Multicomponent Signal Analysis Based on Polynomial Chirplet Transform
Chirplet transform (CT) is effective in characterization of instantaneous frequency (IF) for monocomponent linear-frequency-modulated signal. However, the CT is not suitable to analyze multicomponent signal with nonlinear-frequency-modulated component. In this paper, a time-frequency fusion techniqu...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 60; no. 9; pp. 3948 - 3956 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chirplet transform (CT) is effective in characterization of instantaneous frequency (IF) for monocomponent linear-frequency-modulated signal. However, the CT is not suitable to analyze multicomponent signal with nonlinear-frequency-modulated component. In this paper, a time-frequency fusion technique based on polynomial CT (PCT) (TFPCT) is proposed to characterize the time-frequency structure of such signals. The TFPCT relies on the fact that the PCT is able to concentrate the energy closely along the IF of the monocomponent signal in time-frequency distribution (TFD). For multicomponent signal, the TFPCT first estimates the proper coefficients with respect to individual component and, second, produces a series of the TFD using the PCT. Each TFD has better energy concentration along the IF of one component. Then, in order to reduce the interference of unwanted component and preserve the component of interest, each TFD is filtered and grouped as an image. At last, the TFPCT combines these TFDs to be an eventual fused TFD, which has the energy concentrating closely along the IF of all components. Comparison with several conventional TFD methods on both numerical multicomponent signal and bat echolocation signal validates the potential and the effectiveness of the proposed method. |
---|---|
AbstractList | Chirplet transform (CT) is effective in characterization of instantaneous frequency (IF) for monocomponent linear-frequency-modulated signal. However, the CT is not suitable to analyze multicomponent signal with nonlinear-frequency-modulated component. In this paper, a time-frequency fusion technique based on polynomial CT (PCT) (TFPCT) is proposed to characterize the time-frequency structure of such signals. The TFPCT relies on the fact that the PCT is able to concentrate the energy closely along the IF of the monocomponent signal in time-frequency distribution (TFD). For multicomponent signal, the TFPCT first estimates the proper coefficients with respect to individual component and, second, produces a series of the TFD using the PCT. Each TFD has better energy concentration along the IF of one component. Then, in order to reduce the interference of unwanted component and preserve the component of interest, each TFD is filtered and grouped as an image. At last, the TFPCT combines these TFDs to be an eventual fused TFD, which has the energy concentrating closely along the IF of all components. Comparison with several conventional TFD methods on both numerical multicomponent signal and bat echolocation signal validates the potential and the effectiveness of the proposed method. |
Author | Yang Yang Guang Meng Wenming Zhang Zhike Peng |
Author_xml | – sequence: 1 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 2 givenname: Wenming surname: Zhang fullname: Zhang, Wenming – sequence: 3 givenname: Zhike surname: Peng fullname: Peng, Zhike – sequence: 4 givenname: Guang surname: Meng fullname: Meng, Guang |
BookMark | eNp9kDFPwzAQRi0EEm1hR2KJxMKS4rMdOx5LVaBSEUiUOXITG1wldrCTof-eVK0YOrDcDfe-T7o3RufOO43QDeApAJYP6-ViSjCQKSGYUwpnaARZJlIpWX6ORpiIPMWY8Us0jnGLMbAMshFavPZ1Z0vftEOd65IP--VUncyGsYs2Jo8q6irxLnn39c75xg7H-bcNba27ZB2Ui8aH5gpdGFVHfX3cE_T5tFjPX9LV2_NyPlulJSWsS7XOK6U2RmiujMyErEiVaUJB5NVGGSBMskoDU3hTEWwADJV5WQpDKyxKwekE3R962-B_eh27orGx1HWtnPZ9LIAKwrGEDAb07gTd-j4Mb-0pJnPOMIiB4geqDD7GoE1R2k511rsuKFsXgIu93WKwW-ztFke7QxCfBNtgGxV2_0VuDxGrtf7DOSE85zn9Bfvhhsc |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1016_j_sigpro_2022_108825 crossref_primary_10_1007_s00034_020_01398_7 crossref_primary_10_1016_j_sigpro_2022_108507 crossref_primary_10_1016_j_ymssp_2018_11_049 crossref_primary_10_1016_j_sigpro_2017_03_022 crossref_primary_10_1038_s41598_021_96343_2 crossref_primary_10_1109_LGRS_2021_3108836 crossref_primary_10_1016_j_measurement_2021_109750 crossref_primary_10_1016_j_ymssp_2022_110006 crossref_primary_10_1049_iet_smt_2016_0355 crossref_primary_10_1049_iet_spr_2018_5435 crossref_primary_10_1109_TIE_2018_2873520 crossref_primary_10_1007_s00170_018_2739_6 crossref_primary_10_1109_TSP_2014_2314061 crossref_primary_10_1371_journal_pone_0276489 crossref_primary_10_3390_s20195648 crossref_primary_10_1109_ACCESS_2024_3485075 crossref_primary_10_1007_s00034_020_01442_6 crossref_primary_10_1109_TII_2022_3185771 crossref_primary_10_1088_1361_6501_abef3c crossref_primary_10_1115_1_4035480 crossref_primary_10_1109_JIOT_2023_3336839 crossref_primary_10_1109_TIM_2022_3146948 crossref_primary_10_1109_ACCESS_2021_3065825 crossref_primary_10_1109_TSP_2022_3220027 crossref_primary_10_1109_TIM_2019_2900886 crossref_primary_10_1016_j_jsv_2014_09_025 crossref_primary_10_1016_j_dsp_2020_102771 crossref_primary_10_1109_TEM_2014_2370392 crossref_primary_10_1007_s00034_023_02561_6 crossref_primary_10_1109_TIM_2015_2444240 crossref_primary_10_1109_TIE_2018_2868296 crossref_primary_10_1007_s00170_021_08642_7 crossref_primary_10_1109_TIM_2024_3368479 crossref_primary_10_1109_TIM_2024_3386202 crossref_primary_10_1121_1_5023205 crossref_primary_10_1093_mnras_staf351 crossref_primary_10_1080_00207217_2019_1666307 crossref_primary_10_1177_14613484241233392 crossref_primary_10_1103_PhysRevD_109_102010 crossref_primary_10_3390_s18072120 crossref_primary_10_1109_TIE_2015_2458787 crossref_primary_10_1007_s11071_016_2786_1 crossref_primary_10_1109_TIM_2015_2494632 crossref_primary_10_1109_JSEN_2021_3125357 crossref_primary_10_3390_app8050838 crossref_primary_10_1016_j_jsv_2015_12_037 crossref_primary_10_1186_s40064_016_2849_2 crossref_primary_10_1016_j_jsv_2018_11_039 crossref_primary_10_1016_j_measurement_2022_111137 crossref_primary_10_1134_S1061830918010096 crossref_primary_10_1016_j_conengprac_2021_104884 crossref_primary_10_1016_j_jsv_2020_115813 crossref_primary_10_1109_TIM_2024_3428614 crossref_primary_10_1134_S1061830921060061 crossref_primary_10_1016_j_ymssp_2024_111873 crossref_primary_10_1016_j_ymssp_2013_08_010 crossref_primary_10_3390_s150306905 crossref_primary_10_3390_app9183828 crossref_primary_10_3390_sym13101922 crossref_primary_10_1177_0954406216641455 crossref_primary_10_1016_j_ymssp_2016_05_003 crossref_primary_10_1016_j_ymssp_2022_109792 crossref_primary_10_1016_j_ymssp_2018_07_039 crossref_primary_10_1109_TIE_2017_2696503 crossref_primary_10_1109_TIE_2020_3013537 crossref_primary_10_1016_j_ymssp_2022_109476 crossref_primary_10_1109_TIE_2014_2355816 crossref_primary_10_4236_jsip_2013_43031 crossref_primary_10_1016_j_jsv_2020_115401 crossref_primary_10_1016_j_ymssp_2023_110952 crossref_primary_10_1016_j_apacoust_2014_06_018 crossref_primary_10_1016_j_bspc_2021_102699 crossref_primary_10_1115_1_4033717 crossref_primary_10_1007_s11465_018_0472_3 crossref_primary_10_1016_j_ymssp_2015_09_004 crossref_primary_10_1109_TNNLS_2022_3157723 crossref_primary_10_1049_iet_spr_2014_0086 crossref_primary_10_1109_TSP_2020_3039871 crossref_primary_10_1109_JIOT_2024_3419567 crossref_primary_10_1016_j_ymssp_2017_09_041 |
Cites_doi | 10.1016/j.ymssp.2011.06.020 10.1109/TIM.2005.851060 10.1109/TIE.2008.2011580 10.1109/CISP.2009.5303427 10.1016/j.sigpro.2008.01.018 10.1109/TIE.2009.2036633 10.1155/S1110865704404193 10.1109/TBME.2006.873700 10.1109/TIE.2008.2007529 10.1109/TIE.2011.2165462 10.1109/TBME.2008.918556 10.1103/PhysRevD.73.042003 10.1109/TIE.2010.2081955 10.1109/TIE.2011.2163376 10.1016/j.ymssp.2006.01.006 10.1109/TIM.2002.803295 10.1109/TIM.2011.2124770 10.3969/j.issn.1004-4132.2010.02.008 10.1109/78.740131 10.1109/TIE.2008.921199 10.1109/TIM.2011.2161938 10.1109/TIE.2009.2026211 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M F28 FR3 |
DOI | 10.1109/TIE.2012.2206331 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Engineering Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 3956 |
ExternalDocumentID | 2967015951 10_1109_TIE_2012_2206331 6226868 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M F28 FR3 |
ID | FETCH-LOGICAL-c324t-ee8daabf7e6af9579d2d5e23178dbaf12494de14a0bd20f11f398cc7f3d07c763 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Fri Jul 11 03:26:14 EDT 2025 Mon Jun 30 10:19:43 EDT 2025 Tue Jul 01 02:44:04 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Tue Aug 26 16:42:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-ee8daabf7e6af9579d2d5e23178dbaf12494de14a0bd20f11f398cc7f3d07c763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1349864017 |
PQPubID | 85464 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1372609151 crossref_primary_10_1109_TIE_2012_2206331 ieee_primary_6226868 proquest_journals_1349864017 crossref_citationtrail_10_1109_TIE_2012_2206331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2013 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 boashash (ref17) 2003 ref12 ref15 ref14 ref11 ref10 ville (ref1) 1958 ref2 ref19 jeffreys (ref18) 1988 angrisani (ref16) 2004 barkat (ref23) 2004; 13 ref26 baraniuk (ref28) 2009 ref25 ref20 ref22 ref21 ref27 haralick (ref24) 1993; i ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref10 doi: 10.1016/j.ymssp.2011.06.020 – ident: ref9 doi: 10.1109/TIM.2005.851060 – volume: i year: 1993 ident: ref24 publication-title: Computer and Robot Vision – ident: ref11 doi: 10.1109/TIE.2008.2011580 – start-page: 446 year: 1988 ident: ref18 publication-title: Methods of Mathematical Physics – ident: ref21 doi: 10.1109/CISP.2009.5303427 – ident: ref15 doi: 10.1016/j.sigpro.2008.01.018 – ident: ref3 doi: 10.1109/TIE.2009.2036633 – volume: 13 start-page: 2025 year: 2004 ident: ref23 article-title: Algorithms for blind components separation and extraction from the time?frequency distribution of their mixture publication-title: EURASIP J Appl Signal Process doi: 10.1155/S1110865704404193 – ident: ref14 doi: 10.1109/TBME.2006.873700 – year: 2003 ident: ref17 publication-title: Time Frequency Signal Analysis and Processing A Comprehensive Reference – ident: ref13 doi: 10.1109/TIE.2008.2007529 – start-page: 500 year: 2004 ident: ref16 article-title: Warblet transform-based method for instantaneous frequency measurement on multi-component signals publication-title: Proc IEEE Int Freq Control Symp Expo – ident: ref2 doi: 10.1109/TIE.2011.2165462 – ident: ref19 doi: 10.1109/TBME.2008.918556 – ident: ref5 doi: 10.1103/PhysRevD.73.042003 – year: 1958 ident: ref1 publication-title: Theory and applications of the notion of complex signal Translated by I Seline in RAND – ident: ref12 doi: 10.1109/TIE.2010.2081955 – ident: ref7 doi: 10.1109/TIE.2011.2163376 – ident: ref22 doi: 10.1016/j.ymssp.2006.01.006 – ident: ref4 doi: 10.1109/TIM.2002.803295 – ident: ref6 doi: 10.1109/TIM.2011.2124770 – ident: ref25 doi: 10.3969/j.issn.1004-4132.2010.02.008 – ident: ref20 doi: 10.1109/78.740131 – ident: ref8 doi: 10.1109/TIE.2008.921199 – ident: ref26 doi: 10.1109/TIM.2011.2161938 – year: 2009 ident: ref28 publication-title: Bat Echolation Chirp – ident: ref27 doi: 10.1109/TIE.2009.2026211 |
SSID | ssj0014515 |
Score | 2.4241264 |
Snippet | Chirplet transform (CT) is effective in characterization of instantaneous frequency (IF) for monocomponent linear-frequency-modulated signal. However, the CT... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3948 |
SubjectTerms | Approximation methods Chirp Energy concentration Energy distribution Estimates Intermediate frequency Kernel Mathematical models polynomial chirplet transform (CT) (PCT) Polynomials Preserves Signal analysis Strips Time frequency analysis time-frequency representation (TFR) fusion Transforms |
Title | Multicomponent Signal Analysis Based on Polynomial Chirplet Transform |
URI | https://ieeexplore.ieee.org/document/6226868 https://www.proquest.com/docview/1349864017 https://www.proquest.com/docview/1372609151 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC7Uk3tYX7vs-CKClwUzk3TS6c5RZUQFRdgRvIV-RUVJRGcO-uut6jzwsYi3QD9ourq7vkpVfQWwq0zOVSLKELWRClMlklByJRHIcUep1zxnlOB8dp4dX6anV_xqDvb6XBjnnA8-c0P69L58W5sZ_SobZYgVZCbnYR4NtyZXq_cYpLypVsCIMRaNvs4lGeWjycmYYrjYkDFUyEn8TgX5miqfHmKvXY6W4KxbVxNUcjecTfXQvHygbPzuwpfhZwszg_3mXKzAnKtW4ccb8sE1GPvcWwopryscHfy7vfZDWpaS4AD1mw3qKrio758peRkbD29uHx9Q0sGkw7u_4PJoPDk8DtuiCqFB7DQNnZNWKV0Kl6mSfHSWWe4Q5QlptSqpFnVqXZyqSFsWlXFcJrk0RpSJjYTB1-g3LFS4rj8QiMgKzaRJIpukXCuNtgtXTMc2FmUqzQBG3T4XpmUcp8IX94W3PKK8QMkUJJmilcwA_vYjHhq2jS_6rtFG9_3aPR7AZifKor2OTwVxMMoMTUkxgJ2-GS8SeUdU5eoZ9RFo2-WIgNb_P_MGLDJfC4MCzDZhYfo4c1uISKZ62x_FV1UQ3Ew |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V9gAcoFAqFkoJEhw4ZDdx4tg5cIB2q136EBJbqbfgV6CiSqp2V6j8lv6V_jdmnIdKQdwqcYvkhxzP2PON5wXwWpmcq0SUIUojFaZKJKHkSiKQ445Cr3nOKMB5_yCbHKYfj_jRElz2sTDOOe985ob06W35tjYLeiobZYgVZCZbF8pdd_EDFbTzd9NtpOYbxnbGs61J2NYQCA1ChXnonLRK6VK4TJVkkrLMcoegRkirVUmll1Pr4lRF2rKojOMyyaUxokxsJAwePpz3DqwgzuCsiQ7rbRQpb-ojMMpRi2pmZwSN8tFsOiavMTZkDCFAEv8m9HwVlz-ufi_Pdh7CVbcTjRvL9-Firofm540kkf_rVq3CgxZIB-8bzn8ES656DPevpVdcg7GPLian-brC1Qafj7_6IW0eluADSnAb1FXwqT65oPBsbNz6dnx2irwczDpE_wQOb-U_1mG5wnU9hUBEVmgmTRLZJOVaadTOuGI6trEoU2kGMOroWpg2pzqV9jgpvG4V5QVyQkGcULScMIC3_YjTJp_IP_quEWH7fi1NB7DRsU7RXjjnBWWZlBkqy2IAr_pmvCrI_qMqVy-oj0DtNUeM9-zvM7-Eu5PZ_l6xNz3YfQ73mK_8Qe50G7A8P1u4F4i_5nrTH4MAvtw2M_0CUvY8Xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicomponent+Signal+Analysis+Based+on+Polynomial+Chirplet+Transform&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Yang+Yang&rft.au=Wenming+Zhang&rft.au=Zhike+Peng&rft.au=Guang+Meng&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=60&rft.issue=9&rft.spage=3948&rft.epage=3956&rft_id=info:doi/10.1109%2FTIE.2012.2206331&rft.externalDocID=6226868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |