3MRS: An Effective Coarse-to-Fine Matching Method for Multimodal Remote Sensing Imagery

The fusion of image data from multiple sensors is crucial for many applications. However, there are significant nonlinear intensity deformations between images from different kinds of sensors, leading to matching failure. To address this need, this paper proposes an effective coarse-to-fine matching...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 3; p. 478
Main Authors Fan, Zhongli, Liu, Yuxian, Liu, Yuxuan, Zhang, Li, Zhang, Junjun, Sun, Yushan, Ai, Haibin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 20.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fusion of image data from multiple sensors is crucial for many applications. However, there are significant nonlinear intensity deformations between images from different kinds of sensors, leading to matching failure. To address this need, this paper proposes an effective coarse-to-fine matching method for multimodal remote sensing images (3MRS). In the coarse matching stage, feature points are first detected on a maximum moment map calculated with a phase congruency model. Then, feature description is conducted using an index map constructed by finding the index of the maximum value in all orientations of convolved images obtained using a set of log-Gabor filters. At last, several matches are built through image matching and outlier removal, which can be used to estimate a reliable affine transformation model between the images. In the stage of fine matching, we develop a novel template matching method based on the log-Gabor convolution image sequence and match the template features with a 3D phase correlation matching strategy, given that the initial correspondences are achieved with the estimated transformation. Results show that compared with SIFT, and three state-of-the-art methods designed for multimodal image matching, PSO-SIFT, HAPCG, and RIFT, only 3MRS successfully matched all six types of multimodal remote sensing image pairs: optical–optical, optical–infrared, optical–depth, optical–map, optical–SAR, and day–night, with each including ten different image pairs. On average, the number of correct matches (NCM) of 3MRS was 164.47, 123.91, 4.88, and 4.33 times that of SIFT, PSO-SIFT, HAPCG, and RIFT for the successfully matched image pairs of each method. In terms of accuracy, the root-mean-square error of correct matches for 3MRS, SIFT, PSO-SIFT, HAPCG, and RIFT are 1.47, 1.98, 1.79, 2.83, and 2.45 pixels, respectively, revealing that 3MRS got the highest accuracy. Even though the total running time of 3MRS was the longest, the efficiency for obtaining one correct match is the highest considering the most significant number of matches. The source code of 3MRS and the experimental datasets and detailed results are publicly available.
AbstractList The fusion of image data from multiple sensors is crucial for many applications. However, there are significant nonlinear intensity deformations between images from different kinds of sensors, leading to matching failure. To address this need, this paper proposes an effective coarse-to-fine matching method for multimodal remote sensing images (3MRS). In the coarse matching stage, feature points are first detected on a maximum moment map calculated with a phase congruency model. Then, feature description is conducted using an index map constructed by finding the index of the maximum value in all orientations of convolved images obtained using a set of log-Gabor filters. At last, several matches are built through image matching and outlier removal, which can be used to estimate a reliable affine transformation model between the images. In the stage of fine matching, we develop a novel template matching method based on the log-Gabor convolution image sequence and match the template features with a 3D phase correlation matching strategy, given that the initial correspondences are achieved with the estimated transformation. Results show that compared with SIFT, and three state-of-the-art methods designed for multimodal image matching, PSO-SIFT, HAPCG, and RIFT, only 3MRS successfully matched all six types of multimodal remote sensing image pairs: optical–optical, optical–infrared, optical–depth, optical–map, optical–SAR, and day–night, with each including ten different image pairs. On average, the number of correct matches (NCM) of 3MRS was 164.47, 123.91, 4.88, and 4.33 times that of SIFT, PSO-SIFT, HAPCG, and RIFT for the successfully matched image pairs of each method. In terms of accuracy, the root-mean-square error of correct matches for 3MRS, SIFT, PSO-SIFT, HAPCG, and RIFT are 1.47, 1.98, 1.79, 2.83, and 2.45 pixels, respectively, revealing that 3MRS got the highest accuracy. Even though the total running time of 3MRS was the longest, the efficiency for obtaining one correct match is the highest considering the most significant number of matches. The source code of 3MRS and the experimental datasets and detailed results are publicly available.
Author Zhang, Junjun
Sun, Yushan
Ai, Haibin
Zhang, Li
Liu, Yuxian
Fan, Zhongli
Liu, Yuxuan
Author_xml – sequence: 1
  givenname: Zhongli
  orcidid: 0000-0001-5765-4070
  surname: Fan
  fullname: Fan, Zhongli
– sequence: 2
  givenname: Yuxian
  surname: Liu
  fullname: Liu, Yuxian
– sequence: 3
  givenname: Yuxuan
  orcidid: 0000-0003-4394-1989
  surname: Liu
  fullname: Liu, Yuxuan
– sequence: 4
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
– sequence: 5
  givenname: Junjun
  orcidid: 0000-0001-8086-3401
  surname: Zhang
  fullname: Zhang, Junjun
– sequence: 6
  givenname: Yushan
  surname: Sun
  fullname: Sun, Yushan
– sequence: 7
  givenname: Haibin
  surname: Ai
  fullname: Ai, Haibin
BookMark eNptkd9LHDEQx0OxUKu-9C8I9KUUts2vTbJ9k0PrgYegLX0MY3Zy5tjd2CQn-N93z2upiPMyw_CZ7_Dl-54cTGlCQj5w9kXKjn3NhSsmmTL2DTkUzIhGiU4cPJvfkZNSNmwuKXnH1CH5JVfXN9_o6UTPQkBf4wPSRYJcsKmpOY8T0hVUfxenNV1hvUs9DSnT1XaocUw9DPQax1SR3uBUdtByhDXmx2PyNsBQ8ORvPyI_z89-LC6ay6vvy8XpZeOlULXxHcigOsZvGRrWB2HaoANoo2xvJViNQbeqawENB7jtOyFN4Fz1XkoEC_KILPe6fYKNu89xhPzoEkT3tEh57SDX6Ad0XBvPeuaNsKi8FwCG2VYrxVkrtNWz1qe91n1Ov7dYqhtj8TgMMGHaFie0slbP382MfnyBbtI2T7PTmRLGCt3pnSDbUz6nUjIG52OFGtNUM8TBceZ2wbn_wc0nn1-c_PP0CvwHcoiXaQ
CitedBy_id crossref_primary_10_3390_rs16020309
crossref_primary_10_1007_s11263_024_02023_9
crossref_primary_10_1016_j_inffus_2024_102252
crossref_primary_10_3788_AOS241321
crossref_primary_10_3390_rs15194740
crossref_primary_10_3390_rs15205051
crossref_primary_10_1109_TGRS_2023_3347259
crossref_primary_10_3390_rs14174228
crossref_primary_10_3390_drones8110651
crossref_primary_10_1016_j_isprsjprs_2023_08_010
crossref_primary_10_1109_TGRS_2024_3409750
crossref_primary_10_3390_rs15082164
crossref_primary_10_1016_j_isprsjprs_2022_12_018
crossref_primary_10_1117_1_JRS_17_046502
crossref_primary_10_3390_rs16163018
crossref_primary_10_1109_LGRS_2024_3452793
crossref_primary_10_1109_TGRS_2023_3288531
crossref_primary_10_1111_phor_12520
crossref_primary_10_3390_rs14112606
Cites_doi 10.1016/j.isprsjprs.2018.04.003
10.1109/TGRS.2017.2656380
10.1016/j.patcog.2019.107029
10.1109/TGRS.2019.2924684
10.3390/rs11060690
10.1023/B:VISI.0000029664.99615.94
10.1109/TIP.2019.2933747
10.1016/j.patcog.2018.08.007
10.1109/JSTARS.2017.2748341
10.1007/s11263-006-0026-8
10.1109/JSTARS.2020.3041316
10.1016/j.isprsjprs.2020.09.012
10.1109/TGRS.2020.2976865
10.1016/j.isprsjprs.2021.09.010
10.1109/LGRS.2016.2600858
10.3390/rs9121249
10.1109/LGRS.2014.2325970
10.1016/j.isprsjprs.2021.05.011
10.1109/TPAMI.2008.275
10.3390/rs9060586
10.3390/rs13132628
10.3390/rs13173535
10.1109/LGRS.2018.2868704
10.1109/TIP.2003.819237
10.3390/rs9030248
10.1016/j.inffus.2021.02.012
10.1016/j.isprsjprs.2020.02.005
10.1109/TIP.2019.2959244
10.1109/TCSVT.2017.2720175
10.3390/rs10020306
10.1109/TGRS.2010.2042813
10.1109/TGRS.2019.2893310
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14030478
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (via ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_167c0d0c728e4cc2aa70856441052686
10_3390_rs14030478
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c324t-c9a3f4901b0e70df275f6fa6748d83a86ef65495ae71aabd9237f114dc33ea8a3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:24:47 EDT 2025
Fri Jul 11 09:45:22 EDT 2025
Fri Jul 25 09:49:09 EDT 2025
Tue Jul 01 01:59:01 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-c9a3f4901b0e70df275f6fa6748d83a86ef65495ae71aabd9237f114dc33ea8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4394-1989
0000-0001-5765-4070
0000-0001-8086-3401
OpenAccessLink https://doaj.org/article/167c0d0c728e4cc2aa70856441052686
PQID 2627826966
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_167c0d0c728e4cc2aa70856441052686
proquest_miscellaneous_2648861147
proquest_journals_2627826966
crossref_citationtrail_10_3390_rs14030478
crossref_primary_10_3390_rs14030478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220120
PublicationDateYYYYMMDD 2022-01-20
PublicationDate_xml – month: 01
  year: 2022
  text: 20220120
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lai (ref_32) 2020; 98
Wu (ref_29) 2014; 12
Touati (ref_4) 2019; 29
Shao (ref_9) 2017; 10
Ye (ref_21) 2017; 55
ref_34
ref_11
Jiang (ref_13) 2021; 73
Yao (ref_27) 2021; 46
ref_30
Ma (ref_26) 2016; 14
ref_16
ref_15
Hong (ref_12) 2021; 178
Xiang (ref_36) 2020; 58
Ye (ref_23) 2019; 57
Zhang (ref_10) 2018; 64
Ma (ref_14) 2019; 57
Fischer (ref_33) 2007; 75
Niu (ref_3) 2018; 16
Li (ref_28) 2019; 29
Sharma (ref_6) 2020; 14
Lowe (ref_25) 2004; 60
ref_24
Chen (ref_5) 2019; 86
ref_22
Li (ref_31) 2017; 28
ref_20
Ma (ref_18) 2010; 48
Hughes (ref_17) 2020; 169
ref_2
Rosten (ref_35) 2008; 32
Deng (ref_7) 2018; 145
ref_8
Johnson (ref_19) 2003; 12
Zhou (ref_1) 2020; 162
Zhu (ref_37) 2021; 181
References_xml – volume: 145
  start-page: 3
  year: 2018
  ident: ref_7
  article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.003
– volume: 55
  start-page: 2941
  year: 2017
  ident: ref_21
  article-title: Robust Registration of Multimodal Remote Sensing Images Based on Structural Similarity
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2656380
– volume: 98
  start-page: 107029
  year: 2020
  ident: ref_32
  article-title: Fast and robust template matching with majority neighbour similarity and annulus projection transformation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107029
– ident: ref_34
– volume: 57
  start-page: 9059
  year: 2019
  ident: ref_23
  article-title: Fast and robust matching for multimodal remote sensing image registration
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2924684
– volume: 46
  start-page: 1727
  year: 2021
  ident: ref_27
  article-title: Heterologous Images Matching Considering Anisotropic Weighted Moment and Absolute Phase Orientation
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
– ident: ref_8
  doi: 10.3390/rs11060690
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_25
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 29
  start-page: 757
  year: 2019
  ident: ref_4
  article-title: Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based Markov random field model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2933747
– volume: 86
  start-page: 376
  year: 2019
  ident: ref_5
  article-title: Multimodal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.08.007
– volume: 10
  start-page: 5569
  year: 2017
  ident: ref_9
  article-title: Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2748341
– volume: 75
  start-page: 231
  year: 2007
  ident: ref_33
  article-title: Self-invertible 2D log-Gabor wavelets
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-0026-8
– volume: 14
  start-page: 1497
  year: 2020
  ident: ref_6
  article-title: YOLOrs: Object Detection in Multimodal Remote Sensing Imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3041316
– volume: 169
  start-page: 166
  year: 2020
  ident: ref_17
  article-title: A deep learning framework for matching of SAR and optical imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.09.012
– volume: 58
  start-page: 6451
  year: 2020
  ident: ref_36
  article-title: OS-PC: Combining feature representation and 3-D phase correlation for subpixel optical and SAR image registration
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2976865
– volume: 181
  start-page: 129
  year: 2021
  ident: ref_37
  article-title: Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.09.010
– volume: 14
  start-page: 3
  year: 2016
  ident: ref_26
  article-title: Remote sensing image registration with modified SIFT and enhanced feature matching
  publication-title: IEEE Geosci. Remote Sens.
  doi: 10.1109/LGRS.2016.2600858
– ident: ref_30
  doi: 10.3390/rs9121249
– volume: 12
  start-page: 43
  year: 2014
  ident: ref_29
  article-title: A novel point-matching algorithm based on fast sample consensus for image registration
  publication-title: IEEE Geosci. Remote Sens.
  doi: 10.1109/LGRS.2014.2325970
– volume: 178
  start-page: 68
  year: 2021
  ident: ref_12
  article-title: Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.011
– volume: 32
  start-page: 105
  year: 2008
  ident: ref_35
  article-title: Faster and better: A machine learning approach to corner detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.275
– volume: 64
  start-page: 87
  year: 2018
  ident: ref_10
  article-title: Exploring the optimal integration levels between SAR and optical data for better urban land cover mapping in the Pearl River Delta
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_16
  doi: 10.3390/rs9060586
– ident: ref_15
  doi: 10.3390/rs13132628
– ident: ref_24
  doi: 10.3390/rs13173535
– volume: 16
  start-page: 45
  year: 2018
  ident: ref_3
  article-title: A conditional adversarial network for change detection in heterogeneous images
  publication-title: IEEE Geosci. Remote Sens.
  doi: 10.1109/LGRS.2018.2868704
– volume: 12
  start-page: 1495
  year: 2003
  ident: ref_19
  article-title: Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819237
– ident: ref_11
  doi: 10.3390/rs9030248
– volume: 73
  start-page: 22
  year: 2021
  ident: ref_13
  article-title: A review of multimodal image matching: Methods and applications
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.012
– volume: 162
  start-page: 200
  year: 2020
  ident: ref_1
  article-title: LiDAR-guided dense matching for detecting changes and updating of buildings in Airborne LiDAR data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.02.005
– volume: 29
  start-page: 3296
  year: 2019
  ident: ref_28
  article-title: RIFT: Multimodal image matching based on radiation-variation insensitive feature transform
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2959244
– ident: ref_22
– volume: 28
  start-page: 2233
  year: 2017
  ident: ref_31
  article-title: Coarse-to-fine PatchMatch for dense correspondence
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2720175
– ident: ref_20
– ident: ref_2
  doi: 10.3390/rs10020306
– volume: 48
  start-page: 2829
  year: 2010
  ident: ref_18
  article-title: Fully automatic subpixel image registration of multiangle CHRIS/Proba data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2042813
– volume: 57
  start-page: 4834
  year: 2019
  ident: ref_14
  article-title: A novel two-step registration method for remote sensing images based on deep and local features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2893310
SSID ssj0000331904
Score 2.4251692
Snippet The fusion of image data from multiple sensors is crucial for many applications. However, there are significant nonlinear intensity deformations between images...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 478
SubjectTerms Accuracy
Affine transformations
Algorithms
coarse-to-fine matching strategy
data collection
Datasets
deformation
design
Error correction
exhibitions
filters
Gabor filters
image analysis
Joint use
Methods
multimodal image matching
nonlinear intensity deformations
Outliers (statistics)
phase congruency
Phase matching
reliable transformation estimation
Remote sensing
Remote sensors
Sensors
Source code
Template matching
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB1BeoALonyI0IKM4MLBqmNvbC8X1FaNWqRUKKWit5XXnoUD3S1Jeui_78zGSYWoet0d-TAez7wZe94AfHLotA-UpprCoizqkZe1bUqZtMGxRkeZM_cOT0_t8Xnx7WJ8kQtui_yscu0Te0edusg18j1tNQUzS-j869VfyVOj-HY1j9B4DFvkgr0fwNbB0en32abKogyZmCpWvKSG8vu9-YIZ6piT5p9I1BP2_-eP-yAzeQ7PMjoU-6vt3IZH2L6AJ3lQ-e-bl_DTTGdnX8R-K1a0w-SrxGFHySnKZScnBBnFlJwrl5XEtB8OLQiVir7N9rJLtPYMaXNQnPHDdRI6uWQSi5tXcD45-nF4LPNsBBkJAi1lLINpCgrmtUKnUqPduLFN4NEhyZvgLTaWUr9xQDcKoU6E41xDuU-KxmDwwbyGQdu1-AZEGZwPZVIqlGVRNtFjRFVGFwmaBBWKIXxe66mKmTic51f8qSiBYJ1WdzodwseN7NWKLuNeqQNW90aCKa77D938V5VPTDWyLqqkItkSFjHqEBzBQ4ZvPUWNHcLuerOqfO4W1Z2VDOHD5jedGL4GCS121yxDTsuSLtzbh5fYgaeamx3IkrXahcFyfo3vCIIs6_fZzm4BrabaQg
  priority: 102
  providerName: ProQuest
Title 3MRS: An Effective Coarse-to-Fine Matching Method for Multimodal Remote Sensing Imagery
URI https://www.proquest.com/docview/2627826966
https://www.proquest.com/docview/2648861147
https://doaj.org/article/167c0d0c728e4cc2aa70856441052686
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xOJQLKo-KpXRlVC49RHjtrJ30tjyWhxpU7RaVWzRxJuIACYLlwL_v2AlbUCtx4RQpGVnRjD3zfYn9DcCeJasSZJqqY0NRXAySqDBVGpVK01CRZebszw5nF-b0Mj6_Gl69aPXl94S18sCt4_YHxjpZSsdDUuycQrSMEnwVD0olQWyba94LMhVysOapJeNWj1Qzr9-_f_DKdF6L5lUFCkL9_-ThUFzGH2G1Q4Vi1L7NGixQvQ4fugbl108b8Ftnk-l3MapFKzfMOUocNkxKKZo10Zihosg4qfrPSSILTaEFo1ERjtfeNiWPPSEOComp37DORme3XrziaRMux8e_Dk-jridC5Bj6zCKXoq5iLuKFJCvLStlhZSr0LUPKRGNiqDJM-YZIdoBYlIzfbMWcp3RaEyaoP8FS3dS0BSJFm2BaSolpGqeVS8iRTJ11DElQYtyDb89-yl0nGO77VtzkTBy8T_O_Pu3B17ntXSuT8V-rA-_uuYWXtg43OOB5F_D8rYD3YOc5WHm33h5yZRRDHcPcrQe788e8UvzvD6ypefQ2nKwM-8Juv8d7fIYV5Y9C8DxXcgeWZveP9IUByqzow2IyPunD8ugo-zHl68Hxxc9JP8zQP4Y_4-A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsFDACDhyseu2snSAhVArLLm166EP0FhxnQg9tUna3Qvun-I3M5LEVAnHrNR75MJ7HN3bmG4BXDp2OPZWpJrIoo3wYy9yWiSy0wZFGR5Uz9w6n-3ZyHH05GZ2swa--F4Z_q-xjYhOoizrwHfmWtpqSmSV0_v7ih-SpUfy62o_QaM1iF5c_qWSbv5t-pPN9rfX409HORHZTBWQg8LCQIfGmjCgN5gqdKkrtRqUtPQ_dKGLjY4ulpaJp5NENvc8LQkCupKqhCMagj72hfW_AzchQJufO9PHn1Z2OMmTQKmpZUGldbc3mzIfHDDh_5L1mPMBf0b9JaeM7cLvDomK7NZ67sIbVPdjoxqKfLu_DV5MeHL4V25VoSY4pMoqdmkphlItajgmgipRCOV9iibQZRS0IA4umqfe8LmjvAyRTQHHIv8mT0PScKTOWD-D4WnT2ENarusJHIBLvYp8USvkkiZIyxBhQJcEFAkJe-WgAb3o9ZaGjKedpGWcZlSus0-xKpwN4uZK9aMk5_in1gdW9kmBC7eZDPfuedf6ZDa0LqlCBLBejELT3jsAog8WGEMcOYLM_rKzz8nl2ZZMDeLFaJv_kRxdfYX3JMhQiLenCPf7_Fs9hY3KU7mV70_3dJ3BLc5sF-ZBWm7C-mF3iUwI_i_xZY3ECvl23if8GgAgWZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuqLxEoIVFwIGDlc2us2sjVaivqKEkqlIqenPX6zEcqF2SVCh_jV_XGT9SIRC3Xu3RHma_nflmH98AvLVoVeSoTNWhwSBM-1GQmjwOMqVxoNBS5cxvh8cTc3gafjobnK3B7_YtDF-rbGNiFaiz0vMeeU8ZRcnMEDvv5c21iOP94cfLnwF3kOKT1radRg2RI1z-ovJtvj3ap7l-p9Tw4MveYdB0GAg8EYlF4GOn85BSYirRyixXdpCb3HEDjizSLjKYGyqgBg5t37k0IzZkc6ogMq81ushpGvcOrFuuijqwvnswOZ6udnikJnjLsNZE1TqWvdmc1fFYD-ePLFg1C_grF1QJbrgBDxpmKnZqKD2ENSwewb2mSfr35WP4qsfTkw9ipxC15DHFSbFXUmGMwaIMhkRXxZgCO29piXHVmFoQIxbVE9-LMqOxp0jAQHHCl-bJaHTBAhrLJ3B6K157Cp2iLPAZiNjZyMWZlC6Owzj3EXqUsbeeaJGTLuzC-9ZPiW9Ey7l3xo-Eihf2aXLj0y68Wdle1lId_7TaZXevLFheu_pQzr4lzWpN-sZ6mUlPOMbQe-WcJWrK1LGSxzFd2GwnK2nW_Dy5QWgXXq9-02rlIxhXYHnFNhQwDfnCPv__EK_gLsE7-TyaHL2A-4rfXNCCUnITOovZFW4RE1qkLxvICTi_bZRfA_7GG_c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3MRS%3A+An+Effective+Coarse-to-Fine+Matching+Method+for+Multimodal+Remote+Sensing+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Fan%2C+Zhongli&rft.au=Liu%2C+Yuxian&rft.au=Liu%2C+Yuxuan&rft.au=Zhang%2C+Li&rft.date=2022-01-20&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft_id=info:doi/10.3390%2Frs14030478&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon