A Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization

We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their mo...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on optimization Vol. 24; no. 4; pp. 1670 - 1697
Main Authors Mehrotra, Sanjay, Papp, Dávid
Format Journal Article
LanguageEnglish
Published United States SIAM 01.01.2014
Subjects
Online AccessGet full text
ISSN1052-6234
1095-7189
DOI10.1137/130925013

Cover

Loading…
Abstract We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. Moments of arbitrary order, as well as nonpolynomial moments, can be included in the formulation. We show that this gives rise to a hierarchy of optimization problems with decreasing levels of risk-aversion, with classic robust optimization at one end of the spectrum and stochastic programming at the other. Although our primary motivation is to solve distributionally robust optimization problems with moment uncertainty, the cutting surface method for general semi-infinite convex programs is also of independent interest. The proposed method is applicable to problems with nondifferentiable semi-infinite constraints indexed by an infinite dimensional index set. Examples comparing the cutting surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our algorithm even in the solution of traditional semi-infinite convex programming problems, whose constraints are differentiable, and are indexed by an index set of low dimension. After the rate of convergence analysis of the cutting surface algorithm, we extend the authors' moment matching scenario generation algorithm to a probabilistic algorithm that finds optimal probability distributions subject to moment constraints. The combination of this distribution optimization method and the central cutting surface algorithm yields a solution to a family of distributionally robust optimization problems that are considerably more general than the ones proposed to date.
AbstractList In this paper, we present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. Moments of arbitrary order, as well as nonpolynomial moments, can be included in the formulation. We show that this gives rise to a hierarchy of optimization problems with decreasing levels of risk-aversion, with classic robust optimization at one end of the spectrum and stochastic programming at the other. Although our primary motivation is to solve distributionally robust optimization problems with moment uncertainty, the cutting surface method for general semi-infinite convex programs is also of independent interest. The proposed method is applicable to problems with nondifferentiable semi-infinite constraints indexed by an infinite dimensional index set. Examples comparing the cutting surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our algorithm even in the solution of traditional semi-infinite convex programming problems, whose constraints are differentiable, and are indexed by an index set of low dimension. After the rate of convergence analysis of the cutting surface algorithm, we extend the authors' moment matching scenario generation algorithm to a probabilistic algorithm that finds optimal probability distributions subject to moment constraints. The combination of this distribution optimization method and the central cutting surface algorithm yields a solution to a family of distributionally robust optimization problems that are considerably more general than the ones proposed to date.
We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. Moments of arbitrary order, as well as nonpolynomial moments, can be included in the formulation. We show that this gives rise to a hierarchy of optimization problems with decreasing levels of risk-aversion, with classic robust optimization at one end of the spectrum and stochastic programming at the other. Although our primary motivation is to solve distributionally robust optimization problems with moment uncertainty, the cutting surface method for general semi-infinite convex programs is also of independent interest. The proposed method is applicable to problems with nondifferentiable semi-infinite constraints indexed by an infinite dimensional index set. Examples comparing the cutting surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our algorithm even in the solution of traditional semi-infinite convex programming problems, whose constraints are differentiable, and are indexed by an index set of low dimension. After the rate of convergence analysis of the cutting surface algorithm, we extend the authors' moment matching scenario generation algorithm to a probabilistic algorithm that finds optimal probability distributions subject to moment constraints. The combination of this distribution optimization method and the central cutting surface algorithm yields a solution to a family of distributionally robust optimization problems that are considerably more general than the ones proposed to date.
Author Papp, Dávid
Mehrotra, Sanjay
Author_xml – sequence: 1
  givenname: Sanjay
  surname: Mehrotra
  fullname: Mehrotra, Sanjay
– sequence: 2
  givenname: Dávid
  surname: Papp
  fullname: Papp, Dávid
BackLink https://www.osti.gov/servlets/purl/1321089$$D View this record in Osti.gov
BookMark eNptkctOwzAQRS1UJKCw4A8sVrAI-BEnzbKqeFQqKqKwjhxnXIwSO9gOr68npYgFYjUjzblXM3MP0Mg6CwgdU3JOKc8vKCcFE4TyHbRPSSGSnE6K0aYXLMkYT_fQQQjPhJBJkU32kZ_iWR-jsWu86r2WCvC0WTtv4lOLtfN4Ba1J5lYbayLgmbOv8I7vvFt72bYb2duAYmnxtOsao2Q0zuLo8K1rwUZ876o-RLzsomnN5_f0EO1q2QQ4-qlj9Hh1-TC7SRbL6_lsukgUZ2lMADJRizolSleCMplBUeV6WFpyXUCdalrkmknBBSPAUpFOhKhqVhFWS6ik5mN0svV1IZoyqGF_9aSctaBiSTmjwwsG6HQLdd699BBi2ZqgoGmkBdeHkmY5FVlWcDagF1tUeReCB10Olt8XRS9NU1JSbiIofyMYFGd_FJ03rfQf_7BfNxyIeg
CitedBy_id crossref_primary_10_1016_j_orl_2017_10_001
crossref_primary_10_1007_s10957_017_1150_z
crossref_primary_10_1002_nav_22112
crossref_primary_10_1016_j_orl_2025_107246
crossref_primary_10_1287_opre_2017_1671
crossref_primary_10_1080_01630563_2024_2305347
crossref_primary_10_1137_15M1038529
crossref_primary_10_1007_s12190_023_01928_x
crossref_primary_10_3934_naco_2021057
crossref_primary_10_1007_s10288_021_00484_z
crossref_primary_10_1007_s10589_020_00170_6
crossref_primary_10_1016_j_ejor_2021_04_035
crossref_primary_10_1111_itor_12913
crossref_primary_10_1007_s00245_022_09856_1
crossref_primary_10_1007_s10479_020_03766_7
crossref_primary_10_1007_s10107_018_1347_4
crossref_primary_10_1016_j_ins_2022_09_039
crossref_primary_10_1287_ijoo_2021_0060
crossref_primary_10_1016_j_segan_2023_101172
crossref_primary_10_1007_s10589_015_9810_0
crossref_primary_10_1016_j_cie_2023_109492
crossref_primary_10_5802_ojmo_15
crossref_primary_10_1080_10556788_2023_2167995
crossref_primary_10_1137_16M1060704
crossref_primary_10_1007_s11590_024_02175_0
crossref_primary_10_1007_s00186_019_00698_2
crossref_primary_10_1016_j_ejor_2023_12_020
crossref_primary_10_1007_s10107_017_1143_6
crossref_primary_10_1137_15M1053578
crossref_primary_10_1007_s11075_018_0490_6
crossref_primary_10_1016_j_jsc_2022_04_015
crossref_primary_10_1109_TSTE_2021_3080707
crossref_primary_10_1007_s00186_016_0532_6
crossref_primary_10_1287_moor_2017_0911
crossref_primary_10_1007_s11590_020_01574_3
crossref_primary_10_1007_s10107_020_01580_4
crossref_primary_10_1016_j_ejor_2021_03_068
crossref_primary_10_1287_ijoc_2022_0010
crossref_primary_10_1016_j_ejor_2022_08_019
crossref_primary_10_1080_10556788_2023_2241149
crossref_primary_10_1016_j_compchemeng_2024_108703
crossref_primary_10_1137_19M1308165
crossref_primary_10_1007_s10107_018_1298_9
crossref_primary_10_1016_j_ejor_2019_03_008
crossref_primary_10_1137_17M1115046
crossref_primary_10_1287_opre_2019_1849
crossref_primary_10_1016_j_cie_2021_107581
Cites_doi 10.1007/s10107-007-0175-8
10.1287/moor.1110.0519
10.1287/moor.1100.0445
10.1007/s10107-003-0492-5
10.1137/S009753970544727X
10.1007/s10589-013-9540-0
10.1016/j.jmva.2011.06.001
10.1137/110858082
10.1007/s10107-003-0387-5
10.1016/j.tcs.2006.05.011
10.1016/j.ejor.2006.08.045
10.1080/02331938808843393
10.1145/779359.779363
10.1287/opre.1090.0741
10.1007/s10100-007-0052-9
10.1023/A:1021853807313
10.1137/0803047
10.1137/050623802
ContentType Journal Article
CorporateAuthor Northwestern Univ., Evanston, IL (United States)
CorporateAuthor_xml – name: Northwestern Univ., Evanston, IL (United States)
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
OIOZB
OTOTI
DOI 10.1137/130925013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1095-7189
EndPage 1697
ExternalDocumentID 1321089
10_1137_130925013
GroupedDBID -~X
.4S
.DC
123
4.4
7RQ
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8V8
AALVN
AASXH
AAYOK
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AEMOZ
AENEX
AFFNX
AFKRA
AFRAH
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F5P
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K1G
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RNS
RSI
TH9
TN5
TUS
TWZ
YNT
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
PQGLB
3V.
88A
88K
AAJWA
ABPTK
ADAJV
GROUPED_ABI_INFORM_COMPLETE
M0L
OIOZB
OTOTI
ID FETCH-LOGICAL-c324t-ee65d5d40cfb512a6e9b7f968a3f9ed4f197f2a53520e2454855bd2b02daebaf3
ISSN 1052-6234
IngestDate Mon May 22 04:07:06 EDT 2023
Thu Jul 10 23:53:01 EDT 2025
Tue Jul 01 04:05:30 EDT 2025
Thu Apr 24 22:56:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c324t-ee65d5d40cfb512a6e9b7f968a3f9ed4f197f2a53520e2454855bd2b02daebaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
SC0005102; CMMI-1100868; SP0011568
National Science Foundation (NSF)
OpenAccessLink https://www.osti.gov/servlets/purl/1321089
PQID 1671566932
PQPubID 23500
PageCount 28
ParticipantIDs osti_scitechconnect_1321089
proquest_miscellaneous_1671566932
crossref_citationtrail_10_1137_130925013
crossref_primary_10_1137_130925013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle SIAM journal on optimization
PublicationYear 2014
Publisher SIAM
Publisher_xml – name: SIAM
References atypb9
atypb8
atypb15
atypb16
atypb17
Vempala S. (atypb23) 2005; 52
atypb11
atypb22
atypb12
atypb13
atypb24
atypb1
atypb3
Mehrotra S. (atypb18) 2013; 146
atypb20
atypb2
atypb10
atypb5
atypb4
Papp D. (atypb19) 2011; 23
atypb6
References_xml – ident: atypb5
  doi: 10.1007/s10107-007-0175-8
– ident: atypb11
  doi: 10.1287/moor.1110.0519
– ident: atypb1
  doi: 10.1287/moor.1100.0445
– ident: atypb2
  doi: 10.1007/s10107-003-0492-5
– volume: 146
  start-page: 123
  issue: 2014
  year: 2013
  ident: atypb18
  publication-title: Math. Program.
– ident: atypb16
  doi: 10.1137/S009753970544727X
– ident: atypb10
  doi: 10.1007/s10589-013-9540-0
– ident: atypb12
  doi: 10.1016/j.jmva.2011.06.001
– ident: atypb17
  doi: 10.1137/110858082
– ident: atypb20
  doi: 10.1007/s10107-003-0387-5
– volume: 52
  start-page: 573
  year: 2005
  ident: atypb23
  publication-title: Combinatorial and Computational Geometry
– ident: atypb4
  doi: 10.1016/j.tcs.2006.05.011
– ident: atypb15
  doi: 10.1016/j.ejor.2006.08.045
– volume: 23
  start-page: 1398
  issue: 2013
  year: 2011
  ident: atypb19
  publication-title: SIAM J. Optim.
– ident: atypb22
  doi: 10.1080/02331938808843393
– ident: atypb8
  doi: 10.1145/779359.779363
– ident: atypb6
  doi: 10.1287/opre.1090.0741
– ident: atypb3
  doi: 10.1007/s10100-007-0052-9
– ident: atypb9
  doi: 10.1023/A:1021853807313
– ident: atypb13
  doi: 10.1137/0803047
– ident: atypb24
  doi: 10.1137/050623802
SSID ssj0008968
Score 2.3595903
Snippet We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for...
In this paper, we present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1670
SubjectTerms Algorithms
column generation
Convergence
Cutting
cutting plane methods
cutting surface methods
distributionally robust optimization
Hierarchies
MATHEMATICS AND COMPUTING
moment matching
moment problem
Optimization
Probability theory
Programming
robust optimization
semi-infinite programming
stochastic programming
Uncertainty
Title A Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization
URI https://www.proquest.com/docview/1671566932
https://www.osti.gov/servlets/purl/1321089
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZYd4ED4qcog8kgDkiVIXGcpDmGqWVDazetrdRbZCc2G1qTqk0Q4q_nOfaSlO0wuESJa1mV3-fnz_Z7nxH6oI9-RKYo4SKMCPNERIZDlZIgkCqNQuVEVCcnT6bB8YJ9W_rL9nqrOrukFJ_S33fmlfyPVaEM7KqzZP_Bsk2jUADvYF94goXheS8bx4OjysQtz6qN4jBE4-vvBSz3L1d1-OBMrq7ISa6uNLHUyX0_5S-dGqAjslbNLiyM8Lg9xtZkdFLUIQIXhai25eAMvMrKpmt2uezsJJ60yhNAO_-uV-v6Xm6Ksr7LaDDj-Y82ZOecr9e7QfV278Flnb0H4y4dnxIgUGZLQNqyyCcw40VdH2vypC2WWMdhuoG5N8ROvm5gonVvO3YjDeABdnzHZK_uimdPz5Lx4vQ0mY-W8z20T2HVAH56_8toen7RTM3DyOZG2r9tpaag8c9N0zsEpVeAo701TdfcY_4EPbaLBhwbBDxFD2T-DD3qSEnC16TR390-R5sYW2RgiwzcIAMDMvAOMrBBBu4gA2tkYJ7jDjJwWWCDDGyQgbvIeIEW49H86JjY2zVICiS6JFIGfuZnzEmVANbHAxmJUEEHcU9FMmPKhaFKuZb_cSRlvlYREhkVDs24FFx5L1EvL3L5CmFGeeix0HFFylkAc2CmtK5d5kqpnEC5ffTxpkuT1ErP6xtQrpN6CeqFSdP7ffS-qbo2eit3VTrQdkmAJGql41SHhKUl_E5dMHEfvbsxVwK-Uh-A8VwW1TYBsOntCliyvL5HnQP0sMX8G9QrN5V8Cwy0FIdobzj-emjR9QcGJIsX
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cutting+Surface+Algorithm+for+Semi-Infinite+Convex+Programming+with+an+Application+to+Moment+Robust+Optimization&rft.jtitle=SIAM+journal+on+optimization&rft.au=Mehrotra%2C+Sanjay&rft.au=Papp%2C+David&rft.date=2014-01-01&rft.issn=1052-6234&rft.eissn=1095-7189&rft.volume=24&rft.issue=4&rft.spage=1670&rft.epage=1697&rft_id=info:doi/10.1137%2F130925013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-6234&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-6234&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-6234&client=summon