Process Capability Sensitivity Analysis for Design Evaluation of Multistage Assembly Processes
Yield-based sensitivity analysis methods and algorithms are developed for process capability evaluation in this paper. Yield, the conformity to product specifications, is subject to critical design parameters such as dimensions, tolerances, and specification limits. The uncertainties in determining...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 7; no. 4; pp. 736 - 745 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Yield-based sensitivity analysis methods and algorithms are developed for process capability evaluation in this paper. Yield, the conformity to product specifications, is subject to critical design parameters such as dimensions, tolerances, and specification limits. The uncertainties in determining these parameters in design and manufacturing affect the process capability of producing high-quality products. Yield is a transparent and thus a desirable index, especially for multivariate process capability evaluation. Thus, yield sensitivity with respect to these design parameters indicates key contributors to final product quality, providing valuable information in design for quality control. Yield is formulated as a high dimension probability integral over a specification region. In multistage assembly processes, an assembly variation model links the quality characteristics to design parameters. This model is adopted in yield sensitivity analysis. Derivatives of yield with respect to the design parameters are developed using matrix calculus. Three sensitivity analysis algorithms, i.e., finite difference, yield derivative, and regression modeling, are implemented. Monte Carlo simulation is used for yield estimation in the three algorithms. A case study using floor pan assembly in automotive body manufacturing is presented for the validation of the proposed methodology. |
---|---|
AbstractList | Yield-based sensitivity analysis methods and algorithms are developed for process capability evaluation in this paper. Yield, the conformity to product specifications, is subject to critical design parameters such as dimensions, tolerances, and specification limits. The uncertainties in determining these parameters in design and manufacturing affect the process capability of producing high-quality products. Yield is a transparent and thus a desirable index, especially for multivariate process capability evaluation. Thus, yield sensitivity with respect to these design parameters indicates key contributors to final product quality, providing valuable information in design for quality control. Yield is formulated as a high dimension probability integral over a specification region. In multistage assembly processes, an assembly variation model links the quality characteristics to design parameters. This model is adopted in yield sensitivity analysis. Derivatives of yield with respect to the design parameters are developed using matrix calculus. Three sensitivity analysis algorithms, i.e., finite difference, yield derivative, and regression modeling, are implemented. Monte Carlo simulation is used for yield estimation in the three algorithms. A case study using floor pan assembly in automotive body manufacturing is presented for the validation of the proposed methodology. Yield-based sensitivity analysis methods and algorithms are developed for process capability evaluation in this paper. Yield, the conformity to product specifications, is subject to critical design parameters such as dimensions, tolerances, and specification limits. The uncertainties in determining these parameters in design and manufacturing affect the process capability of producing high-quality products. Yield is a transparent and thus a desirable index, especially for multivariate process capability evaluation. Thus, yield sensitivity with respect to these design parameters indicates key contributors to final product quality, providing valuable information in design for quality control. Yield is formulated as a high dimension probability integral over a specification region. In multistage assembly processes, an assembly variation model links the quality characteristics to design parameters. This model is adopted in yield sensitivity analysis. Derivatives of yield with respect to the design parameters are developed using matrix calculus. Three sensitivity analysis algorithms, i.e., finite difference, yield derivative, and regression modeling, are implemented. Monte Carlo simulation is used for yield estimation in the three algorithms. A case study using floor pan assembly in automotive body manufacturing is presented for the validation of the proposed methodology. [PUBLICATION ABSTRACT] |
Author | Zhenyu Kong Wenzhen Huang |
Author_xml | – sequence: 1 givenname: Wenzhen surname: Huang fullname: Huang, Wenzhen – sequence: 2 givenname: Zhenyu surname: Kong fullname: Kong, Zhenyu |
BookMark | eNp9kcFu1DAQhi1UJNrCAyAuFhdOKXYcx8lxtSxQqQiklivWrDOuXHnjxeNU2rdvwq449NCLZw7fP7a_uWBnYxqRsfdSXEkp-s93q9vNVS1EPx-qaZV6xc6l1l2lTKfOlr7Rle61fsMuiB6EqJuuF-fsz6-cHBLxNexhG2IoB36LI4USHpd-NUI8UCDuU-ZfkML9yDePECcoIY08ef5jiiVQgXvkKyLcbeOBn4YivWWvPUTCd6d6yX5_3dytv1c3P79dr1c3lVN1U6rBN8bUHqTEGroaay_8MAymB2eE82A0zg92HXQtSGgHhWZr-hkQDbS9A3XJPh3n7nP6OyEVuwvkMEYYMU1kOyWlEbWQM_nxGfmQpjz_kqxppWhF1-gZkkfI5USU0dt9DjvIByuFXXzbxbddfNuT7zljnmVcKP8slQwhvpj8cEwGRPx_k1aNbuflPQE4O5Ee |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1109_TASE_2020_2993257 crossref_primary_10_5194_ms_10_393_2019 crossref_primary_10_1109_TEM_2016_2517337 crossref_primary_10_3390_app14188112 crossref_primary_10_1108_01445151211262438 crossref_primary_10_1109_TASE_2018_2879719 |
Cites_doi | 10.1115/1.1445155 10.1115/1.3259045 10.1115/1.1285761 10.1115/1.2738953 10.1080/00224065.2002.11980119 10.1080/02664769624378 10.1080/07408170490507774 10.1023/B:FLEX.0000039171.25141.a4 10.1109/TRA.2003.808852 10.1080/00224065.2000.11980004 10.1201/9781420003901 10.1115/1.2836465 10.1080/08982119908919279 10.1080/08982119708919080 10.1115/1.2738117 10.1142/9781848160972 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
DOI | 10.1109/TASE.2009.2034633 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 745 |
ExternalDocumentID | 2175371551 10_1109_TASE_2009_2034633 5345678 |
Genre | orig-research Feature |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
ID | FETCH-LOGICAL-c324t-df4772fa11e2a82e2f0fddd79ac70cfa75e024c8a86a1a6d3e7b79dd704a69ca3 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Fri Jul 11 14:05:58 EDT 2025 Sun Jun 29 17:00:35 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Tue Jul 01 02:56:26 EDT 2025 Tue Aug 26 17:13:04 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-df4772fa11e2a82e2f0fddd79ac70cfa75e024c8a86a1a6d3e7b79dd704a69ca3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 761060845 |
PQPubID | 27623 |
PageCount | 10 |
ParticipantIDs | ieee_primary_5345678 proquest_journals_761060845 crossref_citationtrail_10_1109_TASE_2009_2034633 crossref_primary_10_1109_TASE_2009_2034633 proquest_miscellaneous_831170201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-Oct. 2010-10-00 20101001 |
PublicationDateYYYYMMDD | 2010-10-01 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-Oct. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2010 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 huang (ref8) 2007; 129 taguchi (ref1) 1986 ref14 ref11 kotz (ref3) 1998 ref10 ref2 ref17 ref16 ref18 kendall (ref19) 1961 ref7 kotz (ref12) 2002; 34 ref9 ref4 ref6 ref5 polansky (ref21) 2000; 32 huang (ref15) 2009; 41 pahwa (ref20) 2009; 37 |
References_xml | – volume: 41 start-page: 309 year: 2009 ident: ref15 article-title: process capability surrogate model based tolerance synthesis of multi station manufacturing systems (mms) publication-title: IIE Trans Qual Reliability Eng – ident: ref2 doi: 10.1115/1.1445155 – ident: ref9 doi: 10.1115/1.3259045 – ident: ref16 doi: 10.1115/1.1285761 – year: 1961 ident: ref19 publication-title: A Course in the Geometry of n-Dimensions – year: 1986 ident: ref1 publication-title: Introduction to Quality Engineering – volume: 129 start-page: 832 year: 2007 ident: ref8 article-title: stream-of-variation (sova) modeling ii: a generic 3d variation model for rigid body assembly in multi station assembly processes publication-title: Trans ASME J Manuf Sci Eng doi: 10.1115/1.2738953 – volume: 34 start-page: 2 year: 2002 ident: ref12 article-title: Process capability indices-A review publication-title: J Qual Technol doi: 10.1080/00224065.2002.11980119 – ident: ref18 doi: 10.1080/02664769624378 – ident: ref6 doi: 10.1080/07408170490507774 – ident: ref5 doi: 10.1023/B:FLEX.0000039171.25141.a4 – ident: ref17 doi: 10.1109/TRA.2003.808852 – volume: 32 start-page: 284 year: 2000 ident: ref21 article-title: an algorithm for computing a smooth non-parametric capability estimate publication-title: J Qual Technol doi: 10.1080/00224065.2000.11980004 – volume: 37 start-page: 589 year: 2009 ident: ref20 article-title: multivariate process capability analysis using non-parametric model and bootstrap sampling publication-title: Trans NAMRC/SME – ident: ref4 doi: 10.1201/9781420003901 – ident: ref10 doi: 10.1115/1.2836465 – ident: ref11 doi: 10.1080/08982119908919279 – ident: ref13 doi: 10.1080/08982119708919080 – year: 1998 ident: ref3 publication-title: Introduction to Process Capability Indices – ident: ref7 doi: 10.1115/1.2738117 – ident: ref14 doi: 10.1142/9781848160972 |
SSID | ssj0024890 |
Score | 1.9405731 |
Snippet | Yield-based sensitivity analysis methods and algorithms are developed for process capability evaluation in this paper. Yield, the conformity to product... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 736 |
SubjectTerms | Algorithm design and analysis Algorithms Assembly Assembly lines Automation Automotive engineering Calculus Computer simulation Derivatives Design engineering Design for quality Design parameters Finite difference methods Manufacturing processes Monte Carlo methods Multistage Parameter identification process capability Process controls sensitivity Sensitivity analysis tolerance Uncertainty Yield estimation |
Title | Process Capability Sensitivity Analysis for Design Evaluation of Multistage Assembly Processes |
URI | https://ieeexplore.ieee.org/document/5345678 https://www.proquest.com/docview/761060845 https://www.proquest.com/docview/831170201 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4CTuPANn6IrhvygdO0FCexE_tYsSKEBJcWiROR4zzvALSItofy1_PsuNlgE9otkh3LyrPzPvt973sAx1pyR26rTmptVSIEFom2SGtZiqaupWcC-oju5VVxfi0ubuTNBvzocmEQMZDPcOAfQyy_mdmlvyo7kTm5-1JtwiYd3Npcrd-6eircp3hEkEgtZYxgplyfTIbjUatMmfFcFHn-ygeFoip__YmDezn7CJfribWskrvBclEP7PMbzcb_nfkn2Ik4kw3bhfEZNnC6C9t_qA_uwW1MEmCn5DADR3bFxp7P3haUYGu9Eka4lv0MTA826sTB2cyxkL1L8PIXMh88fqjvVywOivN9uD4bTU7Pk1huIbGEqhZJ4wRBbWfSFDOjMswcd03TlNrYkltnSon0ma0yqjCpKZocy7rU1IELU2hr8gPYms6meAgMsaRmrlyqUVhnjU4zJ4WjITIUjekBXxugslGL3JfEuK_CmYTrytvMl8jUVbRZD753rzy2Qhzvdd7zNug6xs_fg_7aylXcqvOqJABZcCVkD1jXSnvMB07MFGfLeaVyX5-HoNKXf4_bhw-BVBA4fl9ha_G0xG-EVRb1UVikL4iL56M |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB1ROLQ9UFpasaWlPnBCzeIkdmIfESxaKMuFReLUyHHGHAq7VXf3QL--Y8cbClQVt0h2LMtjZ148b94A7GrJHbmtOqm1VYkQWCTaIu1lKZq6lp4J6CO6o_NieClOr-TVCnztcmEQMZDPsO8fQyy_mdqFvyrblzm5-1K9gDXy-zJts7XulfVUuFHxmCCRWsoYw0y53h8fXAxabcqM56LI8wdeKJRVefItDg7m-A2MllNreSU_-ot53be_H6k2PnfuG7AekSY7aLfGW1jByTt4_Zf-4CZ8j2kC7JBcZmDJ3rELz2hvS0qwpWIJI2TLjgLXgw06eXA2dSzk7xLAvEbmw8e39c0di4Pi7D1cHg_Gh8MkFlxILOGqedI4QWDbmTTFzKgMM8dd0zSlNrbk1plSIi2zVUYVJjVFk2NZl5o6cGEKbU3-AVYn0wluAUMsqZkrl2oU1lmj08xJ4WiIDEVjesCXBqhsVCP3RTFuqvBXwnXlbeaLZOoq2qwHe90rP1spjv913vQ26DrG5e_B9tLKVTyss6okCFlwJWQPWNdKp8yHTswEp4tZpXJfoYfA0sd_j_sFXg7Ho7Pq7OT82za8ChSDwPj7BKvzXwv8TMhlXu-EDfsHwUjq7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+Capability+Sensitivity+Analysis+for+Design+Evaluation+of+Multistage+Assembly+Processes&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wenzhen+Huang&rft.au=Zhenyu+Kong&rft.date=2010-10-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=7&rft.issue=4&rft.spage=736&rft.epage=745&rft_id=info:doi/10.1109%2FTASE.2009.2034633&rft.externalDocID=5345678 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |