70_1 doi: 10.1016/j.ijhydene.2017.10.045 – ident: e_1_2_9_92_1 doi: 10.1039/ft9959103311 – ident: e_1_2_9_93_1 doi: 10.1016/j.jcat.2004.02.034 – ident: e_1_2_9_59_1 doi: 10.1038/ncomms7430 – start-page: 361 volume-title: Handbook of Fuel Cells year: 2010 ident: e_1_2_9_68_1 contributor: fullname: Breiter M. W. – ident: e_1_2_9_16_1 doi: 10.1016/j.pecs.2009.11.002 – ident: e_1_2_9_26_1 doi: 10.1021/acs.jpclett.5b00306 – ident: e_1_2_9_48_1 doi: 10.1126/science.1085721 – ident: e_1_2_9_5_1 doi: 10.1016/j.jpowsour.2005.07.044 – ident: e_1_2_9_25_1 doi: 10.1038/253257a0 – ident: e_1_2_9_51_1 doi: 10.1038/nmat3313 – ident: e_1_2_9_61_1 doi: 10.1002/aenm.201601390 – ident: e_1_2_9_43_1 doi: 10.1016/0167-5729(87)90001-X – ident: e_1_2_9_35_1 doi: 10.1038/ncomms15437 – ident: e_1_2_9_23_1 doi: 10.1063/1.1740527 – ident: e_1_2_9_67_1 doi: 10.1149/2.0271611jes – ident: e_1_2_9_81_1 doi: 10.1116/1.574303 – ident: e_1_2_9_20_1 doi: 10.1021/ja302439z – ident: e_1_2_9_71_1 doi: 10.1016/j.ijhydene.2018.01.051 – ident: e_1_2_9_28_1 doi: 10.1016/S0167-2738(02)00266-7 – ident: e_1_2_9_62_1 doi: 10.1021/acsami.5b00679 – ident: e_1_2_9_53_1 doi: 10.1126/science.1211934 – ident: e_1_2_9_69_1 doi: 10.1021/cr100246c – ident: e_1_2_9_86_1 doi: 10.1021/ja026014h – ident: e_1_2_9_65_1 doi: 10.1038/ncomms15131 – ident: e_1_2_9_87_1 doi: 10.1021/cr8003828 – ident: e_1_2_9_6_1 doi: 10.1016/S0360-3199(97)00109-2 – ident: e_1_2_9_50_1 doi: 10.1038/nchem.1574 – ident: e_1_2_9_97_1 doi: 10.1002/smll.200701295 – ident: e_1_2_9_80_1 doi: 10.1051/jcp/1991881423 – ident: e_1_2_9_2_1 doi: 10.1016/j.ijhydene.2007.05.027 – ident: e_1_2_9_10_1 doi: 10.1021/ef060491u – ident: e_1_2_9_73_1 doi: 10.1149/1.1856988 – ident: e_1_2_9_37_1 doi: 10.1039/FT9969203719 – ident: e_1_2_9_15_1 doi: 10.2298/JSC131118136D – ident: e_1_2_9_60_1 doi: 10.1007/s40843-017-9035-8 – ident: e_1_2_9_91_1 doi: 10.1021/acs.chemrev.5b00462 – ident: e_1_2_9_58_1 doi: 10.1038/s41598-018-21396-9 – ident: e_1_2_9_47_1 doi: 10.1016/j.susc.2008.11.014 – ident: e_1_2_9_31_1 doi: 10.1007/BF00246950 – ident: e_1_2_9_41_1 doi: 10.1016/S0013-4686(02)00329-8 – ident: e_1_2_9_32_1 doi: 10.1016/0360-3199(87)90090-5 – ident: e_1_2_9_40_1 doi: 10.1016/S0013-4686(00)00523-5 – ident: e_1_2_9_1_1 doi: 10.1126/science.285.5428.687 – ident: e_1_2_9_54_1 doi: 10.1149/2.0251713jes – start-page: 37 volume-title: Handbook of Chlor-Alkali Technology, Vol. 1 year: 2005 ident: e_1_2_9_11_1 doi: 10.1007/0-306-48624-5_3 contributor: fullname: O'Brien T. – ident: e_1_2_9_57_1 doi: 10.1016/j.nanoen.2016.11.048 – ident: e_1_2_9_46_1 doi: 10.1126/science.1150038 – ident: e_1_2_9_74_1 doi: 10.1038/nchem.367 – ident: e_1_2_9_19_1 doi: 10.1002/advs.201700464 – start-page: 1 volume-title: Modern Chlor-Alkali Technology, Vol. 4 year: 2001 ident: e_1_2_9_12_1 doi: 10.1002/9780470999479 contributor: fullname: Moorhouse J. – ident: e_1_2_9_55_1 doi: 10.1021/cs501835c – ident: e_1_2_9_39_1 doi: 10.1149/1.3483106 – ident: e_1_2_9_95_1 doi: 10.1016/j.jscs.2011.01.015 – ident: e_1_2_9_22_1 doi: 10.1021/ja01134a013 – ident: e_1_2_9_52_1 doi: 10.1002/anie.201204842 – ident: e_1_2_9_29_1 doi: 10.1016/j.nanoen.2016.04.017 – ident: e_1_2_9_85_1 doi: 10.1021/jz201215u – ident: e_1_2_9_77_1 doi: 10.1039/c0cp00104j – ident: e_1_2_9_84_1 doi: 10.1021/jp9533382 – ident: e_1_2_9_66_1 doi: 10.1039/C7NR09116H – ident: e_1_2_9_79_1 doi: 10.1149/1.1837955 – ident: e_1_2_9_75_1 doi: 10.1021/jp991826u – ident: e_1_2_9_78_1 doi: 10.1038/nenergy.2017.31 – ident: e_1_2_9_8_1 doi: 10.1016/j.ijhydene.2007.04.037 – ident: e_1_2_9_27_1 doi: 10.1039/c2ee21754f – ident: e_1_2_9_90_1 doi: 10.1021/ja00379a002 – ident: e_1_2_9_44_1 doi: 10.1016/S0167-5729(01)00020-6 – ident: e_1_2_9_64_1 doi: 10.1126/science.1249061 – volume-title: The Surface Science of Metal Oxides year: 1994 ident: e_1_2_9_45_1 contributor: fullname: Henrich V. E. – ident: e_1_2_9_98_1 doi: 10.1007/s10563-011-9130-z – ident: e_1_2_9_18_1 doi: 10.1007/BF01112480 – ident: e_1_2_9_34_1 doi: 10.1021/acscatal.7b01800 – ident: e_1_2_9_30_1 doi: 10.1007/BF00251324 – ident: e_1_2_9_17_1 doi: 10.1016/S0360-3199(97)00122-5 – ident: e_1_2_9_96_1 doi: 10.1039/C5RA06778B – ident: e_1_2_9_7_1 doi: 10.1016/S0360-3199(01)00154-9 – volume-title: Handbook of Fuel Cells: Fundamentals, Technology and Applications year: 2003 ident: e_1_2_9_9_1 contributor: fullname: Lasia A. – ident: e_1_2_9_88_1 doi: 10.1038/nchem.330 – ident: e_1_2_9_94_1 doi: 10.1021/nl101807g – ident: e_1_2_9_42_1 doi: 10.1038/nmat1752 – ident: e_1_2_9_63_1 doi: 10.1039/C6TA05411K – ident: e_1_2_9_3_1 doi: 10.1016/S0360-3199(01)00177-X – ident: e_1_2_9_49_1 doi: 10.1021/ja303191r – ident: e_1_2_9_82_1 doi: 10.1016/S0022-0728(73)80452-8 – ident: e_1_2_9_99_1 doi: 10.1098/rsta.2002.1126 – ident: e_1_2_9_38_1 doi: 10.1021/jp970930d – ident: e_1_2_9_56_1 doi: 10.1016/j.apcatb.2017.11.054 – ident: e_1_2_9_36_1 doi: 10.1016/0013-4686(94)85159-X |
SSID | ssj0060966 |
Score | 2.5634341 |
SecondaryResourceType | review_article |
Snippet | The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of... The design and synthesis of Pt-based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development of... Abstract The design and synthesis of Pt‐based electrocatalysts for the hydrogen evolution reaction (HER) are of great importance for the successful development... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2643 |
SubjectTerms | Alternative energy bifunctional catalysts Catalysis Catalysts Chemical synthesis Electrocatalysts electrolytes Energy of dissociation Energy technology hydrogen Hydrogen evolution reactions Hydrogen-based energy Nanomaterials nickel Nickel compounds platinum Reaction kinetics Reaction mechanisms |
Title | Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201800781 https://www.ncbi.nlm.nih.gov/pubmed/29943506 https://www.proquest.com/docview/2091550163 https://search.proquest.com/docview/2059548305 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA3iRje-H-OLCIK6qLZJm0mXMs4wCI7iA9yVNE1AlI7YjjCu9Bv8Q7_Ee9tpdXQh6K4lSXub3MdpbnJCyE7iBiYQIQdL08zxtUkcCHrM8ZpGBrHxGNOY0T3tie61f3IT3HzZxV_yQ9QTbmgZhb9GA1dxdvhJGqqzDCkIPYlRDv9_PN7ENV3HFzV_lAB8XmwvksJ3AsG9irXRZYfjzcej0g-oOY5ci9DTmSWqErpccXJ3MMjjA_38jc_xP181R2ZGuJQelYo0TyZMukCmWtVxcIvk9TynKk3oef7-8ta73Tvr7jPaLg_RSUxGAfxSAJO0O0we-6CVtP000mp6YcrdE_Q2pUf3dwqlrJreDwHrFg--wpQFBW_fz0BvTFLVKCaYhlmeLZHrTvuq1XVG5zc4mgNschJXu8paw90YgIcfAxhQAOm0DF3X2tAqyUIWWGUl59pXJgytVMgPyJCXz2vyZTKZ9lOzSmhorPFCGfi2qXythAJXIoz00KFooUWD7FbjFz2UNB1RScjMIuzSqO7SBtmohjcamWsGpUiTD-iXN8h2XQwdjNkTlZr-AOsESI4H_rFBVkq1qF8FMR1gpwtisGJwf5Ehal1etuq7tb80WifTeI2z24xtkMn8cWA2AR7l8VZhAh-cJgcW |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5V9EAvbSltWQqtkZDaHgKJnXidI1oWpS0sCBapt8hxbAmBshXJIm1P8Ay8IU_CTLJJte2hUntMbCcTe36-jO3PANu5H9lIxgItzXAvNDb3MOhxL-hbFWU24NzQjO7RSCbn4dfvUbuakPbCNPwQXcKNLKP212TglJDe_cUaasqSOAgDRWEOf4Ceos0LOr1h_7RjkJKI0OsNRkqGXiRF0PI2-nx3sf1iXPoDbC5i1zr4HLyArBW7WXNyuTOtsh3z8zdGx__6rpfwfA5N2V6jSyvwxBavYHnQngi3CncnFdNFzk6qh9v70cWn4-QzZ8PmHJ3clgzxL0M8yZJZfj1BxWTDm7lis1PbbKBgFwXbu7rUJGbb9GqGcLd-8JhmLRg6_EmJqmPztkadY5qVVfkazg-G40HizY9w8IxA5OTlvvG1c1b4GWKPMEM8oBHVGRX7vnOx04rHPHLaKSFMqG0cO6WJIpATNV_QF29gqZgUdg1YbJ0NYhWFrq9Do6VGbyKtCsinGGlkDz62A5j-aJg60oaTmafUpWnXpT3YaMc3nVtsiaXElI8AWPRgqyvGDqYJFF3YyZTqRMSPhy6yB28bvehehWEdkaePYvB6dP8iQzo4Oxt0V-v_0ugDLCfjo8P08Mvo2zt4Rvcp2c35BixV11O7iWipyt7X9vAIAQwLLg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bT9swFMePEEhsL1w2BmXAjDRp4yElcRLXeURdq46xruIi8RY5ji0hUIpIOql72j7DvuE-yc5JmoyOByR4TGM3rn0uv9j13wDvUzc0oYh89DTNnUCb1MGkxx2vY2SYGI9zTSu6X4dicBEcX4aX93bxV_oQzYQbeUYZr8nBb1N7-E80VOc5SRB6krIcvv8sBQLxl7DotBGQEgjo5f4iKQInFL5Xyza6_HC-_nxaesCa8-ha5p7-Kqi61dVfTq7bkyJp6x__CTo-52etwcoMTNlRZUnrsGCyV_CiW58H9xp-jQqmspSNij8_fw-vPn4bHHDWq07RSU3OkH4Z0iQbTNO7MZol632fmTU7NdX2CXaVsaOba0WtrKveTBF2yy8-pzULhuF-nKPhmLQuUc4wTfMi34CLfu-8O3BmBzg42kduclJXu8pa47sJkkeQIA0oZDotI9e1NrJK8oiHVlnp-zpQJoqsVCQQyEmYz-v4b2AxG2dmC1hkrPEiGQa2owKthMJYIoz0KKJooUULPtTjF99WOh1xpcjMY-rSuOnSFuzUwxvP_DXHu6STj_jrt2C_uY0dTMsnKjPjCZUJSR0PA2QLNiuzaB6FSR2508Vm8HJwH2lD3D076zZX20-p9A6WR5_68cnn4Ze38JI-ppluzndgsbibmF1EpSLZK73hL9KmCd0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pt+and+Pt-Ni%28OH%29+2+Electrodes+for+the+Hydrogen+Evolution+Reaction+in+Alkaline+Electrolytes+and+Their+Nanoscaled+Electrocatalysts&rft.jtitle=ChemSusChem&rft.au=Ruqia%2C+Bibi&rft.au=Choi%2C+Sang-Il&rft.date=2018-08-22&rft.eissn=1864-564X&rft.volume=11&rft.issue=16&rft.spage=2643&rft_id=info:doi/10.1002%2Fcssc.201800781&rft_id=info%3Apmid%2F29943506&rft.externalDocID=29943506 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |