3MRS: An Effective Coarse-to-Fine Matching Method for Multimodal Remote Sensing Imagery
The fusion of image data from multiple sensors is crucial for many applications. However, there are significant nonlinear intensity deformations between images from different kinds of sensors, leading to matching failure. To address this need, this paper proposes an effective coarse-to-fine matching...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 3; p. 478 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
20.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fusion of image data from multiple sensors is crucial for many applications. However, there are significant nonlinear intensity deformations between images from different kinds of sensors, leading to matching failure. To address this need, this paper proposes an effective coarse-to-fine matching method for multimodal remote sensing images (3MRS). In the coarse matching stage, feature points are first detected on a maximum moment map calculated with a phase congruency model. Then, feature description is conducted using an index map constructed by finding the index of the maximum value in all orientations of convolved images obtained using a set of log-Gabor filters. At last, several matches are built through image matching and outlier removal, which can be used to estimate a reliable affine transformation model between the images. In the stage of fine matching, we develop a novel template matching method based on the log-Gabor convolution image sequence and match the template features with a 3D phase correlation matching strategy, given that the initial correspondences are achieved with the estimated transformation. Results show that compared with SIFT, and three state-of-the-art methods designed for multimodal image matching, PSO-SIFT, HAPCG, and RIFT, only 3MRS successfully matched all six types of multimodal remote sensing image pairs: optical–optical, optical–infrared, optical–depth, optical–map, optical–SAR, and day–night, with each including ten different image pairs. On average, the number of correct matches (NCM) of 3MRS was 164.47, 123.91, 4.88, and 4.33 times that of SIFT, PSO-SIFT, HAPCG, and RIFT for the successfully matched image pairs of each method. In terms of accuracy, the root-mean-square error of correct matches for 3MRS, SIFT, PSO-SIFT, HAPCG, and RIFT are 1.47, 1.98, 1.79, 2.83, and 2.45 pixels, respectively, revealing that 3MRS got the highest accuracy. Even though the total running time of 3MRS was the longest, the efficiency for obtaining one correct match is the highest considering the most significant number of matches. The source code of 3MRS and the experimental datasets and detailed results are publicly available. |
---|---|
AbstractList | The fusion of image data from multiple sensors is crucial for many applications. However, there are significant nonlinear intensity deformations between images from different kinds of sensors, leading to matching failure. To address this need, this paper proposes an effective coarse-to-fine matching method for multimodal remote sensing images (3MRS). In the coarse matching stage, feature points are first detected on a maximum moment map calculated with a phase congruency model. Then, feature description is conducted using an index map constructed by finding the index of the maximum value in all orientations of convolved images obtained using a set of log-Gabor filters. At last, several matches are built through image matching and outlier removal, which can be used to estimate a reliable affine transformation model between the images. In the stage of fine matching, we develop a novel template matching method based on the log-Gabor convolution image sequence and match the template features with a 3D phase correlation matching strategy, given that the initial correspondences are achieved with the estimated transformation. Results show that compared with SIFT, and three state-of-the-art methods designed for multimodal image matching, PSO-SIFT, HAPCG, and RIFT, only 3MRS successfully matched all six types of multimodal remote sensing image pairs: optical–optical, optical–infrared, optical–depth, optical–map, optical–SAR, and day–night, with each including ten different image pairs. On average, the number of correct matches (NCM) of 3MRS was 164.47, 123.91, 4.88, and 4.33 times that of SIFT, PSO-SIFT, HAPCG, and RIFT for the successfully matched image pairs of each method. In terms of accuracy, the root-mean-square error of correct matches for 3MRS, SIFT, PSO-SIFT, HAPCG, and RIFT are 1.47, 1.98, 1.79, 2.83, and 2.45 pixels, respectively, revealing that 3MRS got the highest accuracy. Even though the total running time of 3MRS was the longest, the efficiency for obtaining one correct match is the highest considering the most significant number of matches. The source code of 3MRS and the experimental datasets and detailed results are publicly available. |
Author | Zhang, Junjun Sun, Yushan Ai, Haibin Zhang, Li Liu, Yuxian Fan, Zhongli Liu, Yuxuan |
Author_xml | – sequence: 1 givenname: Zhongli orcidid: 0000-0001-5765-4070 surname: Fan fullname: Fan, Zhongli – sequence: 2 givenname: Yuxian surname: Liu fullname: Liu, Yuxian – sequence: 3 givenname: Yuxuan orcidid: 0000-0003-4394-1989 surname: Liu fullname: Liu, Yuxuan – sequence: 4 givenname: Li surname: Zhang fullname: Zhang, Li – sequence: 5 givenname: Junjun orcidid: 0000-0001-8086-3401 surname: Zhang fullname: Zhang, Junjun – sequence: 6 givenname: Yushan surname: Sun fullname: Sun, Yushan – sequence: 7 givenname: Haibin surname: Ai fullname: Ai, Haibin |
BookMark | eNptkd9LHDEQx0OxUKu-9C8I9KUUts2vTbJ9k0PrgYegLX0MY3Zy5tjd2CQn-N93z2upiPMyw_CZ7_Dl-54cTGlCQj5w9kXKjn3NhSsmmTL2DTkUzIhGiU4cPJvfkZNSNmwuKXnH1CH5JVfXN9_o6UTPQkBf4wPSRYJcsKmpOY8T0hVUfxenNV1hvUs9DSnT1XaocUw9DPQax1SR3uBUdtByhDXmx2PyNsBQ8ORvPyI_z89-LC6ay6vvy8XpZeOlULXxHcigOsZvGRrWB2HaoANoo2xvJViNQbeqawENB7jtOyFN4Fz1XkoEC_KILPe6fYKNu89xhPzoEkT3tEh57SDX6Ad0XBvPeuaNsKi8FwCG2VYrxVkrtNWz1qe91n1Ov7dYqhtj8TgMMGHaFie0slbP382MfnyBbtI2T7PTmRLGCt3pnSDbUz6nUjIG52OFGtNUM8TBceZ2wbn_wc0nn1-c_PP0CvwHcoiXaQ |
CitedBy_id | crossref_primary_10_3390_rs16020309 crossref_primary_10_1007_s11263_024_02023_9 crossref_primary_10_1016_j_inffus_2024_102252 crossref_primary_10_3788_AOS241321 crossref_primary_10_3390_rs15194740 crossref_primary_10_3390_rs15205051 crossref_primary_10_1109_TGRS_2023_3347259 crossref_primary_10_3390_rs14174228 crossref_primary_10_3390_drones8110651 crossref_primary_10_1016_j_isprsjprs_2023_08_010 crossref_primary_10_1109_TGRS_2024_3409750 crossref_primary_10_3390_rs15082164 crossref_primary_10_1016_j_isprsjprs_2022_12_018 crossref_primary_10_1117_1_JRS_17_046502 crossref_primary_10_3390_rs16163018 crossref_primary_10_1109_LGRS_2024_3452793 crossref_primary_10_1109_TGRS_2023_3288531 crossref_primary_10_1111_phor_12520 crossref_primary_10_3390_rs14112606 |
Cites_doi | 10.1016/j.isprsjprs.2018.04.003 10.1109/TGRS.2017.2656380 10.1016/j.patcog.2019.107029 10.1109/TGRS.2019.2924684 10.3390/rs11060690 10.1023/B:VISI.0000029664.99615.94 10.1109/TIP.2019.2933747 10.1016/j.patcog.2018.08.007 10.1109/JSTARS.2017.2748341 10.1007/s11263-006-0026-8 10.1109/JSTARS.2020.3041316 10.1016/j.isprsjprs.2020.09.012 10.1109/TGRS.2020.2976865 10.1016/j.isprsjprs.2021.09.010 10.1109/LGRS.2016.2600858 10.3390/rs9121249 10.1109/LGRS.2014.2325970 10.1016/j.isprsjprs.2021.05.011 10.1109/TPAMI.2008.275 10.3390/rs9060586 10.3390/rs13132628 10.3390/rs13173535 10.1109/LGRS.2018.2868704 10.1109/TIP.2003.819237 10.3390/rs9030248 10.1016/j.inffus.2021.02.012 10.1016/j.isprsjprs.2020.02.005 10.1109/TIP.2019.2959244 10.1109/TCSVT.2017.2720175 10.3390/rs10020306 10.1109/TGRS.2010.2042813 10.1109/TGRS.2019.2893310 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14030478 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (via ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_167c0d0c728e4cc2aa70856441052686 10_3390_rs14030478 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c324t-c9a3f4901b0e70df275f6fa6748d83a86ef65495ae71aabd9237f114dc33ea8a3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:24:47 EDT 2025 Fri Jul 11 09:45:22 EDT 2025 Fri Jul 25 09:49:09 EDT 2025 Tue Jul 01 01:59:01 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-c9a3f4901b0e70df275f6fa6748d83a86ef65495ae71aabd9237f114dc33ea8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4394-1989 0000-0001-5765-4070 0000-0001-8086-3401 |
OpenAccessLink | https://doaj.org/article/167c0d0c728e4cc2aa70856441052686 |
PQID | 2627826966 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_167c0d0c728e4cc2aa70856441052686 proquest_miscellaneous_2648861147 proquest_journals_2627826966 crossref_citationtrail_10_3390_rs14030478 crossref_primary_10_3390_rs14030478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220120 |
PublicationDateYYYYMMDD | 2022-01-20 |
PublicationDate_xml | – month: 01 year: 2022 text: 20220120 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lai (ref_32) 2020; 98 Wu (ref_29) 2014; 12 Touati (ref_4) 2019; 29 Shao (ref_9) 2017; 10 Ye (ref_21) 2017; 55 ref_34 ref_11 Jiang (ref_13) 2021; 73 Yao (ref_27) 2021; 46 ref_30 Ma (ref_26) 2016; 14 ref_16 ref_15 Hong (ref_12) 2021; 178 Xiang (ref_36) 2020; 58 Ye (ref_23) 2019; 57 Zhang (ref_10) 2018; 64 Ma (ref_14) 2019; 57 Fischer (ref_33) 2007; 75 Niu (ref_3) 2018; 16 Li (ref_28) 2019; 29 Sharma (ref_6) 2020; 14 Lowe (ref_25) 2004; 60 ref_24 Chen (ref_5) 2019; 86 ref_22 Li (ref_31) 2017; 28 ref_20 Ma (ref_18) 2010; 48 Hughes (ref_17) 2020; 169 ref_2 Rosten (ref_35) 2008; 32 Deng (ref_7) 2018; 145 ref_8 Johnson (ref_19) 2003; 12 Zhou (ref_1) 2020; 162 Zhu (ref_37) 2021; 181 |
References_xml | – volume: 145 start-page: 3 year: 2018 ident: ref_7 article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.003 – volume: 55 start-page: 2941 year: 2017 ident: ref_21 article-title: Robust Registration of Multimodal Remote Sensing Images Based on Structural Similarity publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2656380 – volume: 98 start-page: 107029 year: 2020 ident: ref_32 article-title: Fast and robust template matching with majority neighbour similarity and annulus projection transformation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107029 – ident: ref_34 – volume: 57 start-page: 9059 year: 2019 ident: ref_23 article-title: Fast and robust matching for multimodal remote sensing image registration publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2924684 – volume: 46 start-page: 1727 year: 2021 ident: ref_27 article-title: Heterologous Images Matching Considering Anisotropic Weighted Moment and Absolute Phase Orientation publication-title: Geomat. Inf. Sci. Wuhan Univ. – ident: ref_8 doi: 10.3390/rs11060690 – volume: 60 start-page: 91 year: 2004 ident: ref_25 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 29 start-page: 757 year: 2019 ident: ref_4 article-title: Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based Markov random field model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2933747 – volume: 86 start-page: 376 year: 2019 ident: ref_5 article-title: Multimodal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.08.007 – volume: 10 start-page: 5569 year: 2017 ident: ref_9 article-title: Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2748341 – volume: 75 start-page: 231 year: 2007 ident: ref_33 article-title: Self-invertible 2D log-Gabor wavelets publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-006-0026-8 – volume: 14 start-page: 1497 year: 2020 ident: ref_6 article-title: YOLOrs: Object Detection in Multimodal Remote Sensing Imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3041316 – volume: 169 start-page: 166 year: 2020 ident: ref_17 article-title: A deep learning framework for matching of SAR and optical imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.09.012 – volume: 58 start-page: 6451 year: 2020 ident: ref_36 article-title: OS-PC: Combining feature representation and 3-D phase correlation for subpixel optical and SAR image registration publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2976865 – volume: 181 start-page: 129 year: 2021 ident: ref_37 article-title: Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.09.010 – volume: 14 start-page: 3 year: 2016 ident: ref_26 article-title: Remote sensing image registration with modified SIFT and enhanced feature matching publication-title: IEEE Geosci. Remote Sens. doi: 10.1109/LGRS.2016.2600858 – ident: ref_30 doi: 10.3390/rs9121249 – volume: 12 start-page: 43 year: 2014 ident: ref_29 article-title: A novel point-matching algorithm based on fast sample consensus for image registration publication-title: IEEE Geosci. Remote Sens. doi: 10.1109/LGRS.2014.2325970 – volume: 178 start-page: 68 year: 2021 ident: ref_12 article-title: Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.011 – volume: 32 start-page: 105 year: 2008 ident: ref_35 article-title: Faster and better: A machine learning approach to corner detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.275 – volume: 64 start-page: 87 year: 2018 ident: ref_10 article-title: Exploring the optimal integration levels between SAR and optical data for better urban land cover mapping in the Pearl River Delta publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_16 doi: 10.3390/rs9060586 – ident: ref_15 doi: 10.3390/rs13132628 – ident: ref_24 doi: 10.3390/rs13173535 – volume: 16 start-page: 45 year: 2018 ident: ref_3 article-title: A conditional adversarial network for change detection in heterogeneous images publication-title: IEEE Geosci. Remote Sens. doi: 10.1109/LGRS.2018.2868704 – volume: 12 start-page: 1495 year: 2003 ident: ref_19 article-title: Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819237 – ident: ref_11 doi: 10.3390/rs9030248 – volume: 73 start-page: 22 year: 2021 ident: ref_13 article-title: A review of multimodal image matching: Methods and applications publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.02.012 – volume: 162 start-page: 200 year: 2020 ident: ref_1 article-title: LiDAR-guided dense matching for detecting changes and updating of buildings in Airborne LiDAR data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.02.005 – volume: 29 start-page: 3296 year: 2019 ident: ref_28 article-title: RIFT: Multimodal image matching based on radiation-variation insensitive feature transform publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2959244 – ident: ref_22 – volume: 28 start-page: 2233 year: 2017 ident: ref_31 article-title: Coarse-to-fine PatchMatch for dense correspondence publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2017.2720175 – ident: ref_20 – ident: ref_2 doi: 10.3390/rs10020306 – volume: 48 start-page: 2829 year: 2010 ident: ref_18 article-title: Fully automatic subpixel image registration of multiangle CHRIS/Proba data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2042813 – volume: 57 start-page: 4834 year: 2019 ident: ref_14 article-title: A novel two-step registration method for remote sensing images based on deep and local features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2893310 |
SSID | ssj0000331904 |
Score | 2.4251692 |
Snippet | The fusion of image data from multiple sensors is crucial for many applications. However, there are significant nonlinear intensity deformations between images... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 478 |
SubjectTerms | Accuracy Affine transformations Algorithms coarse-to-fine matching strategy data collection Datasets deformation design Error correction exhibitions filters Gabor filters image analysis Joint use Methods multimodal image matching nonlinear intensity deformations Outliers (statistics) phase congruency Phase matching reliable transformation estimation Remote sensing Remote sensors Sensors Source code Template matching |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB1BeoALonyI0IKM4MLBqmNvbC8X1FaNWqRUKKWit5XXnoUD3S1Jeui_78zGSYWoet0d-TAez7wZe94AfHLotA-UpprCoizqkZe1bUqZtMGxRkeZM_cOT0_t8Xnx7WJ8kQtui_yscu0Te0edusg18j1tNQUzS-j869VfyVOj-HY1j9B4DFvkgr0fwNbB0en32abKogyZmCpWvKSG8vu9-YIZ6piT5p9I1BP2_-eP-yAzeQ7PMjoU-6vt3IZH2L6AJ3lQ-e-bl_DTTGdnX8R-K1a0w-SrxGFHySnKZScnBBnFlJwrl5XEtB8OLQiVir7N9rJLtPYMaXNQnPHDdRI6uWQSi5tXcD45-nF4LPNsBBkJAi1lLINpCgrmtUKnUqPduLFN4NEhyZvgLTaWUr9xQDcKoU6E41xDuU-KxmDwwbyGQdu1-AZEGZwPZVIqlGVRNtFjRFVGFwmaBBWKIXxe66mKmTic51f8qSiBYJ1WdzodwseN7NWKLuNeqQNW90aCKa77D938V5VPTDWyLqqkItkSFjHqEBzBQ4ZvPUWNHcLuerOqfO4W1Z2VDOHD5jedGL4GCS121yxDTsuSLtzbh5fYgaeamx3IkrXahcFyfo3vCIIs6_fZzm4BrabaQg priority: 102 providerName: ProQuest |
Title | 3MRS: An Effective Coarse-to-Fine Matching Method for Multimodal Remote Sensing Imagery |
URI | https://www.proquest.com/docview/2627826966 https://www.proquest.com/docview/2648861147 https://doaj.org/article/167c0d0c728e4cc2aa70856441052686 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xOJQLKo-KpXRlVC49RHjtrJ30tjyWhxpU7RaVWzRxJuIACYLlwL_v2AlbUCtx4RQpGVnRjD3zfYn9DcCeJasSZJqqY0NRXAySqDBVGpVK01CRZebszw5nF-b0Mj6_Gl69aPXl94S18sCt4_YHxjpZSsdDUuycQrSMEnwVD0olQWyba94LMhVysOapJeNWj1Qzr9-_f_DKdF6L5lUFCkL9_-ThUFzGH2G1Q4Vi1L7NGixQvQ4fugbl108b8Ftnk-l3MapFKzfMOUocNkxKKZo10Zihosg4qfrPSSILTaEFo1ERjtfeNiWPPSEOComp37DORme3XrziaRMux8e_Dk-jridC5Bj6zCKXoq5iLuKFJCvLStlhZSr0LUPKRGNiqDJM-YZIdoBYlIzfbMWcp3RaEyaoP8FS3dS0BSJFm2BaSolpGqeVS8iRTJ11DElQYtyDb89-yl0nGO77VtzkTBy8T_O_Pu3B17ntXSuT8V-rA-_uuYWXtg43OOB5F_D8rYD3YOc5WHm33h5yZRRDHcPcrQe788e8UvzvD6ypefQ2nKwM-8Juv8d7fIYV5Y9C8DxXcgeWZveP9IUByqzow2IyPunD8ugo-zHl68Hxxc9JP8zQP4Y_4-A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsFDACDhyseu2snSAhVArLLm166EP0FhxnQg9tUna3Qvun-I3M5LEVAnHrNR75MJ7HN3bmG4BXDp2OPZWpJrIoo3wYy9yWiSy0wZFGR5Uz9w6n-3ZyHH05GZ2swa--F4Z_q-xjYhOoizrwHfmWtpqSmSV0_v7ih-SpUfy62o_QaM1iF5c_qWSbv5t-pPN9rfX409HORHZTBWQg8LCQIfGmjCgN5gqdKkrtRqUtPQ_dKGLjY4ulpaJp5NENvc8LQkCupKqhCMagj72hfW_AzchQJufO9PHn1Z2OMmTQKmpZUGldbc3mzIfHDDh_5L1mPMBf0b9JaeM7cLvDomK7NZ67sIbVPdjoxqKfLu_DV5MeHL4V25VoSY4pMoqdmkphlItajgmgipRCOV9iibQZRS0IA4umqfe8LmjvAyRTQHHIv8mT0PScKTOWD-D4WnT2ENarusJHIBLvYp8USvkkiZIyxBhQJcEFAkJe-WgAb3o9ZaGjKedpGWcZlSus0-xKpwN4uZK9aMk5_in1gdW9kmBC7eZDPfuedf6ZDa0LqlCBLBejELT3jsAog8WGEMcOYLM_rKzz8nl2ZZMDeLFaJv_kRxdfYX3JMhQiLenCPf7_Fs9hY3KU7mV70_3dJ3BLc5sF-ZBWm7C-mF3iUwI_i_xZY3ECvl23if8GgAgWZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuqLxEoIVFwIGDlc2us2sjVaivqKEkqlIqenPX6zEcqF2SVCh_jV_XGT9SIRC3Xu3RHma_nflmH98AvLVoVeSoTNWhwSBM-1GQmjwOMqVxoNBS5cxvh8cTc3gafjobnK3B7_YtDF-rbGNiFaiz0vMeeU8ZRcnMEDvv5c21iOP94cfLnwF3kOKT1radRg2RI1z-ovJtvj3ap7l-p9Tw4MveYdB0GAg8EYlF4GOn85BSYirRyixXdpCb3HEDjizSLjKYGyqgBg5t37k0IzZkc6ogMq81ushpGvcOrFuuijqwvnswOZ6udnikJnjLsNZE1TqWvdmc1fFYD-ePLFg1C_grF1QJbrgBDxpmKnZqKD2ENSwewb2mSfr35WP4qsfTkw9ipxC15DHFSbFXUmGMwaIMhkRXxZgCO29piXHVmFoQIxbVE9-LMqOxp0jAQHHCl-bJaHTBAhrLJ3B6K157Cp2iLPAZiNjZyMWZlC6Owzj3EXqUsbeeaJGTLuzC-9ZPiW9Ey7l3xo-Eihf2aXLj0y68Wdle1lId_7TaZXevLFheu_pQzr4lzWpN-sZ6mUlPOMbQe-WcJWrK1LGSxzFd2GwnK2nW_Dy5QWgXXq9-02rlIxhXYHnFNhQwDfnCPv__EK_gLsE7-TyaHL2A-4rfXNCCUnITOovZFW4RE1qkLxvICTi_bZRfA_7GG_c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3MRS%3A+An+Effective+Coarse-to-Fine+Matching+Method+for+Multimodal+Remote+Sensing+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Fan%2C+Zhongli&rft.au=Liu%2C+Yuxian&rft.au=Liu%2C+Yuxuan&rft.au=Zhang%2C+Li&rft.date=2022-01-20&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft_id=info:doi/10.3390%2Frs14030478&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |