Enhanced Results on Sampled-Data Synchronization for Chaotic Neural Networks With Actuator Saturation Using Parameterized Control
This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighti...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 8; pp. 11009 - 11023 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2023.3246426 |
Cover
Abstract | This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighting functions. Also, controller gain matrices are combined by affinely transformed weighting functions. The enhanced stabilization criterion is formulated in terms of linear matrix inequalities (LMIs) based on the Lyapunov stability theory and weighting function's information. As shown in the comparison results of the bench marking example, the presented method much outperforms previous methods, and thus the enhancement of the proposed parameterized control is verified. |
---|---|
AbstractList | This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighting functions. Also, controller gain matrices are combined by affinely transformed weighting functions. The enhanced stabilization criterion is formulated in terms of linear matrix inequalities (LMIs) based on the Lyapunov stability theory and weighting function's information. As shown in the comparison results of the bench marking example, the presented method much outperforms previous methods, and thus the enhancement of the proposed parameterized control is verified.This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighting functions. Also, controller gain matrices are combined by affinely transformed weighting functions. The enhanced stabilization criterion is formulated in terms of linear matrix inequalities (LMIs) based on the Lyapunov stability theory and weighting function's information. As shown in the comparison results of the bench marking example, the presented method much outperforms previous methods, and thus the enhancement of the proposed parameterized control is verified. This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighting functions. Also, controller gain matrices are combined by affinely transformed weighting functions. The enhanced stabilization criterion is formulated in terms of linear matrix inequalities (LMIs) based on the Lyapunov stability theory and weighting function's information. As shown in the comparison results of the bench marking example, the presented method much outperforms previous methods, and thus the enhancement of the proposed parameterized control is verified. |
Author | Lee, Sang Jun Jo, Seonghyeon Kwon, Wookyong Jin, Yongsik Lee, Sangmoon |
Author_xml | – sequence: 1 givenname: Seonghyeon orcidid: 0000-0001-7940-3563 surname: Jo fullname: Jo, Seonghyeon email: seonghyeon2.jo@doosan.com organization: Doosan Robotics, Seongnam, South Korea – sequence: 2 givenname: Wookyong orcidid: 0000-0002-3656-2043 surname: Kwon fullname: Kwon, Wookyong email: wkwon@etri.re.kr organization: Electronics and Telecommunications Research Institute (ETRI), Daegu, South Korea – sequence: 3 givenname: Sang Jun orcidid: 0000-0002-9312-6299 surname: Lee fullname: Lee, Sang Jun email: sj.lee@jbnu.ac.kr organization: Division of Electronic Engineering, Jeonbuk National University, Jeonju, South Korea – sequence: 4 givenname: Sangmoon surname: Lee fullname: Lee, Sangmoon email: moony@knu.ac.kr organization: School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South Korea – sequence: 5 givenname: Yongsik orcidid: 0000-0003-0487-0241 surname: Jin fullname: Jin, Yongsik email: yongsik@etri.re.kr organization: Electronics and Telecommunications Research Institute (ETRI), Daegu, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37028081$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9vFCEUx4mpsT_sP2CM4ehlVgaYGebYrLWabFbjttEbYeHhojOwBSamvfmfS3e3xniQyyN5n88jj-8pOvLBA0IvajKra9K_uV4uF6sZJZTNGOUtp-0TdELrllaUCXH05959PUbnKX0n5bSkaXn_DB2zjlBBRH2Cfl36jfIaDP4MaRpywsHjlRq3A5jqrcoKr-683sTg3b3KrjRtiHi-USE7jZcwRTWUkn-G-CPhLy5v8IXOk8qFWqlc2jvpJjn_DX9SUY2QIbr78uA8-BzD8Bw9tWpIcH6oZ-jm3eX1_H21-Hj1YX6xqHTZL1fGgBAWaEtB9b3pGqZ7Ti03lnBhO2u7Zg1NQ2ivatKZhvdrbpjhrbCaKWjYGXq9n7uN4XaClOXokoZhUB7ClCTtetERwQQv6KsDOq1HMHIb3ajinXz8tgKIPaBjSCmCldrl3aY5KjfImsiHkOQuJPkQkjyEVFT6j_o4_b_Sy73kAOAvgTSibmv2Gxmdn6Y |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_024_05695_x crossref_primary_10_1016_j_chaos_2024_115842 |
Cites_doi | 10.1109/ACCESS.2021.3102585 10.1109/TMI.2006.871549 10.1016/j.neucom.2012.11.024 10.1088/1674-1056/21/7/070207 10.1109/TNNLS.2019.2896162 10.1007/s00521-020-05183-0 10.1016/0375-9601(90)90136-C 10.1088/1674-1056/17/2/029 10.1109/TAC.2015.2404271 10.1186/s13662-021-03438-1 10.1109/tnnls.2022.3160627 10.1109/TFUZZ.2017.2686364 10.1109/TNNLS.2020.3027862 10.1002/asjc.2075 10.1007/s12555-018-0678-5 10.1109/72.279188 10.1007/978-0-85729-941-3 10.1109/TFUZZ.2021.3052104 10.1016/j.apm.2018.08.012 10.15388/NA.2018.1.7 10.1109/TCYB.2014.2312004 10.1109/TIE.2016.2544244 10.1016/j.apm.2018.01.046 10.1109/TAC.2017.2670786 10.1007/978-1-4612-0205-9 10.1142/9789814291705_0002 10.1109/TCSI.2002.800842 10.1016/j.cnsns.2008.04.001 10.1109/TNNLS.2020.3045146 10.1109/TNNLS.2019.2943548 10.1109/TFUZZ.2021.3069319 10.1007/s00034-021-01894-4 10.1016/j.physleta.2006.03.069 10.1109/ACCESS.2020.3048170 10.1016/j.neucom.2015.12.055 10.3390/math7080759 10.1109/TCYB.2019.2938217 10.1016/j.neucom.2017.02.063 10.3390/math9111163 10.1016/S0375-9601(03)00387-6 10.1109/ACCESS.2020.3029145 10.1201/9781315220413 10.1063/1.2995852 10.1109/TNN.2007.902958 10.1109/TCSI.2021.3117694 10.1016/j.chaos.2021.111436 10.1016/j.ins.2012.02.007 10.1016/j.automatica.2009.03.004 10.1016/S0893-6080(96)00061-5 10.1109/TAC.2006.878743 10.1017/cbo9780511624216 10.1016/j.jfranklin.2021.02.023 10.1016/j.automatica.2017.04.051 10.1103/PhysRevLett.68.718 10.1109/81.855465 10.1103/PhysRevLett.64.821 10.1007/s12555-018-0245-0 10.1016/j.neucom.2020.09.018 10.1016/j.sysconle.2012.09.003 10.1016/j.neucom.2018.08.090 10.1016/j.automatica.2004.03.003 10.1016/S0167-6911(97)00027-3 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TNNLS.2023.3246426 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Government Computer Science |
EISSN | 2162-2388 |
EndPage | 11023 |
ExternalDocumentID | 37028081 10_1109_TNNLS_2023_3246426 10058161 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) – fundername: Korean Government “Development of ICT Convergence Technology for Daegu-Gyeongbuk Regional Industry” grantid: 23ZD1130 – fundername: Korean Government (MSIT) grantid: NRF-2022R1A4A1023248 – fundername: Korean Government (MSIT) grantid: 2021R1G1A1009792 – fundername: Korean Government (MSIT) (Artificial Intelligence Innovation Hub) grantid: 2021-0-02068 – fundername: Electronics and Telecommunications Research Institute (ETRI) funderid: 10.13039/501100003696 – fundername: National Research Foundation of Korea (NRF) funderid: 10.13039/501100003725 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c324t-dde88fe262ea99d753c942f4df048f7ff75be55029a107d549b4d3d468fc3ae53 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 19:35:11 EDT 2025 Thu Jul 24 03:25:39 EDT 2025 Tue Jul 01 00:27:50 EDT 2025 Thu Apr 24 22:49:15 EDT 2025 Wed Aug 27 02:35:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-dde88fe262ea99d753c942f4df048f7ff75be55029a107d549b4d3d468fc3ae53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0487-0241 0000-0001-7940-3563 0000-0002-9312-6299 0000-0002-3656-2043 |
PMID | 37028081 |
PQID | 2798708384 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmed_primary_37028081 crossref_primary_10_1109_TNNLS_2023_3246426 proquest_miscellaneous_2798708384 crossref_citationtrail_10_1109_TNNLS_2023_3246426 ieee_primary_10058161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref12 doi: 10.1109/ACCESS.2021.3102585 – ident: ref2 doi: 10.1109/TMI.2006.871549 – ident: ref21 doi: 10.1016/j.neucom.2012.11.024 – ident: ref33 doi: 10.1088/1674-1056/21/7/070207 – ident: ref26 doi: 10.1109/TNNLS.2019.2896162 – ident: ref5 doi: 10.1007/s00521-020-05183-0 – ident: ref8 doi: 10.1016/0375-9601(90)90136-C – ident: ref23 doi: 10.1088/1674-1056/17/2/029 – ident: ref55 doi: 10.1109/TAC.2015.2404271 – ident: ref14 doi: 10.1186/s13662-021-03438-1 – ident: ref60 doi: 10.1109/tnnls.2022.3160627 – ident: ref40 doi: 10.1109/TFUZZ.2017.2686364 – ident: ref59 doi: 10.1109/TNNLS.2020.3027862 – ident: ref9 doi: 10.1002/asjc.2075 – ident: ref49 doi: 10.1007/s12555-018-0678-5 – ident: ref3 doi: 10.1109/72.279188 – ident: ref46 doi: 10.1007/978-0-85729-941-3 – ident: ref61 doi: 10.1109/TFUZZ.2021.3052104 – ident: ref58 doi: 10.1016/j.apm.2018.08.012 – ident: ref20 doi: 10.15388/NA.2018.1.7 – ident: ref47 doi: 10.1109/TCYB.2014.2312004 – ident: ref54 doi: 10.1109/TIE.2016.2544244 – ident: ref29 doi: 10.1016/j.apm.2018.01.046 – ident: ref39 doi: 10.1109/TAC.2017.2670786 – ident: ref43 doi: 10.1007/978-1-4612-0205-9 – ident: ref22 doi: 10.1142/9789814291705_0002 – ident: ref31 doi: 10.1109/TCSI.2002.800842 – ident: ref32 doi: 10.1016/j.cnsns.2008.04.001 – ident: ref52 doi: 10.1109/TNNLS.2020.3045146 – ident: ref34 doi: 10.1109/TNNLS.2019.2943548 – ident: ref42 doi: 10.1109/TFUZZ.2021.3069319 – ident: ref6 doi: 10.1007/s00034-021-01894-4 – ident: ref19 doi: 10.1016/j.physleta.2006.03.069 – ident: ref17 doi: 10.1109/ACCESS.2020.3048170 – ident: ref27 doi: 10.1016/j.neucom.2015.12.055 – ident: ref10 doi: 10.3390/math7080759 – ident: ref28 doi: 10.1109/TCYB.2019.2938217 – ident: ref51 doi: 10.1016/j.neucom.2017.02.063 – ident: ref13 doi: 10.3390/math9111163 – ident: ref35 doi: 10.1016/S0375-9601(03)00387-6 – ident: ref11 doi: 10.1109/ACCESS.2020.3029145 – ident: ref1 doi: 10.1201/9781315220413 – ident: ref25 doi: 10.1063/1.2995852 – ident: ref24 doi: 10.1109/TNN.2007.902958 – ident: ref62 doi: 10.1109/TCSI.2021.3117694 – ident: ref7 doi: 10.1016/j.chaos.2021.111436 – ident: ref38 doi: 10.1016/j.ins.2012.02.007 – ident: ref37 doi: 10.1016/j.automatica.2009.03.004 – ident: ref18 doi: 10.1016/S0893-6080(96)00061-5 – ident: ref44 doi: 10.1109/TAC.2006.878743 – ident: ref4 doi: 10.1017/cbo9780511624216 – ident: ref41 doi: 10.1016/j.jfranklin.2021.02.023 – ident: ref57 doi: 10.1016/j.automatica.2017.04.051 – ident: ref16 doi: 10.1103/PhysRevLett.68.718 – ident: ref30 doi: 10.1109/81.855465 – ident: ref15 doi: 10.1103/PhysRevLett.64.821 – ident: ref53 doi: 10.1007/s12555-018-0245-0 – ident: ref50 doi: 10.1016/j.neucom.2020.09.018 – ident: ref45 doi: 10.1016/j.sysconle.2012.09.003 – ident: ref48 doi: 10.1016/j.neucom.2018.08.090 – ident: ref36 doi: 10.1016/j.automatica.2004.03.003 – ident: ref56 doi: 10.1016/S0167-6911(97)00027-3 |
SSID | ssj0000605649 |
Score | 2.4920886 |
Snippet | This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11009 |
SubjectTerms | Actuator saturation Actuators Behavioral sciences Biological neural networks chaotic neural networks (CNNs) Control systems Government Linear matrix inequalities linear matrix inequality (LMI) nonlinearity sampled-data synchronization control Synchronization |
Title | Enhanced Results on Sampled-Data Synchronization for Chaotic Neural Networks With Actuator Saturation Using Parameterized Control |
URI | https://ieeexplore.ieee.org/document/10058161 https://www.ncbi.nlm.nih.gov/pubmed/37028081 https://www.proquest.com/docview/2798708384 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagp15oKQW2BWSk3pBD4rzsY7W0qhBEFduKvUWOH1pElSA2ObS3_vPO2Mm2IBVxy8H2JJmx_Y39zQwhRzJVYEWpZFYaw7LcxazJtWClyV3hAMDGnu3-tSrOLrPPy3w5Bqv7WBhrrSef2Qgf_V2-6fSAR2Uww-NcJOjsPAU7C8FamwOVGIB54eEuTwrOeFoupyCZWH68qKoviwhrhUcAIQB0Y-2itMSLRZH8sSf5IiuP402_75zukGp640A3-RkNfRPpm7-SOf73J-2SZyMCpcfBZJ6TJ7bdIztTdQc6TvY9sn1fhvcFuT1pV54rQL_Z9XDVr2nX0oXC1MKGfVK9oovrVvtEuyGukwIYpvOV6kAKxQwgILIKlPM1_f6jX9FjDF0Bjx-GwdwfvpMnMNBzhYwxTCJ9AwLngUy_Ty5PTy7mZ2ys3sA0_OGewbophLO84FZJacAt0jLjLjMOFg1XOlfmjQX_iEsFLqgBP7XJTGqyQjidKpunL8lW27X2NaGiaQDX2oQ30ExYI7kWscLFyQnu8nJGkkl_tR5Tm2OFjavauzixrL36a1R_Pap_Rj5s-vwKiT3-2XofdfegZVDbjLyf7KSGeYmXLaq13bCueSlhKRSpyGbkVTCgTe_J7g4eGfWQbIPwLPAM35Ct_vdg3wL26Zt33ubvAIpc_kc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOdALhVJgWx5G4oYSEsdO7GO1tFpgGyF2K_YWOX5oUauk6iaH9sY_Z2wny0Mq4paDH0lmPP7G_mYGobcik6BFmYiM0DqizCZRzRSPCs1sbgHAJp7tflbms3P6acVWQ7C6j4UxxnjymYndo7_L163q3VEZrPCE8dQ5O_dh46cshGttj1QSgOa5B7wkzUlEsmI1hskk4v2yLOeL2FULjwFEAOx21Yuywl0t8vSPXcmXWbkbcfqd53QPleM7B8LJRdx3daxu_0rn-N8f9Qg9HDAoPg5K8xjdM80-2hvrO-Bhue-j3V-FeJ-gHyfN2rMF8Fez6S-7DW4bvJAuubCOPshO4sVNo3yq3RDZiQEO4-latjALdjlAYMoykM43-Nv3bo2PXfAK-PwwjMv-4Tt5CgP-Ih1nzKWRvoUJp4FOf4DOT0-W01k01G-IFPzhLgLLybk1JCdGCqHBMVKCEku1BbNhC2sLVhvwkIiQ4IRq8FRrqjNNc25VJg3LnqKdpm3Mc4R5XQOyNSmpoRk3WhDFE-nMk-XEsmKC0lF-lRqSm7saG5eVd3ISUXnxV0781SD-CXq37XMVUnv8s_WBk91vLYPYJujNqCcVrEx33SIb0_abihQCjCHPOJ2gZ0GBtr1HvTu8Y9TX6MFseTav5h_Lz0doF16EBtbhC7TTXffmJSChrn7l9f8n_BIBow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Results+on+Sampled-Data+Synchronization+for+Chaotic+Neural+Networks+With+Actuator+Saturation+Using+Parameterized+Control&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jo%2C+Seonghyeon&rft.au=Kwon%2C+Wookyong&rft.au=Lee%2C+Sang+Jun&rft.au=Lee%2C+Sangmoon&rft.date=2024-08-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2023.3246426&rft_id=info%3Apmid%2F37028081&rft.externalDocID=37028081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |