Enhanced Results on Sampled-Data Synchronization for Chaotic Neural Networks With Actuator Saturation Using Parameterized Control

This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighti...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 8; pp. 11009 - 11023
Main Authors Jo, Seonghyeon, Kwon, Wookyong, Lee, Sang Jun, Lee, Sangmoon, Jin, Yongsik
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2024
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2023.3246426

Cover

Abstract This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighting functions. Also, controller gain matrices are combined by affinely transformed weighting functions. The enhanced stabilization criterion is formulated in terms of linear matrix inequalities (LMIs) based on the Lyapunov stability theory and weighting function's information. As shown in the comparison results of the bench marking example, the presented method much outperforms previous methods, and thus the enhancement of the proposed parameterized control is verified.
AbstractList This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighting functions. Also, controller gain matrices are combined by affinely transformed weighting functions. The enhanced stabilization criterion is formulated in terms of linear matrix inequalities (LMIs) based on the Lyapunov stability theory and weighting function's information. As shown in the comparison results of the bench marking example, the presented method much outperforms previous methods, and thus the enhancement of the proposed parameterized control is verified.This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighting functions. Also, controller gain matrices are combined by affinely transformed weighting functions. The enhanced stabilization criterion is formulated in terms of linear matrix inequalities (LMIs) based on the Lyapunov stability theory and weighting function's information. As shown in the comparison results of the bench marking example, the presented method much outperforms previous methods, and thus the enhancement of the proposed parameterized control is verified.
This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighting functions. Also, controller gain matrices are combined by affinely transformed weighting functions. The enhanced stabilization criterion is formulated in terms of linear matrix inequalities (LMIs) based on the Lyapunov stability theory and weighting function's information. As shown in the comparison results of the bench marking example, the presented method much outperforms previous methods, and thus the enhancement of the proposed parameterized control is verified.
Author Lee, Sang Jun
Jo, Seonghyeon
Kwon, Wookyong
Jin, Yongsik
Lee, Sangmoon
Author_xml – sequence: 1
  givenname: Seonghyeon
  orcidid: 0000-0001-7940-3563
  surname: Jo
  fullname: Jo, Seonghyeon
  email: seonghyeon2.jo@doosan.com
  organization: Doosan Robotics, Seongnam, South Korea
– sequence: 2
  givenname: Wookyong
  orcidid: 0000-0002-3656-2043
  surname: Kwon
  fullname: Kwon, Wookyong
  email: wkwon@etri.re.kr
  organization: Electronics and Telecommunications Research Institute (ETRI), Daegu, South Korea
– sequence: 3
  givenname: Sang Jun
  orcidid: 0000-0002-9312-6299
  surname: Lee
  fullname: Lee, Sang Jun
  email: sj.lee@jbnu.ac.kr
  organization: Division of Electronic Engineering, Jeonbuk National University, Jeonju, South Korea
– sequence: 4
  givenname: Sangmoon
  surname: Lee
  fullname: Lee, Sangmoon
  email: moony@knu.ac.kr
  organization: School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South Korea
– sequence: 5
  givenname: Yongsik
  orcidid: 0000-0003-0487-0241
  surname: Jin
  fullname: Jin, Yongsik
  email: yongsik@etri.re.kr
  organization: Electronics and Telecommunications Research Institute (ETRI), Daegu, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37028081$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9vFCEUx4mpsT_sP2CM4ehlVgaYGebYrLWabFbjttEbYeHhojOwBSamvfmfS3e3xniQyyN5n88jj-8pOvLBA0IvajKra9K_uV4uF6sZJZTNGOUtp-0TdELrllaUCXH05959PUbnKX0n5bSkaXn_DB2zjlBBRH2Cfl36jfIaDP4MaRpywsHjlRq3A5jqrcoKr-683sTg3b3KrjRtiHi-USE7jZcwRTWUkn-G-CPhLy5v8IXOk8qFWqlc2jvpJjn_DX9SUY2QIbr78uA8-BzD8Bw9tWpIcH6oZ-jm3eX1_H21-Hj1YX6xqHTZL1fGgBAWaEtB9b3pGqZ7Ti03lnBhO2u7Zg1NQ2ivatKZhvdrbpjhrbCaKWjYGXq9n7uN4XaClOXokoZhUB7ClCTtetERwQQv6KsDOq1HMHIb3ajinXz8tgKIPaBjSCmCldrl3aY5KjfImsiHkOQuJPkQkjyEVFT6j_o4_b_Sy73kAOAvgTSibmv2Gxmdn6Y
CODEN ITNNAL
CitedBy_id crossref_primary_10_1140_epjp_s13360_024_05695_x
crossref_primary_10_1016_j_chaos_2024_115842
Cites_doi 10.1109/ACCESS.2021.3102585
10.1109/TMI.2006.871549
10.1016/j.neucom.2012.11.024
10.1088/1674-1056/21/7/070207
10.1109/TNNLS.2019.2896162
10.1007/s00521-020-05183-0
10.1016/0375-9601(90)90136-C
10.1088/1674-1056/17/2/029
10.1109/TAC.2015.2404271
10.1186/s13662-021-03438-1
10.1109/tnnls.2022.3160627
10.1109/TFUZZ.2017.2686364
10.1109/TNNLS.2020.3027862
10.1002/asjc.2075
10.1007/s12555-018-0678-5
10.1109/72.279188
10.1007/978-0-85729-941-3
10.1109/TFUZZ.2021.3052104
10.1016/j.apm.2018.08.012
10.15388/NA.2018.1.7
10.1109/TCYB.2014.2312004
10.1109/TIE.2016.2544244
10.1016/j.apm.2018.01.046
10.1109/TAC.2017.2670786
10.1007/978-1-4612-0205-9
10.1142/9789814291705_0002
10.1109/TCSI.2002.800842
10.1016/j.cnsns.2008.04.001
10.1109/TNNLS.2020.3045146
10.1109/TNNLS.2019.2943548
10.1109/TFUZZ.2021.3069319
10.1007/s00034-021-01894-4
10.1016/j.physleta.2006.03.069
10.1109/ACCESS.2020.3048170
10.1016/j.neucom.2015.12.055
10.3390/math7080759
10.1109/TCYB.2019.2938217
10.1016/j.neucom.2017.02.063
10.3390/math9111163
10.1016/S0375-9601(03)00387-6
10.1109/ACCESS.2020.3029145
10.1201/9781315220413
10.1063/1.2995852
10.1109/TNN.2007.902958
10.1109/TCSI.2021.3117694
10.1016/j.chaos.2021.111436
10.1016/j.ins.2012.02.007
10.1016/j.automatica.2009.03.004
10.1016/S0893-6080(96)00061-5
10.1109/TAC.2006.878743
10.1017/cbo9780511624216
10.1016/j.jfranklin.2021.02.023
10.1016/j.automatica.2017.04.051
10.1103/PhysRevLett.68.718
10.1109/81.855465
10.1103/PhysRevLett.64.821
10.1007/s12555-018-0245-0
10.1016/j.neucom.2020.09.018
10.1016/j.sysconle.2012.09.003
10.1016/j.neucom.2018.08.090
10.1016/j.automatica.2004.03.003
10.1016/S0167-6911(97)00027-3
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3246426
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Government
Computer Science
EISSN 2162-2388
EndPage 11023
ExternalDocumentID 37028081
10_1109_TNNLS_2023_3246426
10058161
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP)
– fundername: Korean Government “Development of ICT Convergence Technology for Daegu-Gyeongbuk Regional Industry”
  grantid: 23ZD1130
– fundername: Korean Government (MSIT)
  grantid: NRF-2022R1A4A1023248
– fundername: Korean Government (MSIT)
  grantid: 2021R1G1A1009792
– fundername: Korean Government (MSIT) (Artificial Intelligence Innovation Hub)
  grantid: 2021-0-02068
– fundername: Electronics and Telecommunications Research Institute (ETRI)
  funderid: 10.13039/501100003696
– fundername: National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c324t-dde88fe262ea99d753c942f4df048f7ff75be55029a107d549b4d3d468fc3ae53
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 19:35:11 EDT 2025
Thu Jul 24 03:25:39 EDT 2025
Tue Jul 01 00:27:50 EDT 2025
Thu Apr 24 22:49:15 EDT 2025
Wed Aug 27 02:35:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-dde88fe262ea99d753c942f4df048f7ff75be55029a107d549b4d3d468fc3ae53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0487-0241
0000-0001-7940-3563
0000-0002-9312-6299
0000-0002-3656-2043
PMID 37028081
PQID 2798708384
PQPubID 23479
PageCount 15
ParticipantIDs pubmed_primary_37028081
crossref_primary_10_1109_TNNLS_2023_3246426
proquest_miscellaneous_2798708384
crossref_citationtrail_10_1109_TNNLS_2023_3246426
ieee_primary_10058161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref12
  doi: 10.1109/ACCESS.2021.3102585
– ident: ref2
  doi: 10.1109/TMI.2006.871549
– ident: ref21
  doi: 10.1016/j.neucom.2012.11.024
– ident: ref33
  doi: 10.1088/1674-1056/21/7/070207
– ident: ref26
  doi: 10.1109/TNNLS.2019.2896162
– ident: ref5
  doi: 10.1007/s00521-020-05183-0
– ident: ref8
  doi: 10.1016/0375-9601(90)90136-C
– ident: ref23
  doi: 10.1088/1674-1056/17/2/029
– ident: ref55
  doi: 10.1109/TAC.2015.2404271
– ident: ref14
  doi: 10.1186/s13662-021-03438-1
– ident: ref60
  doi: 10.1109/tnnls.2022.3160627
– ident: ref40
  doi: 10.1109/TFUZZ.2017.2686364
– ident: ref59
  doi: 10.1109/TNNLS.2020.3027862
– ident: ref9
  doi: 10.1002/asjc.2075
– ident: ref49
  doi: 10.1007/s12555-018-0678-5
– ident: ref3
  doi: 10.1109/72.279188
– ident: ref46
  doi: 10.1007/978-0-85729-941-3
– ident: ref61
  doi: 10.1109/TFUZZ.2021.3052104
– ident: ref58
  doi: 10.1016/j.apm.2018.08.012
– ident: ref20
  doi: 10.15388/NA.2018.1.7
– ident: ref47
  doi: 10.1109/TCYB.2014.2312004
– ident: ref54
  doi: 10.1109/TIE.2016.2544244
– ident: ref29
  doi: 10.1016/j.apm.2018.01.046
– ident: ref39
  doi: 10.1109/TAC.2017.2670786
– ident: ref43
  doi: 10.1007/978-1-4612-0205-9
– ident: ref22
  doi: 10.1142/9789814291705_0002
– ident: ref31
  doi: 10.1109/TCSI.2002.800842
– ident: ref32
  doi: 10.1016/j.cnsns.2008.04.001
– ident: ref52
  doi: 10.1109/TNNLS.2020.3045146
– ident: ref34
  doi: 10.1109/TNNLS.2019.2943548
– ident: ref42
  doi: 10.1109/TFUZZ.2021.3069319
– ident: ref6
  doi: 10.1007/s00034-021-01894-4
– ident: ref19
  doi: 10.1016/j.physleta.2006.03.069
– ident: ref17
  doi: 10.1109/ACCESS.2020.3048170
– ident: ref27
  doi: 10.1016/j.neucom.2015.12.055
– ident: ref10
  doi: 10.3390/math7080759
– ident: ref28
  doi: 10.1109/TCYB.2019.2938217
– ident: ref51
  doi: 10.1016/j.neucom.2017.02.063
– ident: ref13
  doi: 10.3390/math9111163
– ident: ref35
  doi: 10.1016/S0375-9601(03)00387-6
– ident: ref11
  doi: 10.1109/ACCESS.2020.3029145
– ident: ref1
  doi: 10.1201/9781315220413
– ident: ref25
  doi: 10.1063/1.2995852
– ident: ref24
  doi: 10.1109/TNN.2007.902958
– ident: ref62
  doi: 10.1109/TCSI.2021.3117694
– ident: ref7
  doi: 10.1016/j.chaos.2021.111436
– ident: ref38
  doi: 10.1016/j.ins.2012.02.007
– ident: ref37
  doi: 10.1016/j.automatica.2009.03.004
– ident: ref18
  doi: 10.1016/S0893-6080(96)00061-5
– ident: ref44
  doi: 10.1109/TAC.2006.878743
– ident: ref4
  doi: 10.1017/cbo9780511624216
– ident: ref41
  doi: 10.1016/j.jfranklin.2021.02.023
– ident: ref57
  doi: 10.1016/j.automatica.2017.04.051
– ident: ref16
  doi: 10.1103/PhysRevLett.68.718
– ident: ref30
  doi: 10.1109/81.855465
– ident: ref15
  doi: 10.1103/PhysRevLett.64.821
– ident: ref53
  doi: 10.1007/s12555-018-0245-0
– ident: ref50
  doi: 10.1016/j.neucom.2020.09.018
– ident: ref45
  doi: 10.1016/j.sysconle.2012.09.003
– ident: ref48
  doi: 10.1016/j.neucom.2018.08.090
– ident: ref36
  doi: 10.1016/j.automatica.2004.03.003
– ident: ref56
  doi: 10.1016/S0167-6911(97)00027-3
SSID ssj0000605649
Score 2.4920886
Snippet This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11009
SubjectTerms Actuator saturation
Actuators
Behavioral sciences
Biological neural networks
chaotic neural networks (CNNs)
Control systems
Government
Linear matrix inequalities
linear matrix inequality (LMI)
nonlinearity
sampled-data synchronization control
Synchronization
Title Enhanced Results on Sampled-Data Synchronization for Chaotic Neural Networks With Actuator Saturation Using Parameterized Control
URI https://ieeexplore.ieee.org/document/10058161
https://www.ncbi.nlm.nih.gov/pubmed/37028081
https://www.proquest.com/docview/2798708384
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagp15oKQW2BWSk3pBD4rzsY7W0qhBEFduKvUWOH1pElSA2ObS3_vPO2Mm2IBVxy8H2JJmx_Y39zQwhRzJVYEWpZFYaw7LcxazJtWClyV3hAMDGnu3-tSrOLrPPy3w5Bqv7WBhrrSef2Qgf_V2-6fSAR2Uww-NcJOjsPAU7C8FamwOVGIB54eEuTwrOeFoupyCZWH68qKoviwhrhUcAIQB0Y-2itMSLRZH8sSf5IiuP402_75zukGp640A3-RkNfRPpm7-SOf73J-2SZyMCpcfBZJ6TJ7bdIztTdQc6TvY9sn1fhvcFuT1pV54rQL_Z9XDVr2nX0oXC1MKGfVK9oovrVvtEuyGukwIYpvOV6kAKxQwgILIKlPM1_f6jX9FjDF0Bjx-GwdwfvpMnMNBzhYwxTCJ9AwLngUy_Ty5PTy7mZ2ys3sA0_OGewbophLO84FZJacAt0jLjLjMOFg1XOlfmjQX_iEsFLqgBP7XJTGqyQjidKpunL8lW27X2NaGiaQDX2oQ30ExYI7kWscLFyQnu8nJGkkl_tR5Tm2OFjavauzixrL36a1R_Pap_Rj5s-vwKiT3-2XofdfegZVDbjLyf7KSGeYmXLaq13bCueSlhKRSpyGbkVTCgTe_J7g4eGfWQbIPwLPAM35Ct_vdg3wL26Zt33ubvAIpc_kc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOdALhVJgWx5G4oYSEsdO7GO1tFpgGyF2K_YWOX5oUauk6iaH9sY_Z2wny0Mq4paDH0lmPP7G_mYGobcik6BFmYiM0DqizCZRzRSPCs1sbgHAJp7tflbms3P6acVWQ7C6j4UxxnjymYndo7_L163q3VEZrPCE8dQ5O_dh46cshGttj1QSgOa5B7wkzUlEsmI1hskk4v2yLOeL2FULjwFEAOx21Yuywl0t8vSPXcmXWbkbcfqd53QPleM7B8LJRdx3daxu_0rn-N8f9Qg9HDAoPg5K8xjdM80-2hvrO-Bhue-j3V-FeJ-gHyfN2rMF8Fez6S-7DW4bvJAuubCOPshO4sVNo3yq3RDZiQEO4-latjALdjlAYMoykM43-Nv3bo2PXfAK-PwwjMv-4Tt5CgP-Ih1nzKWRvoUJp4FOf4DOT0-W01k01G-IFPzhLgLLybk1JCdGCqHBMVKCEku1BbNhC2sLVhvwkIiQ4IRq8FRrqjNNc25VJg3LnqKdpm3Mc4R5XQOyNSmpoRk3WhDFE-nMk-XEsmKC0lF-lRqSm7saG5eVd3ISUXnxV0781SD-CXq37XMVUnv8s_WBk91vLYPYJujNqCcVrEx33SIb0_abihQCjCHPOJ2gZ0GBtr1HvTu8Y9TX6MFseTav5h_Lz0doF16EBtbhC7TTXffmJSChrn7l9f8n_BIBow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Results+on+Sampled-Data+Synchronization+for+Chaotic+Neural+Networks+With+Actuator+Saturation+Using+Parameterized+Control&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jo%2C+Seonghyeon&rft.au=Kwon%2C+Wookyong&rft.au=Lee%2C+Sang+Jun&rft.au=Lee%2C+Sangmoon&rft.date=2024-08-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2023.3246426&rft_id=info%3Apmid%2F37028081&rft.externalDocID=37028081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon