Additive manufacturing and characterization of a load cell with embedded strain gauges
In this paper we present the exploitation of Fused Filament Fabrication (FFF) to manufacture a load cell using double extrusion of conductive and non-conductive commercial materials in a single-step printing cycle. A load cell with four embedded strain gauges, manufactured with tailored process para...
Saved in:
Published in | Precision engineering Vol. 62; pp. 113 - 120 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we present the exploitation of Fused Filament Fabrication (FFF) to manufacture a load cell using double extrusion of conductive and non-conductive commercial materials in a single-step printing cycle. A load cell with four embedded strain gauges, manufactured with tailored process parameters and strategies, was used to deposit the conductive filament to obtain near equal electrical resistance values among the four strain gauges, aiming to connect them in a full Wheatstone bridge configuration. Subsequently, several tests were performed, firstly to understand the behavior of each strain gauge and then to characterize the load cell. The tests showed that the strain gauges are sensible to compressive and tensile deformation and that the load cell's voltage, obtained by connecting the four strain gauges in a full Wheatstone bridge, decreases as the force applied increases. This work demonstrates the potential of FFF technology in the sensor manufacturing field and that it is possible to integrate sensitive elements into non-sensitive elements without an additional assembly process by using low-cost commercial filaments and 3D printers.
•Manufacturing of a load cell with embedded strain gauges by using 3D printing.•Conductive and non-conductive materials in the same printing cycle.•Similar electrical resistance values among the four strain gauges.•Consistent behavior of strain gauges: two detect compression and two tension.•The output voltage of the load cell decreases when the applied weight increases. |
---|---|
AbstractList | In this paper we present the exploitation of Fused Filament Fabrication (FFF) to manufacture a load cell using double extrusion of conductive and non-conductive commercial materials in a single-step printing cycle. A load cell with four embedded strain gauges, manufactured with tailored process parameters and strategies, was used to deposit the conductive filament to obtain near equal electrical resistance values among the four strain gauges, aiming to connect them in a full Wheatstone bridge configuration. Subsequently, several tests were performed, firstly to understand the behavior of each strain gauge and then to characterize the load cell. The tests showed that the strain gauges are sensible to compressive and tensile deformation and that the load cell's voltage, obtained by connecting the four strain gauges in a full Wheatstone bridge, decreases as the force applied increases. This work demonstrates the potential of FFF technology in the sensor manufacturing field and that it is possible to integrate sensitive elements into non-sensitive elements without an additional assembly process by using low-cost commercial filaments and 3D printers.
•Manufacturing of a load cell with embedded strain gauges by using 3D printing.•Conductive and non-conductive materials in the same printing cycle.•Similar electrical resistance values among the four strain gauges.•Consistent behavior of strain gauges: two detect compression and two tension.•The output voltage of the load cell decreases when the applied weight increases. |
Author | Lanzolla, Annamaria Percoco, Gianluca Stano, Gianni Di Nisio, Attilio |
Author_xml | – sequence: 1 givenname: Gianni surname: Stano fullname: Stano, Gianni email: gianni.stano@poliba.it organization: Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Viale Japigia 182, 70125, Bari, Italy – sequence: 2 givenname: Attilio surname: Di Nisio fullname: Di Nisio, Attilio organization: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E.Orabona 4, 70125, Bari, Italy – sequence: 3 givenname: Annamaria surname: Lanzolla fullname: Lanzolla, Annamaria organization: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E.Orabona 4, 70125, Bari, Italy – sequence: 4 givenname: Gianluca surname: Percoco fullname: Percoco, Gianluca organization: Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Viale Japigia 182, 70125, Bari, Italy |
BookMark | eNqNkEtPwzAQhC1UJFrgP1jcE_xI44YTVXlKlbgAV2tjb1pXaVLZbhH8elzKAXHqaaRZzbeaGZFB13dIyBVnOWe8vF7lG4_GBZfsbpELxquc8zzJCRnyiZKZkEoMyJDxgmelHFdnZBTCijGmJqwYkveptS66HdI1dNsGTNx61y0odJaaJfhkoHdfENMH2jcUaNtDOmHb0g8XlxTXNVqLlobowXV0AdsFhgty2kAb8PJXz8nbw_3r7Cmbvzw-z6bzzEhRxMyUfIxGgmDKGAUSa2UqKxhUjEuQRSnrUoi6AKZUgRUWUJa1YcwWMr2sKnlObg5c4_sQPDZ6490a_KfmTO8X0iv9dyG9X0hzrpOk8O2_sHHxp-m-Snsc4u6AwFRy59DrYBx2Bq1Lkaht747BfANwUpAU |
CitedBy_id | crossref_primary_10_3390_app12178607 crossref_primary_10_1089_3dp_2022_0263 crossref_primary_10_1109_JSEN_2024_3439743 crossref_primary_10_1002_adma_202004782 crossref_primary_10_1016_j_measurement_2020_108562 crossref_primary_10_1541_ieejjia_24007230 crossref_primary_10_1007_s41315_024_00346_x crossref_primary_10_1016_j_ymssp_2020_107475 crossref_primary_10_1007_s00170_020_06318_2 crossref_primary_10_3390_s21196324 crossref_primary_10_1007_s40964_020_00158_y crossref_primary_10_1016_j_mechmachtheory_2024_105812 crossref_primary_10_1109_TMECH_2022_3192324 crossref_primary_10_1177_08927057241283312 crossref_primary_10_1007_s12008_023_01718_6 crossref_primary_10_1016_j_matpr_2021_03_745 crossref_primary_10_1108_RPJ_02_2023_0069 crossref_primary_10_1016_j_jajp_2021_100046 crossref_primary_10_1016_j_oceaneng_2023_114427 crossref_primary_10_1002_admt_202101321 crossref_primary_10_1007_s12046_025_02719_9 crossref_primary_10_1364_BOE_473013 crossref_primary_10_3390_s21113675 crossref_primary_10_1007_s40964_024_00570_8 crossref_primary_10_1109_JSEN_2024_3369025 crossref_primary_10_3390_polym15092159 crossref_primary_10_3390_s22197508 crossref_primary_10_1142_S2737599424400139 crossref_primary_10_1016_j_procir_2022_06_031 crossref_primary_10_1016_j_addma_2020_101791 |
Cites_doi | 10.5194/jsss-7-169-2018 10.1016/j.sna.2017.07.020 10.1115/1.2356499 10.1016/j.matdes.2017.10.014 10.1002/admt.201600013 10.1039/C7NR01865G 10.1007/s12541-015-0181-3 10.1016/j.synthmet.2017.01.009 10.3390/ma10030290 10.1088/0960-1317/20/12/125010 10.1002/adfm.201504755 10.1080/05704928.2017.1287082 10.1007/s11517-014-1148-8 10.4028/www.scientific.net/MSF.570.132 10.1109/TMECH.2011.2160353 10.1371/journal.pone.0049365 10.1016/j.compositesb.2016.11.034 10.1002/adma.201701218 10.1002/adma.201703817 10.5194/jsss-7-143-2018 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2019.11.019 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2372 |
EndPage | 120 |
ExternalDocumentID | 10_1016_j_precisioneng_2019_11_019 S0141635919305033 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c324t-c615ec3a207cc7a3eb7c9d20a9013a3463b622b4a0774e9e4a66bc00d43ded993 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Thu Apr 24 22:53:57 EDT 2025 Tue Jul 01 02:13:01 EDT 2025 Fri Feb 23 02:45:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-c615ec3a207cc7a3eb7c9d20a9013a3463b622b4a0774e9e4a66bc00d43ded993 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_precisioneng_2019_11_019 crossref_citationtrail_10_1016_j_precisioneng_2019_11_019 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2019_11_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationTitle | Precision engineering |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Alsharari, Chen, Shu (bib23) 2018; 2 Ota (bib25) 2016; 1 Khan, Masood, Ibrahim, Ahmad (bib19) 2019; 2759 Dijkshoorn (bib1) 2018; 7 Xu (bib2) 2017 J. Gonçalves et al., “Electrically conductive polyetheretherketone nanocomposite Filaments : from production to fused deposition modeling,” pp. 1–20. Tamburrino, Graziosi, Bordegoni (bib28) 2019; 2759 Gupta, Talati, Jha (bib10) 2008; 570 Kim (bib22) 2017; 9 Muth (bib7) 2014; :6307-12 Buffat, Borrel (bib9) 1976; 13 Guo, Qiu, Meng, Park, McAlpine (bib24) 2017; 29 Adamo (bib6) 2017; 10 Leigh, Bradley, Purssell, Billson, Hutchins (bib11) 2012; 7 Galantucci, Di Gioia, Lavecchia, Percoco (bib26) May 2014; 52 Wang, Jiang, Zhou, Gou, Hui (bib8) 2017; 110 Kesner, Howe (bib5) 2011; 16 Dorigato, Moretti, Dul, Unterberger, Pegoretti (bib14) 2017; 226 Ko, Chung, Hotz, Nam, Grigoropoulos (bib15) Dec. 2010; 20 Vatani, Lu, Engeberg, Choi (bib16) 2015; 16 Dikshit, Nagalingam, Yap, Sing, Yeong, Wei (bib17) 2018; 137 Ni, Ji, Long, Bu, Chen, Zhuang (bib3) 2017; 52 Dikshit, Nagalingam, Yap, Sing, Yeong, Wei (bib18) 2017; 10 Amjadi, Kyung, Park, Sitti (bib4) 2016; 26 Kim, Park, Suh, Kim, Jeong, Park (bib21) 2017; 263 Gräbner, Dödtmann, Dumstorff, Lucklum (bib20) 2018; 7 Valentine (bib12) 2017; 29 Galantucci, Ferrandes, Percoco (bib27) 2006; 6 Galantucci (10.1016/j.precisioneng.2019.11.019_bib26) 2014; 52 Adamo (10.1016/j.precisioneng.2019.11.019_bib6) 2017; 10 Kim (10.1016/j.precisioneng.2019.11.019_bib21) 2017; 263 Kesner (10.1016/j.precisioneng.2019.11.019_bib5) 2011; 16 Dikshit (10.1016/j.precisioneng.2019.11.019_bib17) 2018; 137 Leigh (10.1016/j.precisioneng.2019.11.019_bib11) 2012; 7 Dijkshoorn (10.1016/j.precisioneng.2019.11.019_bib1) 2018; 7 Gupta (10.1016/j.precisioneng.2019.11.019_bib10) 2008; 570 Ota (10.1016/j.precisioneng.2019.11.019_bib25) 2016; 1 Xu (10.1016/j.precisioneng.2019.11.019_bib2) 2017 Dorigato (10.1016/j.precisioneng.2019.11.019_bib14) 2017; 226 Ni (10.1016/j.precisioneng.2019.11.019_bib3) 2017; 52 Vatani (10.1016/j.precisioneng.2019.11.019_bib16) 2015; 16 Tamburrino (10.1016/j.precisioneng.2019.11.019_bib28) 2019; 2759 10.1016/j.precisioneng.2019.11.019_bib13 Guo (10.1016/j.precisioneng.2019.11.019_bib24) 2017; 29 Kim (10.1016/j.precisioneng.2019.11.019_bib22) 2017; 9 Wang (10.1016/j.precisioneng.2019.11.019_bib8) 2017; 110 Ko (10.1016/j.precisioneng.2019.11.019_bib15) 2010; 20 Buffat (10.1016/j.precisioneng.2019.11.019_bib9) 1976; 13 Valentine (10.1016/j.precisioneng.2019.11.019_bib12) 2017; 29 Muth (10.1016/j.precisioneng.2019.11.019_bib7) 2014; :6307-12 Khan (10.1016/j.precisioneng.2019.11.019_bib19) 2019; 2759 Alsharari (10.1016/j.precisioneng.2019.11.019_bib23) 2018; 2 Gräbner (10.1016/j.precisioneng.2019.11.019_bib20) 2018; 7 Dikshit (10.1016/j.precisioneng.2019.11.019_bib18) 2017; 10 Galantucci (10.1016/j.precisioneng.2019.11.019_bib27) 2006; 6 Amjadi (10.1016/j.precisioneng.2019.11.019_bib4) 2016; 26 |
References_xml | – volume: 263 start-page: 493 year: 2017 end-page: 500 ident: bib21 article-title: Sensors and Actuators A : physical 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments publication-title: Sensors Actuators A. Phys. – volume: 2759 year: 2019 ident: bib19 article-title: Compressive behaviour of Neovius Triply Periodic Minimal Surface cellular structure manufactured by fused deposition modelling publication-title: Virtual Phys Prototyp – volume: 6 start-page: 390 year: 2006 end-page: 396 ident: bib27 article-title: Digital photogrammetry for facial recognition publication-title: J Comput Inf Sci Eng – volume: 9 start-page: 11035 year: 2017 end-page: 11046 ident: bib22 article-title: 3D printable composite dough for stretchable, ultrasensitive and body-patchable strain sensors publication-title: Nanoscale – volume: 226 start-page: 7 year: 2017 end-page: 14 ident: bib14 article-title: Electrically conductive nanocomposites for fused deposition modelling publication-title: Synth Met – volume: 29 start-page: 1 year: 2017 end-page: 8 ident: bib12 article-title: Hybrid 3D printing of soft electronics publication-title: Adv Mater – volume: 1 start-page: 1600013 year: 2016 ident: bib25 article-title: Application of 3D printing for smart objects with embedded electronic sensors and systems publication-title: Adv. Mater. Technol. – volume: 570 start-page: 132 year: 2008 end-page: 137 ident: bib10 article-title: Shape and size dependent melting point temperature of nanoparticles publication-title: Mater Sci Forum – volume: 16 start-page: 1375 year: 2015 end-page: 1383 ident: bib16 article-title: Combined 3D printing technologies and material for fabrication of tactile sensors publication-title: Int J Precis Eng Manuf – volume: 10 start-page: 646 year: 2017 end-page: 672 ident: bib6 article-title: Designing and prototyping a sensors head for test and certification of UAV components publication-title: Int J Smart Sens Intell Syst – volume: :6307-12 year: 2014 ident: bib7 article-title: Embedded 3D printing of strain sensors within highly stretchable elastomers publication-title: Adv Mater – volume: 2 start-page: 792 year: 2018 ident: bib23 article-title: 3D printing of highly stretchable and sensitive strain sensors using graphene based composites publication-title: Proceedings – volume: 20 start-page: 125010 year: Dec. 2010 ident: bib15 article-title: Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication publication-title: J Micromech Microeng – volume: 10 year: 2017 ident: bib18 article-title: Investigation of quasi-static indentation response of inkjet printed sandwich structures under variousindenter geometries publication-title: Materials (Basel) – year: 2017 ident: bib2 article-title: The boom in 3D-printed sensor technology – volume: 2759 year: 2019 ident: bib28 article-title: The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study publication-title: Virtual Phys Prototyp – volume: 110 start-page: 442 year: 2017 end-page: 458 ident: bib8 article-title: “3D printing of polymer matrix composites : a review and prospective publication-title: Composites Part B – volume: 7 start-page: 143 year: 2018 end-page: 151 ident: bib20 article-title: 3-D-printed smart screw: functionalization during additive fabrication publication-title: J. Sensors Sens. Syst. – volume: 52 start-page: 475 year: May 2014 end-page: 489 ident: bib26 article-title: Is principal component analysis an effective tool to predict face attractiveness? A contribution based on real 3D faces of highly selected attractive women, scanned with stereophotogrammetry publication-title: Med Biol Eng Comput – volume: 7 start-page: 169 year: 2018 end-page: 181 ident: bib1 article-title: Embedded sensing: integrating sensors in 3-D printed structures publication-title: J. Sensors Sens. Syst. – volume: 16 year: 2011 ident: bib5 article-title: Design principles for rapid prototyping forces sensors using 3-D printing publication-title: IEEE/ASME Trans. Mechatronics – volume: 26 start-page: 1678 year: 2016 end-page: 1698 ident: bib4 article-title: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review publication-title: Adv Funct Mater – volume: 7 start-page: 1 year: 2012 end-page: 6 ident: bib11 article-title: A simple, low-cost conductive composite material for 3D printing of electronic sensors publication-title: PLoS One – volume: 137 start-page: 140 year: 2018 end-page: 151 ident: bib17 article-title: Crack monitoring and failure investigation on inkjet printed sandwich structures under quasi-static indentation test publication-title: Mater Des – volume: 52 start-page: 623 year: 2017 end-page: 652 ident: bib3 article-title: A review of 3D-printed sensors publication-title: Appl Spectrosc Rev – reference: J. Gonçalves et al., “Electrically conductive polyetheretherketone nanocomposite Filaments : from production to fused deposition modeling,” pp. 1–20. – volume: 29 year: 2017 ident: bib24 article-title: 3D printed stretchable tactile sensors publication-title: Adv Mater – volume: 13 year: 1976 ident: bib9 article-title: Size Effect on the melting temperature of gold particles publication-title: Phys Rev A – volume: 7 start-page: 169 issue: 1 year: 2018 ident: 10.1016/j.precisioneng.2019.11.019_bib1 article-title: Embedded sensing: integrating sensors in 3-D printed structures publication-title: J. Sensors Sens. Syst. doi: 10.5194/jsss-7-169-2018 – volume: 263 start-page: 493 year: 2017 ident: 10.1016/j.precisioneng.2019.11.019_bib21 article-title: Sensors and Actuators A : physical 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments publication-title: Sensors Actuators A. Phys. doi: 10.1016/j.sna.2017.07.020 – volume: 2 start-page: 792 issue: 13 year: 2018 ident: 10.1016/j.precisioneng.2019.11.019_bib23 article-title: 3D printing of highly stretchable and sensitive strain sensors using graphene based composites publication-title: Proceedings – volume: :6307-12 year: 2014 ident: 10.1016/j.precisioneng.2019.11.019_bib7 article-title: Embedded 3D printing of strain sensors within highly stretchable elastomers publication-title: Adv Mater – volume: 6 start-page: 390 issue: 4 year: 2006 ident: 10.1016/j.precisioneng.2019.11.019_bib27 article-title: Digital photogrammetry for facial recognition publication-title: J Comput Inf Sci Eng doi: 10.1115/1.2356499 – year: 2017 ident: 10.1016/j.precisioneng.2019.11.019_bib2 – volume: 137 start-page: 140 year: 2018 ident: 10.1016/j.precisioneng.2019.11.019_bib17 article-title: Crack monitoring and failure investigation on inkjet printed sandwich structures under quasi-static indentation test publication-title: Mater Des doi: 10.1016/j.matdes.2017.10.014 – volume: 1 start-page: 1600013 issue: 1 year: 2016 ident: 10.1016/j.precisioneng.2019.11.019_bib25 article-title: Application of 3D printing for smart objects with embedded electronic sensors and systems publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600013 – volume: 9 start-page: 11035 issue: 31 year: 2017 ident: 10.1016/j.precisioneng.2019.11.019_bib22 article-title: 3D printable composite dough for stretchable, ultrasensitive and body-patchable strain sensors publication-title: Nanoscale doi: 10.1039/C7NR01865G – volume: 16 start-page: 1375 issue: 7 year: 2015 ident: 10.1016/j.precisioneng.2019.11.019_bib16 article-title: Combined 3D printing technologies and material for fabrication of tactile sensors publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-015-0181-3 – volume: 226 start-page: 7 year: 2017 ident: 10.1016/j.precisioneng.2019.11.019_bib14 article-title: Electrically conductive nanocomposites for fused deposition modelling publication-title: Synth Met doi: 10.1016/j.synthmet.2017.01.009 – volume: 10 issue: 3 year: 2017 ident: 10.1016/j.precisioneng.2019.11.019_bib18 article-title: Investigation of quasi-static indentation response of inkjet printed sandwich structures under variousindenter geometries publication-title: Materials (Basel) doi: 10.3390/ma10030290 – volume: 20 start-page: 125010 issue: 12 year: 2010 ident: 10.1016/j.precisioneng.2019.11.019_bib15 article-title: Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication publication-title: J Micromech Microeng doi: 10.1088/0960-1317/20/12/125010 – volume: 26 start-page: 1678 year: 2016 ident: 10.1016/j.precisioneng.2019.11.019_bib4 article-title: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review publication-title: Adv Funct Mater doi: 10.1002/adfm.201504755 – volume: 13 issue: 2287 year: 1976 ident: 10.1016/j.precisioneng.2019.11.019_bib9 article-title: Size Effect on the melting temperature of gold particles publication-title: Phys Rev A – volume: 52 start-page: 623 issue: 7 year: 2017 ident: 10.1016/j.precisioneng.2019.11.019_bib3 article-title: A review of 3D-printed sensors publication-title: Appl Spectrosc Rev doi: 10.1080/05704928.2017.1287082 – volume: 52 start-page: 475 issue: 5 year: 2014 ident: 10.1016/j.precisioneng.2019.11.019_bib26 article-title: Is principal component analysis an effective tool to predict face attractiveness? A contribution based on real 3D faces of highly selected attractive women, scanned with stereophotogrammetry publication-title: Med Biol Eng Comput doi: 10.1007/s11517-014-1148-8 – volume: 570 start-page: 132 year: 2008 ident: 10.1016/j.precisioneng.2019.11.019_bib10 article-title: Shape and size dependent melting point temperature of nanoparticles publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.570.132 – volume: 2759 year: 2019 ident: 10.1016/j.precisioneng.2019.11.019_bib19 article-title: Compressive behaviour of Neovius Triply Periodic Minimal Surface cellular structure manufactured by fused deposition modelling publication-title: Virtual Phys Prototyp – volume: 16 year: 2011 ident: 10.1016/j.precisioneng.2019.11.019_bib5 article-title: Design principles for rapid prototyping forces sensors using 3-D printing publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2011.2160353 – volume: 7 start-page: 1 issue: 11 year: 2012 ident: 10.1016/j.precisioneng.2019.11.019_bib11 article-title: A simple, low-cost conductive composite material for 3D printing of electronic sensors publication-title: PLoS One doi: 10.1371/journal.pone.0049365 – volume: 110 start-page: 442 year: 2017 ident: 10.1016/j.precisioneng.2019.11.019_bib8 article-title: “3D printing of polymer matrix composites : a review and prospective publication-title: Composites Part B doi: 10.1016/j.compositesb.2016.11.034 – volume: 10 start-page: 646 year: 2017 ident: 10.1016/j.precisioneng.2019.11.019_bib6 article-title: Designing and prototyping a sensors head for test and certification of UAV components publication-title: Int J Smart Sens Intell Syst – ident: 10.1016/j.precisioneng.2019.11.019_bib13 – volume: 29 issue: 27 year: 2017 ident: 10.1016/j.precisioneng.2019.11.019_bib24 article-title: 3D printed stretchable tactile sensors publication-title: Adv Mater doi: 10.1002/adma.201701218 – volume: 29 start-page: 1 issue: 40 year: 2017 ident: 10.1016/j.precisioneng.2019.11.019_bib12 article-title: Hybrid 3D printing of soft electronics publication-title: Adv Mater doi: 10.1002/adma.201703817 – volume: 7 start-page: 143 issue: 1 year: 2018 ident: 10.1016/j.precisioneng.2019.11.019_bib20 article-title: 3-D-printed smart screw: functionalization during additive fabrication publication-title: J. Sensors Sens. Syst. doi: 10.5194/jsss-7-143-2018 – volume: 2759 year: 2019 ident: 10.1016/j.precisioneng.2019.11.019_bib28 article-title: The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study publication-title: Virtual Phys Prototyp |
SSID | ssj0007804 |
Score | 2.4268713 |
Snippet | In this paper we present the exploitation of Fused Filament Fabrication (FFF) to manufacture a load cell using double extrusion of conductive and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113 |
Title | Additive manufacturing and characterization of a load cell with embedded strain gauges |
URI | https://dx.doi.org/10.1016/j.precisioneng.2019.11.019 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD143TbJbl4HD6UoVbEnK72FfaVU0rT0cfW3O5NHreCh4CmwyZBldpj5dvnmW0LurYvrLALmiTRkUG8liyM_YhHXUF1cnqYGD_TfhsFgJF7G_rhB-nUvDNIqq9xf5vQiW1cj3cqb3cV02kVaEoAJPwYIgqImqPgpRIhR3vn6oXmgwE5JY3QZfl0LjxYcr8WyvsgmnyDNK-6goieq7vxVpHYKz9MJOa4QI-2VkzolDZufkaMdHcFz8tEzpuAA0ZnMN9irUDQfUpkbqreKzGXDJZ2nVNJsLuGVzTKKB7HUzpSFDGToqrgygk7kZmJXF2T09PjeH7DqwgSmARetmQZ4YjWXnhNqHUpuVahj4zkSij6XXARcBZ6nhHQA9NnYChkESjuOERx-AUjlkjRzcMYVodYEGgbS0IlTERkZRYJrA_sdxVNfuaZF4tpDia7UxHGGWVLTxj6TXe8m6F3YbiTwaBG-tV2Umhp7WT3UC5H8ipAEkv8e9tf_tL8hhx7utQv-2S1prpcbeweAZK3aRcS1yUHv-XUw_AbS7-L9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEB3S5ND2ULrSdNWhVze2JW-HHkJocJrllJTcjCzJocVxQpb_78hLSKGHQE8GmUFiJGaexJs3AC_K0vvMXMNmiWdgvuVG4Du-4VOB2cWiSSL1g_5w5IYT9jF1pjXoVLUwmlZZxv4ipufRuhxpld5sLb--WpqWhGDCCRCCaFETegQNrU7l1KHR7vXD0S4ga42dgsloGdqg0h7NaV7LVdXLJptpplfwqkU9tfDOX3lqL_d0z-GsBI2kXazrAmoqu4TTPSnBK_hsS5nTgMicZ1tdrpDXHxKeSSJ2osxFzSVZJISTdMHxl0pTot9iiZrHCoOQJOu8awSZ8e1Mra9h0n0fd0Kj7JlgCIRGG0MgQlGCctv0hPA4VbEnAmmbHPM-5ZS5NHZtO2bcRNynAsW468bCNCWjOAWClRuoZ-iMWyBKugIHEs8MEuZL7vuMColXnpgmTmzJJgSVhyJRCorrFaZRxRz7jva9G2nv4o0jwk8T6M52WchqHGT1Vm1E9OuQRBj_D7C_-6f9MxyH4-EgGvRG_Xs4sfXVO6ejPUB9s9qqR8Qnm_ipPH8_mJ3lrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+manufacturing+and+characterization+of+a+load+cell+with+embedded+strain+gauges&rft.jtitle=Precision+engineering&rft.au=Stano%2C+Gianni&rft.au=Di+Nisio%2C+Attilio&rft.au=Lanzolla%2C+Annamaria&rft.au=Percoco%2C+Gianluca&rft.date=2020-03-01&rft.issn=0141-6359&rft.volume=62&rft.spage=113&rft.epage=120&rft_id=info:doi/10.1016%2Fj.precisioneng.2019.11.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2019_11_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |