Additive manufacturing and characterization of a load cell with embedded strain gauges

In this paper we present the exploitation of Fused Filament Fabrication (FFF) to manufacture a load cell using double extrusion of conductive and non-conductive commercial materials in a single-step printing cycle. A load cell with four embedded strain gauges, manufactured with tailored process para...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 62; pp. 113 - 120
Main Authors Stano, Gianni, Di Nisio, Attilio, Lanzolla, Annamaria, Percoco, Gianluca
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2020
Online AccessGet full text

Cover

Loading…
Abstract In this paper we present the exploitation of Fused Filament Fabrication (FFF) to manufacture a load cell using double extrusion of conductive and non-conductive commercial materials in a single-step printing cycle. A load cell with four embedded strain gauges, manufactured with tailored process parameters and strategies, was used to deposit the conductive filament to obtain near equal electrical resistance values among the four strain gauges, aiming to connect them in a full Wheatstone bridge configuration. Subsequently, several tests were performed, firstly to understand the behavior of each strain gauge and then to characterize the load cell. The tests showed that the strain gauges are sensible to compressive and tensile deformation and that the load cell's voltage, obtained by connecting the four strain gauges in a full Wheatstone bridge, decreases as the force applied increases. This work demonstrates the potential of FFF technology in the sensor manufacturing field and that it is possible to integrate sensitive elements into non-sensitive elements without an additional assembly process by using low-cost commercial filaments and 3D printers. •Manufacturing of a load cell with embedded strain gauges by using 3D printing.•Conductive and non-conductive materials in the same printing cycle.•Similar electrical resistance values among the four strain gauges.•Consistent behavior of strain gauges: two detect compression and two tension.•The output voltage of the load cell decreases when the applied weight increases.
AbstractList In this paper we present the exploitation of Fused Filament Fabrication (FFF) to manufacture a load cell using double extrusion of conductive and non-conductive commercial materials in a single-step printing cycle. A load cell with four embedded strain gauges, manufactured with tailored process parameters and strategies, was used to deposit the conductive filament to obtain near equal electrical resistance values among the four strain gauges, aiming to connect them in a full Wheatstone bridge configuration. Subsequently, several tests were performed, firstly to understand the behavior of each strain gauge and then to characterize the load cell. The tests showed that the strain gauges are sensible to compressive and tensile deformation and that the load cell's voltage, obtained by connecting the four strain gauges in a full Wheatstone bridge, decreases as the force applied increases. This work demonstrates the potential of FFF technology in the sensor manufacturing field and that it is possible to integrate sensitive elements into non-sensitive elements without an additional assembly process by using low-cost commercial filaments and 3D printers. •Manufacturing of a load cell with embedded strain gauges by using 3D printing.•Conductive and non-conductive materials in the same printing cycle.•Similar electrical resistance values among the four strain gauges.•Consistent behavior of strain gauges: two detect compression and two tension.•The output voltage of the load cell decreases when the applied weight increases.
Author Lanzolla, Annamaria
Percoco, Gianluca
Stano, Gianni
Di Nisio, Attilio
Author_xml – sequence: 1
  givenname: Gianni
  surname: Stano
  fullname: Stano, Gianni
  email: gianni.stano@poliba.it
  organization: Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Viale Japigia 182, 70125, Bari, Italy
– sequence: 2
  givenname: Attilio
  surname: Di Nisio
  fullname: Di Nisio, Attilio
  organization: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E.Orabona 4, 70125, Bari, Italy
– sequence: 3
  givenname: Annamaria
  surname: Lanzolla
  fullname: Lanzolla, Annamaria
  organization: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E.Orabona 4, 70125, Bari, Italy
– sequence: 4
  givenname: Gianluca
  surname: Percoco
  fullname: Percoco, Gianluca
  organization: Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Viale Japigia 182, 70125, Bari, Italy
BookMark eNqNkEtPwzAQhC1UJFrgP1jcE_xI44YTVXlKlbgAV2tjb1pXaVLZbhH8elzKAXHqaaRZzbeaGZFB13dIyBVnOWe8vF7lG4_GBZfsbpELxquc8zzJCRnyiZKZkEoMyJDxgmelHFdnZBTCijGmJqwYkveptS66HdI1dNsGTNx61y0odJaaJfhkoHdfENMH2jcUaNtDOmHb0g8XlxTXNVqLlobowXV0AdsFhgty2kAb8PJXz8nbw_3r7Cmbvzw-z6bzzEhRxMyUfIxGgmDKGAUSa2UqKxhUjEuQRSnrUoi6AKZUgRUWUJa1YcwWMr2sKnlObg5c4_sQPDZ6490a_KfmTO8X0iv9dyG9X0hzrpOk8O2_sHHxp-m-Snsc4u6AwFRy59DrYBx2Bq1Lkaht747BfANwUpAU
CitedBy_id crossref_primary_10_3390_app12178607
crossref_primary_10_1089_3dp_2022_0263
crossref_primary_10_1109_JSEN_2024_3439743
crossref_primary_10_1002_adma_202004782
crossref_primary_10_1016_j_measurement_2020_108562
crossref_primary_10_1541_ieejjia_24007230
crossref_primary_10_1007_s41315_024_00346_x
crossref_primary_10_1016_j_ymssp_2020_107475
crossref_primary_10_1007_s00170_020_06318_2
crossref_primary_10_3390_s21196324
crossref_primary_10_1007_s40964_020_00158_y
crossref_primary_10_1016_j_mechmachtheory_2024_105812
crossref_primary_10_1109_TMECH_2022_3192324
crossref_primary_10_1177_08927057241283312
crossref_primary_10_1007_s12008_023_01718_6
crossref_primary_10_1016_j_matpr_2021_03_745
crossref_primary_10_1108_RPJ_02_2023_0069
crossref_primary_10_1016_j_jajp_2021_100046
crossref_primary_10_1016_j_oceaneng_2023_114427
crossref_primary_10_1002_admt_202101321
crossref_primary_10_1007_s12046_025_02719_9
crossref_primary_10_1364_BOE_473013
crossref_primary_10_3390_s21113675
crossref_primary_10_1007_s40964_024_00570_8
crossref_primary_10_1109_JSEN_2024_3369025
crossref_primary_10_3390_polym15092159
crossref_primary_10_3390_s22197508
crossref_primary_10_1142_S2737599424400139
crossref_primary_10_1016_j_procir_2022_06_031
crossref_primary_10_1016_j_addma_2020_101791
Cites_doi 10.5194/jsss-7-169-2018
10.1016/j.sna.2017.07.020
10.1115/1.2356499
10.1016/j.matdes.2017.10.014
10.1002/admt.201600013
10.1039/C7NR01865G
10.1007/s12541-015-0181-3
10.1016/j.synthmet.2017.01.009
10.3390/ma10030290
10.1088/0960-1317/20/12/125010
10.1002/adfm.201504755
10.1080/05704928.2017.1287082
10.1007/s11517-014-1148-8
10.4028/www.scientific.net/MSF.570.132
10.1109/TMECH.2011.2160353
10.1371/journal.pone.0049365
10.1016/j.compositesb.2016.11.034
10.1002/adma.201701218
10.1002/adma.201703817
10.5194/jsss-7-143-2018
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.precisioneng.2019.11.019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2372
EndPage 120
ExternalDocumentID 10_1016_j_precisioneng_2019_11_019
S0141635919305033
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c324t-c615ec3a207cc7a3eb7c9d20a9013a3463b622b4a0774e9e4a66bc00d43ded993
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Thu Apr 24 22:53:57 EDT 2025
Tue Jul 01 02:13:01 EDT 2025
Fri Feb 23 02:45:09 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-c615ec3a207cc7a3eb7c9d20a9013a3463b622b4a0774e9e4a66bc00d43ded993
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_precisioneng_2019_11_019
crossref_citationtrail_10_1016_j_precisioneng_2019_11_019
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2019_11_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Precision engineering
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Alsharari, Chen, Shu (bib23) 2018; 2
Ota (bib25) 2016; 1
Khan, Masood, Ibrahim, Ahmad (bib19) 2019; 2759
Dijkshoorn (bib1) 2018; 7
Xu (bib2) 2017
J. Gonçalves et al., “Electrically conductive polyetheretherketone nanocomposite Filaments : from production to fused deposition modeling,” pp. 1–20.
Tamburrino, Graziosi, Bordegoni (bib28) 2019; 2759
Gupta, Talati, Jha (bib10) 2008; 570
Kim (bib22) 2017; 9
Muth (bib7) 2014; :6307-12
Buffat, Borrel (bib9) 1976; 13
Guo, Qiu, Meng, Park, McAlpine (bib24) 2017; 29
Adamo (bib6) 2017; 10
Leigh, Bradley, Purssell, Billson, Hutchins (bib11) 2012; 7
Galantucci, Di Gioia, Lavecchia, Percoco (bib26) May 2014; 52
Wang, Jiang, Zhou, Gou, Hui (bib8) 2017; 110
Kesner, Howe (bib5) 2011; 16
Dorigato, Moretti, Dul, Unterberger, Pegoretti (bib14) 2017; 226
Ko, Chung, Hotz, Nam, Grigoropoulos (bib15) Dec. 2010; 20
Vatani, Lu, Engeberg, Choi (bib16) 2015; 16
Dikshit, Nagalingam, Yap, Sing, Yeong, Wei (bib17) 2018; 137
Ni, Ji, Long, Bu, Chen, Zhuang (bib3) 2017; 52
Dikshit, Nagalingam, Yap, Sing, Yeong, Wei (bib18) 2017; 10
Amjadi, Kyung, Park, Sitti (bib4) 2016; 26
Kim, Park, Suh, Kim, Jeong, Park (bib21) 2017; 263
Gräbner, Dödtmann, Dumstorff, Lucklum (bib20) 2018; 7
Valentine (bib12) 2017; 29
Galantucci, Ferrandes, Percoco (bib27) 2006; 6
Galantucci (10.1016/j.precisioneng.2019.11.019_bib26) 2014; 52
Adamo (10.1016/j.precisioneng.2019.11.019_bib6) 2017; 10
Kim (10.1016/j.precisioneng.2019.11.019_bib21) 2017; 263
Kesner (10.1016/j.precisioneng.2019.11.019_bib5) 2011; 16
Dikshit (10.1016/j.precisioneng.2019.11.019_bib17) 2018; 137
Leigh (10.1016/j.precisioneng.2019.11.019_bib11) 2012; 7
Dijkshoorn (10.1016/j.precisioneng.2019.11.019_bib1) 2018; 7
Gupta (10.1016/j.precisioneng.2019.11.019_bib10) 2008; 570
Ota (10.1016/j.precisioneng.2019.11.019_bib25) 2016; 1
Xu (10.1016/j.precisioneng.2019.11.019_bib2) 2017
Dorigato (10.1016/j.precisioneng.2019.11.019_bib14) 2017; 226
Ni (10.1016/j.precisioneng.2019.11.019_bib3) 2017; 52
Vatani (10.1016/j.precisioneng.2019.11.019_bib16) 2015; 16
Tamburrino (10.1016/j.precisioneng.2019.11.019_bib28) 2019; 2759
10.1016/j.precisioneng.2019.11.019_bib13
Guo (10.1016/j.precisioneng.2019.11.019_bib24) 2017; 29
Kim (10.1016/j.precisioneng.2019.11.019_bib22) 2017; 9
Wang (10.1016/j.precisioneng.2019.11.019_bib8) 2017; 110
Ko (10.1016/j.precisioneng.2019.11.019_bib15) 2010; 20
Buffat (10.1016/j.precisioneng.2019.11.019_bib9) 1976; 13
Valentine (10.1016/j.precisioneng.2019.11.019_bib12) 2017; 29
Muth (10.1016/j.precisioneng.2019.11.019_bib7) 2014; :6307-12
Khan (10.1016/j.precisioneng.2019.11.019_bib19) 2019; 2759
Alsharari (10.1016/j.precisioneng.2019.11.019_bib23) 2018; 2
Gräbner (10.1016/j.precisioneng.2019.11.019_bib20) 2018; 7
Dikshit (10.1016/j.precisioneng.2019.11.019_bib18) 2017; 10
Galantucci (10.1016/j.precisioneng.2019.11.019_bib27) 2006; 6
Amjadi (10.1016/j.precisioneng.2019.11.019_bib4) 2016; 26
References_xml – volume: 263
  start-page: 493
  year: 2017
  end-page: 500
  ident: bib21
  article-title: Sensors and Actuators A : physical 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments
  publication-title: Sensors Actuators A. Phys.
– volume: 2759
  year: 2019
  ident: bib19
  article-title: Compressive behaviour of Neovius Triply Periodic Minimal Surface cellular structure manufactured by fused deposition modelling
  publication-title: Virtual Phys Prototyp
– volume: 6
  start-page: 390
  year: 2006
  end-page: 396
  ident: bib27
  article-title: Digital photogrammetry for facial recognition
  publication-title: J Comput Inf Sci Eng
– volume: 9
  start-page: 11035
  year: 2017
  end-page: 11046
  ident: bib22
  article-title: 3D printable composite dough for stretchable, ultrasensitive and body-patchable strain sensors
  publication-title: Nanoscale
– volume: 226
  start-page: 7
  year: 2017
  end-page: 14
  ident: bib14
  article-title: Electrically conductive nanocomposites for fused deposition modelling
  publication-title: Synth Met
– volume: 29
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib12
  article-title: Hybrid 3D printing of soft electronics
  publication-title: Adv Mater
– volume: 1
  start-page: 1600013
  year: 2016
  ident: bib25
  article-title: Application of 3D printing for smart objects with embedded electronic sensors and systems
  publication-title: Adv. Mater. Technol.
– volume: 570
  start-page: 132
  year: 2008
  end-page: 137
  ident: bib10
  article-title: Shape and size dependent melting point temperature of nanoparticles
  publication-title: Mater Sci Forum
– volume: 16
  start-page: 1375
  year: 2015
  end-page: 1383
  ident: bib16
  article-title: Combined 3D printing technologies and material for fabrication of tactile sensors
  publication-title: Int J Precis Eng Manuf
– volume: 10
  start-page: 646
  year: 2017
  end-page: 672
  ident: bib6
  article-title: Designing and prototyping a sensors head for test and certification of UAV components
  publication-title: Int J Smart Sens Intell Syst
– volume: :6307-12
  year: 2014
  ident: bib7
  article-title: Embedded 3D printing of strain sensors within highly stretchable elastomers
  publication-title: Adv Mater
– volume: 2
  start-page: 792
  year: 2018
  ident: bib23
  article-title: 3D printing of highly stretchable and sensitive strain sensors using graphene based composites
  publication-title: Proceedings
– volume: 20
  start-page: 125010
  year: Dec. 2010
  ident: bib15
  article-title: Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication
  publication-title: J Micromech Microeng
– volume: 10
  year: 2017
  ident: bib18
  article-title: Investigation of quasi-static indentation response of inkjet printed sandwich structures under variousindenter geometries
  publication-title: Materials (Basel)
– year: 2017
  ident: bib2
  article-title: The boom in 3D-printed sensor technology
– volume: 2759
  year: 2019
  ident: bib28
  article-title: The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study
  publication-title: Virtual Phys Prototyp
– volume: 110
  start-page: 442
  year: 2017
  end-page: 458
  ident: bib8
  article-title: “3D printing of polymer matrix composites : a review and prospective
  publication-title: Composites Part B
– volume: 7
  start-page: 143
  year: 2018
  end-page: 151
  ident: bib20
  article-title: 3-D-printed smart screw: functionalization during additive fabrication
  publication-title: J. Sensors Sens. Syst.
– volume: 52
  start-page: 475
  year: May 2014
  end-page: 489
  ident: bib26
  article-title: Is principal component analysis an effective tool to predict face attractiveness? A contribution based on real 3D faces of highly selected attractive women, scanned with stereophotogrammetry
  publication-title: Med Biol Eng Comput
– volume: 7
  start-page: 169
  year: 2018
  end-page: 181
  ident: bib1
  article-title: Embedded sensing: integrating sensors in 3-D printed structures
  publication-title: J. Sensors Sens. Syst.
– volume: 16
  year: 2011
  ident: bib5
  article-title: Design principles for rapid prototyping forces sensors using 3-D printing
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 26
  start-page: 1678
  year: 2016
  end-page: 1698
  ident: bib4
  article-title: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review
  publication-title: Adv Funct Mater
– volume: 7
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib11
  article-title: A simple, low-cost conductive composite material for 3D printing of electronic sensors
  publication-title: PLoS One
– volume: 137
  start-page: 140
  year: 2018
  end-page: 151
  ident: bib17
  article-title: Crack monitoring and failure investigation on inkjet printed sandwich structures under quasi-static indentation test
  publication-title: Mater Des
– volume: 52
  start-page: 623
  year: 2017
  end-page: 652
  ident: bib3
  article-title: A review of 3D-printed sensors
  publication-title: Appl Spectrosc Rev
– reference: J. Gonçalves et al., “Electrically conductive polyetheretherketone nanocomposite Filaments : from production to fused deposition modeling,” pp. 1–20.
– volume: 29
  year: 2017
  ident: bib24
  article-title: 3D printed stretchable tactile sensors
  publication-title: Adv Mater
– volume: 13
  year: 1976
  ident: bib9
  article-title: Size Effect on the melting temperature of gold particles
  publication-title: Phys Rev A
– volume: 7
  start-page: 169
  issue: 1
  year: 2018
  ident: 10.1016/j.precisioneng.2019.11.019_bib1
  article-title: Embedded sensing: integrating sensors in 3-D printed structures
  publication-title: J. Sensors Sens. Syst.
  doi: 10.5194/jsss-7-169-2018
– volume: 263
  start-page: 493
  year: 2017
  ident: 10.1016/j.precisioneng.2019.11.019_bib21
  article-title: Sensors and Actuators A : physical 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments
  publication-title: Sensors Actuators A. Phys.
  doi: 10.1016/j.sna.2017.07.020
– volume: 2
  start-page: 792
  issue: 13
  year: 2018
  ident: 10.1016/j.precisioneng.2019.11.019_bib23
  article-title: 3D printing of highly stretchable and sensitive strain sensors using graphene based composites
  publication-title: Proceedings
– volume: :6307-12
  year: 2014
  ident: 10.1016/j.precisioneng.2019.11.019_bib7
  article-title: Embedded 3D printing of strain sensors within highly stretchable elastomers
  publication-title: Adv Mater
– volume: 6
  start-page: 390
  issue: 4
  year: 2006
  ident: 10.1016/j.precisioneng.2019.11.019_bib27
  article-title: Digital photogrammetry for facial recognition
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.2356499
– year: 2017
  ident: 10.1016/j.precisioneng.2019.11.019_bib2
– volume: 137
  start-page: 140
  year: 2018
  ident: 10.1016/j.precisioneng.2019.11.019_bib17
  article-title: Crack monitoring and failure investigation on inkjet printed sandwich structures under quasi-static indentation test
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.10.014
– volume: 1
  start-page: 1600013
  issue: 1
  year: 2016
  ident: 10.1016/j.precisioneng.2019.11.019_bib25
  article-title: Application of 3D printing for smart objects with embedded electronic sensors and systems
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201600013
– volume: 9
  start-page: 11035
  issue: 31
  year: 2017
  ident: 10.1016/j.precisioneng.2019.11.019_bib22
  article-title: 3D printable composite dough for stretchable, ultrasensitive and body-patchable strain sensors
  publication-title: Nanoscale
  doi: 10.1039/C7NR01865G
– volume: 16
  start-page: 1375
  issue: 7
  year: 2015
  ident: 10.1016/j.precisioneng.2019.11.019_bib16
  article-title: Combined 3D printing technologies and material for fabrication of tactile sensors
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-015-0181-3
– volume: 226
  start-page: 7
  year: 2017
  ident: 10.1016/j.precisioneng.2019.11.019_bib14
  article-title: Electrically conductive nanocomposites for fused deposition modelling
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2017.01.009
– volume: 10
  issue: 3
  year: 2017
  ident: 10.1016/j.precisioneng.2019.11.019_bib18
  article-title: Investigation of quasi-static indentation response of inkjet printed sandwich structures under variousindenter geometries
  publication-title: Materials (Basel)
  doi: 10.3390/ma10030290
– volume: 20
  start-page: 125010
  issue: 12
  year: 2010
  ident: 10.1016/j.precisioneng.2019.11.019_bib15
  article-title: Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication
  publication-title: J Micromech Microeng
  doi: 10.1088/0960-1317/20/12/125010
– volume: 26
  start-page: 1678
  year: 2016
  ident: 10.1016/j.precisioneng.2019.11.019_bib4
  article-title: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201504755
– volume: 13
  issue: 2287
  year: 1976
  ident: 10.1016/j.precisioneng.2019.11.019_bib9
  article-title: Size Effect on the melting temperature of gold particles
  publication-title: Phys Rev A
– volume: 52
  start-page: 623
  issue: 7
  year: 2017
  ident: 10.1016/j.precisioneng.2019.11.019_bib3
  article-title: A review of 3D-printed sensors
  publication-title: Appl Spectrosc Rev
  doi: 10.1080/05704928.2017.1287082
– volume: 52
  start-page: 475
  issue: 5
  year: 2014
  ident: 10.1016/j.precisioneng.2019.11.019_bib26
  article-title: Is principal component analysis an effective tool to predict face attractiveness? A contribution based on real 3D faces of highly selected attractive women, scanned with stereophotogrammetry
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-014-1148-8
– volume: 570
  start-page: 132
  year: 2008
  ident: 10.1016/j.precisioneng.2019.11.019_bib10
  article-title: Shape and size dependent melting point temperature of nanoparticles
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.570.132
– volume: 2759
  year: 2019
  ident: 10.1016/j.precisioneng.2019.11.019_bib19
  article-title: Compressive behaviour of Neovius Triply Periodic Minimal Surface cellular structure manufactured by fused deposition modelling
  publication-title: Virtual Phys Prototyp
– volume: 16
  year: 2011
  ident: 10.1016/j.precisioneng.2019.11.019_bib5
  article-title: Design principles for rapid prototyping forces sensors using 3-D printing
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2011.2160353
– volume: 7
  start-page: 1
  issue: 11
  year: 2012
  ident: 10.1016/j.precisioneng.2019.11.019_bib11
  article-title: A simple, low-cost conductive composite material for 3D printing of electronic sensors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049365
– volume: 110
  start-page: 442
  year: 2017
  ident: 10.1016/j.precisioneng.2019.11.019_bib8
  article-title: “3D printing of polymer matrix composites : a review and prospective
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2016.11.034
– volume: 10
  start-page: 646
  year: 2017
  ident: 10.1016/j.precisioneng.2019.11.019_bib6
  article-title: Designing and prototyping a sensors head for test and certification of UAV components
  publication-title: Int J Smart Sens Intell Syst
– ident: 10.1016/j.precisioneng.2019.11.019_bib13
– volume: 29
  issue: 27
  year: 2017
  ident: 10.1016/j.precisioneng.2019.11.019_bib24
  article-title: 3D printed stretchable tactile sensors
  publication-title: Adv Mater
  doi: 10.1002/adma.201701218
– volume: 29
  start-page: 1
  issue: 40
  year: 2017
  ident: 10.1016/j.precisioneng.2019.11.019_bib12
  article-title: Hybrid 3D printing of soft electronics
  publication-title: Adv Mater
  doi: 10.1002/adma.201703817
– volume: 7
  start-page: 143
  issue: 1
  year: 2018
  ident: 10.1016/j.precisioneng.2019.11.019_bib20
  article-title: 3-D-printed smart screw: functionalization during additive fabrication
  publication-title: J. Sensors Sens. Syst.
  doi: 10.5194/jsss-7-143-2018
– volume: 2759
  year: 2019
  ident: 10.1016/j.precisioneng.2019.11.019_bib28
  article-title: The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study
  publication-title: Virtual Phys Prototyp
SSID ssj0007804
Score 2.4268713
Snippet In this paper we present the exploitation of Fused Filament Fabrication (FFF) to manufacture a load cell using double extrusion of conductive and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113
Title Additive manufacturing and characterization of a load cell with embedded strain gauges
URI https://dx.doi.org/10.1016/j.precisioneng.2019.11.019
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD143TbJbl4HD6UoVbEnK72FfaVU0rT0cfW3O5NHreCh4CmwyZBldpj5dvnmW0LurYvrLALmiTRkUG8liyM_YhHXUF1cnqYGD_TfhsFgJF7G_rhB-nUvDNIqq9xf5vQiW1cj3cqb3cV02kVaEoAJPwYIgqImqPgpRIhR3vn6oXmgwE5JY3QZfl0LjxYcr8WyvsgmnyDNK-6goieq7vxVpHYKz9MJOa4QI-2VkzolDZufkaMdHcFz8tEzpuAA0ZnMN9irUDQfUpkbqreKzGXDJZ2nVNJsLuGVzTKKB7HUzpSFDGToqrgygk7kZmJXF2T09PjeH7DqwgSmARetmQZ4YjWXnhNqHUpuVahj4zkSij6XXARcBZ6nhHQA9NnYChkESjuOERx-AUjlkjRzcMYVodYEGgbS0IlTERkZRYJrA_sdxVNfuaZF4tpDia7UxHGGWVLTxj6TXe8m6F3YbiTwaBG-tV2Umhp7WT3UC5H8ipAEkv8e9tf_tL8hhx7utQv-2S1prpcbeweAZK3aRcS1yUHv-XUw_AbS7-L9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEB3S5ND2ULrSdNWhVze2JW-HHkJocJrllJTcjCzJocVxQpb_78hLSKGHQE8GmUFiJGaexJs3AC_K0vvMXMNmiWdgvuVG4Du-4VOB2cWiSSL1g_5w5IYT9jF1pjXoVLUwmlZZxv4ipufRuhxpld5sLb--WpqWhGDCCRCCaFETegQNrU7l1KHR7vXD0S4ga42dgsloGdqg0h7NaV7LVdXLJptpplfwqkU9tfDOX3lqL_d0z-GsBI2kXazrAmoqu4TTPSnBK_hsS5nTgMicZ1tdrpDXHxKeSSJ2osxFzSVZJISTdMHxl0pTot9iiZrHCoOQJOu8awSZ8e1Mra9h0n0fd0Kj7JlgCIRGG0MgQlGCctv0hPA4VbEnAmmbHPM-5ZS5NHZtO2bcRNynAsW468bCNCWjOAWClRuoZ-iMWyBKugIHEs8MEuZL7vuMColXnpgmTmzJJgSVhyJRCorrFaZRxRz7jva9G2nv4o0jwk8T6M52WchqHGT1Vm1E9OuQRBj_D7C_-6f9MxyH4-EgGvRG_Xs4sfXVO6ejPUB9s9qqR8Qnm_ipPH8_mJ3lrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+manufacturing+and+characterization+of+a+load+cell+with+embedded+strain+gauges&rft.jtitle=Precision+engineering&rft.au=Stano%2C+Gianni&rft.au=Di+Nisio%2C+Attilio&rft.au=Lanzolla%2C+Annamaria&rft.au=Percoco%2C+Gianluca&rft.date=2020-03-01&rft.issn=0141-6359&rft.volume=62&rft.spage=113&rft.epage=120&rft_id=info:doi/10.1016%2Fj.precisioneng.2019.11.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2019_11_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon