Large eddy simulation of natural convection heat transfer and fluid flow around a horizontal cylinder
Natural convection around a single horizontal cylinder has been extensively studied for heat transfer characteristics, but when coupled with fluid flow, the laminar-to-turbulent transition in buoyant plume poses severe challenge on modelling fidelity and physical interpretability. To address this ch...
Saved in:
Published in | International journal of thermal sciences Vol. 162; p. 106789 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Natural convection around a single horizontal cylinder has been extensively studied for heat transfer characteristics, but when coupled with fluid flow, the laminar-to-turbulent transition in buoyant plume poses severe challenge on modelling fidelity and physical interpretability. To address this challenge, this paper conducts detailed verification, validation and analysis of high-fidelity large eddy simulation (LES) for an unconfined horizontal cylinder in water with a Rayleigh number of 8 × 107, complemented by Reynolds-Averaged Navier-Stokes (RANS) computations. To the best of the authors' knowledge, this is the first LES study with acceptable accuracy as validate by experimental data for buoyant plume above a single horizontal cylinder. It is found that LES is far more sensitive to mesh resolution and boundary condition setting than RANS. An alarm is set for the use of periodic condition in LES on lateral boundaries of computational domain due to its inferior accuracy than RANS with transition SST model. The finely-tuned LES with pressure condition on lateral boundaries shows satisfactory agreement with experimental data in terms of heat transfer on cylinder surface and buoyant plume velocity, based on which new physical insight on transitional behavior of thermal plume is obtained. It is found that after leaving the cylinder, buoyant plume is laminar and accelerates, subject to work input from buoyancy force, while its temperature keep decreasing due to heat loss to atmosphere. Flow instability appears first in upward velocity at a streamwise Grashof number of 1.5 × 108, where transition to turbulence onsets. Thermal plume continues to accelerate until it begins to sway horizontally, where energy dissipation into turbulence becomes the major loss mechanism of mean flow energy. Thus, cross-stream diffusivity is augmented notably due to turbulent stresses, leading to smoothing of transverse velocity distribution and reduction of transversely-averaged mean kinetic energy. Transversely-averaged turbulent kinetic energy keeps increasing in transitional regime until the streamwise Grashof number reaches 7 × 109 and then declines to approach an asymptotic value, signifying the end of transition. Overall speaking, buoyancy work dominates the change in mean flow energy, while mean shear outweighs buoyancy in producing turbulent kinetic energy. |
---|---|
AbstractList | Natural convection around a single horizontal cylinder has been extensively studied for heat transfer characteristics, but when coupled with fluid flow, the laminar-to-turbulent transition in buoyant plume poses severe challenge on modelling fidelity and physical interpretability. To address this challenge, this paper conducts detailed verification, validation and analysis of high-fidelity large eddy simulation (LES) for an unconfined horizontal cylinder in water with a Rayleigh number of 8 × 107, complemented by Reynolds-Averaged Navier-Stokes (RANS) computations. To the best of the authors' knowledge, this is the first LES study with acceptable accuracy as validate by experimental data for buoyant plume above a single horizontal cylinder. It is found that LES is far more sensitive to mesh resolution and boundary condition setting than RANS. An alarm is set for the use of periodic condition in LES on lateral boundaries of computational domain due to its inferior accuracy than RANS with transition SST model. The finely-tuned LES with pressure condition on lateral boundaries shows satisfactory agreement with experimental data in terms of heat transfer on cylinder surface and buoyant plume velocity, based on which new physical insight on transitional behavior of thermal plume is obtained. It is found that after leaving the cylinder, buoyant plume is laminar and accelerates, subject to work input from buoyancy force, while its temperature keep decreasing due to heat loss to atmosphere. Flow instability appears first in upward velocity at a streamwise Grashof number of 1.5 × 108, where transition to turbulence onsets. Thermal plume continues to accelerate until it begins to sway horizontally, where energy dissipation into turbulence becomes the major loss mechanism of mean flow energy. Thus, cross-stream diffusivity is augmented notably due to turbulent stresses, leading to smoothing of transverse velocity distribution and reduction of transversely-averaged mean kinetic energy. Transversely-averaged turbulent kinetic energy keeps increasing in transitional regime until the streamwise Grashof number reaches 7 × 109 and then declines to approach an asymptotic value, signifying the end of transition. Overall speaking, buoyancy work dominates the change in mean flow energy, while mean shear outweighs buoyancy in producing turbulent kinetic energy. |
ArticleNumber | 106789 |
Author | Ma, Haiteng He, Li |
Author_xml | – sequence: 1 givenname: Haiteng orcidid: 0000-0002-9237-0855 surname: Ma fullname: Ma, Haiteng email: haiteng.ma@sjtu.edu.cn organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 2 givenname: Li surname: He fullname: He, Li organization: Department of Engineering Science, University of Oxford, Oxford, OX2 0ES, UK |
BookMark | eNqNkE1PwzAMhiMEEtvgP0TcO5KsTRtOoPEpTeIC5yhNHJaqS1DaDo1fT7pxQJx2sS3b7yv7maJTHzwgdEXJnBLKr5u5a_o1xI1qO-3mjLBxwMtKnKAJLcsqyynnp6lmgmSkZOIcTbuuIYSUgogJgpWKH4DBmB3u3GZoVe-Cx8Fir_ohqhbr4Leg9901qB73UfnOQsTKG2zbwY0xfGEVw5A6Cq9DdN_B96N21zpvIF6gM5suhMvfPEPvjw9vy-ds9fr0srxbZXrB8j6DittS17owYCmllcoLritmDTfMEGZrywUrFdQVCFEv6ppak6vC0BqsKahezNDNwVfH0HURrPyMbqPiTlIiR2CykX-ByRGYPABL4tt_Yu36PY70smuPs7g_WEB6cusgyrQBXoNxMTGUJrhjbH4AC0GXPQ |
CitedBy_id | crossref_primary_10_1007_s00348_023_03720_w crossref_primary_10_1016_j_euromechflu_2023_11_004 crossref_primary_10_1016_j_icheatmasstransfer_2022_106037 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126520 crossref_primary_10_3390_fluids9110252 crossref_primary_10_3390_en18040950 crossref_primary_10_1016_j_csite_2023_102971 crossref_primary_10_1016_j_oceaneng_2023_114649 crossref_primary_10_1016_j_cej_2022_139719 crossref_primary_10_1016_j_nucengdes_2022_111823 crossref_primary_10_1016_j_cryogenics_2023_103772 crossref_primary_10_1016_j_cherd_2024_04_054 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123637 crossref_primary_10_1360_SST_2022_0325 |
Cites_doi | 10.1063/1.2813043 10.1016/j.ijheatmasstransfer.2018.08.055 10.1016/S0065-2717(08)70075-3 10.1016/0017-9310(75)90222-7 10.1016/j.ijheatmasstransfer.2005.01.010 10.1016/j.ijheatmasstransfer.2015.08.086 10.1016/S0017-9310(05)80094-8 10.1016/j.ijheatmasstransfer.2015.12.041 10.1016/j.ijheatmasstransfer.2014.11.063 10.1016/j.ijheatmasstransfer.2017.01.122 10.1115/1.3245077 10.1016/S0017-9310(99)00302-6 10.1016/S0894-1777(99)00037-0 10.1017/S0022112085002634 10.1115/1.4028493 10.1017/S0022112010000017 10.1016/j.ijheatmasstransfer.2011.07.011 10.1680/eacm.12.00014 10.1016/j.ijheatmasstransfer.2012.03.060 10.1016/j.ijheatmasstransfer.2014.07.030 10.1016/j.applthermaleng.2017.03.039 10.1016/j.ijheatmasstransfer.2018.08.057 10.1016/j.ijheatmasstransfer.2012.05.033 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 10.1016/j.ijheatmasstransfer.2017.12.080 10.1016/j.ijthermalsci.2016.09.032 10.1016/j.ijheatmasstransfer.2014.10.055 10.1063/1.857955 10.1016/j.ijheatmasstransfer.2018.01.139 10.2514/2.6404 10.1016/j.ijheatmasstransfer.2018.06.026 10.1016/0017-9310(76)90168-X 10.1016/S0017-9310(03)00154-6 10.1016/j.ijheatmasstransfer.2018.01.140 10.1016/0017-9310(80)90071-X 10.1115/1.2979230 10.1016/j.ijheatmasstransfer.2016.04.039 10.1115/1.4036765 10.1016/j.icheatmasstransfer.2009.03.017 10.1017/S002211205900009X 10.1115/1.2184352 10.1016/j.ijheatmasstransfer.2019.118948 10.1016/j.ijheatmasstransfer.2012.10.001 10.1016/j.ijheatmasstransfer.2018.01.137 10.1016/j.ijheatmasstransfer.2007.07.025 10.1016/j.ijheatmasstransfer.2017.01.106 10.1016/j.ijheatmasstransfer.2012.04.031 10.1017/S0022112094002260 10.1016/0017-9310(75)90292-6 10.1016/S0017-9310(83)80051-9 10.1016/S0017-9310(99)00079-4 10.1080/10407789008944739 10.1016/j.expthermflusci.2003.11.001 10.1016/j.ijheatmasstransfer.2015.07.136 10.1016/j.ijheatmasstransfer.2016.08.075 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Masson SAS |
Copyright_xml | – notice: 2020 Elsevier Masson SAS |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijthermalsci.2020.106789 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1778-4166 |
ExternalDocumentID | 10_1016_j_ijthermalsci_2020_106789 S1290072920312321 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSG SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c324t-e86f7cbc5def1118a456c82fd6d2d02fbf6927aeb8e99b3bb1fd4a5d1befd51c3 |
IEDL.DBID | .~1 |
ISSN | 1290-0729 |
IngestDate | Thu Apr 24 22:55:26 EDT 2025 Tue Jul 01 02:46:29 EDT 2025 Fri Feb 23 02:43:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Horizontal cylinder Buoyant plume Natural convection heat transfer Large eddy simulation Computational fluid dynamics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-e86f7cbc5def1118a456c82fd6d2d02fbf6927aeb8e99b3bb1fd4a5d1befd51c3 |
ORCID | 0000-0002-9237-0855 |
ParticipantIDs | crossref_primary_10_1016_j_ijthermalsci_2020_106789 crossref_citationtrail_10_1016_j_ijthermalsci_2020_106789 elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2020_106789 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | International journal of thermal sciences |
PublicationYear | 2021 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Grafsronningen, Jensen (bib10) 2012; 55 Gray, Giorgini (bib53) 1976; 19 Corcione (bib26) 2005; 48 Tennekes, Lumley (bib64) 1972 Pelletier, Murray, Persoons (bib40) 2016; 95 Noto, Teramoto, Nakajima (bib17) 1999; 13 Denton (bib49) 2010 Kefayati, Tang (bib30) 2018; 126 Batchelor (bib58) 1959; 5 Kumar, Joshi, Nayak, Vijayan (bib25) 2014; 78 Devenish, Rooney, Thomson (bib60) 2010; 652 Chen, Chou, Tseng, Chang (bib42) 2018; 127 Shabbir, George (bib65) 1994; 275 Bill, Gebhart (bib62) 1975; 18 Carlomagno, Cenedese, Iannetta (bib7) 1984; 36 Bastiaans, Rindt, Nieuwstadt, van Steenhoven (bib52) 2000; 43 Kefayati, Tang (bib33) 2018; 123 He, Yi (bib50) 2017; 139 Chen, Lin, Chen, Chang (bib44) 2016; 100 Léonard, Gicquel, Gourdain, Duchaine (bib47) 2015; 137 Burnside, Rane, Yu, Ma, Montcoudiol, Li, Teklemariam, Boyce, He, Yu (bib3) 2019 Menter, Langtry, Likki, Suzen, Huang, Volker (bib37) 2006; 128 Narayan, Singh, Srivastava (bib61) 2017; 109 Eidson (bib54) 1985; 158 Lin, Bhosale, Huang (bib24) 2017; 120 Sebastian, Shine (bib23) 2015; 82 Walters, Cokljat (bib38) 2008; 130 Atmane, Chan, Murray (bib13) 2003; 46 Grafsrønningen, Jensen, Reif (bib11) 2011; 54 Chen, Chiu, Liu, Chang (bib41) 2017; 109 Liu, Liu, Zhen, Lu (bib27) 2017; 104 Kuehn, Goldstein (bib20) 1980; 23 Kitamura, Kami-Iwa, Misumi (bib9) 1999; 42 Kimura, Bejan (bib16) 1983; 26 Chen, Hsieh, Chen, Lin, Liu (bib43) 2018; 127 Ma, He, Rane (bib2) 2019 Churchill, Chu (bib5) 1975; 18 Worthy (bib57) 2003 Elicer-Cortes, Contreras, Boyer, Pavageau, Hernandez (bib18) 2004; 28 Slotnick, Khodadoust, Alonso, Darmofal, Gropp, Lurie, Mavriplis (bib36) 2014 Kefayati, Tang (bib32) 2018; 120 Grafsrønningen, Jensen (bib51) 2017; 112 Saitoh, Sajiki, Maruhara (bib22) 1993; 36 Kuehner, Pflug, Tessier, Hamed, Marin (bib14) 2012; 55 Pope (bib34) 2001 Grafsrønningen, Jensen (bib12) 2012; 55 Chen, Ma, Lin (bib45) 2020; 147 Gourdain, Sicot, Duchaine, Gicquel (bib48) 2014; 372 Pham, Plourde, Doan (bib35) 2007; 19 Smagorinsky (bib55) 1963; 91 Morgan (bib4) 1975 Elicer-Cortes, Fuentes, Valencia, Baudet (bib19) 2000; 20 Kumar, Joshi, Nayak, Vijayan (bib28) 2016; 92 Atayılmaz, Teke (bib6) 2009; 36 Heo, Chae, Chung (bib59) 2013; 57 Gyles, Hægland, Dahl, Sanchis, Grafsrønningen, Jensen (bib1) 2011 Wang, Kahawita, Nguyen (bib21) 1990; 17 Germano, Piomelli, Moin, Cabot (bib56) 1991; 3 Padilla, Silveira-Neto (bib63) 2008; 51 Grafsronningen, Jensen (bib46) 2015; 168 Kitamura, Mitsuishi, Suzuki, Kimura (bib8) 2016; 92 Kefayati, Tang (bib29) 2018; 123 Farouk, Güceri (bib39) 1982; 104 Kefayati, Tang (bib31) 2018; 123 Kuehner, Hamed, Mitchell (bib15) 2015; 82 Pope (10.1016/j.ijthermalsci.2020.106789_bib34) 2001 Kuehner (10.1016/j.ijthermalsci.2020.106789_bib14) 2012; 55 Wang (10.1016/j.ijthermalsci.2020.106789_bib21) 1990; 17 Kefayati (10.1016/j.ijthermalsci.2020.106789_bib30) 2018; 126 Kefayati (10.1016/j.ijthermalsci.2020.106789_bib33) 2018; 123 Menter (10.1016/j.ijthermalsci.2020.106789_bib37) 2006; 128 Liu (10.1016/j.ijthermalsci.2020.106789_bib27) 2017; 104 Farouk (10.1016/j.ijthermalsci.2020.106789_bib39) 1982; 104 Bastiaans (10.1016/j.ijthermalsci.2020.106789_bib52) 2000; 43 Devenish (10.1016/j.ijthermalsci.2020.106789_bib60) 2010; 652 Kuehner (10.1016/j.ijthermalsci.2020.106789_bib15) 2015; 82 Gray (10.1016/j.ijthermalsci.2020.106789_bib53) 1976; 19 Heo (10.1016/j.ijthermalsci.2020.106789_bib59) 2013; 57 Eidson (10.1016/j.ijthermalsci.2020.106789_bib54) 1985; 158 Kefayati (10.1016/j.ijthermalsci.2020.106789_bib31) 2018; 123 Sebastian (10.1016/j.ijthermalsci.2020.106789_bib23) 2015; 82 Saitoh (10.1016/j.ijthermalsci.2020.106789_bib22) 1993; 36 He (10.1016/j.ijthermalsci.2020.106789_bib50) 2017; 139 Narayan (10.1016/j.ijthermalsci.2020.106789_bib61) 2017; 109 Churchill (10.1016/j.ijthermalsci.2020.106789_bib5) 1975; 18 Kimura (10.1016/j.ijthermalsci.2020.106789_bib16) 1983; 26 Atayılmaz (10.1016/j.ijthermalsci.2020.106789_bib6) 2009; 36 Chen (10.1016/j.ijthermalsci.2020.106789_bib43) 2018; 127 Grafsronningen (10.1016/j.ijthermalsci.2020.106789_bib10) 2012; 55 Gourdain (10.1016/j.ijthermalsci.2020.106789_bib48) 2014; 372 Smagorinsky (10.1016/j.ijthermalsci.2020.106789_bib55) 1963; 91 Kefayati (10.1016/j.ijthermalsci.2020.106789_bib29) 2018; 123 Pham (10.1016/j.ijthermalsci.2020.106789_bib35) 2007; 19 Corcione (10.1016/j.ijthermalsci.2020.106789_bib26) 2005; 48 Tennekes (10.1016/j.ijthermalsci.2020.106789_bib64) 1972 Walters (10.1016/j.ijthermalsci.2020.106789_bib38) 2008; 130 Chen (10.1016/j.ijthermalsci.2020.106789_bib42) 2018; 127 Chen (10.1016/j.ijthermalsci.2020.106789_bib45) 2020; 147 Grafsrønningen (10.1016/j.ijthermalsci.2020.106789_bib11) 2011; 54 Kuehn (10.1016/j.ijthermalsci.2020.106789_bib20) 1980; 23 Slotnick (10.1016/j.ijthermalsci.2020.106789_bib36) 2014 Grafsronningen (10.1016/j.ijthermalsci.2020.106789_bib46) 2015; 168 Padilla (10.1016/j.ijthermalsci.2020.106789_bib63) 2008; 51 Chen (10.1016/j.ijthermalsci.2020.106789_bib44) 2016; 100 Elicer-Cortes (10.1016/j.ijthermalsci.2020.106789_bib18) 2004; 28 Shabbir (10.1016/j.ijthermalsci.2020.106789_bib65) 1994; 275 Léonard (10.1016/j.ijthermalsci.2020.106789_bib47) 2015; 137 Kumar (10.1016/j.ijthermalsci.2020.106789_bib28) 2016; 92 Elicer-Cortes (10.1016/j.ijthermalsci.2020.106789_bib19) 2000; 20 Gyles (10.1016/j.ijthermalsci.2020.106789_bib1) 2011 Kefayati (10.1016/j.ijthermalsci.2020.106789_bib32) 2018; 120 Kitamura (10.1016/j.ijthermalsci.2020.106789_bib9) 1999; 42 Germano (10.1016/j.ijthermalsci.2020.106789_bib56) 1991; 3 Noto (10.1016/j.ijthermalsci.2020.106789_bib17) 1999; 13 Carlomagno (10.1016/j.ijthermalsci.2020.106789_bib7) 1984; 36 Worthy (10.1016/j.ijthermalsci.2020.106789_bib57) 2003 Morgan (10.1016/j.ijthermalsci.2020.106789_bib4) 1975 Chen (10.1016/j.ijthermalsci.2020.106789_bib41) 2017; 109 Lin (10.1016/j.ijthermalsci.2020.106789_bib24) 2017; 120 Grafsrønningen (10.1016/j.ijthermalsci.2020.106789_bib51) 2017; 112 Grafsrønningen (10.1016/j.ijthermalsci.2020.106789_bib12) 2012; 55 Kitamura (10.1016/j.ijthermalsci.2020.106789_bib8) 2016; 92 Kumar (10.1016/j.ijthermalsci.2020.106789_bib25) 2014; 78 Pelletier (10.1016/j.ijthermalsci.2020.106789_bib40) 2016; 95 Ma (10.1016/j.ijthermalsci.2020.106789_bib2) 2019 Bill (10.1016/j.ijthermalsci.2020.106789_bib62) 1975; 18 Denton (10.1016/j.ijthermalsci.2020.106789_bib49) 2010 Batchelor (10.1016/j.ijthermalsci.2020.106789_bib58) 1959; 5 Atmane (10.1016/j.ijthermalsci.2020.106789_bib13) 2003; 46 Burnside (10.1016/j.ijthermalsci.2020.106789_bib3) 2019 |
References_xml | – volume: 82 start-page: 325 year: 2015 end-page: 334 ident: bib23 article-title: Natural convection from horizontal heated cylinder with and without horizontal confinement publication-title: Int. J. Heat Mass Tran. – volume: 92 start-page: 507 year: 2016 end-page: 522 ident: bib28 article-title: 3D CFD simulations of air cooled condenser-II: natural draft around a single finned tube kept in a small chimney publication-title: Int. J. Heat Mass Tran. – volume: 36 start-page: 515 year: 1984 end-page: 521 ident: bib7 article-title: LDA velocity measurements in the buoyant plume above a heated horizontal cylinder publication-title: Arch. Mech. – volume: 123 start-page: 1182 year: 2018 end-page: 1203 ident: bib33 article-title: Lattice Boltzmann simulation of viscoplastic fluids on natural convection in inclined enclosure with inner cold circular/elliptical cylinders (Part III: four cylinders) publication-title: Int. J. Heat Mass Tran. – volume: 104 year: 1982 ident: bib39 article-title: Natural convection from a horizontal cylinder—turbulent regime publication-title: J. Heat Tran. – volume: 48 start-page: 3660 year: 2005 end-page: 3673 ident: bib26 article-title: Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array publication-title: Int. J. Heat Mass Tran. – volume: 372 start-page: 20130323 year: 2014 ident: bib48 article-title: Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035 publication-title: Phil. Trans. Math. Phys. Eng. Sci. – volume: 23 start-page: 971 year: 1980 end-page: 979 ident: bib20 article-title: Numerical solution to the Navier-Stokes equations for laminar natural convection about a horizontal isothermal circular cylinder publication-title: Int. J. Heat Mass Tran. – volume: 19 start-page: 125103 year: 2007 ident: bib35 article-title: Direct and large-eddy simulations of a pure thermal plume publication-title: Phys. Fluids – volume: 42 start-page: 4093 year: 1999 end-page: 4106 ident: bib9 article-title: Heat transfer and fluid flow of natural convection around large horizontal cylinders publication-title: Int. J. Heat Mass Tran. – volume: 100 start-page: 320 year: 2016 end-page: 331 ident: bib44 article-title: Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters publication-title: Int. J. Heat Mass Tran. – volume: 109 start-page: 278 year: 2017 end-page: 292 ident: bib61 article-title: Interferometric study of natural convection heat transfer phenomena around array of heated cylinders publication-title: Int. J. Heat Mass Tran. – volume: 112 start-page: 104 year: 2017 end-page: 117 ident: bib51 article-title: Large eddy simulations of a buoyant plume above a heated horizontal cylinder at intermediate Rayleigh numbers publication-title: Int. J. Therm. Sci. – volume: 51 start-page: 3656 year: 2008 end-page: 3668 ident: bib63 article-title: Large-eddy simulation of transition to turbulence in natural convection in a horizontal annular cavity publication-title: Int. J. Heat Mass Tran. – volume: 120 start-page: 731 year: 2018 end-page: 750 ident: bib32 article-title: Double-diffusive natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part I: heat and mass transfer) publication-title: Int. J. Heat Mass Tran. – volume: 20 start-page: 137 year: 2000 end-page: 149 ident: bib19 article-title: Experimental study of transition to turbulence of a round thermal plume by ultrasound scattering publication-title: Exp. Therm. Fluid Sci. – volume: 17 start-page: 191 year: 1990 end-page: 215 ident: bib21 article-title: Numerical computation of the natural convection flow about a horizontal cylinder using splines publication-title: Numer. Heat Tran. – volume: 36 start-page: 731 year: 2009 end-page: 738 ident: bib6 article-title: Experimental and numerical study of the natural convection from a heated horizontal cylinder publication-title: Int. Commun. Heat Mass Tran. – volume: 123 start-page: 1138 year: 2018 end-page: 1162 ident: bib29 article-title: Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders Chock for (Part I: one cylinder) publication-title: Int. J. Heat Mass Tran. – volume: 26 start-page: 1515 year: 1983 end-page: 1532 ident: bib16 article-title: Mechanism for transition to turbulence in buoyant plume flow publication-title: Int. J. Heat Mass Tran. – year: 2003 ident: bib57 article-title: Large Eddy Simulation of Buoyant Plumes, PhD – volume: 18 start-page: 513 year: 1975 end-page: 526 ident: bib62 article-title: The transition of plane plumes publication-title: Int. J. Heat Mass Tran. – volume: 57 start-page: 1 year: 2013 end-page: 8 ident: bib59 article-title: Influences of vertical and horizontal pitches on the natural convection of two staggered cylinders publication-title: Int. J. Heat Mass Tran. – volume: 54 start-page: 4975 year: 2011 end-page: 4987 ident: bib11 article-title: PIV investigation of buoyant plume from natural convection heat transfer above a horizontal heated cylinder publication-title: Int. J. Heat Mass Tran. – volume: 128 start-page: 413 year: 2006 end-page: 422 ident: bib37 article-title: A correlation-based transition model using local variables - Part I: model formulation publication-title: J. Turbomach. – volume: 652 start-page: 75 year: 2010 end-page: 103 ident: bib60 article-title: Large-eddy simulation of a buoyant plume in uniform and stably stratified environments publication-title: J. Fluid Mech. – volume: 5 start-page: 113 year: 1959 end-page: 133 ident: bib58 article-title: Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1: general discussion and the case of small conductivity publication-title: J. Fluid Mech. – volume: 104 start-page: 517 year: 2017 end-page: 532 ident: bib27 article-title: Numerical investigation of the laminar natural convection heat transfer from two horizontally attached horizontal cylinders publication-title: Int. J. Heat Mass Tran. – volume: 127 start-page: 541 year: 2018 end-page: 554 ident: bib43 article-title: Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data publication-title: Int. J. Heat Mass Tran. – volume: 137 year: 2015 ident: bib47 article-title: Steady/unsteady Reynolds-averaged Navier–Stokes and large eddy simulations of a turbine blade at high subsonic outlet mach number publication-title: J. Turbomach. – volume: 78 start-page: 1265 year: 2014 end-page: 1283 ident: bib25 article-title: 3D CFD simulation of air cooled condenser-I: natural convection over a circular cylinder publication-title: Int. J. Heat Mass Tran. – volume: 46 start-page: 3661 year: 2003 end-page: 3672 ident: bib13 article-title: Natural convection around a horizontal heated cylinder: the effects of vertical confinement publication-title: Int. J. Heat Mass Tran. – volume: 55 start-page: 4195 year: 2012 end-page: 4206 ident: bib12 article-title: Simultaneous PIV/LIF measurements of a transitional buoyant plume above a horizontal cylinder publication-title: Int. J. Heat Mass Tran. – volume: 168 start-page: 35 year: 2015 end-page: 42 ident: bib46 article-title: Unsteady Reynolds averaged Navier-Stokes simulations of a buoyant plume above a cylinder publication-title: Proceed. Institution Civil Eng. Eng. Comput. Mech. – volume: 18 start-page: 1049 year: 1975 end-page: 1053 ident: bib5 article-title: Correlating equations for laminar and turbulent free convection from a horizontal cylinder publication-title: Int. J. Heat Mass Tran. – year: 2010 ident: bib49 article-title: Some limitations of turbomachinery CFD publication-title: ASME Turbo Expo, Glasgow, UK – volume: 43 start-page: 2375 year: 2000 end-page: 2393 ident: bib52 article-title: Direct and large-eddy simulation of the transition of two- and three-dimensional plane plumes in a confined enclosure publication-title: Int. J. Heat Mass Tran. – volume: 91 start-page: 99 year: 1963 end-page: 164 ident: bib55 article-title: General circulation experiments with the primitive equations: I. The basic experiment publication-title: Mon. Weather Rev. – volume: 19 start-page: 545 year: 1976 end-page: 551 ident: bib53 article-title: The validity of the Boussinesq approximation for liquids and gases publication-title: Int. J. Heat Mass Tran. – volume: 275 start-page: 1 year: 1994 end-page: 32 ident: bib65 article-title: Experiments on a round turbulent buoyant plume publication-title: J. Fluid Mech. – year: 1972 ident: bib64 article-title: A First Course in Turbulence – volume: 126 start-page: 508 year: 2018 end-page: 530 ident: bib30 article-title: MHD thermosolutal natural convection and entropy generation of Carreau fluid in a heated enclosure with two inner circular cold cylinders, using LBM publication-title: Int. J. Heat Mass Tran. – volume: 13 start-page: 82 year: 1999 end-page: 90 ident: bib17 article-title: Spectra and critical Grashof numbers for turbulent transition in a thermal plume publication-title: J. Thermophys. Heat Tran. – volume: 36 start-page: 1251 year: 1993 end-page: 1259 ident: bib22 article-title: Bench mark solutions to natural convection heat transfer problem around a horizontal circular cylinder publication-title: Int. J. Heat Mass Tran. – volume: 92 start-page: 414 year: 2016 end-page: 429 ident: bib8 article-title: Fluid flow and heat transfer of natural convection induced around a vertical row of heated horizontal cylinders publication-title: Int. J. Heat Mass Tran. – volume: 55 start-page: 5552 year: 2012 end-page: 5564 ident: bib10 article-title: Natural convection heat transfer from two horizontal cylinders at high Rayleigh numbers publication-title: Int. J. Heat Mass Tran. – year: 2014 ident: bib36 article-title: CFD Vision 2030 Study: a Path to Revolutionary Computational Aerosciences, NASA/CR-2014-218178 – volume: 95 start-page: 693 year: 2016 end-page: 708 ident: bib40 article-title: Unsteady natural convection heat transfer from a pair of vertically aligned horizontal cylinders publication-title: Int. J. Heat Mass Tran. – volume: 120 start-page: 277 year: 2017 end-page: 288 ident: bib24 article-title: 3D-CFD investigation into free convection flow above a heated horizontal cylinder: comparisons with experimental data publication-title: Appl. Therm. Eng. – year: 2019 ident: bib2 article-title: Heat transfer-fluid flow interaction in natural convection around heated cylinder and its thermal chimney effect publication-title: International Conference on Innovative Applied Energy, Oxford – volume: 127 start-page: 483 year: 2018 end-page: 496 ident: bib42 article-title: Numerical study on natural convection heat transfer of annular finned tube heat exchanger in chimney with experimental data publication-title: Int. J. Heat Mass Tran. – volume: 55 start-page: 4711 year: 2012 end-page: 4723 ident: bib14 article-title: Velocity measurements in the free convection flow above a heated horizontal cylinder publication-title: Int. J. Heat Mass Tran. – volume: 130 year: 2008 ident: bib38 article-title: A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow publication-title: J. Fluid Eng. – volume: 158 start-page: 245 year: 1985 end-page: 268 ident: bib54 article-title: Numerical simulation of the turbulent Rayleigh-Benard problem using subgrid modelling publication-title: J. Fluid Mech. – year: 2019 ident: bib3 article-title: Geothermally sourced combined power and freshwater generation for eastern africa publication-title: European Geothermal Congress – year: 2001 ident: bib34 article-title: Turbulent Flows – volume: 109 start-page: 378 year: 2017 end-page: 392 ident: bib41 article-title: Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger publication-title: Int. J. Heat Mass Tran. – volume: 147 year: 2020 ident: bib45 article-title: Natural convection of plate finned tube heat exchangers with two horizontal tubes in a chimney: experimental and numerical study publication-title: Int. J. Heat Mass Tran. – volume: 123 start-page: 1163 year: 2018 end-page: 1181 ident: bib31 article-title: Lattice Boltzmann simulation of viscoplastic fluids on natural convection in inclined enclosure with inner cold circular/elliptical cylinders (Part II: two cylinders) publication-title: Int. J. Heat Mass Tran. – volume: 139 year: 2017 ident: bib50 article-title: Two-scale methodology for URANS/large eddy simulation solutions of unsteady turbomachinery flows publication-title: J. Turbomach. – volume: 82 start-page: 78 year: 2015 end-page: 97 ident: bib15 article-title: Experimental investigation of the free convection velocity boundary layer and plume formation region for a heated horizontal cylinder publication-title: Int. J. Heat Mass Tran. – start-page: 199 year: 1975 end-page: 264 ident: bib4 article-title: The overall convective heat transfer from smooth circular cylinders publication-title: Advances in Heat Transfer – start-page: 11 year: 2011 end-page: 20 ident: bib1 article-title: Natural convection-subsea cooling: theory, simulations, experiments and design publication-title: ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, Netherlands – volume: 3 start-page: 1760 year: 1991 end-page: 1765 ident: bib56 article-title: A dynamic subgrid‐scale eddy viscosity model publication-title: Phys. Fluid. Fluid Dynam. – volume: 28 start-page: 803 year: 2004 end-page: 813 ident: bib18 article-title: Temperature spectra from a turbulent thermal plume by ultrasound scattering publication-title: Exp. Therm. Fluid Sci. – volume: 19 start-page: 125103 issue: 12 year: 2007 ident: 10.1016/j.ijthermalsci.2020.106789_bib35 article-title: Direct and large-eddy simulations of a pure thermal plume publication-title: Phys. Fluids doi: 10.1063/1.2813043 – year: 2001 ident: 10.1016/j.ijthermalsci.2020.106789_bib34 – year: 2014 ident: 10.1016/j.ijthermalsci.2020.106789_bib36 – volume: 127 start-page: 483 year: 2018 ident: 10.1016/j.ijthermalsci.2020.106789_bib42 article-title: Numerical study on natural convection heat transfer of annular finned tube heat exchanger in chimney with experimental data publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.08.055 – start-page: 199 year: 1975 ident: 10.1016/j.ijthermalsci.2020.106789_bib4 article-title: The overall convective heat transfer from smooth circular cylinders doi: 10.1016/S0065-2717(08)70075-3 – volume: 18 start-page: 1049 issue: 9 year: 1975 ident: 10.1016/j.ijthermalsci.2020.106789_bib5 article-title: Correlating equations for laminar and turbulent free convection from a horizontal cylinder publication-title: Int. J. Heat Mass Tran. doi: 10.1016/0017-9310(75)90222-7 – volume: 48 start-page: 3660 issue: 17 year: 2005 ident: 10.1016/j.ijthermalsci.2020.106789_bib26 article-title: Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2005.01.010 – volume: 92 start-page: 414 year: 2016 ident: 10.1016/j.ijthermalsci.2020.106789_bib8 article-title: Fluid flow and heat transfer of natural convection induced around a vertical row of heated horizontal cylinders publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.08.086 – volume: 36 start-page: 1251 issue: 5 year: 1993 ident: 10.1016/j.ijthermalsci.2020.106789_bib22 article-title: Bench mark solutions to natural convection heat transfer problem around a horizontal circular cylinder publication-title: Int. J. Heat Mass Tran. doi: 10.1016/S0017-9310(05)80094-8 – volume: 95 start-page: 693 year: 2016 ident: 10.1016/j.ijthermalsci.2020.106789_bib40 article-title: Unsteady natural convection heat transfer from a pair of vertically aligned horizontal cylinders publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.12.041 – volume: 82 start-page: 325 year: 2015 ident: 10.1016/j.ijthermalsci.2020.106789_bib23 article-title: Natural convection from horizontal heated cylinder with and without horizontal confinement publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2014.11.063 – volume: 109 start-page: 378 year: 2017 ident: 10.1016/j.ijthermalsci.2020.106789_bib41 article-title: Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.01.122 – volume: 104 issue: 2 year: 1982 ident: 10.1016/j.ijthermalsci.2020.106789_bib39 article-title: Natural convection from a horizontal cylinder—turbulent regime publication-title: J. Heat Tran. doi: 10.1115/1.3245077 – volume: 43 start-page: 2375 issue: 13 year: 2000 ident: 10.1016/j.ijthermalsci.2020.106789_bib52 article-title: Direct and large-eddy simulation of the transition of two- and three-dimensional plane plumes in a confined enclosure publication-title: Int. J. Heat Mass Tran. doi: 10.1016/S0017-9310(99)00302-6 – volume: 20 start-page: 137 issue: 3–4 year: 2000 ident: 10.1016/j.ijthermalsci.2020.106789_bib19 article-title: Experimental study of transition to turbulence of a round thermal plume by ultrasound scattering publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/S0894-1777(99)00037-0 – volume: 158 start-page: 245 year: 1985 ident: 10.1016/j.ijthermalsci.2020.106789_bib54 article-title: Numerical simulation of the turbulent Rayleigh-Benard problem using subgrid modelling publication-title: J. Fluid Mech. doi: 10.1017/S0022112085002634 – volume: 137 issue: 4 year: 2015 ident: 10.1016/j.ijthermalsci.2020.106789_bib47 article-title: Steady/unsteady Reynolds-averaged Navier–Stokes and large eddy simulations of a turbine blade at high subsonic outlet mach number publication-title: J. Turbomach. doi: 10.1115/1.4028493 – start-page: 11 year: 2011 ident: 10.1016/j.ijthermalsci.2020.106789_bib1 article-title: Natural convection-subsea cooling: theory, simulations, experiments and design – volume: 652 start-page: 75 year: 2010 ident: 10.1016/j.ijthermalsci.2020.106789_bib60 article-title: Large-eddy simulation of a buoyant plume in uniform and stably stratified environments publication-title: J. Fluid Mech. doi: 10.1017/S0022112010000017 – volume: 54 start-page: 4975 issue: 23–24 year: 2011 ident: 10.1016/j.ijthermalsci.2020.106789_bib11 article-title: PIV investigation of buoyant plume from natural convection heat transfer above a horizontal heated cylinder publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2011.07.011 – volume: 168 start-page: 35 issue: 1 year: 2015 ident: 10.1016/j.ijthermalsci.2020.106789_bib46 article-title: Unsteady Reynolds averaged Navier-Stokes simulations of a buoyant plume above a cylinder publication-title: Proceed. Institution Civil Eng. Eng. Comput. Mech. doi: 10.1680/eacm.12.00014 – volume: 55 start-page: 4195 issue: 15–16 year: 2012 ident: 10.1016/j.ijthermalsci.2020.106789_bib12 article-title: Simultaneous PIV/LIF measurements of a transitional buoyant plume above a horizontal cylinder publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2012.03.060 – volume: 78 start-page: 1265 year: 2014 ident: 10.1016/j.ijthermalsci.2020.106789_bib25 article-title: 3D CFD simulation of air cooled condenser-I: natural convection over a circular cylinder publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2014.07.030 – volume: 120 start-page: 277 year: 2017 ident: 10.1016/j.ijthermalsci.2020.106789_bib24 article-title: 3D-CFD investigation into free convection flow above a heated horizontal cylinder: comparisons with experimental data publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.03.039 – year: 1972 ident: 10.1016/j.ijthermalsci.2020.106789_bib64 – volume: 127 start-page: 541 year: 2018 ident: 10.1016/j.ijthermalsci.2020.106789_bib43 article-title: Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.08.057 – volume: 55 start-page: 5552 issue: 21–22 year: 2012 ident: 10.1016/j.ijthermalsci.2020.106789_bib10 article-title: Natural convection heat transfer from two horizontal cylinders at high Rayleigh numbers publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2012.05.033 – volume: 91 start-page: 99 issue: 3 year: 1963 ident: 10.1016/j.ijthermalsci.2020.106789_bib55 article-title: General circulation experiments with the primitive equations: I. The basic experiment publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – volume: 120 start-page: 731 year: 2018 ident: 10.1016/j.ijthermalsci.2020.106789_bib32 article-title: Double-diffusive natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part I: heat and mass transfer) publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.12.080 – year: 2019 ident: 10.1016/j.ijthermalsci.2020.106789_bib3 article-title: Geothermally sourced combined power and freshwater generation for eastern africa – volume: 112 start-page: 104 year: 2017 ident: 10.1016/j.ijthermalsci.2020.106789_bib51 article-title: Large eddy simulations of a buoyant plume above a heated horizontal cylinder at intermediate Rayleigh numbers publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.09.032 – year: 2003 ident: 10.1016/j.ijthermalsci.2020.106789_bib57 – volume: 82 start-page: 78 year: 2015 ident: 10.1016/j.ijthermalsci.2020.106789_bib15 article-title: Experimental investigation of the free convection velocity boundary layer and plume formation region for a heated horizontal cylinder publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2014.10.055 – volume: 3 start-page: 1760 issue: 7 year: 1991 ident: 10.1016/j.ijthermalsci.2020.106789_bib56 article-title: A dynamic subgrid‐scale eddy viscosity model publication-title: Phys. Fluid. Fluid Dynam. doi: 10.1063/1.857955 – volume: 123 start-page: 1138 year: 2018 ident: 10.1016/j.ijthermalsci.2020.106789_bib29 article-title: Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders Chock for (Part I: one cylinder) publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.01.139 – volume: 13 start-page: 82 issue: 1 year: 1999 ident: 10.1016/j.ijthermalsci.2020.106789_bib17 article-title: Spectra and critical Grashof numbers for turbulent transition in a thermal plume publication-title: J. Thermophys. Heat Tran. doi: 10.2514/2.6404 – volume: 126 start-page: 508 year: 2018 ident: 10.1016/j.ijthermalsci.2020.106789_bib30 article-title: MHD thermosolutal natural convection and entropy generation of Carreau fluid in a heated enclosure with two inner circular cold cylinders, using LBM publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.06.026 – volume: 19 start-page: 545 issue: 5 year: 1976 ident: 10.1016/j.ijthermalsci.2020.106789_bib53 article-title: The validity of the Boussinesq approximation for liquids and gases publication-title: Int. J. Heat Mass Tran. doi: 10.1016/0017-9310(76)90168-X – volume: 46 start-page: 3661 issue: 19 year: 2003 ident: 10.1016/j.ijthermalsci.2020.106789_bib13 article-title: Natural convection around a horizontal heated cylinder: the effects of vertical confinement publication-title: Int. J. Heat Mass Tran. doi: 10.1016/S0017-9310(03)00154-6 – volume: 123 start-page: 1182 year: 2018 ident: 10.1016/j.ijthermalsci.2020.106789_bib33 article-title: Lattice Boltzmann simulation of viscoplastic fluids on natural convection in inclined enclosure with inner cold circular/elliptical cylinders (Part III: four cylinders) publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.01.140 – volume: 23 start-page: 971 issue: 7 year: 1980 ident: 10.1016/j.ijthermalsci.2020.106789_bib20 article-title: Numerical solution to the Navier-Stokes equations for laminar natural convection about a horizontal isothermal circular cylinder publication-title: Int. J. Heat Mass Tran. doi: 10.1016/0017-9310(80)90071-X – volume: 372 start-page: 20130323 issue: 2022 year: 2014 ident: 10.1016/j.ijthermalsci.2020.106789_bib48 article-title: Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035 publication-title: Phil. Trans. Math. Phys. Eng. Sci. – volume: 130 issue: 12 year: 2008 ident: 10.1016/j.ijthermalsci.2020.106789_bib38 article-title: A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow publication-title: J. Fluid Eng. doi: 10.1115/1.2979230 – volume: 36 start-page: 515 issue: 4 year: 1984 ident: 10.1016/j.ijthermalsci.2020.106789_bib7 article-title: LDA velocity measurements in the buoyant plume above a heated horizontal cylinder publication-title: Arch. Mech. – volume: 100 start-page: 320 year: 2016 ident: 10.1016/j.ijthermalsci.2020.106789_bib44 article-title: Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2016.04.039 – volume: 139 issue: 10 year: 2017 ident: 10.1016/j.ijthermalsci.2020.106789_bib50 article-title: Two-scale methodology for URANS/large eddy simulation solutions of unsteady turbomachinery flows publication-title: J. Turbomach. doi: 10.1115/1.4036765 – volume: 36 start-page: 731 issue: 7 year: 2009 ident: 10.1016/j.ijthermalsci.2020.106789_bib6 article-title: Experimental and numerical study of the natural convection from a heated horizontal cylinder publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2009.03.017 – volume: 5 start-page: 113 issue: 1 year: 1959 ident: 10.1016/j.ijthermalsci.2020.106789_bib58 article-title: Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1: general discussion and the case of small conductivity publication-title: J. Fluid Mech. doi: 10.1017/S002211205900009X – volume: 128 start-page: 413 issue: 3 year: 2006 ident: 10.1016/j.ijthermalsci.2020.106789_bib37 article-title: A correlation-based transition model using local variables - Part I: model formulation publication-title: J. Turbomach. doi: 10.1115/1.2184352 – volume: 147 year: 2020 ident: 10.1016/j.ijthermalsci.2020.106789_bib45 article-title: Natural convection of plate finned tube heat exchangers with two horizontal tubes in a chimney: experimental and numerical study publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.118948 – volume: 57 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.ijthermalsci.2020.106789_bib59 article-title: Influences of vertical and horizontal pitches on the natural convection of two staggered cylinders publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2012.10.001 – volume: 123 start-page: 1163 year: 2018 ident: 10.1016/j.ijthermalsci.2020.106789_bib31 article-title: Lattice Boltzmann simulation of viscoplastic fluids on natural convection in inclined enclosure with inner cold circular/elliptical cylinders (Part II: two cylinders) publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.01.137 – year: 2019 ident: 10.1016/j.ijthermalsci.2020.106789_bib2 article-title: Heat transfer-fluid flow interaction in natural convection around heated cylinder and its thermal chimney effect – year: 2010 ident: 10.1016/j.ijthermalsci.2020.106789_bib49 article-title: Some limitations of turbomachinery CFD – volume: 51 start-page: 3656 issue: 13–14 year: 2008 ident: 10.1016/j.ijthermalsci.2020.106789_bib63 article-title: Large-eddy simulation of transition to turbulence in natural convection in a horizontal annular cavity publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2007.07.025 – volume: 109 start-page: 278 year: 2017 ident: 10.1016/j.ijthermalsci.2020.106789_bib61 article-title: Interferometric study of natural convection heat transfer phenomena around array of heated cylinders publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.01.106 – volume: 55 start-page: 4711 issue: 17–18 year: 2012 ident: 10.1016/j.ijthermalsci.2020.106789_bib14 article-title: Velocity measurements in the free convection flow above a heated horizontal cylinder publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2012.04.031 – volume: 275 start-page: 1 year: 1994 ident: 10.1016/j.ijthermalsci.2020.106789_bib65 article-title: Experiments on a round turbulent buoyant plume publication-title: J. Fluid Mech. doi: 10.1017/S0022112094002260 – volume: 18 start-page: 513 issue: 4 year: 1975 ident: 10.1016/j.ijthermalsci.2020.106789_bib62 article-title: The transition of plane plumes publication-title: Int. J. Heat Mass Tran. doi: 10.1016/0017-9310(75)90292-6 – volume: 26 start-page: 1515 issue: 10 year: 1983 ident: 10.1016/j.ijthermalsci.2020.106789_bib16 article-title: Mechanism for transition to turbulence in buoyant plume flow publication-title: Int. J. Heat Mass Tran. doi: 10.1016/S0017-9310(83)80051-9 – volume: 42 start-page: 4093 issue: 22 year: 1999 ident: 10.1016/j.ijthermalsci.2020.106789_bib9 article-title: Heat transfer and fluid flow of natural convection around large horizontal cylinders publication-title: Int. J. Heat Mass Tran. doi: 10.1016/S0017-9310(99)00079-4 – volume: 17 start-page: 191 issue: 2 year: 1990 ident: 10.1016/j.ijthermalsci.2020.106789_bib21 article-title: Numerical computation of the natural convection flow about a horizontal cylinder using splines publication-title: Numer. Heat Tran. doi: 10.1080/10407789008944739 – volume: 28 start-page: 803 issue: 8 year: 2004 ident: 10.1016/j.ijthermalsci.2020.106789_bib18 article-title: Temperature spectra from a turbulent thermal plume by ultrasound scattering publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2003.11.001 – volume: 92 start-page: 507 year: 2016 ident: 10.1016/j.ijthermalsci.2020.106789_bib28 article-title: 3D CFD simulations of air cooled condenser-II: natural draft around a single finned tube kept in a small chimney publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.07.136 – volume: 104 start-page: 517 year: 2017 ident: 10.1016/j.ijthermalsci.2020.106789_bib27 article-title: Numerical investigation of the laminar natural convection heat transfer from two horizontally attached horizontal cylinders publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2016.08.075 |
SSID | ssj0007909 |
Score | 2.4473424 |
Snippet | Natural convection around a single horizontal cylinder has been extensively studied for heat transfer characteristics, but when coupled with fluid flow, the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106789 |
SubjectTerms | Buoyant plume Computational fluid dynamics Horizontal cylinder Large eddy simulation Natural convection heat transfer |
Title | Large eddy simulation of natural convection heat transfer and fluid flow around a horizontal cylinder |
URI | https://dx.doi.org/10.1016/j.ijthermalsci.2020.106789 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfOKz7MFrbLJ57sFDKZb66kULvYXsC1PapMQUqQd_uzubRCt4KHjJIdmBMDuZ-ZJ88w1CV8wJqJCBbdmKC8vzBbVoKD0LfpkJjZCJbdrHnkbBcOzdT_xJC_WbXhigVda5v8rpJlvXZ7q1N7uLNO0-wxcU0L0mOi41LjAd7F4IUX79-UPzCKmhecBiC1Y3wqOG45VOAWXN9UbzVL8rErigszf9u0itFZ7BHtqtESPuVTe1j1oyO0A7azqCh0g-Ap8bSyFW-C2d1xO5cK6w0e3U1oZcbloYMGRfXBq8KgucZAKr2TKFY_6OkwLGLOEEv-ZF-pFDqyTmqxloKhZHaDy4fekPrXp-gsU1TCotGQUq5Iz7Qiqd0qJEgyUeESUCQYRNFFMBJWEiWSQpZS5jjhJe4guHSSV8h7vHqJ3lmTxBmEWeTwnXTysNPGq7EfNBqCcJQX1G8uQU0cZhMa_FxWHGxSxuWGTTeN3ZMTg7rpx9itxv20UlsbGR1U2zL_GvgIl1LdjA_uyf9udomwC9xZB4LlC7LJbyUuOTknVMAHbQVu_uYTj6AkrD6R8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4inK0wNraOI8PTCgiqpA24VW6hbFL5GqTarQCpWB347PTaBIDJVYMiQ-KTqfz5-T775D6IY5ARUysC1bcWF5vqAWDaVnwS8zoREysU35WK8fdIbe08gf1VCrqoUBWmWZ-1c53WTr8k6z9GZzlqbNF_iCArrXRMelxgX6CLTl6eULbQxuP394HiE1PA8YbcHwSnnUkLzSMcCsqZ5pnurDIoEHOn3Tv3eptZ2nvY_2SsiI71dvdYBqMjtEu2tCgkdIdoHQjaUQS_yWTsuWXDhX2Ah3amvDLjc1DBjSL54bwCoLnGQCq8kihWv-jpMC-izhBL_mRfqRQ60k5ssJiCoWx2jYfhi0OlbZQMHiGifNLRkFKuSM-0IqndOiRKMlHhElAkGETRRTASVhIlkkKWUuY44SXuILh0klfIe7J6ie5Zk8RZhFnk8J18uVBh613Yj5oNSThCA_I3nSQLRyWMxLdXFocjGJKxrZOF53dgzOjlfObiD323a20tjYyOqumpf4V8TEejPYwP7sn_bXaLsz6HXj7mP_-RztEOC6GEbPBarPi4W81GBlzq5MMH4BqXDqrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+eddy+simulation+of+natural+convection+heat+transfer+and+fluid+flow+around+a+horizontal+cylinder&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Ma%2C+Haiteng&rft.au=He%2C+Li&rft.date=2021-04-01&rft.issn=1290-0729&rft.volume=162&rft.spage=106789&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2020.106789&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijthermalsci_2020_106789 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon |