Administration mode matters for 5‐fluorouracil therapy: Physiologically based pharmacokinetic evidence for avoidance of myelotoxicity by continuous infusion but not intravenous bolus
Aims Pre‐emptive prediction to avoid myelosuppression and harmful sequelae is difficult given the complex interplay among patients, drugs and treatment protocols. This study aimed to model plasma and bone marrow concentrations and the likelihood of myelotoxicity following administration of 5‐fluorou...
Saved in:
Published in | British journal of clinical pharmacology Vol. 91; no. 4; pp. 1031 - 1040 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
Pre‐emptive prediction to avoid myelosuppression and harmful sequelae is difficult given the complex interplay among patients, drugs and treatment protocols. This study aimed to model plasma and bone marrow concentrations and the likelihood of myelotoxicity following administration of 5‐fluorouracil (5‐FU) by diverse intravenous (IV) bolus or continuous infusion (cIF) regimens.
Methods
Using physicochemical, in vitro and clinical data obtained from the literature consisting of various regimens and patient cohorts, a 5‐FU physiologically based pharmacokinetic (PBPK) model was developed. The predicted and observed PK values were compared to assess model performance prior to examining myelotoxicity potential of IV bolus vs. cIF and DPYD wild type vs. genetic variant.
Results
The established model was verified by utilizing 5‐FU concentration–time profiles of adequate heterogeneity contributed by 36 regimens from 15 studies. The study provided corroborative evidence to explain why cIF (vs. IV bolus) had lower myelotoxicity risk despite much higher total doses. The PBPK model was used to estimate the optimal dosage in patients heterozygous for the DPYD c.1905 + 1G > A allele and suggested that a dose reduction of at least 25% was needed (compared to the dose in wild‐type subjects).
Conclusion
A verified PBPK model was used to explain the lower myelotoxicity risk of cIF vs. IV bolus administration of 5‐FU and to estimate the dose reduction needed in carriers of a DPYD variant. With appropriate data, expertise and resources, PBPK models have many potential uses in precision medicine application of oncology drugs. |
---|---|
AbstractList | Aims
Pre‐emptive prediction to avoid myelosuppression and harmful sequelae is difficult given the complex interplay among patients, drugs and treatment protocols. This study aimed to model plasma and bone marrow concentrations and the likelihood of myelotoxicity following administration of 5‐fluorouracil (5‐FU) by diverse intravenous (IV) bolus or continuous infusion (cIF) regimens.
Methods
Using physicochemical, in vitro and clinical data obtained from the literature consisting of various regimens and patient cohorts, a 5‐FU physiologically based pharmacokinetic (PBPK) model was developed. The predicted and observed PK values were compared to assess model performance prior to examining myelotoxicity potential of IV bolus vs. cIF and DPYD wild type vs. genetic variant.
Results
The established model was verified by utilizing 5‐FU concentration–time profiles of adequate heterogeneity contributed by 36 regimens from 15 studies. The study provided corroborative evidence to explain why cIF (vs. IV bolus) had lower myelotoxicity risk despite much higher total doses. The PBPK model was used to estimate the optimal dosage in patients heterozygous for the DPYD c.1905 + 1G > A allele and suggested that a dose reduction of at least 25% was needed (compared to the dose in wild‐type subjects).
Conclusion
A verified PBPK model was used to explain the lower myelotoxicity risk of cIF vs. IV bolus administration of 5‐FU and to estimate the dose reduction needed in carriers of a DPYD variant. With appropriate data, expertise and resources, PBPK models have many potential uses in precision medicine application of oncology drugs. Pre-emptive prediction to avoid myelosuppression and harmful sequelae is difficult given the complex interplay among patients, drugs and treatment protocols. This study aimed to model plasma and bone marrow concentrations and the likelihood of myelotoxicity following administration of 5-fluorouracil (5-FU) by diverse intravenous (IV) bolus or continuous infusion (cIF) regimens. Using physicochemical, in vitro and clinical data obtained from the literature consisting of various regimens and patient cohorts, a 5-FU physiologically based pharmacokinetic (PBPK) model was developed. The predicted and observed PK values were compared to assess model performance prior to examining myelotoxicity potential of IV bolus vs. cIF and DPYD wild type vs. genetic variant. The established model was verified by utilizing 5-FU concentration-time profiles of adequate heterogeneity contributed by 36 regimens from 15 studies. The study provided corroborative evidence to explain why cIF (vs. IV bolus) had lower myelotoxicity risk despite much higher total doses. The PBPK model was used to estimate the optimal dosage in patients heterozygous for the DPYD c.1905 + 1G > A allele and suggested that a dose reduction of at least 25% was needed (compared to the dose in wild-type subjects). A verified PBPK model was used to explain the lower myelotoxicity risk of cIF vs. IV bolus administration of 5-FU and to estimate the dose reduction needed in carriers of a DPYD variant. With appropriate data, expertise and resources, PBPK models have many potential uses in precision medicine application of oncology drugs. Pre-emptive prediction to avoid myelosuppression and harmful sequelae is difficult given the complex interplay among patients, drugs and treatment protocols. This study aimed to model plasma and bone marrow concentrations and the likelihood of myelotoxicity following administration of 5-fluorouracil (5-FU) by diverse intravenous (IV) bolus or continuous infusion (cIF) regimens.AIMSPre-emptive prediction to avoid myelosuppression and harmful sequelae is difficult given the complex interplay among patients, drugs and treatment protocols. This study aimed to model plasma and bone marrow concentrations and the likelihood of myelotoxicity following administration of 5-fluorouracil (5-FU) by diverse intravenous (IV) bolus or continuous infusion (cIF) regimens.Using physicochemical, in vitro and clinical data obtained from the literature consisting of various regimens and patient cohorts, a 5-FU physiologically based pharmacokinetic (PBPK) model was developed. The predicted and observed PK values were compared to assess model performance prior to examining myelotoxicity potential of IV bolus vs. cIF and DPYD wild type vs. genetic variant.METHODSUsing physicochemical, in vitro and clinical data obtained from the literature consisting of various regimens and patient cohorts, a 5-FU physiologically based pharmacokinetic (PBPK) model was developed. The predicted and observed PK values were compared to assess model performance prior to examining myelotoxicity potential of IV bolus vs. cIF and DPYD wild type vs. genetic variant.The established model was verified by utilizing 5-FU concentration-time profiles of adequate heterogeneity contributed by 36 regimens from 15 studies. The study provided corroborative evidence to explain why cIF (vs. IV bolus) had lower myelotoxicity risk despite much higher total doses. The PBPK model was used to estimate the optimal dosage in patients heterozygous for the DPYD c.1905 + 1G > A allele and suggested that a dose reduction of at least 25% was needed (compared to the dose in wild-type subjects).RESULTSThe established model was verified by utilizing 5-FU concentration-time profiles of adequate heterogeneity contributed by 36 regimens from 15 studies. The study provided corroborative evidence to explain why cIF (vs. IV bolus) had lower myelotoxicity risk despite much higher total doses. The PBPK model was used to estimate the optimal dosage in patients heterozygous for the DPYD c.1905 + 1G > A allele and suggested that a dose reduction of at least 25% was needed (compared to the dose in wild-type subjects).A verified PBPK model was used to explain the lower myelotoxicity risk of cIF vs. IV bolus administration of 5-FU and to estimate the dose reduction needed in carriers of a DPYD variant. With appropriate data, expertise and resources, PBPK models have many potential uses in precision medicine application of oncology drugs.CONCLUSIONA verified PBPK model was used to explain the lower myelotoxicity risk of cIF vs. IV bolus administration of 5-FU and to estimate the dose reduction needed in carriers of a DPYD variant. With appropriate data, expertise and resources, PBPK models have many potential uses in precision medicine application of oncology drugs. |
Author | Chao, Chih‐Jia Abduljalil, Khaled Ho, Yunn‐Fang Lin, Chun‐Jung Gardner, Iain Yeh, Kun‐Huei Lu, Wan‐Chen |
Author_xml | – sequence: 1 givenname: Chih‐Jia surname: Chao fullname: Chao, Chih‐Jia organization: National Taiwan University – sequence: 2 givenname: Iain surname: Gardner fullname: Gardner, Iain organization: Certara UK Limited – sequence: 3 givenname: Chun‐Jung surname: Lin fullname: Lin, Chun‐Jung organization: National Taiwan University – sequence: 4 givenname: Kun‐Huei surname: Yeh fullname: Yeh, Kun‐Huei organization: National Taiwan University Hospital – sequence: 5 givenname: Wan‐Chen surname: Lu fullname: Lu, Wan‐Chen organization: MacKay Memorial Hospital – sequence: 6 givenname: Khaled surname: Abduljalil fullname: Abduljalil, Khaled organization: Certara UK Limited – sequence: 7 givenname: Yunn‐Fang orcidid: 0000-0003-0579-8659 surname: Ho fullname: Ho, Yunn‐Fang email: yfho@ntu.edu.tw organization: National Taiwan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38627941$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URKeFBS-AvIRFWjueOAm7dsSfVIkuYB3Zzg1jcHwH2xnIjkfgcXgengRnprBAAm8s29-5Oj7njJx49EDIY84ueF6X2uwuuGSS3yMrLmRVlLysTsiKCSaLqqz4KTmL8SNjXHBZPSCnopFl3a75ivy46kfrbUxBJYuejtgDHVVKECIdMNDq57fvg5sw4BSUsY6mLQS1m5_T2-0cLTr8YI1ybqZaRejpbqvCqAx-sh6SNRT2tgdv4DBM7dH2ajnhQMcZHCb8ao1NWT1Tgz5ZP-EUqfXDFBc_ekrUY8oX2eEe_PKo0U3xIbk_KBfh0d1-Tt6_fPFu87q4efvqzebqpjAif7xoudFtW3PV91KUDWvaFmRTK16ZctCSKym4aBpVm6GstGZ1I2VbGwPrWta6b8U5eXqcuwv4eYKYutFGA84pD9lMJ9iaiVLIekGf3KGTHqHvdsGOKszd77Qz8OwImIAxBhj-IJx1S5NdbrI7NJnZy7_YHNOhoxyEdf9TfLEO5n-P7q43t0fFL3OgtUQ |
CitedBy_id | crossref_primary_10_1002_cpt_3567 crossref_primary_10_1111_bcp_16341 |
Cites_doi | 10.1158/1078‐0432.CCR‐05‐0217 10.1007/s00280‐019‐04028‐5 10.2217/pgs.15.70 10.1200/JCO.1992.10.7.1171 10.15386/mpr‐1564 10.1002/1097-0142(19930801)72:3<663::AID-CNCR2820720307>3.0.CO;2-V 10.1016/S0021‐9258(18)41899‐6 10.1002/ardp.19923250203 10.1007/s10637‐009‐9308‐7 10.1891/9780826162045.0003 10.1016/S0304‐3835(97)00377‐7 10.1034/j.1600‐0773.2000.pto860305.x 10.1002/psp4.12191 10.1007/BF00543978 10.1111/bcp.14723 10.1002/cpt.1124 10.1016/S0024‐3205(98)00525‐6 10.1002/jps.20502 10.1002/psp4.12791 10.1126/science.aax7621 10.1016/j.taap.2009.05.005 10.1002/cncr.11882 10.1097/CAD.0b013e3283426112 10.1007/978‐3‐662‐46875‐3_3940 10.1002/jps.24336 10.1023/A:1008245906772 10.1111/bph.16181 10.1002/1097-0142(19910115)67:2<367::AID-CNCR2820670209>3.0.CO;2-2 10.1200/JCO.2000.18.23.3952 10.1111/j.1742‐7843.2009.00456.x 10.3109/02841869609098503 10.1067/mcp.2000.109352 10.1200/JCO.2002.02.140 10.1023/A:1010939329562 10.1016/S1470‐2045(18)30686‐7 10.1002/jps.2600661019 10.1002/cpt.911 |
ContentType | Journal Article |
Copyright | 2024 British Pharmacological Society. |
Copyright_xml | – notice: 2024 British Pharmacological Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/bcp.16061 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1365-2125 |
EndPage | 1040 |
ExternalDocumentID | 38627941 10_1111_bcp_16061 BCP16061 |
Genre | researchArticle Journal Article Comparative Study |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: 109‐2813‐C‐002‐063‐B – fundername: US Food and Drug Administration – fundername: National Taiwan University School of Pharmacy Alumni Association in North America – fundername: Ministry of Science and Technology, Taiwan grantid: 109-2813-C-002-063-B |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABOCM ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HYE HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGXDD AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3251-91cb9971add63280899e687a15c2fb61a631388a7cf25bb0786697cce4767bd93 |
IEDL.DBID | DR2 |
ISSN | 0306-5251 1365-2125 |
IngestDate | Fri Jul 11 09:15:35 EDT 2025 Mon Apr 14 01:48:37 EDT 2025 Thu Apr 24 23:06:20 EDT 2025 Sun Jul 06 05:08:30 EDT 2025 Sat Apr 12 09:10:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | myelotoxicity 5‐fluorouracil dose optimization physiologically based pharmacokinetics |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2024 British Pharmacological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3251-91cb9971add63280899e687a15c2fb61a631388a7cf25bb0786697cce4767bd93 |
Notes | Funding information The study was supported by the National Taiwan University School of Pharmacy Alumni Association in North America and the Ministry of Science and Technology, Executive Yuan, Taipei, Taiwan, R.O.C. (MOST 109‐2813‐C‐002‐063‐B). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0579-8659 |
PMID | 38627941 |
PQID | 3040323679 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3040323679 pubmed_primary_38627941 crossref_primary_10_1111_bcp_16061 crossref_citationtrail_10_1111_bcp_16061 wiley_primary_10_1111_bcp_16061_BCP16061 |
PublicationCentury | 2000 |
PublicationDate | April 2025 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | British journal of clinical pharmacology |
PublicationTitleAlternate | Br J Clin Pharmacol |
PublicationYear | 2025 |
References | 2015; 35 2004; 100 2017; 6 2021; 87 1986; 70 1987; 32 2015; 16 2023; 180 2006; 95 2015; 104 2000; 6 2020; 85 1980; 40 2010; 106 2000; 68 1992; 267 2018; 103 2000; 86 1992; 325 2019; 105 1997 1977; 66 1998; 63 1996; 35 1992; 10 1999; 5 2019; 365 2009; 238 1987; 47 2018; 19 2000; 18 1991; 67 1993; 72 2002; 20 2020 2010; 28 2020; 93 1986; 46 1986; 6 2011; 22 2017 2016 2022; 11 2001; 18 1998; 122 2005; 11 1998; 9 1990; 50 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Heggie GD (e_1_2_10_25_1) 1987; 47 (e_1_2_10_3_1) 2016 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 Takimoto CH (e_1_2_10_32_1) 1999; 5 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_34_1 Matsumoto H (e_1_2_10_33_1) 2015; 35 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_51_1 Fraile RJ (e_1_2_10_29_1) 1980; 40 e_1_2_10_27_1 Kirkwood JM (e_1_2_10_28_1) 1980; 40 e_1_2_10_48_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 Erlichman C (e_1_2_10_35_1) 1986; 70 e_1_2_10_41_1 Ho DH (e_1_2_10_24_1) 1986; 6 United States Pharmacopeial Convention (e_1_2_10_13_1) 1997 Bocci G (e_1_2_10_31_1) 2000; 6 Remick SC (e_1_2_10_37_1) 1990; 50 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 Wagner JG (e_1_2_10_36_1) 1986; 46 e_1_2_10_10_1 e_1_2_10_50_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 104 start-page: 1508 issue: 4 year: 2015 end-page: 1521 article-title: Prediction of drug distribution in subcutaneous xenografts of human tumor cell lines and healthy tissues in mouse: application of the tissue composition‐based model to antineoplastic drugs publication-title: J Pharm Sci – volume: 63 start-page: 2365 issue: 26 year: 1998 end-page: 2371 article-title: Interspecies scaling of renally secreted drugs publication-title: Life Sci – volume: 47 start-page: 2203 issue: 8 year: 1987 end-page: 2206 article-title: Clinical pharmacokinetics of 5‐fluorouracil and its metabolites in plasma, urine, and bile publication-title: Cancer Res – volume: 6 start-page: 293 issue: 5 year: 2017 end-page: 304 article-title: Towards quantitative systems pharmacology models of chemotherapy‐induced neutropenia publication-title: CPT Pharmacometrics Syst Pharmacol – volume: 10 start-page: 1171 issue: 7 year: 1992 end-page: 1175 article-title: Influence of sex and age on fluorouracil clearance publication-title: J Clin Oncol – volume: 5 start-page: 1347 issue: 6 year: 1999 end-page: 1352 article-title: High inter‐ and intrapatient variation in 5‐fluorouracil plasma concentrations during a prolonged drug infusion publication-title: Clin Cancer Res – volume: 267 start-page: 17102 issue: 24 year: 1992 end-page: 17109 article-title: Purification and characterization of dihydropyrimidine dehydrogenase from human liver publication-title: J Biol Chem – volume: 46 start-page: 1499 issue: 3 year: 1986 end-page: 1506 article-title: Steady‐state nonlinear pharmacokinetics of 5‐fluorouracil during hepatic arterial and intravenous infusions in cancer patients publication-title: Cancer Res – volume: 68 start-page: 270 issue: 3 year: 2000 end-page: 279 article-title: Dose and time dependencies of 5‐fluorouracil pharmacokinetics publication-title: Clin Pharmacol Ther – volume: 95 start-page: 1238 issue: 6 year: 2006 end-page: 1257 article-title: Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions publication-title: J Pharm Sci – volume: 72 start-page: 663 issue: 3 year: 1993 end-page: 668 article-title: A phase II study of continuous infusion 5‐fluorouracil and leucovorin with weekly cisplatin in metastatic colorectal carcinoma publication-title: Cancer – volume: 32 start-page: 411 issue: 4 year: 1987 end-page: 418 article-title: Nonlinear pharmacokinetic characteristics of 5‐fluorouracil (5‐FU) in colorectal cancer patients publication-title: Eur J Clin Pharmacol – year: 1997 – volume: 9 start-page: 357 issue: 4 year: 1998 end-page: 364 article-title: Predicting hematological toxicity (myelosuppression) of cytotoxic drug therapy from tests publication-title: Ann Oncol – volume: 11 start-page: 5104 issue: 14 year: 2005 end-page: 5111 article-title: Dihydropyrimidine dehydrogenase activity in 150 healthy Japanese volunteers and identification of novel mutations publication-title: Clin Cancer Res – volume: 106 start-page: 2 issue: 1 year: 2010 end-page: 12 article-title: Incorporating physiological and biochemical mechanisms into pharmacokinetic‐pharmacodynamic models: a conceptual framework publication-title: Basic Clin Pharmacol Toxicol – volume: 20 start-page: 4713 issue: 24 year: 2002 end-page: 4721 article-title: Model of chemotherapy‐induced myelosuppression with parameter consistency across drugs publication-title: J Clin Oncol – volume: 18 start-page: 1190 issue: 8 year: 2001 end-page: 1202 article-title: A physiologically based pharmacokinetic analysis of capecitabine, a triple prodrug of 5‐FU, in humans: the mechanism for tumor‐selective accumulation of 5‐FU publication-title: Pharm Res – volume: 22 start-page: 290 issue: 3 year: 2011 end-page: 298 article-title: Phase I, pharmacokinetic, and bone marrow drug‐level studies of tri‐monthly 48‐h infusion of high‐dose 5‐fluorouracil and leucovorin in patients with metastatic colorectal cancers publication-title: Anticancer Drugs – volume: 180 start-page: S289 year: 2023 end-page: S373 article-title: The concise guide to PHARMACOLOGY 2023/24: enzymes publication-title: Br J Pharmacol – volume: 66 start-page: 1422 issue: 10 year: 1977 end-page: 1429 article-title: Kinetics and mechanisms of drug action on microorganisms XXIII: microbial kinetic assay for fluorouracil in biological fluids and it's application to human pharmacokinetics publication-title: J Pharm Sci – volume: 103 start-page: 210 issue: 2 year: 2018 end-page: 216 article-title: Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update publication-title: Clin Pharmacol Ther – volume: 6 start-page: 781 issue: 4 year: 1986 end-page: 784 article-title: Distribution and inhibition of dihydrouracil dehydrogenase activities in human tissues using 5‐fluorouracil as a substrate publication-title: Anticancer Res – volume: 85 start-page: 711 issue: 4 year: 2020 end-page: 722 article-title: Prediction of exposure‐driven myelotoxicity of continuous infusion 5‐fluorouracil by a semi‐physiological pharmacokinetic‐pharmacodynamic model in gastrointestinal cancer patients publication-title: Cancer Chemother Pharmacol – volume: 6 start-page: 3032 issue: 8 year: 2000 end-page: 3037 article-title: Comparative pharmacokinetic analysis of 5‐fluorouracil and its major metabolite 5‐fluoro‐5,6‐dihydrouracil after conventional and reduced test dose in cancer patients publication-title: Clin Cancer Res – volume: 365 start-page: 547 issue: 6453 year: 2019 end-page: 549 article-title: Dosing time matters: circadian precision medicine may supplement genetic precision to improve drug action publication-title: Science – volume: 238 start-page: 111 issue: 2 year: 2009 end-page: 119 article-title: sensitivity of granulo‐monocytic progenitors as a new toxicological cell system and endpoint in the ACuteTox project publication-title: Toxicol Appl Pharmacol – volume: 35 start-page: 207 issue: 2 year: 1996 end-page: 212 article-title: Different intravenous administration techniques for 5‐fluorouracil. Pharmacokinetics and pharmacodynamic effects publication-title: Acta Oncol – volume: 28 start-page: 744 issue: 6 year: 2010 end-page: 753 article-title: Scaling the time‐course of myelosuppression from rats to patients with a semi‐physiological model publication-title: Invest New Drugs – volume: 19 start-page: 1459 issue: 11 year: 2018 end-page: 1467 article-title: genotype‐guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis publication-title: Lancet Oncol – volume: 122 start-page: 107 issue: 1–2 year: 1998 end-page: 113 article-title: Suicidal inactivation of human dihydropyrimidine dehydrogenase by (E)‐5‐(2‐bromovinyl)uracil derived from the antiviral, sorivudine publication-title: Cancer Lett – volume: 93 start-page: 223 issue: 3 year: 2020 end-page: 230 article-title: A review on the importance of genotyping and phenotyping in fluoropyrimidine treatment publication-title: Med Pharm Rep – volume: 50 start-page: 2667 issue: 9 year: 1990 end-page: 2672 article-title: Phase I trial of 5‐fluorouracil and dipyridamole administered by seventy‐two‐hour concurrent continuous infusion publication-title: Cancer Res – year: 2016 – volume: 40 start-page: 2223 issue: 7 year: 1980 end-page: 2228 article-title: Pharmacokinetics of 5‐fluorouracil administered orally, by rapid intravenous and by slow infusion publication-title: Cancer Res – volume: 87 start-page: 317 issue: 2 year: 2021 end-page: 325 article-title: Overcoming barriers to implementing precision dosing with 5‐fluorouracil and capecitabine publication-title: Br J Clin Pharmacol – volume: 18 start-page: 3952 issue: 23 year: 2000 end-page: 3963 article-title: Phase I and pharmacokinetic trial of weekly oral fluorouracil given with eniluracil and low‐dose leucovorin to patients with solid tumors publication-title: J Clin Oncol – volume: 67 start-page: 367 issue: 2 year: 1991 end-page: 371 article-title: A dose‐intensive regimen of 5‐fluorouracil for the treatment of metastatic colorectal carcinoma publication-title: Cancer – volume: 105 start-page: 598 issue: 3 year: 2019 end-page: 613 article-title: Therapeutic drug monitoring in oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology recommendations for 5‐fluorouracil therapy publication-title: Clin Pharmacol Ther – volume: 40 start-page: 107 issue: 1 year: 1980 end-page: 113 article-title: Comparison of pharmacokinetics of 5‐fluorouracil and 5‐fluorouracil with concurrent thymidine infusions in a phase I trial publication-title: Cancer Res – year: 2020 – volume: 35 start-page: 6193 issue: 11 year: 2015 end-page: 6199 article-title: Fluctuation in plasma 5‐fluorouracil concentration during continuous 5‐fluorouracil infusion for colorectal cancer publication-title: Anticancer Res – volume: 100 start-page: 228 issue: 2 year: 2004 end-page: 237 article-title: Chemotherapy‐induced neutropenia—risks, consequences, and new directions for its management publication-title: Cancer – volume: 70 start-page: 903 issue: 7 year: 1986 end-page: 904 article-title: Plasma pharmacokinetics of 5‐FU given by continuous infusion with allopurinol publication-title: Cancer Treat Rep – volume: 86 start-page: 122 issue: 3 year: 2000 end-page: 124 article-title: Minimal toxicity to myeloid progenitor cells of weekly 24‐hr infusion of high‐dose 5‐fluorouracil: direct evidence from colony forming unit‐granulocyte and monocyte (CFU‐GM) clonogenic assay publication-title: Pharmacol Toxicol – volume: 16 start-page: 1277 issue: 11 year: 2015 end-page: 1286 article-title: Translating genotype into DPD phenotype: using the gene activity score publication-title: Pharmacogenomics – volume: 11 start-page: 805 issue: 7 year: 2022 end-page: 821 article-title: Guide to development of compound files for PBPK modeling in the Simcyp population‐based simulator publication-title: CPT Pharmacometrics Syst Pharmacol – volume: 325 start-page: 69 issue: 2 year: 1992 end-page: 71 article-title: The binding of 5‐fluorouracil to serum protein fractions, erythrocytes and ghosts under conditions publication-title: Arch Pharm (Weinheim) – start-page: 2989 year: 2017 end-page: 2993 – ident: e_1_2_10_47_1 doi: 10.1158/1078‐0432.CCR‐05‐0217 – ident: e_1_2_10_44_1 doi: 10.1007/s00280‐019‐04028‐5 – volume: 6 start-page: 3032 issue: 8 year: 2000 ident: e_1_2_10_31_1 article-title: Comparative pharmacokinetic analysis of 5‐fluorouracil and its major metabolite 5‐fluoro‐5,6‐dihydrouracil after conventional and reduced test dose in cancer patients publication-title: Clin Cancer Res – ident: e_1_2_10_45_1 doi: 10.2217/pgs.15.70 – ident: e_1_2_10_50_1 doi: 10.1200/JCO.1992.10.7.1171 – ident: e_1_2_10_4_1 doi: 10.15386/mpr‐1564 – ident: e_1_2_10_39_1 doi: 10.1002/1097-0142(19930801)72:3<663::AID-CNCR2820720307>3.0.CO;2-V – ident: e_1_2_10_19_1 doi: 10.1016/S0021‐9258(18)41899‐6 – ident: e_1_2_10_16_1 doi: 10.1002/ardp.19923250203 – ident: e_1_2_10_43_1 doi: 10.1007/s10637‐009‐9308‐7 – ident: e_1_2_10_2_1 doi: 10.1891/9780826162045.0003 – volume: 46 start-page: 1499 issue: 3 year: 1986 ident: e_1_2_10_36_1 article-title: Steady‐state nonlinear pharmacokinetics of 5‐fluorouracil during hepatic arterial and intravenous infusions in cancer patients publication-title: Cancer Res – ident: e_1_2_10_22_1 doi: 10.1016/S0304‐3835(97)00377‐7 – ident: e_1_2_10_49_1 doi: 10.1034/j.1600‐0773.2000.pto860305.x – volume-title: Tissue expression of DPYD, The Human Protein tlas ident: e_1_2_10_23_1 – ident: e_1_2_10_11_1 doi: 10.1002/psp4.12191 – ident: e_1_2_10_17_1 doi: 10.1007/BF00543978 – ident: e_1_2_10_5_1 doi: 10.1111/bcp.14723 – volume: 50 start-page: 2667 issue: 9 year: 1990 ident: e_1_2_10_37_1 article-title: Phase I trial of 5‐fluorouracil and dipyridamole administered by seventy‐two‐hour concurrent continuous infusion publication-title: Cancer Res – volume: 40 start-page: 2223 issue: 7 year: 1980 ident: e_1_2_10_29_1 article-title: Pharmacokinetics of 5‐fluorouracil administered orally, by rapid intravenous and by slow infusion publication-title: Cancer Res – ident: e_1_2_10_6_1 doi: 10.1002/cpt.1124 – ident: e_1_2_10_18_1 doi: 10.1016/S0024‐3205(98)00525‐6 – ident: e_1_2_10_15_1 doi: 10.1002/jps.20502 – volume: 70 start-page: 903 issue: 7 year: 1986 ident: e_1_2_10_35_1 article-title: Plasma pharmacokinetics of 5‐FU given by continuous infusion with allopurinol publication-title: Cancer Treat Rep – ident: e_1_2_10_12_1 doi: 10.1002/psp4.12791 – ident: e_1_2_10_51_1 doi: 10.1126/science.aax7621 – ident: e_1_2_10_41_1 doi: 10.1016/j.taap.2009.05.005 – ident: e_1_2_10_9_1 doi: 10.1002/cncr.11882 – volume-title: United States Pharmacopeia dispensing information (USP DI) volume I, drug information for the health care professional year: 1997 ident: e_1_2_10_13_1 – volume: 6 start-page: 781 issue: 4 year: 1986 ident: e_1_2_10_24_1 article-title: Distribution and inhibition of dihydrouracil dehydrogenase activities in human tissues using 5‐fluorouracil as a substrate publication-title: Anticancer Res – ident: e_1_2_10_27_1 doi: 10.1097/CAD.0b013e3283426112 – ident: e_1_2_10_8_1 doi: 10.1007/978‐3‐662‐46875‐3_3940 – ident: e_1_2_10_14_1 doi: 10.1002/jps.24336 – ident: e_1_2_10_40_1 doi: 10.1023/A:1008245906772 – ident: e_1_2_10_7_1 doi: 10.1111/bph.16181 – volume: 47 start-page: 2203 issue: 8 year: 1987 ident: e_1_2_10_25_1 article-title: Clinical pharmacokinetics of 5‐fluorouracil and its metabolites in plasma, urine, and bile publication-title: Cancer Res – volume: 35 start-page: 6193 issue: 11 year: 2015 ident: e_1_2_10_33_1 article-title: Fluctuation in plasma 5‐fluorouracil concentration during continuous 5‐fluorouracil infusion for colorectal cancer publication-title: Anticancer Res – volume: 5 start-page: 1347 issue: 6 year: 1999 ident: e_1_2_10_32_1 article-title: High inter‐ and intrapatient variation in 5‐fluorouracil plasma concentrations during a prolonged drug infusion publication-title: Clin Cancer Res – ident: e_1_2_10_38_1 doi: 10.1002/1097-0142(19910115)67:2<367::AID-CNCR2820670209>3.0.CO;2-2 – ident: e_1_2_10_26_1 doi: 10.1200/JCO.2000.18.23.3952 – ident: e_1_2_10_10_1 doi: 10.1111/j.1742‐7843.2009.00456.x – ident: e_1_2_10_30_1 doi: 10.3109/02841869609098503 – volume: 40 start-page: 107 issue: 1 year: 1980 ident: e_1_2_10_28_1 article-title: Comparison of pharmacokinetics of 5‐fluorouracil and 5‐fluorouracil with concurrent thymidine infusions in a phase I trial publication-title: Cancer Res – volume-title: Fluorouracil injection [prescribing information] year: 2016 ident: e_1_2_10_3_1 – ident: e_1_2_10_20_1 doi: 10.1067/mcp.2000.109352 – ident: e_1_2_10_42_1 doi: 10.1200/JCO.2002.02.140 – ident: e_1_2_10_46_1 doi: 10.1023/A:1010939329562 – ident: e_1_2_10_48_1 doi: 10.1016/S1470‐2045(18)30686‐7 – ident: e_1_2_10_34_1 doi: 10.1002/jps.2600661019 – ident: e_1_2_10_21_1 doi: 10.1002/cpt.911 |
SSID | ssj0013165 |
Score | 2.4747336 |
Snippet | Aims
Pre‐emptive prediction to avoid myelosuppression and harmful sequelae is difficult given the complex interplay among patients, drugs and treatment... Pre-emptive prediction to avoid myelosuppression and harmful sequelae is difficult given the complex interplay among patients, drugs and treatment protocols.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1031 |
SubjectTerms | 5‐fluorouracil Antimetabolites, Antineoplastic - administration & dosage Antimetabolites, Antineoplastic - adverse effects Antimetabolites, Antineoplastic - pharmacokinetics Bone Marrow - drug effects Bone Marrow - metabolism Dihydrouracil Dehydrogenase (NADP) - genetics dose optimization Dose-Response Relationship, Drug Female Fluorouracil - administration & dosage Fluorouracil - adverse effects Fluorouracil - pharmacokinetics Humans Infusions, Intravenous Male Middle Aged Models, Biological myelotoxicity physiologically based pharmacokinetics |
Title | Administration mode matters for 5‐fluorouracil therapy: Physiologically based pharmacokinetic evidence for avoidance of myelotoxicity by continuous infusion but not intravenous bolus |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbcp.16061 https://www.ncbi.nlm.nih.gov/pubmed/38627941 https://www.proquest.com/docview/3040323679 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp176fmz6YFpKyCEOtbSWrfbUhoZQaFlKAjkUjCRLsMSxl6xd6p76E_pz-nv6Szoj27vdPqD0Zow0ttDMaEYz8w1jT9MssX5qfKSkcwSqrSPltYkSp555xbmTIYL_9p08Pp2-OUvOttiLsRamx4dYXbiRZAR9TQKuzfInITd2QVcjwfWhXC0yiN7zdQQhDm0kySRGZyuJB1QhyuJZzdw8i34zMDft1XDgHF1jH8Zf7fNMzg_axhzYz7-gOP7nWq6zq4MhCi97zrnBtlx1k-3OeiTrbh9O1oVZy33Yhdka47q7xb5tgu4CNdSBix6rE9AOhuT7l6--bOtL_I628xL6Qq_uOYSc01Hllh3QOVrAYiB_jmvBT4Ibup0GYvpjPS-IPaH2cNG5sm7qT3OLDgSYDijbfl61dbsEFJeWrv_AtA1UdYMvGuqvRDi0YFDKlrfZ6dHrk8PjaGgCEVmB24bK2Bql0hj1sBQ8oyilk1mq48Ryb2SspYhFlunUep4YgxaPlCq11k1TmZpCiTtsu6ord49BIWOqwfaaJ8U0VXFmdJbwAh1QYVP0myZsb2SH3A4I6dSoo8xHTwn3KQ_7NGFPVkMXPSzInwY9HnkqR6GlSIyuHC44F6g6BWHnqQm72zPbioxAHxOVJM7eCyzzd_r5q8NZeNj596H32RVOHYxD7tEDtt1ctu4hmlWNeRTk5wfqZyPc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbSXvh_b5zSEkEMcanslW6WXNjRs82IpG8ilGEmWYYljL1m71D31J_Tn9Pf0l3RGtne7fUDpzRhpbKGZ0Yxm5hvGNqOYm2yoM08KawlUW3kyU9rjVr7IZBBY4SL4xydidDo8OONna-xVXwvT4kMsLtxIMpy-JgGnC-mfpFybGd2NkO9zhTp6O4fqfbCMIfiukSQZxehucb_DFaI8nsXU1dPoNxNz1WJ1R87-Dfah_9k20-R8t670rvn8C47j_67mJrve2aLwumWeW2zNFrfZ1rgFs252YLKszZrvwBaMlzDXzR32bRV3F6inDly0cJ2ApjDw71--ZnldXuJ3lJnm0NZ6NS_BpZ32WjdvgI7SFGYd-XNcDH4SbNfw1BFTH8tpShwKZQYXjc3Lqvw0NehDgG6AEu6nRV3Wc0CJqekGEHRdQVFW-KKiFksERQsaBW1-l53uv53sjbyuD4RnQtw31MdGSxn5qIpFGMQUqLQijpTPTZBp4SsR-mEcq8hkAdcajR4hZGSMHUYi0qkM77H1oizsAwap8KkMO1MBT4eR9GOtYh6k6IOGJkLXacC2e35ITAeSTr068qR3lnCfErdPA7axGDprkUH-NOh5z1QJyi0FY1RhccFJiNozJPg8OWD3W25bkAnRzUQ9ibO3Hc_8nX7yZm_sHh7--9Bn7OpocnyUHL07OXzErgXU0NilIj1m69VlbZ-glVXpp06YfgD4zif3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuvKHLc0Co6qGpmpcTwwlaVuVVrVAr9YAU2Y4trZomq26CCCd-Aj-H38MvYcZJdlkeEuIWRfYklmfGM56Zbxh7kqSxtpGynuDGEKi29ISVyouN2LUiCAx3Efx3h_zgOHp9Ep-ssWdDLUyHD7G4cCPJcPqaBHyW25-EXOkZXY2Q63Mh4rspsfT--2AZQvBdH0myidHbiv0eVojSeBZTVw-j3yzMVYPVnTjjK-zD8K9dosnpTlOrHf35FxjH_1zMVXa5t0Thecc619iaKa-zzUkHZd1uw9GyMmu-DZswWYJctzfYt1XUXaCOOnDWgXUCGsIQf__y1RZNdY7fkXpaQFfp1T4Fl3Q66NyiBTpIc5j15E9xLfhJMH27U0dMfqymOfEnVBbOWlNUdfVpqtGDANUCpdtPy6Zq5oDy0tD9H6imhrKq8UVNDZYIiBYUitn8JjsevzzaO_D6LhCeDnHbUBtrJUTioyLmYZBSmNLwNJF-rAOruC956IdpKhNtg1gpNHk4F4nWJkp4onIR3mLrZVWaDQY596kI28ogzqNE-KmSaRzk6IGGOkHHacS2BnbIdA-RTp06imxwlXCfMrdPI_Z4MXTW4YL8adCjgacylFoKxcjS4IKzEHVnSOB5YsRud8y2IBOik4laEmdvOZb5O_3sxd7EPdz596EP2cXJ_jh7--rwzV12KaBuxi4P6R5br88bcx9NrFo9cKL0A5KsJq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Administration+mode+matters+for+5%E2%80%90fluorouracil+therapy%3A+Physiologically+based+pharmacokinetic+evidence+for+avoidance+of+myelotoxicity+by+continuous+infusion+but+not+intravenous+bolus&rft.jtitle=British+journal+of+clinical+pharmacology&rft.au=Chao%2C+Chih%E2%80%90Jia&rft.au=Gardner%2C+Iain&rft.au=Lin%2C+Chun%E2%80%90Jung&rft.au=Yeh%2C+Kun%E2%80%90Huei&rft.date=2025-04-01&rft.issn=0306-5251&rft.eissn=1365-2125&rft.volume=91&rft.issue=4&rft.spage=1031&rft.epage=1040&rft_id=info:doi/10.1111%2Fbcp.16061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bcp_16061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-5251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-5251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-5251&client=summon |