A Comprehensive Survey of Multiagent Reinforcement Learning

Multiagent systems are rapidly finding applications in a variety of domains, including robotics, distributed control, telecommunications, and economics. The complexity of many tasks arising in these domains makes them difficult to solve with preprogrammed agent behaviors. The agents must, instead, d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part C, Applications and reviews Vol. 38; no. 2; pp. 156 - 172
Main Authors Busoniu, L., Babuska, R., De Schutter, B.
Format Journal Article
LanguageEnglish
Published IEEE 01.03.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiagent systems are rapidly finding applications in a variety of domains, including robotics, distributed control, telecommunications, and economics. The complexity of many tasks arising in these domains makes them difficult to solve with preprogrammed agent behaviors. The agents must, instead, discover a solution on their own, using learning. A significant part of the research on multiagent learning concerns reinforcement learning techniques. This paper provides a comprehensive survey of multiagent reinforcement learning (MARL). A central issue in the field is the formal statement of the multiagent learning goal. Different viewpoints on this issue have led to the proposal of many different goals, among which two focal points can be distinguished: stability of the agents' learning dynamics, and adaptation to the changing behavior of the other agents. The MARL algorithms described in the literature aim---either explicitly or implicitly---at one of these two goals or at a combination of both, in a fully cooperative, fully competitive, or more general setting. A representative selection of these algorithms is discussed in detail in this paper, together with the specific issues that arise in each category. Additionally, the benefits and challenges of MARL are described along with some of the problem domains where the MARL techniques have been applied. Finally, an outlook for the field is provided.
AbstractList Multiagent systems are rapidly finding applications in a variety of domains, including robotics, distributed control, telecommunications, and economics. The complexity of many tasks arising in these domains makes them difficult to solve with preprogrammed agent behaviors. The agents must, instead, discover a solution on their own, using learning. A significant part of the research on multiagent learning concerns reinforcement learning techniques. This paper provides a comprehensive survey of multiagent reinforcement learning (MARL). A central issue in the field is the formal statement of the multiagent learning goal. Different viewpoints on this issue have led to the proposal of many different goals, among which two focal points can be distinguished: stability of the agents' learning dynamics, and adaptation to the changing behavior of the other agents. The MARL algorithms described in the literature aim---either explicitly or implicitly---at one of these two goals or at a combination of both, in a fully cooperative, fully competitive, or more general setting. A representative selection of these algorithms is discussed in detail in this paper, together with the specific issues that arise in each category. Additionally, the benefits and challenges of MARL are described along with some of the problem domains where the MARL techniques have been applied. Finally, an outlook for the field is provided.
Author De Schutter, B.
Babuska, R.
Busoniu, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Busoniu
  fullname: Busoniu, L.
  organization: Delft Univ. of Technol., Delft
– sequence: 2
  givenname: R.
  surname: Babuska
  fullname: Babuska, R.
  organization: Delft Univ. of Technol., Delft
– sequence: 3
  givenname: B.
  surname: De Schutter
  fullname: De Schutter, B.
BookMark eNp9kD1PwzAQQC1UJFrgByCWbEwpdmLHsZiqiC-pFRIts-W452KU2MVOKvXf0xLEwMB0d9J7N7wJGjnvAKErgqeEYHG7Wi6qapphzKeC5IKIEzQmjJVpRmk2OuxY0LQQnJ-hSYwfGBNKRT5Gd7Ok8u02wDu4aHeQLPuwg33iTbLom86qDbgueQXrjA8a2uM1BxWcdZsLdGpUE-HyZ56jt4f7VfWUzl8en6vZPNV5RrtUG73OwAiRa5xrzrQqYF2KrMDUKEVYjTWnwtRGKGL4moMShJC60MBqJgqVn6Ob4e82-M8eYidbGzU0jXLg-yhLzjDDZSYOJB9IHXyMAYzUtlOd9a4LyjaSYHmsJb9ryWMtOdQ6mOSPuQ22VWH_r3M9OBYAfnlKKeOM5187i3ir
CODEN ITCRFH
CitedBy_id crossref_primary_10_3390_e20040236
crossref_primary_10_1007_s00521_024_10598_0
crossref_primary_10_1016_j_swevo_2022_101085
crossref_primary_10_1109_TWC_2019_2933417
crossref_primary_10_1063_5_0141824
crossref_primary_10_1016_j_artint_2024_104094
crossref_primary_10_1371_journal_pone_0145526
crossref_primary_10_2478_ttj_2020_0024
crossref_primary_10_1109_ACCESS_2019_2931884
crossref_primary_10_1016_j_sysconle_2023_105563
crossref_primary_10_1088_1742_6596_1235_1_012022
crossref_primary_10_1109_TCCN_2018_2881135
crossref_primary_10_1016_j_ejor_2022_12_022
crossref_primary_10_1007_s10458_024_09662_9
crossref_primary_10_1016_j_aej_2024_09_032
crossref_primary_10_1016_j_cor_2016_12_007
crossref_primary_10_1109_TCYB_2018_2856089
crossref_primary_10_1093_comjnl_bxae008
crossref_primary_10_1145_3706110
crossref_primary_10_1109_TCCN_2019_2933420
crossref_primary_10_1016_j_asoc_2024_112203
crossref_primary_10_1016_j_robot_2010_09_006
crossref_primary_10_1007_s12530_024_09622_4
crossref_primary_10_1109_JIOT_2021_3131719
crossref_primary_10_1109_TSP_2016_2548987
crossref_primary_10_1109_OJCOMS_2024_3480987
crossref_primary_10_1016_j_automatica_2024_111762
crossref_primary_10_1002_rnc_3413
crossref_primary_10_1007_s10458_019_09411_3
crossref_primary_10_1111_exsy_13315
crossref_primary_10_1016_j_comcom_2023_11_006
crossref_primary_10_1109_LRA_2023_3261750
crossref_primary_10_1016_j_artint_2010_09_008
crossref_primary_10_1007_s11042_024_19054_6
crossref_primary_10_1016_j_jai_2024_02_003
crossref_primary_10_1109_TCYB_2014_2341582
crossref_primary_10_4213_tvp5231
crossref_primary_10_1109_OJCOMS_2024_3509440
crossref_primary_10_1109_TSMC_2015_2504350
crossref_primary_10_1016_j_ins_2023_03_074
crossref_primary_10_1109_JSYST_2012_2208809
crossref_primary_10_1109_TSMCC_2010_2057424
crossref_primary_10_1109_ACCESS_2024_3482711
crossref_primary_10_1137_22M1505475
crossref_primary_10_1109_ACCESS_2022_3148473
crossref_primary_10_1016_j_ins_2012_02_043
crossref_primary_10_1109_TAC_2017_2734840
crossref_primary_10_1109_TWC_2022_3178767
crossref_primary_10_1088_1748_3190_ac9fb5
crossref_primary_10_1109_TCYB_2016_2543238
crossref_primary_10_1007_s12555_012_0119_9
crossref_primary_10_1016_j_patcog_2023_109917
crossref_primary_10_1016_j_eswa_2021_114896
crossref_primary_10_1137_140963765
crossref_primary_10_1016_j_jnca_2012_04_021
crossref_primary_10_1109_TITS_2023_3343452
crossref_primary_10_1109_TNNLS_2020_3025711
crossref_primary_10_1145_3606926
crossref_primary_10_1016_j_neucom_2016_01_031
crossref_primary_10_1109_TNNLS_2023_3280161
crossref_primary_10_1002_spe_2778
crossref_primary_10_1016_j_engappai_2023_106693
crossref_primary_10_1109_TNNLS_2013_2283574
crossref_primary_10_1049_iet_its_2020_0443
crossref_primary_10_1007_s10458_016_9347_3
crossref_primary_10_1109_ACCESS_2021_3094623
crossref_primary_10_1287_opre_2021_2226
crossref_primary_10_1145_3579476
crossref_primary_10_1109_TCST_2014_2312392
crossref_primary_10_1016_j_adhoc_2019_101880
crossref_primary_10_9746_sicetr_51_352
crossref_primary_10_1109_TCYB_2019_2932203
crossref_primary_10_1007_s10994_022_06286_6
crossref_primary_10_1145_3320496_3320500
crossref_primary_10_1016_j_asoc_2014_08_071
crossref_primary_10_1016_j_cor_2014_01_008
crossref_primary_10_1016_j_automatica_2012_05_074
crossref_primary_10_1109_TCYB_2020_2985043
crossref_primary_10_1145_3168446
crossref_primary_10_1016_j_trc_2024_104528
crossref_primary_10_1007_s00158_022_03210_3
crossref_primary_10_1007_s10458_019_09433_x
crossref_primary_10_3390_s21154979
crossref_primary_10_1109_LCSYS_2020_3021050
crossref_primary_10_1109_COMST_2021_3086014
crossref_primary_10_2514_1_I010973
crossref_primary_10_1109_TSMCC_2010_2044174
crossref_primary_10_1016_j_apenergy_2022_118825
crossref_primary_10_1109_TITS_2024_3410023
crossref_primary_10_1061_JBENF2_BEENG_6159
crossref_primary_10_1007_s10846_010_9396_9
crossref_primary_10_3390_math10244673
crossref_primary_10_1109_TSMC_2014_2358639
crossref_primary_10_1016_j_comcom_2019_09_002
crossref_primary_10_1007_s10846_020_01237_6
crossref_primary_10_1016_j_future_2016_06_039
crossref_primary_10_1016_j_ress_2022_109013
crossref_primary_10_3390_app142110079
crossref_primary_10_1007_s11768_020_00007_x
crossref_primary_10_3233_IA_210081
crossref_primary_10_3390_s20164546
crossref_primary_10_1016_j_advengsoft_2023_103487
crossref_primary_10_1587_transinf_E94_D_255
crossref_primary_10_3390_app9061089
crossref_primary_10_1016_j_neucom_2017_07_027
crossref_primary_10_1016_j_ins_2012_12_021
crossref_primary_10_1007_s11768_015_3203_x
crossref_primary_10_1109_TNNLS_2015_2403394
crossref_primary_10_1016_j_arcontrol_2020_03_001
crossref_primary_10_1016_j_arcontrol_2022_03_003
crossref_primary_10_1016_j_jocs_2020_101280
crossref_primary_10_1109_ACCESS_2024_3409051
crossref_primary_10_1155_2013_437926
crossref_primary_10_1109_LCSYS_2023_3329072
crossref_primary_10_1016_j_eswa_2025_126565
crossref_primary_10_1109_TAES_2021_3130832
crossref_primary_10_1016_j_energy_2018_04_042
crossref_primary_10_1109_TCCN_2020_3027695
crossref_primary_10_1007_s10458_024_09666_5
crossref_primary_10_1109_TCSS_2021_3100291
crossref_primary_10_1109_TCST_2020_3016077
crossref_primary_10_1016_j_oceaneng_2022_112182
crossref_primary_10_1088_1742_6596_1651_1_012017
crossref_primary_10_1109_TWC_2022_3233853
crossref_primary_10_1007_s11276_014_0844_5
crossref_primary_10_1109_TITS_2021_3096226
crossref_primary_10_1016_j_arcontrol_2018_09_005
crossref_primary_10_1186_s13638_017_1018_9
crossref_primary_10_1007_s10458_016_9352_6
crossref_primary_10_1145_3579443
crossref_primary_10_1016_j_procir_2019_02_099
crossref_primary_10_1049_cth2_12473
crossref_primary_10_1016_j_asoc_2014_06_021
crossref_primary_10_1016_j_automatica_2021_109685
crossref_primary_10_1007_s11042_023_16376_9
crossref_primary_10_1016_j_phycom_2022_101845
crossref_primary_10_1016_j_amc_2013_06_086
crossref_primary_10_2200_S01091ED1V01Y202104AIM049
crossref_primary_10_3390_electronics13245040
crossref_primary_10_1016_j_asoc_2020_106700
crossref_primary_10_1007_s00521_021_05918_7
crossref_primary_10_3390_smartcities5010019
crossref_primary_10_3390_e24040470
crossref_primary_10_1007_s10462_015_9438_6
crossref_primary_10_1109_TVT_2022_3196046
crossref_primary_10_1109_JIOT_2023_3289888
crossref_primary_10_1109_TG_2022_3232390
crossref_primary_10_1016_j_artint_2016_03_005
crossref_primary_10_1016_j_apenergy_2022_118636
crossref_primary_10_1109_TITS_2013_2255286
crossref_primary_10_1145_3708320
crossref_primary_10_1109_TSMCC_2012_2218596
crossref_primary_10_3390_app13031936
crossref_primary_10_1016_j_neucom_2021_10_093
crossref_primary_10_1007_s00521_017_3223_1
crossref_primary_10_1016_j_robot_2017_03_003
crossref_primary_10_1137_S0040585X97T989386
crossref_primary_10_1016_j_oceaneng_2023_116403
crossref_primary_10_1109_TAC_2020_2978037
crossref_primary_10_1371_journal_pone_0234434
crossref_primary_10_1109_JIOT_2020_3004339
crossref_primary_10_1109_TAES_2023_3270858
crossref_primary_10_1109_TNNLS_2022_3202097
crossref_primary_10_1007_s00521_023_09096_6
crossref_primary_10_1016_j_scico_2024_103176
crossref_primary_10_1016_j_artmed_2021_102137
crossref_primary_10_1109_COMST_2019_2916177
crossref_primary_10_1016_j_eswa_2010_12_152
crossref_primary_10_1109_TKDE_2020_3014246
crossref_primary_10_1109_LCOMM_2021_3088841
crossref_primary_10_1145_3665927
crossref_primary_10_3390_electronics12214496
crossref_primary_10_1109_TASE_2024_3398712
crossref_primary_10_1007_s12239_022_0056_4
crossref_primary_10_3390_fi14010017
crossref_primary_10_1109_TIE_2020_2988189
crossref_primary_10_1016_j_enconman_2016_05_039
crossref_primary_10_1631_FITEE_2100594
crossref_primary_10_1049_cth2_12677
crossref_primary_10_1109_TCIAIG_2012_2212279
crossref_primary_10_1155_2014_932485
crossref_primary_10_1049_iet_cta_2018_0029
crossref_primary_10_1109_TNSE_2021_3121690
crossref_primary_10_1527_tjsai_36_5_E_K62
crossref_primary_10_1007_s10846_013_9980_x
crossref_primary_10_3328_TL_2010_02_02_89_110
crossref_primary_10_1016_j_sbspro_2014_01_146
crossref_primary_10_1007_s10462_015_9447_5
crossref_primary_10_1109_ACCESS_2019_2893871
crossref_primary_10_1109_ACCESS_2018_2853263
crossref_primary_10_1016_j_future_2020_11_017
crossref_primary_10_1016_j_neucom_2024_128811
crossref_primary_10_1002_cpe_2947
crossref_primary_10_1007_s10845_023_02309_8
crossref_primary_10_1016_j_dental_2020_03_021
crossref_primary_10_1016_j_epsr_2022_108806
crossref_primary_10_1109_JIOT_2019_2955035
crossref_primary_10_1109_TPWRS_2014_2357079
crossref_primary_10_1016_j_eswa_2023_120495
crossref_primary_10_1109_TETCI_2021_3082204
crossref_primary_10_1177_09544054221080031
crossref_primary_10_1109_LRA_2017_2734247
crossref_primary_10_1016_j_artint_2020_103438
crossref_primary_10_1016_j_chaos_2023_113332
crossref_primary_10_3390_electronics12122614
crossref_primary_10_1109_LRA_2025_3550743
crossref_primary_10_1177_00375497241237831
crossref_primary_10_1109_MCOM_001_1900530
crossref_primary_10_1007_s11432_023_3955_x
crossref_primary_10_1016_j_eswa_2023_120186
crossref_primary_10_63053_ijset_60
crossref_primary_10_1080_0022250X_2018_1517761
crossref_primary_10_1016_j_parco_2018_03_006
crossref_primary_10_1109_TTE_2023_3236324
crossref_primary_10_1287_moor_2022_1268
crossref_primary_10_1007_s11403_017_0204_5
crossref_primary_10_1016_j_neucom_2022_01_025
crossref_primary_10_1109_TNNLS_2020_2996209
crossref_primary_10_1109_JIOT_2021_3078514
crossref_primary_10_1109_SURV_2013_030713_00113
crossref_primary_10_3390_math9233081
crossref_primary_10_1007_s10994_021_06033_3
crossref_primary_10_1186_s12859_019_3126_5
crossref_primary_10_1109_TMC_2021_3077636
crossref_primary_10_1109_TSUSC_2020_3025139
crossref_primary_10_1080_17517575_2019_1585578
crossref_primary_10_1145_3058592
crossref_primary_10_1109_TVT_2022_3160446
crossref_primary_10_1007_s13235_023_00490_2
crossref_primary_10_1016_j_eswa_2010_11_024
crossref_primary_10_1109_ACCESS_2018_2878853
crossref_primary_10_1007_s11107_020_00906_8
crossref_primary_10_1016_j_arcontrol_2012_03_004
crossref_primary_10_1103_PhysRevE_99_043305
crossref_primary_10_4018_IJIDE_2019070104
crossref_primary_10_1109_TCYB_2020_3025491
crossref_primary_10_1007_s10614_022_10351_6
crossref_primary_10_1016_j_watres_2024_121145
crossref_primary_10_1021_acs_iecr_2c00335
crossref_primary_10_1016_j_aej_2024_12_110
crossref_primary_10_1007_s00521_021_06117_0
crossref_primary_10_3390_a15070227
crossref_primary_10_1109_MSP_2017_2743240
crossref_primary_10_1109_TIM_2020_2985553
crossref_primary_10_1109_TSMCC_2010_2099654
crossref_primary_10_1109_TVT_2017_2702388
crossref_primary_10_1145_3345319
crossref_primary_10_1631_FITEE_2200055
crossref_primary_10_1109_TAC_2016_2585302
crossref_primary_10_3389_fnbot_2022_932671
crossref_primary_10_1145_3709371
crossref_primary_10_1016_j_geits_2024_100157
crossref_primary_10_1016_j_eswa_2021_116323
crossref_primary_10_1109_ACCESS_2021_3056903
crossref_primary_10_3390_info14110623
crossref_primary_10_1017_S0269888920000119
crossref_primary_10_1016_j_ifacol_2019_09_144
crossref_primary_10_1109_TAC_2022_3159453
crossref_primary_10_1109_ACCESS_2023_3266644
crossref_primary_10_1021_ie4031743
crossref_primary_10_1109_LRA_2022_3184795
crossref_primary_10_1007_s10458_011_9181_6
crossref_primary_10_1109_TSG_2015_2453884
crossref_primary_10_1109_TCYB_2020_2963849
crossref_primary_10_1016_j_aeue_2013_04_002
crossref_primary_10_1007_s10846_021_01477_0
crossref_primary_10_1016_j_camwa_2012_01_079
crossref_primary_10_1109_TNSE_2022_3201121
crossref_primary_10_1109_TIA_2022_3218274
crossref_primary_10_1080_18756891_2012_718154
crossref_primary_10_3233_AIC_180766
crossref_primary_10_1527_tjsai_36_5_AG21_H
crossref_primary_10_1016_j_arcontrol_2022_07_004
crossref_primary_10_1109_ACCESS_2019_2915541
crossref_primary_10_3390_app8101911
crossref_primary_10_1109_TRO_2016_2597322
crossref_primary_10_1007_s10462_018_9639_x
crossref_primary_10_1177_1059712316679239
crossref_primary_10_1016_j_jksuci_2024_102254
crossref_primary_10_1002_ett_2810
crossref_primary_10_3390_electronics12081803
crossref_primary_10_1016_j_physd_2024_134096
crossref_primary_10_1109_TNET_2023_3267168
crossref_primary_10_1109_TSMC_2018_2853126
crossref_primary_10_1109_TSIPN_2017_2787910
crossref_primary_10_1109_TSMC_2014_2373336
crossref_primary_10_1007_s10479_012_1098_1
crossref_primary_10_1109_ACCESS_2021_3087410
crossref_primary_10_1155_2020_9207324
crossref_primary_10_1109_TCAD_2020_2971529
crossref_primary_10_1109_JAS_2022_105809
crossref_primary_10_1115_1_4062883
crossref_primary_10_1016_j_robot_2019_103293
crossref_primary_10_1007_s10462_021_09996_w
crossref_primary_10_1016_j_adhoc_2020_102147
crossref_primary_10_1016_j_cogr_2023_07_004
crossref_primary_10_1007_s41870_023_01264_0
crossref_primary_10_1103_PhysRevE_111_014106
crossref_primary_10_1109_OJCSYS_2023_3277760
crossref_primary_10_3390_robotics8040082
crossref_primary_10_1016_j_neucom_2016_08_108
crossref_primary_10_1049_iet_gtd_2009_0168
crossref_primary_10_1155_2015_597956
crossref_primary_10_1109_MSP_2020_2976000
crossref_primary_10_1016_j_apenergy_2024_123870
crossref_primary_10_1007_s11276_013_0572_2
crossref_primary_10_1007_s10458_023_09603_y
crossref_primary_10_1145_3450626_3459761
crossref_primary_10_1177_1548512910382002
crossref_primary_10_1016_j_jtbi_2024_112032
crossref_primary_10_1109_ACCESS_2020_2966226
crossref_primary_10_1016_j_asoc_2009_09_006
crossref_primary_10_1049_iet_cta_2018_6266
crossref_primary_10_1007_s11151_019_09689_3
crossref_primary_10_3389_fphy_2020_00200
crossref_primary_10_3390_e23091133
crossref_primary_10_1007_s11721_013_0078_7
crossref_primary_10_2139_ssrn_3960738
crossref_primary_10_1109_TWC_2024_3378293
crossref_primary_10_1007_s12046_024_02574_0
crossref_primary_10_1109_JIOT_2017_2761353
crossref_primary_10_1080_08839514_2014_862774
crossref_primary_10_3390_drones8030071
crossref_primary_10_1080_09540091_2014_885282
crossref_primary_10_1109_TNNLS_2021_3056418
crossref_primary_10_1016_j_automatica_2024_111803
crossref_primary_10_25299_itjrd_2023_13474
crossref_primary_10_1109_TSC_2021_3124419
crossref_primary_10_1142_S1752890922410033
crossref_primary_10_1109_TWC_2023_3240425
crossref_primary_10_1109_TVT_2019_2953809
crossref_primary_10_1016_j_asoc_2014_01_004
crossref_primary_10_1111_coin_12035
crossref_primary_10_3156_jsoft_24_1002
crossref_primary_10_1016_j_asej_2024_102688
crossref_primary_10_1109_MNET_011_1900628
crossref_primary_10_1109_TCYB_2020_2979803
crossref_primary_10_1016_j_neucom_2021_06_049
crossref_primary_10_1007_s13218_014_0312_5
crossref_primary_10_1080_09540091_2014_885294
crossref_primary_10_1109_TSMC_2024_3414832
crossref_primary_10_1115_1_4045044
crossref_primary_10_1002_acs_2862
crossref_primary_10_1016_j_imavis_2014_08_009
crossref_primary_10_1007_s10796_022_10333_x
crossref_primary_10_3389_frsgr_2024_1371153
crossref_primary_10_1109_TSMCC_2011_2162401
crossref_primary_10_1109_TWC_2016_2616400
crossref_primary_10_1016_j_ins_2024_120996
crossref_primary_10_1016_j_mlwa_2022_100341
crossref_primary_10_1007_s12555_015_0465_5
crossref_primary_10_1109_TITS_2018_2849824
crossref_primary_10_1109_TCYB_2014_2332042
crossref_primary_10_3390_su152416741
crossref_primary_10_1007_s11276_024_03753_x
crossref_primary_10_1038_s42256_024_00879_7
crossref_primary_10_1177_0278364918812981
crossref_primary_10_1177_1059712312449547
crossref_primary_10_1109_TCSI_2023_3250516
crossref_primary_10_1109_LCOMM_2019_2896929
crossref_primary_10_1109_TITS_2019_2893683
crossref_primary_10_2139_ssrn_3912066
crossref_primary_10_1007_s10458_014_9257_1
crossref_primary_10_1016_j_artint_2019_103216
crossref_primary_10_1115_1_4052800
crossref_primary_10_3390_electronics11091456
crossref_primary_10_1109_LRA_2022_3214446
crossref_primary_10_1109_TNSE_2024_3375374
crossref_primary_10_1109_TVT_2024_3409687
crossref_primary_10_2139_ssrn_4021959
crossref_primary_10_1109_TII_2019_2902563
crossref_primary_10_2478_v10177_011_0031_x
crossref_primary_10_1109_TBC_2021_3068872
crossref_primary_10_1109_TMM_2023_3270635
crossref_primary_10_1109_TSG_2019_2952331
crossref_primary_10_1017_S089006042100024X
crossref_primary_10_1109_TVT_2022_3189019
crossref_primary_10_3390_s21092970
crossref_primary_10_3390_robotics7040066
crossref_primary_10_1145_3603703
crossref_primary_10_1007_s12065_022_00766_3
crossref_primary_10_1016_j_neucom_2021_07_014
crossref_primary_10_1109_TNSE_2023_3306202
crossref_primary_10_1109_TSMCC_2011_2161577
crossref_primary_10_1109_TCAD_2022_3222670
crossref_primary_10_1609_aimag_v33i3_2422
crossref_primary_10_1155_2010_876216
crossref_primary_10_1186_s40309_024_00238_0
crossref_primary_10_1016_j_compchemeng_2021_107382
crossref_primary_10_1162_tacl_a_00037
crossref_primary_10_1038_s41467_022_34473_5
crossref_primary_10_1016_j_paerosci_2024_101005
crossref_primary_10_1609_aimag_v33i3_2426
crossref_primary_10_1016_j_cherd_2024_12_028
crossref_primary_10_1109_JIOT_2022_3188833
crossref_primary_10_1109_TCYB_2017_2781130
crossref_primary_10_1109_TMC_2021_3120050
crossref_primary_10_1680_jtran_17_00085
crossref_primary_10_1002_asjc_614
crossref_primary_10_1109_ACCESS_2020_3034141
crossref_primary_10_1007_s00779_015_0888_2
crossref_primary_10_1016_j_jss_2013_12_029
crossref_primary_10_1587_transfun_E102_A_708
crossref_primary_10_1016_j_amc_2021_126370
crossref_primary_10_1109_JSAC_2013_131115
crossref_primary_10_1631_FITEE_1900661
crossref_primary_10_1038_s41578_022_00513_1
crossref_primary_10_1109_JSAIT_2022_3231459
crossref_primary_10_1016_j_neucom_2024_128015
crossref_primary_10_1109_ACCESS_2023_3345448
crossref_primary_10_1007_s00500_021_05715_3
crossref_primary_10_1007_s10462_021_10061_9
crossref_primary_10_1109_ACCESS_2019_2946659
crossref_primary_10_3233_IA_190037
crossref_primary_10_1109_JSAC_2023_3345399
crossref_primary_10_1109_ACCESS_2019_2943146
crossref_primary_10_1016_j_asoc_2015_09_017
crossref_primary_10_1109_TITS_2016_2577037
crossref_primary_10_1016_j_automatica_2016_05_017
crossref_primary_10_1109_JIOT_2020_3009540
crossref_primary_10_1155_2018_7172614
crossref_primary_10_9746_sicetr_49_39
crossref_primary_10_1109_LCOMM_2025_3535898
crossref_primary_10_3182_20100712_3_FR_2020_00080
crossref_primary_10_1109_TSG_2014_2363844
crossref_primary_10_1109_ACCESS_2020_3027355
crossref_primary_10_3389_frobt_2024_1336612
crossref_primary_10_1109_ACCESS_2023_3340867
crossref_primary_10_1115_1_4067718
crossref_primary_10_1007_s11590_023_02009_5
crossref_primary_10_1126_scirobotics_aat0430
crossref_primary_10_1109_TIE_2015_2420792
crossref_primary_10_1007_s10462_022_10299_x
crossref_primary_10_3390_app13042750
crossref_primary_10_1016_j_apenergy_2020_116382
crossref_primary_10_3390_math10163017
crossref_primary_10_1007_s10458_021_09541_7
crossref_primary_10_1109_TCYB_2013_2253094
crossref_primary_10_1109_ACCESS_2019_2916155
crossref_primary_10_2478_jaiscr_2020_0013
crossref_primary_10_1007_s10458_023_09633_6
crossref_primary_10_1049_esi2_12030
crossref_primary_10_1007_s11390_019_1933_9
crossref_primary_10_1016_j_comnet_2022_109462
crossref_primary_10_1016_j_neucom_2014_05_070
crossref_primary_10_1109_TCC_2021_3117956
crossref_primary_10_3389_frai_2022_805823
crossref_primary_10_32628_CSEIT2390147
crossref_primary_10_1016_j_trc_2017_11_011
crossref_primary_10_3390_app11188291
crossref_primary_10_1109_LWC_2019_2904486
crossref_primary_10_1142_S0219691316500533
crossref_primary_10_1016_j_automatica_2014_10_047
crossref_primary_10_1016_j_chaos_2023_113809
crossref_primary_10_1109_TCYB_2014_2387277
crossref_primary_10_1002_ett_3692
crossref_primary_10_1016_j_array_2022_100142
crossref_primary_10_1016_j_engappai_2013_09_001
crossref_primary_10_1109_ACCESS_2020_3043806
crossref_primary_10_1360_SSI_2021_0179
crossref_primary_10_1109_TWC_2023_3279268
crossref_primary_10_1002_rnc_3719
crossref_primary_10_1109_TII_2017_2753408
crossref_primary_10_1016_j_ress_2023_109687
crossref_primary_10_1360_SST_2021_0376
crossref_primary_10_1007_s13235_022_00449_9
crossref_primary_10_1007_s10458_019_09421_1
crossref_primary_10_1016_j_neucom_2024_128068
crossref_primary_10_1109_LRA_2020_3013920
crossref_primary_10_1016_j_neunet_2025_107253
crossref_primary_10_1108_IJIUS_06_2018_0016
crossref_primary_10_2139_ssrn_4102541
crossref_primary_10_1109_TRO_2024_3431829
crossref_primary_10_1016_j_artint_2018_01_002
crossref_primary_10_1080_00051144_2019_1674512
crossref_primary_10_1016_j_ifacol_2019_12_156
crossref_primary_10_1145_3476576_3476725
crossref_primary_10_1093_nsr_nwac256
crossref_primary_10_1016_j_ejcon_2023_100853
crossref_primary_10_1541_ieejeiss_145_299
crossref_primary_10_1109_COMST_2021_3102580
crossref_primary_10_1016_j_engappai_2019_06_019
crossref_primary_10_1016_j_knosys_2015_10_022
crossref_primary_10_1109_TMC_2024_3409050
crossref_primary_10_20965_jaciii_2013_p0272
crossref_primary_10_1109_TNNLS_2023_3302131
crossref_primary_10_1109_ACCESS_2021_3110255
crossref_primary_10_1109_LCOMM_2022_3144451
crossref_primary_10_1016_j_ic_2022_104886
crossref_primary_10_1115_1_4065343
crossref_primary_10_7717_peerj_cs_575
crossref_primary_10_1109_JSAC_2019_2904366
crossref_primary_10_1016_j_neucom_2017_04_074
crossref_primary_10_1145_3625544
crossref_primary_10_1016_j_trb_2023_02_015
crossref_primary_10_1007_s10489_022_04105_y
crossref_primary_10_1016_j_asoc_2021_108023
crossref_primary_10_1109_JAS_2021_1003814
crossref_primary_10_1016_j_enconman_2015_06_030
crossref_primary_10_1016_j_compbiomed_2024_108257
crossref_primary_10_1109_OJCOMS_2023_3265425
crossref_primary_10_1109_TCNS_2021_3074218
crossref_primary_10_1109_TMC_2022_3190449
crossref_primary_10_1109_TITS_2014_2308975
crossref_primary_10_1007_s00521_016_2354_0
crossref_primary_10_1007_s10458_022_09582_6
crossref_primary_10_1109_TCYB_2019_2958912
crossref_primary_10_1016_j_adhoc_2014_09_012
crossref_primary_10_3390_en14144323
crossref_primary_10_1093_bioinformatics_bty323
crossref_primary_10_1088_1742_6596_1995_1_012023
crossref_primary_10_1109_TCYB_2019_2921057
crossref_primary_10_1186_1678_4804_20_15
crossref_primary_10_1007_s13042_024_02170_y
crossref_primary_10_1007_s10845_013_0864_5
crossref_primary_10_1016_j_engappai_2015_01_017
crossref_primary_10_1017_S0269888912000057
crossref_primary_10_1007_s11432_023_3853_y
crossref_primary_10_1016_j_energy_2024_132997
crossref_primary_10_1016_j_cie_2016_02_022
crossref_primary_10_1016_j_artint_2015_02_004
crossref_primary_10_1016_j_jpdc_2021_05_003
crossref_primary_10_1016_j_comcom_2023_08_012
crossref_primary_10_1016_j_neucom_2013_07_020
crossref_primary_10_1109_TGCN_2021_3056235
crossref_primary_10_1109_JSAC_2021_3118346
crossref_primary_10_1109_ACCESS_2023_3279401
crossref_primary_10_1016_j_cap_2024_03_003
crossref_primary_10_1007_s11227_015_1420_1
crossref_primary_10_1002_cpe_1759
crossref_primary_10_1016_j_ins_2022_10_022
crossref_primary_10_1057_jors_2013_19
crossref_primary_10_1109_JSSC_2019_2935533
crossref_primary_10_1109_ACCESS_2023_3268754
crossref_primary_10_23919_JSEE_2024_000062
crossref_primary_10_3390_s24020707
crossref_primary_10_3390_act10100268
crossref_primary_10_1016_j_neucom_2020_01_079
crossref_primary_10_1002_cpe_2870
crossref_primary_10_1016_j_inffus_2025_103107
crossref_primary_10_1145_3701621
crossref_primary_10_1016_j_apm_2012_04_019
crossref_primary_10_1016_j_ifacol_2022_07_618
crossref_primary_10_1541_ieejeiss_132_1819
crossref_primary_10_1016_j_trc_2019_04_012
crossref_primary_10_1007_s11227_021_04013_x
crossref_primary_10_1016_j_oceaneng_2024_120244
crossref_primary_10_1007_s10458_020_09442_1
crossref_primary_10_1109_JPROC_2021_3072740
crossref_primary_10_1007_s10115_018_1234_6
crossref_primary_10_1007_s43508_023_00074_1
crossref_primary_10_1109_TCDS_2018_2840971
crossref_primary_10_1016_j_adapen_2023_100151
crossref_primary_10_1109_ACCESS_2021_3086002
crossref_primary_10_1145_3070861
crossref_primary_10_1016_j_infsof_2022_106826
crossref_primary_10_1016_S1000_9361_11_60057_5
crossref_primary_10_1016_j_automatica_2023_110922
crossref_primary_10_1093_oxrep_grab017
crossref_primary_10_9746_sicetr_49_370
crossref_primary_10_1016_j_segan_2025_101627
crossref_primary_10_1109_TSE_2018_2880218
crossref_primary_10_1016_j_ijepes_2015_11_057
crossref_primary_10_1016_j_knosys_2011_09_008
crossref_primary_10_1007_s10458_019_09430_0
crossref_primary_10_1109_LCSYS_2024_3501155
crossref_primary_10_3724_SP_J_1004_2010_00289
crossref_primary_10_1109_ACCESS_2021_3053348
crossref_primary_10_1109_TMLCN_2023_3313988
crossref_primary_10_1140_epjb_e2010_00201_8
crossref_primary_10_1016_j_automatica_2016_02_002
crossref_primary_10_1109_TCNS_2021_3061909
crossref_primary_10_1049_joe_2019_1200
crossref_primary_10_1109_TMLCN_2024_3368367
crossref_primary_10_1016_j_knosys_2023_110459
crossref_primary_10_1371_journal_pone_0172395
crossref_primary_10_1016_j_simpa_2022_100421
crossref_primary_10_3389_frobt_2018_00134
crossref_primary_10_1016_j_cor_2013_02_024
crossref_primary_10_1109_TMC_2020_3033782
crossref_primary_10_1093_forsci_fxz012
crossref_primary_10_1016_j_asoc_2023_110758
crossref_primary_10_1109_TSG_2016_2607801
crossref_primary_10_1109_TAC_2021_3049345
crossref_primary_10_1016_j_egyr_2023_04_301
crossref_primary_10_1109_TWC_2022_3150429
crossref_primary_10_1109_ACCESS_2021_3113350
crossref_primary_10_1049_trit_2018_0001
crossref_primary_10_3389_frobt_2020_00018
crossref_primary_10_3390_app13074569
crossref_primary_10_3390_app15020836
crossref_primary_10_1109_JIOT_2019_2935543
crossref_primary_10_3390_s20123401
crossref_primary_10_1007_s11704_024_3797_6
crossref_primary_10_1109_TCYB_2016_2544866
crossref_primary_10_1109_LRA_2021_3102309
crossref_primary_10_1016_j_iot_2024_101436
crossref_primary_10_3390_electronics11071069
crossref_primary_10_1007_s11768_013_1141_z
crossref_primary_10_1007_s40747_025_01788_x
crossref_primary_10_3390_s23073625
crossref_primary_10_1007_s42979_023_02114_3
crossref_primary_10_32604_iasc_2024_047017
crossref_primary_10_1007_s10514_018_9719_4
crossref_primary_10_1016_j_renene_2022_03_153
crossref_primary_10_1109_TWC_2019_2919611
crossref_primary_10_1007_s11063_024_11705_x
crossref_primary_10_1371_journal_pone_0127129
crossref_primary_10_1109_TNNLS_2022_3146201
crossref_primary_10_1186_s13638_015_0381_7
crossref_primary_10_1115_1_4038158
crossref_primary_10_1007_s40708_016_0042_6
crossref_primary_10_1016_j_comnet_2016_01_011
crossref_primary_10_1109_TCYB_2020_2977374
crossref_primary_10_3233_AIC_180596
crossref_primary_10_1109_ACCESS_2019_2930640
crossref_primary_10_1016_j_neucom_2022_06_091
crossref_primary_10_1016_j_jnlest_2024_100290
crossref_primary_10_2478_s13230_011_0017_5
crossref_primary_10_3390_rs15112893
crossref_primary_10_1016_j_jnca_2024_103834
crossref_primary_10_1109_LWC_2022_3228045
crossref_primary_10_1016_j_artint_2017_12_001
crossref_primary_10_1007_s10458_021_09506_w
crossref_primary_10_1016_j_rser_2020_110618
crossref_primary_10_1109_JIOT_2019_2962915
crossref_primary_10_1109_TCYB_2014_2349152
crossref_primary_10_1016_j_jnca_2011_11_004
crossref_primary_10_1109_TCYB_2016_2634027
crossref_primary_10_1109_ACCESS_2020_2985932
crossref_primary_10_1109_TITS_2023_3303991
crossref_primary_10_1109_TCNS_2021_3124896
crossref_primary_10_1126_scirobotics_abo0235
crossref_primary_10_1016_j_ifacol_2023_10_1100
crossref_primary_10_1109_TMM_2023_3275853
crossref_primary_10_1016_j_trc_2011_11_014
crossref_primary_10_1109_TKDE_2020_3006084
crossref_primary_10_1155_2022_4401653
crossref_primary_10_1016_j_eswa_2013_01_035
crossref_primary_10_1016_j_ins_2016_05_002
crossref_primary_10_1109_TVT_2022_3203050
crossref_primary_10_1109_TVT_2021_3055511
crossref_primary_10_3390_electronics13152927
crossref_primary_10_1109_TSMC_2018_2865488
crossref_primary_10_1016_j_amc_2022_127819
crossref_primary_10_1109_TCYB_2014_2306919
crossref_primary_10_1016_j_trb_2022_02_006
crossref_primary_10_3390_s21082862
crossref_primary_10_3390_s23052373
crossref_primary_10_1109_COMST_2016_2539923
crossref_primary_10_1109_TNN_2011_2111384
crossref_primary_10_1103_PhysRevE_102_012402
crossref_primary_10_1016_j_engappai_2013_07_017
crossref_primary_10_1109_TAES_2024_3447609
crossref_primary_10_1109_ACCESS_2016_2565198
crossref_primary_10_1016_j_eswa_2021_115127
crossref_primary_10_1360_SSI_2023_0010
crossref_primary_10_1007_s10462_023_10450_2
crossref_primary_10_1080_10286608_2012_716424
crossref_primary_10_1108_IJIUS_12_2018_0036
crossref_primary_10_1109_TSG_2019_2909266
crossref_primary_10_1155_2023_4419907
crossref_primary_10_1111_1756_2171_12383
crossref_primary_10_1109_TCYB_2020_3006620
crossref_primary_10_1016_j_cja_2020_05_001
crossref_primary_10_1287_opre_2022_0291
crossref_primary_10_1109_TCDS_2019_2926477
crossref_primary_10_1016_j_eswa_2024_124959
crossref_primary_10_1109_ACCESS_2020_3027707
crossref_primary_10_1109_TBC_2023_3246815
crossref_primary_10_1155_2011_980216
crossref_primary_10_1007_s42979_024_03001_1
crossref_primary_10_1103_PhysRevX_12_011007
crossref_primary_10_1007_s43684_022_00029_z
crossref_primary_10_1145_3712004
crossref_primary_10_1109_TIA_2023_3300290
crossref_primary_10_3390_s22218159
crossref_primary_10_1007_s10462_021_09997_9
crossref_primary_10_1109_TCYB_2015_2445744
crossref_primary_10_1177_1729881420960342
crossref_primary_10_1007_s10506_012_9134_7
crossref_primary_10_1038_s42256_023_00646_0
crossref_primary_10_1109_TMI_2020_3018508
crossref_primary_10_1186_s13326_017_0142_0
crossref_primary_10_3389_frai_2022_908353
crossref_primary_10_1109_TKDE_2022_3225109
crossref_primary_10_1007_s00521_017_3066_9
crossref_primary_10_1109_OJCOMS_2021_3056113
crossref_primary_10_1016_j_neucom_2024_128514
crossref_primary_10_1109_TSP_2013_2241057
crossref_primary_10_1145_3582081
crossref_primary_10_1016_j_egyr_2023_11_048
crossref_primary_10_1109_ACCESS_2020_3001311
crossref_primary_10_1109_TASE_2012_2229978
crossref_primary_10_1109_TWC_2022_3170308
crossref_primary_10_1109_TVT_2022_3196500
crossref_primary_10_1016_j_robot_2024_104631
crossref_primary_10_1109_TWC_2020_3003719
crossref_primary_10_1016_j_cobeha_2019_04_013
crossref_primary_10_1089_cmb_2021_0549
crossref_primary_10_3390_en15176488
crossref_primary_10_3390_app112210870
crossref_primary_10_3389_fnbot_2023_1302898
crossref_primary_10_1007_s00500_015_1607_7
crossref_primary_10_1038_s41598_022_20234_3
crossref_primary_10_1109_TPWRS_2014_2326403
crossref_primary_10_3390_app12168004
crossref_primary_10_3390_math12132102
crossref_primary_10_1016_j_watres_2019_115029
crossref_primary_10_1109_TMC_2016_2601926
crossref_primary_10_4236_jbise_2018_118018
crossref_primary_10_3390_electronics12122722
crossref_primary_10_1109_TITS_2021_3055899
crossref_primary_10_1109_TCAD_2022_3233019
crossref_primary_10_3390_s23198050
crossref_primary_10_1109_JIOT_2022_3168296
crossref_primary_10_1016_j_apenergy_2016_06_041
crossref_primary_10_1007_s00521_023_09136_1
crossref_primary_10_1109_TVT_2020_3006218
crossref_primary_10_1109_TVT_2019_2913695
crossref_primary_10_1145_3596444
crossref_primary_10_1007_s13218_013_0258_z
crossref_primary_10_1109_TNNLS_2019_2946913
crossref_primary_10_1007_s10489_020_01832_y
crossref_primary_10_1016_j_neucom_2017_01_076
crossref_primary_10_1109_TCCN_2020_2966604
crossref_primary_10_1016_j_ifacol_2020_12_2184
crossref_primary_10_1049_iet_com_2019_0900
crossref_primary_10_1109_ACCESS_2022_3227450
crossref_primary_10_1142_S0219525912500877
crossref_primary_10_1109_TII_2020_2977104
crossref_primary_10_1016_j_comcom_2023_12_002
crossref_primary_10_1109_ACCESS_2019_2942390
crossref_primary_10_1108_IMDS_10_2020_0566
crossref_primary_10_1016_j_ins_2019_07_094
crossref_primary_10_1016_j_conengprac_2021_104901
crossref_primary_10_1109_TPEL_2021_3089707
crossref_primary_10_1142_S0219525911002998
crossref_primary_10_1109_TCYB_2019_2906574
crossref_primary_10_1109_COMST_2020_2988367
crossref_primary_10_1002_sres_2865
crossref_primary_10_1002_wcm_2470
crossref_primary_10_1109_TITS_2020_3009289
crossref_primary_10_1007_s00500_019_04600_4
crossref_primary_10_1016_j_trc_2021_103122
crossref_primary_10_1142_S0219622012500277
crossref_primary_10_1145_3459991
crossref_primary_10_1016_j_media_2021_102193
crossref_primary_10_1049_cmu2_12800
crossref_primary_10_1109_ACCESS_2020_3040985
crossref_primary_10_1049_iet_cta_2018_6163
crossref_primary_10_1109_TCCN_2019_2950242
crossref_primary_10_1142_S1469026811003185
crossref_primary_10_1103_PhysRevE_105_045105
crossref_primary_10_1098_rsta_2024_0136
crossref_primary_10_1098_rsif_2020_0639
crossref_primary_10_1162_artl_a_00408
crossref_primary_10_2298_CSIS221210071A
crossref_primary_10_1103_PhysRevE_106_054149
crossref_primary_10_1002_int_22594
crossref_primary_10_1016_j_neucom_2020_06_038
crossref_primary_10_1016_j_physa_2015_04_015
crossref_primary_10_1016_j_artint_2020_103356
crossref_primary_10_1016_j_cie_2021_107621
crossref_primary_10_1109_TCYB_2017_2647820
crossref_primary_10_1016_j_trc_2024_104702
crossref_primary_10_1016_j_trc_2024_104703
crossref_primary_10_1016_j_neucom_2021_12_025
crossref_primary_10_1007_s12065_012_0086_3
crossref_primary_10_1016_j_dt_2022_07_005
crossref_primary_10_1371_journal_pone_0282112
crossref_primary_10_1007_s00521_011_0624_4
crossref_primary_10_1016_j_jmsy_2020_06_010
crossref_primary_10_1098_rsta_2024_0148
crossref_primary_10_1109_TCYB_2020_3028267
crossref_primary_10_1109_JSTSP_2023_3239189
crossref_primary_10_1007_s40747_021_00499_3
crossref_primary_10_3390_s18124331
crossref_primary_10_1109_ACCESS_2024_3495032
crossref_primary_10_3390_robotics11020035
crossref_primary_10_1016_j_neucom_2020_06_040
crossref_primary_10_1109_JSTSP_2011_2176916
crossref_primary_10_1016_j_ifacol_2021_06_067
crossref_primary_10_2139_ssrn_4096569
crossref_primary_10_1109_JSTSP_2013_2259797
crossref_primary_10_1007_s43154_021_00063_4
crossref_primary_10_1109_ACCESS_2021_3058388
crossref_primary_10_1109_MSP_2014_2338894
crossref_primary_10_1109_TAI_2022_3207112
crossref_primary_10_1103_PhysRevE_102_012601
crossref_primary_10_1145_3054912
crossref_primary_10_1007_s10458_023_09628_3
crossref_primary_10_1016_j_physa_2021_126268
crossref_primary_10_1007_s11432_019_2825_y
crossref_primary_10_1109_TITS_2024_3370820
crossref_primary_10_1109_TNNLS_2018_2832025
crossref_primary_10_1038_s42256_019_0064_x
crossref_primary_10_1007_s12204_024_2713_4
crossref_primary_10_1016_j_eswa_2024_124117
crossref_primary_10_1109_TSMCA_2012_2183349
crossref_primary_10_1016_j_ifacol_2020_12_1290
crossref_primary_10_1177_03611981221093324
crossref_primary_10_1109_JIOT_2023_3263909
crossref_primary_10_3390_aerospace9060294
crossref_primary_10_3390_e24060774
crossref_primary_10_1016_j_future_2020_09_002
crossref_primary_10_1016_j_promfg_2020_01_312
crossref_primary_10_1007_s10458_013_9242_0
crossref_primary_10_1177_14613484211032758
crossref_primary_10_1109_TII_2022_3173928
crossref_primary_10_1080_1350486X_2022_2136727
crossref_primary_10_1002_tee_23034
Cites_doi 10.1142/9789812817471_0003
10.1007/3-540-45603-1_56
10.1080/1019678032000062212
10.1007/BF00114731
10.1023/A:1008942012299
10.1016/B978-1-55860-335-6.50027-1
10.1006/ijhc.1997.0160
10.1016/S0921-8890(03)00040-X
10.1145/1015330.1015445
10.1016/B978-1-55860-141-3.50030-4
10.1145/860575.860686
10.1023/A:1017992615625
10.1007/BF00115009
10.1145/1015330.1015410
10.1007/BF00992698
10.1007/BF00114724
10.1145/1102351.1102462
10.1016/S1389-0417(01)00015-8
10.1023/A:1007562506751
10.1016/B978-1-55860-307-3.50049-6
10.1016/B978-1-55860-377-6.50040-2
10.1145/301136.301195
10.1023/A:1007694015589
10.1162/neco.1994.6.6.1185
10.1023/A:1008819414322
10.1007/s10994-005-0461-8
10.1007/3-540-60923-7_25
10.1007/BF02481502
10.1137/040614384
10.1109/TSMC.1983.6313077
10.1007/s10458-006-7035-4
10.1007/BF00993306
10.1023/A:1008921914343
10.1613/jair.898
10.1007/BF00993104
10.1613/jair.121
10.1007/s10458-005-3783-9
10.1016/j.robot.2004.08.003
10.1007/3-540-44826-8_13
10.1287/opre.39.1.162
10.1109/IJCNN.2000.859399
10.1023/A:1017928328829
10.1162/jmlr.2003.4.6.1107
10.1109/COEC.2003.1210269
10.1017/CBO9780511806292
10.1016/j.engappai.2004.02.004
10.1002/9780470316887
10.1007/3-540-60923-7_18
10.1093/oso/9780195099713.001.0001
10.1023/A:1007518724497
10.1145/544741.544831
10.1007/s10458-006-9010-5
10.1007/11589990_19
10.1023/A:1007570708568
10.1162/jmlr.2003.4.6.1039
10.1007/3-540-44637-0_8
10.1613/jair.301
10.1023/A:1015504423309
10.1017/S026988890500041X
10.1023/A:1008945119734
10.1007/s10994-006-0143-1
10.1109/TEVC.2006.880330
10.1007/3-540-46146-9_16
10.1016/S0004-3702(02)00121-2
10.1109/9.580874
10.1613/jair.1024
10.1109/5326.897075
10.1007/s10458-005-2631-2
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMCC.2007.913919
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Economics
EISSN 1558-2442
EndPage 172
ExternalDocumentID 10_1109_TSMCC_2007_913919
4445757
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c324t-cfcd2ef993c03c75ca6ed892604faa15b0c749fbf9a1f7d7ea9111b6ce5b596a3
IEDL.DBID RIE
ISSN 1094-6977
IngestDate Thu Jul 10 23:28:27 EDT 2025
Tue Jul 01 03:52:40 EDT 2025
Thu Apr 24 22:54:10 EDT 2025
Wed Aug 27 06:03:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Distributed control
game theory
multiagent systems
reinforcement learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-cfcd2ef993c03c75ca6ed892604faa15b0c749fbf9a1f7d7ea9111b6ce5b596a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 875050829
PQPubID 23500
PageCount 17
ParticipantIDs ieee_primary_4445757
proquest_miscellaneous_875050829
crossref_citationtrail_10_1109_TSMCC_2007_913919
crossref_primary_10_1109_TSMCC_2007_913919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-03-01
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-01
  day: 01
PublicationDecade 2000
PublicationTitle IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews
PublicationTitleAbbrev TSMCC
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
References zinkevich (ref67) 0
oo (ref104) 0
price (ref53) 2003; 19
ref54
riedmiller (ref93) 2000
weinberg (ref73) 0
spiros kapetanakis (ref63) 2004
ref51
fudenberg (ref12) 1998
sen (ref6) 1999
kaelbling (ref8) 1996; 4
ref46
fischer (ref81) 0
ref47
ref44
ref43
bowling (ref88) 0
ref49
ref4
knnen (ref72) 0
ref5
ref101
ref35
ref34
ref37
ref36
spaan (ref79) 1
ref33
ref32
greenwald (ref42) 0
ref39
ref38
bowling (ref59) 2000
sen (ref69) 0
singh (ref66) 0
hansen (ref131) 0
fernndez (ref95) 2001; 16
shoham (ref14) 2003
claus (ref62) 0
pynadath (ref78) 2002; 16
ref26
ref25
ref20
ref22
ref28
ref27
buoniu (ref50) 0
(ref77) 0
matari (ref86) 1996
carmel (ref76) 1996
ref13
jong (ref16) 2005
wiering (ref91) 0
ref128
ref129
wiering (ref98) 1999; 7
ref97
bertsekas (ref30) 2005; 1
ref127
ref96
ref125
ref17
(ref1) 1999
potter (ref18) 1994
haynes (ref21) 0
vlassis (ref2) 2003
chalkiadakis (2003 mar ) (ref58) 2003
boutilier (ref80) 0
ref132
ref94
ref130
ref90
tuyls (ref99) 0
tesauro (ref68) 0; 16
boyan (ref108) 0; 6
matari (ref70) 1997; 4
hsu (ref102) 0; 2132
ref87
matari (ref85) 0
knnen (ref24) 0
ficici (ref19) 2000
kok (ref83) 0
powers (ref55) 0; 17
bck (ref15) 1996
hu (ref40) 0
basar (ref11) 1999
kok (ref48) 2005
ref82
schaerf (ref107) 1995; 2
miconi (ref23) 0
ref106
ref75
ref74
ref105
(ref10) 1999
guestrin (ref45) 0
bakker (ref92) 3
ref103
parunak (ref3) 1999
choi (ref109) 0; 8
price (ref126) 0
brown (ref65) 1951
bertsekas (ref111) 1996
lauer (ref41) 0
ernst (ref120) 2005; 6
ref112
ref110
crites (ref71) 1996; 8
bowling (ref61) 2003
bowling (ref56) 2001
sutton (ref7) 1998
nash (ref84) 1996
ref119
ref117
merke (ref100) 0; 2377
ref118
ref115
ref116
ref113
ref114
bertsekas (ref29) 2001; 2
wang (ref64) 0; 15
littman (ref89) 0
clouse (ref52) 0
puterman (ref31) 1994
cherkassky (ref9) 1998
buoniu (ref124) 0
ref60
ref122
ref123
ref121
bowling (ref57) 0; 17
References_xml – year: 1999
  ident: ref11
  publication-title: Dynamic Noncooperative Game Theory
– ident: ref26
  doi: 10.1142/9789812817471_0003
– start-page: 467
  year: 2000
  ident: ref19
  article-title: a game-theoretic approach to the simple coevolutionary algorithm
  publication-title: Proc 6th Int Conf Parallel Probl Solving Nat (PPSN-VI)
– volume: 2377
  start-page: 435
  year: 0
  ident: ref100
  article-title: karlsruhe brainstormers---a reinforcement learning approach to robotic soccer
  publication-title: Robot Soccer World Cup V (RoboCup 2001)
  doi: 10.1007/3-540-45603-1_56
– start-page: 68
  year: 0
  ident: ref24
  article-title: gradient based method for symmetric and asymmetric multiagent reinforcement learning
  publication-title: Proc 4th Int Conf Intell Data Eng Autom Learn (IDEAL-03)
– ident: ref101
  doi: 10.1080/1019678032000062212
– start-page: 746
  year: 0
  ident: ref62
  article-title: the dynamics of reinforcement learning in cooperative multiagent systems
  publication-title: Proc 15th Nat Conf Artif Intell 10th Conf Innov Appl Artif Intell (AAAI/IAAI-98)
– ident: ref33
  doi: 10.1007/BF00114731
– ident: ref4
  doi: 10.1023/A:1008942012299
– start-page: 137
  year: 2000
  ident: ref93
  publication-title: Balancing Reactivity and Social Deliberation in Multi-Agent Systems
– ident: ref39
  doi: 10.1016/B978-1-55860-335-6.50027-1
– ident: ref82
  doi: 10.1006/ijhc.1997.0160
– year: 1998
  ident: ref9
  publication-title: Learning From Data
– start-page: 1347
  year: 0
  ident: ref124
  article-title: decentralized reinforcement learning control of a robotic manipulator
  publication-title: Proc 9th Int Conf Control Autom Robot Vis (ICARCV-06)
– ident: ref96
  doi: 10.1016/S0921-8890(03)00040-X
– year: 3
  ident: ref92
  article-title: cooperative multi-agent reinforcement learning of traffic lights
  publication-title: Workshop Coop Multi-Agent Learn 16th Eur Conf Mach Learn (ECML-05)
– year: 1998
  ident: ref7
  publication-title: Reinforcement Learning An Introduction
– ident: ref119
  doi: 10.1145/1015330.1015445
– ident: ref36
  doi: 10.1016/B978-1-55860-141-3.50030-4
– ident: ref74
  doi: 10.1145/860575.860686
– start-page: 1021
  year: 2001
  ident: ref56
  article-title: rational and convergent learning in stochastic games
  publication-title: Proc 17th Int Conf Artif Intell (IJCAI-01)
– ident: ref114
  doi: 10.1023/A:1017992615625
– year: 2005
  ident: ref16
  publication-title: Evolutionary Computation A Unified Approach
– start-page: 1258
  year: 2004
  ident: ref63
  article-title: Reinforcement learning of coordination in heterogeneous cooperative multi-agent systems
  publication-title: the Third International Joint Conference on Autonomous Agents and Multiagent Systems 2004 AAMAS 2004
– year: 2003
  ident: ref58
  publication-title: Multiagent reinforcement learning Stochastic games with multiple learning players
– start-page: 535
  year: 0
  ident: ref41
  article-title: an algorithm for distributed reinforcement learning in cooperative multi-agent systems
  publication-title: Proc 17th Int Conf Mach Learn (ICML-00)
– volume: 15
  start-page: 1571
  year: 0
  ident: ref64
  article-title: reinforcement learning to play an optimal nash equilibrium in team markov games
  publication-title: Proc Adv Neural Inf Process Syst (NIPS-02)
– volume: 6
  start-page: 503
  year: 2005
  ident: ref120
  article-title: tree-based batch mode reinforcement learning
  publication-title: J Mach Learn Res
– ident: ref34
  doi: 10.1007/BF00115009
– start-page: 66
  year: 1
  ident: ref79
  article-title: high level coordination of agents based on multiagent markov decision processes with roles
  publication-title: Proc Workshop Coop Robot 2002 IEEE/RSJ Int Conf Intell Robots Syst (IROS-02)
– volume: 1
  year: 2005
  ident: ref30
  publication-title: Dynamic Programming and Optimal Control
– volume: 8
  start-page: 1017
  year: 1996
  ident: ref71
  article-title: improving elevator performance using reinforcement learning
  publication-title: Proc Adv Neural Inf Process Syst (NIPS-95)
– ident: ref47
  doi: 10.1145/1015330.1015410
– ident: ref32
  doi: 10.1007/BF00992698
– ident: ref113
  doi: 10.1007/BF00114724
– start-page: 259
  year: 1999
  ident: ref6
  publication-title: Multiagent Systems A Modern Approach to Distributed Artificial Intelligence
– ident: ref116
  doi: 10.1145/1102351.1102462
– ident: ref38
  doi: 10.1016/S1389-0417(01)00015-8
– start-page: 226
  year: 0
  ident: ref99
  article-title: q-learning in simulated robotic soccer---large state spaces and incomplete information
  publication-title: Proc 2002 Int Conf Mach Learn Appl (ICMLA-02)
– ident: ref25
  doi: 10.1023/A:1007562506751
– year: 1996
  ident: ref111
  publication-title: Neuro-Dynamic Programming
– start-page: 195
  year: 0
  ident: ref80
  article-title: planning, learning and coordination in multiagent decision processes
  publication-title: Proc 6th Conf Theor Aspects Rationality Knowl (TARK-96)
– ident: ref51
  doi: 10.1016/B978-1-55860-307-3.50049-6
– ident: ref112
  doi: 10.1016/B978-1-55860-377-6.50040-2
– ident: ref97
  doi: 10.1145/301136.301195
– volume: 16
  year: 0
  ident: ref68
  article-title: extending q-learning to general adaptive multi-agent systems
  publication-title: Proc Adv Neural Inf Process Syst (NIPS-03)
– ident: ref122
  doi: 10.1023/A:1007694015589
– start-page: 96
  year: 0
  ident: ref89
  article-title: implicit negotiation in repeated games
  publication-title: Proc 8th Int Workshop Agent Theories Arch Lang (ATAL-2001)
– start-page: 271
  year: 0
  ident: ref21
  article-title: strongly typed genetic programming in evolving cooperation strategies
  publication-title: Proceedings of the 6th International Conference on Genetic Algorithms (ICGA6)
– ident: ref43
  doi: 10.1162/neco.1994.6.6.1185
– volume: 4
  start-page: 73
  year: 1997
  ident: ref70
  article-title: reinforcement learning in the multi-robot domain
  publication-title: Auton Robots
  doi: 10.1023/A:1008819414322
– ident: ref130
  doi: 10.1007/s10994-005-0461-8
– start-page: 152
  year: 1996
  ident: ref86
  publication-title: Adaptation and Learning in Multi-Agent Systems
  doi: 10.1007/3-540-60923-7_25
– ident: ref125
  doi: 10.1007/BF02481502
– ident: ref115
  doi: 10.1137/040614384
– year: 1996
  ident: ref84
  publication-title: Linear and Nonlinear Programming
– ident: ref35
  doi: 10.1109/TSMC.1983.6313077
– ident: ref128
  doi: 10.1007/s10458-006-7035-4
– year: 1998
  ident: ref12
  publication-title: The Theory of Learning in Games
– ident: ref44
  doi: 10.1007/BF00993306
– volume: 7
  start-page: 77
  year: 1999
  ident: ref98
  article-title: reinforcement learning soccer teams with incomplete world models
  publication-title: Auton Robots
  doi: 10.1023/A:1008921914343
– volume: 19
  start-page: 569
  year: 2003
  ident: ref53
  article-title: accelerating reinforcement learning through implicit imitation
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.898
– start-page: 374
  year: 1951
  ident: ref65
  publication-title: Activitiy Analysis of Production and Allocation
– start-page: 426
  year: 0
  ident: ref69
  article-title: learning to coordinate without sharing information
  publication-title: Proc 12th Nat Conf Artif Intell (AAAI-94)
– year: 0
  ident: ref77
  publication-title: W T Uther and M Veloso (1997 Apr ) Adversarial reinforcement learning School Comput Sci Carnegie Mellon Univ Pittsburgh PA Tech Rep [Onlilne] Available http //www cs cmu edu/afs/cs/user/will/www/papers/Uther97a ps
– start-page: 242
  year: 0
  ident: ref40
  article-title: multiagent reinforcement learning: theoretical framework and an algorithm
  publication-title: Proc 15th Int Conf Mach Learn (ICML-98)
– start-page: 451
  year: 0
  ident: ref104
  article-title: stock trading system using reinforcement learning with cooperative agents
  publication-title: Proc 19th Int Conf Mach Learn (ICML-02)
– ident: ref37
  doi: 10.1007/BF00993104
– year: 2003
  ident: ref2
  publication-title: A concise introduction to multiagent systems and distributed AI
– year: 2000
  ident: ref59
  publication-title: ``An analysis of stochastic game theory for multiagent reinforcement learning ''
– year: 1999
  ident: ref10
  publication-title: Unsupervised Learning Foundations of Neural Computation
– year: 2005
  ident: ref48
  article-title: using the max-plus algorithm for multiagent decision making in coordination graphs
  publication-title: Robot Soccer World Cup IX (RoboCup 2005)
– start-page: 89
  year: 0
  ident: ref88
  article-title: convergence problems of general-sum multiagent reinforcement learning
  publication-title: Proc 17th Int Conf Mach Learn (ICML-00)
– start-page: 325
  year: 0
  ident: ref126
  article-title: implicit imitation in multiagent reinforcement learning
  publication-title: Proc 16th Int Conf Mach Learn (ICML-99)
– start-page: 1151
  year: 0
  ident: ref91
  article-title: multi-agent reinforcement learning for traffic light control
  publication-title: Proc 17th Int Conf Mach Learn (ICML-00)
– volume: 2
  start-page: 475
  year: 1995
  ident: ref107
  article-title: adaptive load balancing: a study in multi-agent learning
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.121
– ident: ref87
  doi: 10.1007/s10458-005-3783-9
– start-page: 35
  year: 0
  ident: ref50
  article-title: multiagent reinforcement learning with adaptive state focus
  publication-title: Proc 17th Belgian--Dutch Conf Artif Intell (BNAIC-05)
– ident: ref46
  doi: 10.1016/j.robot.2004.08.003
– ident: ref132
  doi: 10.1007/3-540-44826-8_13
– ident: ref129
  doi: 10.1287/opre.39.1.162
– ident: ref90
  doi: 10.1109/IJCNN.2000.859399
– ident: ref118
  doi: 10.1023/A:1017928328829
– start-page: 29
  year: 0
  ident: ref83
  article-title: utile coordination: learning interdependencies among cooperative agents
  publication-title: Proc IEEE Symp Comput Intell Games (CIG-05)
– ident: ref121
  doi: 10.1162/jmlr.2003.4.6.1107
– volume: 8
  start-page: 945
  year: 0
  ident: ref109
  article-title: predictive q-routing: a memory-based reinforcement learning approach to adaptive traffic control
  publication-title: Proc Adv Neural Inf Process Syst (NIPS-95)
– ident: ref106
  doi: 10.1109/COEC.2003.1210269
– start-page: 227
  year: 0
  ident: ref45
  article-title: coordinated reinforcement learning
  publication-title: Proc 19th Int Conf Mach Learn (ICML-02)
– ident: ref27
  doi: 10.1017/CBO9780511806292
– ident: ref110
  doi: 10.1016/j.engappai.2004.02.004
– year: 1994
  ident: ref31
  publication-title: Markov Decision Processes---Discrete Stochastic Dynamic Programming
  doi: 10.1002/9780470316887
– start-page: 40
  year: 1996
  ident: ref76
  publication-title: Adaptation and Learning in Multi-Agent Systems
  doi: 10.1007/3-540-60923-7_18
– year: 1996
  ident: ref15
  publication-title: Evolutionary Algorithms in Theory and Practice Evolution Strategies Evolutionary Programming Genetic Algorithms
  doi: 10.1093/oso/9780195099713.001.0001
– ident: ref5
  doi: 10.1023/A:1007518724497
– year: 1999
  ident: ref1
  publication-title: Multiagent Systems A Modern Approach to Distributed Artificial Intelligence
– ident: ref75
  doi: 10.1145/544741.544831
– start-page: 709
  year: 0
  ident: ref131
  article-title: dynamic programming for partially observable stochastic games
  publication-title: Proc 19th Natl Conf Artif Intell (AAAI-04)
– ident: ref127
  doi: 10.1007/s10458-006-9010-5
– ident: ref49
  doi: 10.1007/11589990_19
– year: 2003
  ident: ref14
  publication-title: Multi-agent reinforcement learning A critical survey
– start-page: 336
  year: 0
  ident: ref72
  article-title: asymmetric multiagent reinforcement learning
  publication-title: Proc IEEE/WIC Int Conf Intell Agent Technol (IAT-03)
– start-page: 377
  year: 1999
  ident: ref3
  publication-title: Multi-Agent Systems A Modern Approach to Distributed Artificial Intelligence
– start-page: 1334
  year: 0
  ident: ref81
  article-title: hierarchical reinforcement learning in communication-mediated multiagent coordination
  publication-title: Proc 3rd Int Joint Conf Autonomous Agents and Multiagent Systems (AAMAS)
– ident: ref22
  doi: 10.1023/A:1007570708568
– volume: 17
  start-page: 1089
  year: 0
  ident: ref55
  article-title: new criteria and a new algorithm for learning in multi-agent systems
  publication-title: Proc Adv Neural Inf Process Syst (NIPS-04)
– year: 2003
  ident: ref61
  publication-title: Multiagent learning in the presence of agents with limitations
– start-page: 249
  year: 1994
  ident: ref18
  article-title: a cooperative coevolutionary approach to function optimization
  publication-title: Proc 3rd Conf Parallel Probl Solving Nat (PPSN-III)
– ident: ref54
  doi: 10.1162/jmlr.2003.4.6.1039
– volume: 2132
  start-page: 108
  year: 0
  ident: ref102
  article-title: market performance of adaptive trading agents in synchronous double auctions
  publication-title: Proc 4th Pacific Rim Int Workshop Multi-Agents Intell Agents Specification Model Appl (PRIMA-01)
  doi: 10.1007/3-540-44637-0_8
– year: 0
  ident: ref52
  article-title: learning from an automated training agent
  publication-title: Workshop Agents that Learn from Other Agents 12th Int Conf Mach Learn (ICML-95)
– start-page: 242
  year: 0
  ident: ref42
  article-title: correlated-q learning
  publication-title: Proc 20th Int Conf Mach Learn (ICML-03)
– volume: 4
  start-page: 237
  year: 1996
  ident: ref8
  article-title: reinforcement learning: a survey
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.301
– ident: ref105
  doi: 10.1023/A:1015504423309
– start-page: 541
  year: 0
  ident: ref66
  article-title: nash convergence of gradient dynamics in general-sum games
  publication-title: Proc 16th Conf Uncertainty Artif Intell (UAI-00)
– start-page: 928
  year: 0
  ident: ref67
  article-title: online convex programming and generalized infinitesimal gradient ascent
  publication-title: Proc 20th Int Conf Mach Learn (ICML-03)
– volume: 17
  start-page: 209
  year: 0
  ident: ref57
  article-title: convergence and no-regret in multiagent learning
  publication-title: Proc Adv Neural Inf Process Syst (NIPS-04)
– ident: ref28
  doi: 10.1017/S026988890500041X
– volume: 2
  year: 2001
  ident: ref29
  publication-title: Dynamic Programming and Optimal Control
– ident: ref94
  doi: 10.1023/A:1008945119734
– ident: ref60
  doi: 10.1007/s10994-006-0143-1
– ident: ref20
  doi: 10.1109/TEVC.2006.880330
– ident: ref103
  doi: 10.1007/3-540-46146-9_16
– start-page: 181
  year: 0
  ident: ref85
  article-title: reward functions for accelerated learning
  publication-title: Proc 11th Int Conf Mach Learn (ICML-94)
– volume: 16
  start-page: 217
  year: 2001
  ident: ref95
  article-title: learning in large cooperative multi-robot systems
  publication-title: Int J Robot Autom
– start-page: 647
  year: 0
  ident: ref23
  article-title: when evolving populations is better than coevolving individuals: the blind mice problem
  publication-title: Proc 18th Int Joint Conf Artif Intell (IJCAI-03)
– ident: ref13
  doi: 10.1016/S0004-3702(02)00121-2
– ident: ref117
  doi: 10.1109/9.580874
– volume: 16
  start-page: 389
  year: 2002
  ident: ref78
  article-title: the communicative multiagent team decision problem: analyzing teamwork theories and models
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1024
– ident: ref123
  doi: 10.1109/5326.897075
– volume: 6
  start-page: 671
  year: 0
  ident: ref108
  article-title: packet routing in dynamically changing networks: a reinforcement learning approach
  publication-title: Proc Adv Neural Inf Process Syst (NIPS-93)
– ident: ref17
  doi: 10.1007/s10458-005-2631-2
– start-page: 506
  year: 0
  ident: ref73
  article-title: best-response multiagent learning in non-stationary environments
  publication-title: Proc 3rd Int Joint Conf Autonomous Agents and Multiagent Systems (AAMAS)
SSID ssj0014493
Score 2.4939144
SecondaryResourceType review_article
Snippet Multiagent systems are rapidly finding applications in a variety of domains, including robotics, distributed control, telecommunications, and economics. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 156
SubjectTerms Algorithms
Control systems
Cybernetics
Distributed control
Economics
Environmental economics
Feedback
game theory
Learning
Marine technology
Marl
Mechanical engineering
Multiagent systems
Reinforcement
reinforcement learning
Resource management
Robots
Tasks
Title A Comprehensive Survey of Multiagent Reinforcement Learning
URI https://ieeexplore.ieee.org/document/4445757
https://www.proquest.com/docview/875050829
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_mnvRB3aY4v8iDDyp2a9e0WfFpDMcQ5oPbYG8lSa8KyirbKuhfbz66MlTEtxYSCHfJ5Xe5u98BXPiCdpCjcKQnhUOVh-KIEBOHCQUOhMSUmSSa0UM4nNL7WTCrwE1ZC4OIJvkMW_rTxPKTTOb6qaxNKVXogm3BlnLcbK1WGTGgNLLJ9BF1QgVqigim-m9PxqN-37IVahJMTaqzcQeZpio_LLG5XgZ7MFovzGaVvLTylWjJz2-cjf9d-T7sFjiT9OzGqEEF53XY2WAfrEOtONdLclmQT1814LZHtIlY4LPNbCfjfPGOHyRLianV5boUizyiIVyV5m2RFBytTwcwHdxN-kOnaLDgSIWjVo5MZdLBVEEU6fqSBZIrNXUj5eLQlHMvEK5kNEpFGnEvZQlDrk2jCCUGIohC7h9CdZ7N8QiIQIaJzxWcY6gp2LQ18EWCCj52JXa9JrhrkceyYB_XTTBeY-OFuFFstKS7YrLYaqkJ1-WUN0u98dfghpZ6ObAQeBPIWq-xOjc6GMLnmOXLWPlpbqALi49_n3kC2zY1RKebnUJ1tcjxTOGPlTg3G-8LyhjXsg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90PqgP6jbF-ZkHH1TsbG3arPg0hmPqtge3gW8lSa8KyibbKuhfbz66MVTEtxYSCLnk7ne5u98BnPiCXiFH4UhPCocqD8URISYOEwocCIkpM0k0nW7YGtC7x-BxCS7mtTCIaJLPsKo_TSw_GclMP5VdUkoVumDLsKLsfuDZaq15zIDSyKbTR9QJFazJY5jq_7Lf6zQalq9Q02BqWp0FK2TaqvzQxcbANDehM1uazSt5qWZTUZWf31gb_7v2LdjIkSap26NRhCUclmB9gX-wBMX8Zk_IaU4_fVaG6zrRSmKMzza3nfSy8Tt-kFFKTLUu18VY5AEN5ao0r4skZ2l92oZB86bfaDl5iwVHKiQ1dWQqkytMFUiRri9ZILkSVC1STg5NOfcC4UpGo1SkEfdSljDkWjmKUGIggijk_g4UhqMh7gIRyDDxuQJ0DDUJm9YHvkhQAciaxJpXAXe25bHM-cd1G4zX2PghbhQbKem-mCy2UqrA-XzKmyXf-GtwWe_6fGC-4RUgM7nG6ubocAgf4iibxMpTcwNdWrz3-8xjWG31O-24fdu934c1myiik88OoDAdZ3io0MhUHJlD-AU00dr7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Survey+of+Multiagent+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+C%2C+Applications+and+reviews&rft.au=Busoniu%2C+L.&rft.au=Babuska%2C+R.&rft.au=De+Schutter%2C+B.&rft.date=2008-03-01&rft.pub=IEEE&rft.issn=1094-6977&rft.volume=38&rft.issue=2&rft.spage=156&rft.epage=172&rft_id=info:doi/10.1109%2FTSMCC.2007.913919&rft.externalDocID=4445757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-6977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-6977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-6977&client=summon