Position-Aware Relational Transformer for Knowledge Graph Embedding

Although Transformer has achieved success in language and vision tasks, its capacity for knowledge graph (KG) embedding has not been fully exploited. Using the self-attention (SA) mechanism in Transformer to model the subject-relation-object triples in KGs suffers from training inconsistency as SA i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 8; pp. 11580 - 11594
Main Authors Li, Guangyao, Sun, Zequn, Hu, Wei, Cheng, Gong, Qu, Yuzhong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although Transformer has achieved success in language and vision tasks, its capacity for knowledge graph (KG) embedding has not been fully exploited. Using the self-attention (SA) mechanism in Transformer to model the subject-relation-object triples in KGs suffers from training inconsistency as SA is invariant to the order of input tokens. As a result, it is unable to distinguish a (real) relation triple from its shuffled (fake) variants (e.g., object-relation-subject) and, thus, fails to capture the correct semantics. To cope with this issue, we propose a novel Transformer architecture, namely, Knowformer, for KG embedding. It incorporates relational compositions in entity representations to explicitly inject semantics and capture the role of an entity based on its position (subject or object) in a relation triple. The relational composition for a subject (or object) entity of a relation triple refers to an operator on the relation and the object (or subject). We borrow ideas from the typical translational and semantic-matching embedding techniques to design relational compositions. We carefully design a residual block to integrate relational compositions into SA and efficiently propagate the composed relational semantics layer by layer. We formally prove that the SA with relational compositions is able to distinguish the entity roles in different positions and correctly capture relational semantics. Extensive experiments and analyses on six benchmark datasets show that Knowformer achieves state-of-the-art performance on both link prediction and entity alignment.
AbstractList Although Transformer has achieved success in language and vision tasks, its capacity for knowledge graph (KG) embedding has not been fully exploited. Using the self-attention (SA) mechanism in Transformer to model the subject-relation-object triples in KGs suffers from training inconsistency as SA is invariant to the order of input tokens. As a result, it is unable to distinguish a (real) relation triple from its shuffled (fake) variants (e.g., object-relation-subject) and, thus, fails to capture the correct semantics. To cope with this issue, we propose a novel Transformer architecture, namely, Knowformer, for KG embedding. It incorporates relational compositions in entity representations to explicitly inject semantics and capture the role of an entity based on its position (subject or object) in a relation triple. The relational composition for a subject (or object) entity of a relation triple refers to an operator on the relation and the object (or subject). We borrow ideas from the typical translational and semantic-matching embedding techniques to design relational compositions. We carefully design a residual block to integrate relational compositions into SA and efficiently propagate the composed relational semantics layer by layer. We formally prove that the SA with relational compositions is able to distinguish the entity roles in different positions and correctly capture relational semantics. Extensive experiments and analyses on six benchmark datasets show that Knowformer achieves state-of-the-art performance on both link prediction and entity alignment.
Although Transformer has achieved success in language and vision tasks, its capacity for knowledge graph (KG) embedding has not been fully exploited. Using the self-attention (SA) mechanism in Transformer to model the subject-relation-object triples in KGs suffers from training inconsistency as SA is invariant to the order of input tokens. As a result, it is unable to distinguish a (real) relation triple from its shuffled (fake) variants (e.g., object-relation-subject) and, thus, fails to capture the correct semantics. To cope with this issue, we propose a novel Transformer architecture, namely, Knowformer, for KG embedding. It incorporates relational compositions in entity representations to explicitly inject semantics and capture the role of an entity based on its position (subject or object) in a relation triple. The relational composition for a subject (or object) entity of a relation triple refers to an operator on the relation and the object (or subject). We borrow ideas from the typical translational and semantic-matching embedding techniques to design relational compositions. We carefully design a residual block to integrate relational compositions into SA and efficiently propagate the composed relational semantics layer by layer. We formally prove that the SA with relational compositions is able to distinguish the entity roles in different positions and correctly capture relational semantics. Extensive experiments and analyses on six benchmark datasets show that Knowformer achieves state-of-the-art performance on both link prediction and entity alignment.Although Transformer has achieved success in language and vision tasks, its capacity for knowledge graph (KG) embedding has not been fully exploited. Using the self-attention (SA) mechanism in Transformer to model the subject-relation-object triples in KGs suffers from training inconsistency as SA is invariant to the order of input tokens. As a result, it is unable to distinguish a (real) relation triple from its shuffled (fake) variants (e.g., object-relation-subject) and, thus, fails to capture the correct semantics. To cope with this issue, we propose a novel Transformer architecture, namely, Knowformer, for KG embedding. It incorporates relational compositions in entity representations to explicitly inject semantics and capture the role of an entity based on its position (subject or object) in a relation triple. The relational composition for a subject (or object) entity of a relation triple refers to an operator on the relation and the object (or subject). We borrow ideas from the typical translational and semantic-matching embedding techniques to design relational compositions. We carefully design a residual block to integrate relational compositions into SA and efficiently propagate the composed relational semantics layer by layer. We formally prove that the SA with relational compositions is able to distinguish the entity roles in different positions and correctly capture relational semantics. Extensive experiments and analyses on six benchmark datasets show that Knowformer achieves state-of-the-art performance on both link prediction and entity alignment.
Author Hu, Wei
Qu, Yuzhong
Cheng, Gong
Li, Guangyao
Sun, Zequn
Author_xml – sequence: 1
  givenname: Guangyao
  orcidid: 0000-0002-2233-8470
  surname: Li
  fullname: Li, Guangyao
  email: gyli.nju@gmail.com
  organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
– sequence: 2
  givenname: Zequn
  orcidid: 0000-0003-4177-9199
  surname: Sun
  fullname: Sun, Zequn
  email: zqsun.nju@gmail.com
  organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0003-3635-6335
  surname: Hu
  fullname: Hu, Wei
  email: whu@nju.edu.cn
  organization: State Key Laboratory for Novel Software Technology and the National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
– sequence: 4
  givenname: Gong
  orcidid: 0000-0003-3539-7776
  surname: Cheng
  fullname: Cheng, Gong
  email: gcheng@nju.edu.cn
  organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
– sequence: 5
  givenname: Yuzhong
  surname: Qu
  fullname: Qu, Yuzhong
  email: yzqu@nju.edu.cn
  organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37018088$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKAzEUhoNUrNa-gIjM0s3UXOaSWZZSq1iqaAV3IZOcqZGZSU2mFN_e6cUiLkwW5wS-Pzn5zlCntjUgdEHwgBCc3cxns-nLgGLKBowmNGPpETqlJKEhZZx3Dn361kV97z9wuxIcJ1F2grosxYRjzk_R6Ml60xhbh8O1dBA8Qyk3R1kGcydrX1hXgQvaEjzUdl2CXkAwcXL5HoyrHLQ29eIcHRey9NDf1x56vR3PR3fh9HFyPxpOQ8Vo1IS6YEWEEwocOI8j1c7AlFYMIp1HPMcSoOBapgw0iVXGQUuS61xGqZJ5HmvWQ9e7e5fOfq7AN6IyXkFZyhrsyguaZglpN41a9GqPrvIKtFg6U0n3JX4-3gJ0ByhnvXdQHBCCxUaw2AoWG8FiL7gN8T8hZZqtrsZJU_4fvdxFDQD8egtnNKYx-waXjYmO
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s10489_024_05677_7
crossref_primary_10_1109_TNNLS_2024_3383873
crossref_primary_10_1109_TKDE_2024_3486747
Cites_doi 10.18653/v1/D15-1174
10.18653/v1/D19-1023
10.1109/TNNLS.2021.3055147
10.1145/3132847.3132912
10.24963/ijcai.2020/194
10.1609/aaai.v32i1.11573
10.1109/CVPR.2016.90
10.1145/3018661.3018739
10.18653/v1/D19-1522
10.1007/978-3-319-68288-4_37
10.3233/SW-140134
10.1145/3442381.3450118
10.1007/978-3-030-77385-4_24
10.18653/v1/N18-2074
10.18653/v1/2020.acl-main.457
10.1109/MWSCAS.2017.8053243
10.48550/ARXIV.1706.03762
10.1145/3424672
10.1609/aaai.v34i01.5354
10.18653/v1/2020.emnlp-main.515
10.18653/v1/P19-1140
10.1609/aaai.v29i1.9491
10.1609/aaai.v33i01.3301297
10.18653/v1/D18-1032
10.1145/3336191.3371804
10.18653/v1/2020.acl-main.412
10.1609/aaai.v28i1.8870
10.1145/3442381.3449925
10.24963/ijcai.2018/611
10.18653/v1/2020.acl-main.578
10.1145/219717.219748
10.18653/v1/D15-1082
10.1109/TNNLS.2021.3070843
10.1145/1376616.1376746
10.18653/v1/P18-1223
10.1109/tnnls.2022.3189994
10.1609/aaai.v34i03.5701
10.24963/ijcai.2019/733
10.24963/ijcai.2017/209
10.1016/j.aiopen.2022.10.001
10.1609/aaai.v35i16.17654
10.1109/TNNLS.2020.3019893
10.1145/2487575.2487592
10.24963/ijcai.2018/556
10.1609/aaai.v35i8.16850
10.4324/9780203786031-11
10.1109/TKDE.2017.2754499
10.18653/v1/2020.acl-main.617
10.1109/TNNLS.2021.3083259
10.1016/j.neunet.2005.06.042
10.18653/v1/D19-1274
10.1145/3442381.3450043
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3262937
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 11594
ExternalDocumentID 37018088
10_1109_TNNLS_2023_3262937
10092525
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62272219; 61872172
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c324t-df3f4062e8e8854c7013cdc3e4db48b0aeef8da73ed15c98eda1bdba47cabb5d3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 05:45:56 EDT 2025
Mon Jul 21 06:07:11 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Tue Jul 01 00:27:50 EDT 2025
Wed Aug 27 02:35:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-df3f4062e8e8854c7013cdc3e4db48b0aeef8da73ed15c98eda1bdba47cabb5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3539-7776
0000-0003-4177-9199
0000-0002-2233-8470
0000-0003-3635-6335
PMID 37018088
PQID 2796161624
PQPubID 23479
PageCount 15
ParticipantIDs crossref_primary_10_1109_TNNLS_2023_3262937
pubmed_primary_37018088
crossref_citationtrail_10_1109_TNNLS_2023_3262937
ieee_primary_10092525
proquest_miscellaneous_2796161624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref59
Liu (ref36)
ref53
ref11
ref10
ref54
Müller (ref42)
ref17
ref16
ref18
ref51
ref50
ref46
ref45
ref48
Vashishth (ref56)
Wang (ref60) 2020
Yao (ref70) 2019
ref47
ref41
Guo (ref19)
Tang (ref52)
ref49
Bordes (ref4)
Raffel (ref44) 2020; 21
ref8
ref7
Dosovitskiy (ref14)
ref9
Velickovic (ref58)
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref74
ref33
ref32
ref76
Kipf (ref26)
ref1
ref38
Kingma (ref25)
Nickel (ref43)
Fey (ref15)
ref71
ref73
Yang (ref69)
ref72
Devlin (ref12)
Ke (ref24)
Lee (ref28)
Trouillon (ref55)
ref68
ref23
ref67
ref20
ref64
ref63
ref22
ref66
ref65
Mahdisoltani (ref39)
ref27
Zhu (ref75)
ref29
Hochreiter (ref21)
Bhojanapalli (ref2)
ref62
ref61
References_xml – start-page: 1
  volume-title: Proc. ICLR
  ident: ref56
  article-title: Composition-based multi-relational graph convolutional networks
– start-page: 4258
  volume-title: Proc. IJCAI
  ident: ref75
  article-title: Iterative entity alignment via knowledge embeddings
– ident: ref53
  doi: 10.18653/v1/D15-1174
– start-page: 2787
  volume-title: Proc. NIPS
  ident: ref4
  article-title: Translating embeddings for modeling multi-relational data
– ident: ref67
  doi: 10.18653/v1/D19-1023
– ident: ref32
  doi: 10.1109/TNNLS.2021.3055147
– ident: ref76
  doi: 10.1145/3132847.3132912
– ident: ref72
  doi: 10.24963/ijcai.2020/194
– ident: ref11
  doi: 10.1609/aaai.v32i1.11573
– ident: ref20
  doi: 10.1109/CVPR.2016.90
– start-page: 2168
  volume-title: Proc. ICML
  ident: ref36
  article-title: Analogical inference for multi-relational embeddings
– ident: ref16
  doi: 10.1145/3018661.3018739
– start-page: 4171
  volume-title: Proc. NAACL-HLT
  ident: ref12
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– ident: ref1
  doi: 10.18653/v1/D19-1522
– ident: ref49
  doi: 10.1007/978-3-319-68288-4_37
– volume: 21
  start-page: 140
  issue: 1
  year: 2020
  ident: ref44
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref24
  article-title: Rethinking positional encoding in language pre-training
– ident: ref29
  doi: 10.3233/SW-140134
– ident: ref62
  doi: 10.1145/3442381.3450118
– ident: ref10
  doi: 10.1007/978-3-030-77385-4_24
– ident: ref47
  doi: 10.18653/v1/N18-2074
– ident: ref22
  doi: 10.18653/v1/2020.acl-main.457
– start-page: 864
  volume-title: Proc. ICML
  ident: ref2
  article-title: Low-rank bottleneck in multi-head attention models
– ident: ref13
  doi: 10.1109/MWSCAS.2017.8053243
– ident: ref57
  doi: 10.48550/ARXIV.1706.03762
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref15
  article-title: Deep graph matching consensus
– ident: ref45
  doi: 10.1145/3424672
– ident: ref51
  doi: 10.1609/aaai.v34i01.5354
– ident: ref37
  doi: 10.18653/v1/2020.emnlp-main.515
– ident: ref5
  doi: 10.18653/v1/P19-1140
– start-page: 4696
  volume-title: Proc. NeurIPS
  ident: ref42
  article-title: When does label smoothing help?
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref26
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref35
  doi: 10.1609/aaai.v29i1.9491
– start-page: 2505
  volume-title: Proc. ICML
  ident: ref19
  article-title: Learning to exploit long-term relational dependencies in knowledge graphs
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref69
  article-title: Embedding entities and relations for learning and inference in knowledge bases
– ident: ref54
  doi: 10.1609/aaai.v33i01.3301297
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref25
  article-title: Adam: A method for stochastic optimization
– ident: ref63
  doi: 10.18653/v1/D18-1032
– ident: ref40
  doi: 10.1145/3336191.3371804
– start-page: 1
  year: 2019
  ident: ref70
  article-title: KG-BERT: BERT for knowledge graph completion
  publication-title: CoRR
– start-page: 3744
  volume-title: Proc. ICML
  ident: ref28
  article-title: Set transformer: A framework for attention-based permutation-invariant neural networks
– ident: ref46
  doi: 10.18653/v1/2020.acl-main.412
– ident: ref64
  doi: 10.1609/aaai.v28i1.8870
– ident: ref71
  doi: 10.1145/3442381.3449925
– ident: ref50
  doi: 10.24963/ijcai.2018/611
– ident: ref68
  doi: 10.18653/v1/2020.acl-main.578
– start-page: 473
  volume-title: Proc. NIPS
  ident: ref21
  article-title: LSTM can solve hard long time lag problems
– ident: ref41
  doi: 10.1145/219717.219748
– ident: ref34
  doi: 10.18653/v1/D15-1082
– ident: ref23
  doi: 10.1109/TNNLS.2021.3070843
– ident: ref3
  doi: 10.1145/1376616.1376746
– ident: ref38
  doi: 10.18653/v1/P18-1223
– ident: ref74
  doi: 10.1109/tnnls.2022.3189994
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref14
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
– ident: ref73
  doi: 10.1609/aaai.v34i03.5701
– start-page: 3174
  volume-title: Proc. IJCAI
  ident: ref52
  article-title: BERT-INT: A BERT-based interaction model for knowledge graph alignment
– ident: ref66
  doi: 10.24963/ijcai.2019/733
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref58
  article-title: Graph attention networks
– ident: ref9
  doi: 10.24963/ijcai.2017/209
– ident: ref33
  doi: 10.1016/j.aiopen.2022.10.001
– start-page: 1
  volume-title: Proc. CIDR
  ident: ref39
  article-title: YAGO3: A knowledge base from multilingual Wikipedias
– ident: ref65
  doi: 10.1609/aaai.v35i16.17654
– ident: ref17
  doi: 10.1109/TNNLS.2020.3019893
– ident: ref27
  doi: 10.1145/2487575.2487592
– start-page: 1
  year: 2020
  ident: ref60
  article-title: CoKE: Contextualized knowledge graph embedding
  publication-title: CoRR
– ident: ref8
  doi: 10.24963/ijcai.2018/556
– ident: ref6
  doi: 10.1609/aaai.v35i8.16850
– ident: ref48
  doi: 10.4324/9780203786031-11
– start-page: 2071
  volume-title: Proc. ICML
  ident: ref55
  article-title: Complex embeddings for simple link prediction
– ident: ref61
  doi: 10.1109/TKDE.2017.2754499
– ident: ref7
  doi: 10.18653/v1/2020.acl-main.617
– ident: ref31
  doi: 10.1109/TNNLS.2021.3083259
– start-page: 809
  volume-title: Proc. ICML
  ident: ref43
  article-title: A three-way model for collective learning on multi-relational data
– ident: ref18
  doi: 10.1016/j.neunet.2005.06.042
– ident: ref30
  doi: 10.18653/v1/D19-1274
– ident: ref59
  doi: 10.1145/3442381.3450043
SSID ssj0000605649
Score 2.509049
Snippet Although Transformer has achieved success in language and vision tasks, its capacity for knowledge graph (KG) embedding has not been fully exploited. Using the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11580
SubjectTerms Encoding
Entity alignment
knowledge graph (KG) embedding
Knowledge graphs
link prediction
position encoding
Predictive models
Semantics
Task analysis
Training
Transformer
Transformers
Title Position-Aware Relational Transformer for Knowledge Graph Embedding
URI https://ieeexplore.ieee.org/document/10092525
https://www.ncbi.nlm.nih.gov/pubmed/37018088
https://www.proquest.com/docview/2796161624
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4VTr2UQqGkpciVuKF1_diXjyiCRn1ESAQpN2sf40shqdJElfrrO7v2hqoSiJN92PVjZlbz7ezMfABnkqzAc-WZsaVnXDeSNTV6ZoXsVFdoJ-NRzPepnNzyL3MxH4rVYy0MIsbkM8zDbTzL90u3CaEyWuFFU4lK7MAO7dz6Yq1tQKUgYC4j3K1KWbGqVvNUJFM0n2bT6bebPHCF5wRYyMcF9r1ahfZVkXTlwSdFkpXH8Wb0O1d7ME1f3Keb_Mg3a5u7P_81c3z2L72GVwMCzS56k9mHF7g4gL3E7pANi_0NjK-HfC528dusMEtpczR3ltAujadL9jUF5rLPof91dnlv0QeneAi3V5ez8YQNlAvMEbJaM9_VHbn4CjVqLbgjAdXOuxq5t1zbwiB22htF6iyFazR6U1pvDVfOWCt8fQS7i-UCjyEjoICC3CPtmRRvpNVKScMLE_oDqcKKEZRJ6K0b-pEHWoy7Nu5LiqaNOmuDztpBZyM438752XfjeHL0YRD4PyN7WY_gY1JuS4spnJCYBS43v9pKNZIgsKz4CN72Wt_OTsby7pGnvoeX9HLeJweewO56tcEPBFjW9jQa6l8x1uMK
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOcCl5VHoQgtB4oYc8vArx6pqWeg2QmIr7S3yY3Ip7KKyKyR-PWMnXiqkop6Sgx05M2PNZ8_jA3gnyQo8V54ZW3rGdSNZU6NnVshe9YV2MoZiLlo5veSfF2IxFqvHWhhEjMlnmIfXGMv3K7cJV2W0w4umEpW4Dw_I8YtyKNfaXqkUBM1lBLxVKStW1WqRymSK5sO8bWdf88AWnhNkIS8X-PdqFRpYRdqVv14p0qzcjjij5znbgzateUg4uco3a5u73_-0c7zzTz2G3RGDZseD0TyBe7h8CnuJ3yEbt_szOPkyZnSx41_mGrOUOEdz5wnv0nh6ZOfpai77GDpgZ6ffLfrgFvfh8ux0fjJlI-kCc4St1sz3dU9OvkKNWgvuSEC1865G7i3XtjCIvfZGkUJL4RqN3pTWW8OVM9YKXz-HneVqiQeQEVRAQQ6STk2KN9JqpaThhQkdglRhxQTKJPTOjR3JAzHGty6eTIqmizrrgs66UWcTeL-d82Pox_Hf0ftB4DdGDrKewNuk3I62U4iRmCWuNj-7SjWSQLCs-AReDFrfzk7G8vKWr76Bh9P5xaybfWrPX8EjWggfUgUPYWd9vcEjgi9r-zoa7R81DeZT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Position-Aware+Relational+Transformer+for+Knowledge+Graph+Embedding&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Guangyao&rft.au=Sun%2C+Zequn&rft.au=Hu%2C+Wei&rft.au=Cheng%2C+Gong&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=35&rft.issue=8&rft.spage=11580&rft.epage=11594&rft_id=info:doi/10.1109%2FTNNLS.2023.3262937&rft_id=info%3Apmid%2F37018088&rft.externalDocID=10092525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon