A Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization
We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their mo...
Saved in:
Published in | SIAM journal on optimization Vol. 24; no. 4; pp. 1670 - 1697 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
SIAM
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1052-6234 1095-7189 |
DOI | 10.1137/130925013 |
Cover
Loading…
Abstract | We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. Moments of arbitrary order, as well as nonpolynomial moments, can be included in the formulation. We show that this gives rise to a hierarchy of optimization problems with decreasing levels of risk-aversion, with classic robust optimization at one end of the spectrum and stochastic programming at the other. Although our primary motivation is to solve distributionally robust optimization problems with moment uncertainty, the cutting surface method for general semi-infinite convex programs is also of independent interest. The proposed method is applicable to problems with nondifferentiable semi-infinite constraints indexed by an infinite dimensional index set. Examples comparing the cutting surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our algorithm even in the solution of traditional semi-infinite convex programming problems, whose constraints are differentiable, and are indexed by an index set of low dimension. After the rate of convergence analysis of the cutting surface algorithm, we extend the authors' moment matching scenario generation algorithm to a probabilistic algorithm that finds optimal probability distributions subject to moment constraints. The combination of this distribution optimization method and the central cutting surface algorithm yields a solution to a family of distributionally robust optimization problems that are considerably more general than the ones proposed to date. |
---|---|
AbstractList | In this paper, we present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. Moments of arbitrary order, as well as nonpolynomial moments, can be included in the formulation. We show that this gives rise to a hierarchy of optimization problems with decreasing levels of risk-aversion, with classic robust optimization at one end of the spectrum and stochastic programming at the other. Although our primary motivation is to solve distributionally robust optimization problems with moment uncertainty, the cutting surface method for general semi-infinite convex programs is also of independent interest. The proposed method is applicable to problems with nondifferentiable semi-infinite constraints indexed by an infinite dimensional index set. Examples comparing the cutting surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our algorithm even in the solution of traditional semi-infinite convex programming problems, whose constraints are differentiable, and are indexed by an index set of low dimension. After the rate of convergence analysis of the cutting surface algorithm, we extend the authors' moment matching scenario generation algorithm to a probabilistic algorithm that finds optimal probability distributions subject to moment constraints. The combination of this distribution optimization method and the central cutting surface algorithm yields a solution to a family of distributionally robust optimization problems that are considerably more general than the ones proposed to date. We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. Moments of arbitrary order, as well as nonpolynomial moments, can be included in the formulation. We show that this gives rise to a hierarchy of optimization problems with decreasing levels of risk-aversion, with classic robust optimization at one end of the spectrum and stochastic programming at the other. Although our primary motivation is to solve distributionally robust optimization problems with moment uncertainty, the cutting surface method for general semi-infinite convex programs is also of independent interest. The proposed method is applicable to problems with nondifferentiable semi-infinite constraints indexed by an infinite dimensional index set. Examples comparing the cutting surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our algorithm even in the solution of traditional semi-infinite convex programming problems, whose constraints are differentiable, and are indexed by an index set of low dimension. After the rate of convergence analysis of the cutting surface algorithm, we extend the authors' moment matching scenario generation algorithm to a probabilistic algorithm that finds optimal probability distributions subject to moment constraints. The combination of this distribution optimization method and the central cutting surface algorithm yields a solution to a family of distributionally robust optimization problems that are considerably more general than the ones proposed to date. |
Author | Papp, Dávid Mehrotra, Sanjay |
Author_xml | – sequence: 1 givenname: Sanjay surname: Mehrotra fullname: Mehrotra, Sanjay – sequence: 2 givenname: Dávid surname: Papp fullname: Papp, Dávid |
BackLink | https://www.osti.gov/servlets/purl/1321089$$D View this record in Osti.gov |
BookMark | eNptkctOwzAQRS1UJKCw4A8sVrAI-BEnzbKqeFQqKqKwjhxnXIwSO9gOr68npYgFYjUjzblXM3MP0Mg6CwgdU3JOKc8vKCcFE4TyHbRPSSGSnE6K0aYXLMkYT_fQQQjPhJBJkU32kZ_iWR-jsWu86r2WCvC0WTtv4lOLtfN4Ba1J5lYbayLgmbOv8I7vvFt72bYb2duAYmnxtOsao2Q0zuLo8K1rwUZ876o-RLzsomnN5_f0EO1q2QQ4-qlj9Hh1-TC7SRbL6_lsukgUZ2lMADJRizolSleCMplBUeV6WFpyXUCdalrkmknBBSPAUpFOhKhqVhFWS6ik5mN0svV1IZoyqGF_9aSctaBiSTmjwwsG6HQLdd699BBi2ZqgoGmkBdeHkmY5FVlWcDagF1tUeReCB10Olt8XRS9NU1JSbiIofyMYFGd_FJ03rfQf_7BfNxyIeg |
CitedBy_id | crossref_primary_10_1016_j_orl_2017_10_001 crossref_primary_10_1007_s10957_017_1150_z crossref_primary_10_1002_nav_22112 crossref_primary_10_1016_j_orl_2025_107246 crossref_primary_10_1287_opre_2017_1671 crossref_primary_10_1080_01630563_2024_2305347 crossref_primary_10_1137_15M1038529 crossref_primary_10_1007_s12190_023_01928_x crossref_primary_10_3934_naco_2021057 crossref_primary_10_1007_s10288_021_00484_z crossref_primary_10_1007_s10589_020_00170_6 crossref_primary_10_1016_j_ejor_2021_04_035 crossref_primary_10_1111_itor_12913 crossref_primary_10_1007_s00245_022_09856_1 crossref_primary_10_1007_s10479_020_03766_7 crossref_primary_10_1007_s10107_018_1347_4 crossref_primary_10_1016_j_ins_2022_09_039 crossref_primary_10_1287_ijoo_2021_0060 crossref_primary_10_1016_j_segan_2023_101172 crossref_primary_10_1007_s10589_015_9810_0 crossref_primary_10_1016_j_cie_2023_109492 crossref_primary_10_5802_ojmo_15 crossref_primary_10_1080_10556788_2023_2167995 crossref_primary_10_1137_16M1060704 crossref_primary_10_1007_s11590_024_02175_0 crossref_primary_10_1007_s00186_019_00698_2 crossref_primary_10_1016_j_ejor_2023_12_020 crossref_primary_10_1007_s10107_017_1143_6 crossref_primary_10_1137_15M1053578 crossref_primary_10_1007_s11075_018_0490_6 crossref_primary_10_1016_j_jsc_2022_04_015 crossref_primary_10_1109_TSTE_2021_3080707 crossref_primary_10_1007_s00186_016_0532_6 crossref_primary_10_1287_moor_2017_0911 crossref_primary_10_1007_s11590_020_01574_3 crossref_primary_10_1007_s10107_020_01580_4 crossref_primary_10_1016_j_ejor_2021_03_068 crossref_primary_10_1287_ijoc_2022_0010 crossref_primary_10_1016_j_ejor_2022_08_019 crossref_primary_10_1080_10556788_2023_2241149 crossref_primary_10_1016_j_compchemeng_2024_108703 crossref_primary_10_1137_19M1308165 crossref_primary_10_1007_s10107_018_1298_9 crossref_primary_10_1016_j_ejor_2019_03_008 crossref_primary_10_1137_17M1115046 crossref_primary_10_1287_opre_2019_1849 crossref_primary_10_1016_j_cie_2021_107581 |
Cites_doi | 10.1007/s10107-007-0175-8 10.1287/moor.1110.0519 10.1287/moor.1100.0445 10.1007/s10107-003-0492-5 10.1137/S009753970544727X 10.1007/s10589-013-9540-0 10.1016/j.jmva.2011.06.001 10.1137/110858082 10.1007/s10107-003-0387-5 10.1016/j.tcs.2006.05.011 10.1016/j.ejor.2006.08.045 10.1080/02331938808843393 10.1145/779359.779363 10.1287/opre.1090.0741 10.1007/s10100-007-0052-9 10.1023/A:1021853807313 10.1137/0803047 10.1137/050623802 |
ContentType | Journal Article |
CorporateAuthor | Northwestern Univ., Evanston, IL (United States) |
CorporateAuthor_xml | – name: Northwestern Univ., Evanston, IL (United States) |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D OIOZB OTOTI |
DOI | 10.1137/130925013 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1095-7189 |
EndPage | 1697 |
ExternalDocumentID | 1321089 10_1137_130925013 |
GroupedDBID | -~X .4S .DC 123 4.4 7RQ 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYOK AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV AEMOZ AENEX AFFNX AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU EDO EJD EMK EST ESX F5P FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TH9 TN5 TUS TWZ YNT 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D PQGLB 3V. 88A 88K AAJWA ABPTK ADAJV GROUPED_ABI_INFORM_COMPLETE M0L OIOZB OTOTI |
ID | FETCH-LOGICAL-c324t-ee65d5d40cfb512a6e9b7f968a3f9ed4f197f2a53520e2454855bd2b02daebaf3 |
ISSN | 1052-6234 |
IngestDate | Mon May 22 04:07:06 EDT 2023 Thu Jul 10 23:53:01 EDT 2025 Tue Jul 01 04:05:30 EDT 2025 Thu Apr 24 22:56:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c324t-ee65d5d40cfb512a6e9b7f968a3f9ed4f197f2a53520e2454855bd2b02daebaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) SC0005102; CMMI-1100868; SP0011568 National Science Foundation (NSF) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1321089 |
PQID | 1671566932 |
PQPubID | 23500 |
PageCount | 28 |
ParticipantIDs | osti_scitechconnect_1321089 proquest_miscellaneous_1671566932 crossref_citationtrail_10_1137_130925013 crossref_primary_10_1137_130925013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | SIAM journal on optimization |
PublicationYear | 2014 |
Publisher | SIAM |
Publisher_xml | – name: SIAM |
References | atypb9 atypb8 atypb15 atypb16 atypb17 Vempala S. (atypb23) 2005; 52 atypb11 atypb22 atypb12 atypb13 atypb24 atypb1 atypb3 Mehrotra S. (atypb18) 2013; 146 atypb20 atypb2 atypb10 atypb5 atypb4 Papp D. (atypb19) 2011; 23 atypb6 |
References_xml | – ident: atypb5 doi: 10.1007/s10107-007-0175-8 – ident: atypb11 doi: 10.1287/moor.1110.0519 – ident: atypb1 doi: 10.1287/moor.1100.0445 – ident: atypb2 doi: 10.1007/s10107-003-0492-5 – volume: 146 start-page: 123 issue: 2014 year: 2013 ident: atypb18 publication-title: Math. Program. – ident: atypb16 doi: 10.1137/S009753970544727X – ident: atypb10 doi: 10.1007/s10589-013-9540-0 – ident: atypb12 doi: 10.1016/j.jmva.2011.06.001 – ident: atypb17 doi: 10.1137/110858082 – ident: atypb20 doi: 10.1007/s10107-003-0387-5 – volume: 52 start-page: 573 year: 2005 ident: atypb23 publication-title: Combinatorial and Computational Geometry – ident: atypb4 doi: 10.1016/j.tcs.2006.05.011 – ident: atypb15 doi: 10.1016/j.ejor.2006.08.045 – volume: 23 start-page: 1398 issue: 2013 year: 2011 ident: atypb19 publication-title: SIAM J. Optim. – ident: atypb22 doi: 10.1080/02331938808843393 – ident: atypb8 doi: 10.1145/779359.779363 – ident: atypb6 doi: 10.1287/opre.1090.0741 – ident: atypb3 doi: 10.1007/s10100-007-0052-9 – ident: atypb9 doi: 10.1023/A:1021853807313 – ident: atypb13 doi: 10.1137/0803047 – ident: atypb24 doi: 10.1137/050623802 |
SSID | ssj0008968 |
Score | 2.3595903 |
Snippet | We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for... In this paper, we present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1670 |
SubjectTerms | Algorithms column generation Convergence Cutting cutting plane methods cutting surface methods distributionally robust optimization Hierarchies MATHEMATICS AND COMPUTING moment matching moment problem Optimization Probability theory Programming robust optimization semi-infinite programming stochastic programming Uncertainty |
Title | A Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization |
URI | https://www.proquest.com/docview/1671566932 https://www.osti.gov/servlets/purl/1321089 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZYd4ED4qcog8kgDkiVIXGcpDmGqWVDazetrdRbZCc2G1qTqk0Q4q_nOfaSlO0wuESJa1mV3-fnz_Z7nxH6oI9-RKYo4SKMCPNERIZDlZIgkCqNQuVEVCcnT6bB8YJ9W_rL9nqrOrukFJ_S33fmlfyPVaEM7KqzZP_Bsk2jUADvYF94goXheS8bx4OjysQtz6qN4jBE4-vvBSz3L1d1-OBMrq7ISa6uNLHUyX0_5S-dGqAjslbNLiyM8Lg9xtZkdFLUIQIXhai25eAMvMrKpmt2uezsJJ60yhNAO_-uV-v6Xm6Ksr7LaDDj-Y82ZOecr9e7QfV278Flnb0H4y4dnxIgUGZLQNqyyCcw40VdH2vypC2WWMdhuoG5N8ROvm5gonVvO3YjDeABdnzHZK_uimdPz5Lx4vQ0mY-W8z20T2HVAH56_8toen7RTM3DyOZG2r9tpaag8c9N0zsEpVeAo701TdfcY_4EPbaLBhwbBDxFD2T-DD3qSEnC16TR390-R5sYW2RgiwzcIAMDMvAOMrBBBu4gA2tkYJ7jDjJwWWCDDGyQgbvIeIEW49H86JjY2zVICiS6JFIGfuZnzEmVANbHAxmJUEEHcU9FMmPKhaFKuZb_cSRlvlYREhkVDs24FFx5L1EvL3L5CmFGeeix0HFFylkAc2CmtK5d5kqpnEC5ffTxpkuT1ErP6xtQrpN6CeqFSdP7ffS-qbo2eit3VTrQdkmAJGql41SHhKUl_E5dMHEfvbsxVwK-Uh-A8VwW1TYBsOntCliyvL5HnQP0sMX8G9QrN5V8Cwy0FIdobzj-emjR9QcGJIsX |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cutting+Surface+Algorithm+for+Semi-Infinite+Convex+Programming+with+an+Application+to+Moment+Robust+Optimization&rft.jtitle=SIAM+journal+on+optimization&rft.au=Mehrotra%2C+Sanjay&rft.au=Papp%2C+David&rft.date=2014-01-01&rft.issn=1052-6234&rft.eissn=1095-7189&rft.volume=24&rft.issue=4&rft.spage=1670&rft.epage=1697&rft_id=info:doi/10.1137%2F130925013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-6234&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-6234&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-6234&client=summon |