Li0.5PAA domains filled in porous sodium alginate skeleton: A 3D bicontinuous composite network binder to stabilize micro-silicon anode for high-performance lithium ion battery
•A cross-linked bicontinuous composite network binder is built.•LixPAA solution can penetrate deep into the pores of the SA network.•SA and Li0.5PAA interlock tightly each other via ester bonding.•The m-Si/b-Li0.5PAA@SA electrode exhibits remarkable cycle and rate performance.•The b-Li0.5PAA@SA netw...
Saved in:
Published in | Electrochimica acta Vol. 386; p. 138361 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.08.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A cross-linked bicontinuous composite network binder is built.•LixPAA solution can penetrate deep into the pores of the SA network.•SA and Li0.5PAA interlock tightly each other via ester bonding.•The m-Si/b-Li0.5PAA@SA electrode exhibits remarkable cycle and rate performance.•The b-Li0.5PAA@SA network binder can buffer the expansion of m-Si electrode.
An important strategy to improve energy density of Li-ion batteries is to substitute the traditional graphite anode by Si-based anode which is endowed with ultra-high theoretical specific capacity. However, the commercialization of Si anodes is hindered by its huge volume variation that results in electrode pulverization. In the current study, we fill up the pores of sodium alginate (SA) network with lithiated polyacrylic acid (LixPAA) to form a cross-linked bicontinuous composite network binder (b-Li0.5PAA@SA), in which the pores of the SA skeleton are dominated with the Li0.5PAA domains; within such composite the SA and Li0.5PAA interlock tightly each other via extensive interfacial ester bonding. The resulting b-Li0.5PAA@SA network binder can effectively buffer the volume variation of Si microparticles (m-Si) during repeating cycling and prevent pulverization of the electrode, which is evidenced by a cycling capacity of 2762 mAh g−1 in the 1st cycle and a retention of 1584 mAh g−1 after 150 cycles. As a comparison, the m-Si electrode with only SA binder suffers from fatal capacity degradation after merely 20 cycles under the same conditions. Moreover, since the Li0.5PAA domains are ionic conductive and significantly reduce the porosity of the SA network, the b-Li0.5PAA@SA network binder could also enable a stable solid electrolyte interphase (SEI) film and fast electron/ion transfer, leading to an enhanced rate capability of the m-Si anodes.
[Display omitted] |
---|---|
AbstractList | An important strategy to improve energy density of Li-ion batteries is to substitute the traditional graphite anode by Si-based anode which is endowed with ultra-high theoretical specific capacity. However, the commercialization of Si anodes is hindered by its huge volume variation that results in electrode pulverization. In the current study, we fill up the pores of sodium alginate (SA) network with lithiated polyacrylic acid (LixPAA) to form a cross-linked bicontinuous composite network binder (b-Li0.5PAA@SA), in which the pores of the SA skeleton are dominated with the Li0.5PAA domains; within such composite the SA and Li0.5PAA interlock tightly each other via extensive interfacial ester bonding. The resulting b-Li0.5PAA@SA network binder can effectively buffer the volume variation of Si microparticles (m-Si) during repeating cycling and prevent pulverization of the electrode, which is evidenced by a cycling capacity of 2762 mAh g−1 in the 1st cycle and a retention of 1584 mAh g−1 after 150 cycles. As a comparison, the m-Si electrode with only SA binder suffers from fatal capacity degradation after merely 20 cycles under the same conditions. Moreover, since the Li0.5PAA domains are ionic conductive and significantly reduce the porosity of the SA network, the b-Li0.5PAA@SA network binder could also enable a stable solid electrolyte interphase (SEI) film and fast electron/ion transfer, leading to an enhanced rate capability of the m-Si anodes. •A cross-linked bicontinuous composite network binder is built.•LixPAA solution can penetrate deep into the pores of the SA network.•SA and Li0.5PAA interlock tightly each other via ester bonding.•The m-Si/b-Li0.5PAA@SA electrode exhibits remarkable cycle and rate performance.•The b-Li0.5PAA@SA network binder can buffer the expansion of m-Si electrode. An important strategy to improve energy density of Li-ion batteries is to substitute the traditional graphite anode by Si-based anode which is endowed with ultra-high theoretical specific capacity. However, the commercialization of Si anodes is hindered by its huge volume variation that results in electrode pulverization. In the current study, we fill up the pores of sodium alginate (SA) network with lithiated polyacrylic acid (LixPAA) to form a cross-linked bicontinuous composite network binder (b-Li0.5PAA@SA), in which the pores of the SA skeleton are dominated with the Li0.5PAA domains; within such composite the SA and Li0.5PAA interlock tightly each other via extensive interfacial ester bonding. The resulting b-Li0.5PAA@SA network binder can effectively buffer the volume variation of Si microparticles (m-Si) during repeating cycling and prevent pulverization of the electrode, which is evidenced by a cycling capacity of 2762 mAh g−1 in the 1st cycle and a retention of 1584 mAh g−1 after 150 cycles. As a comparison, the m-Si electrode with only SA binder suffers from fatal capacity degradation after merely 20 cycles under the same conditions. Moreover, since the Li0.5PAA domains are ionic conductive and significantly reduce the porosity of the SA network, the b-Li0.5PAA@SA network binder could also enable a stable solid electrolyte interphase (SEI) film and fast electron/ion transfer, leading to an enhanced rate capability of the m-Si anodes. [Display omitted] |
ArticleNumber | 138361 |
Author | Pan, Si-Yu Zhou, Yao Deng, Li Li, Jun-Tao Zhang, Shao-Jian Lin, Hua Huang, Ling Ren, Wen-Feng Hu, Yi-Yang You, Jin-Hai Sun, Shi-Gang |
Author_xml | – sequence: 1 givenname: Yi-Yang surname: Hu fullname: Hu, Yi-Yang organization: College of Energy, Xiamen University, Xiamen 361005, China – sequence: 2 givenname: Jin-Hai surname: You fullname: You, Jin-Hai organization: College of Energy, Xiamen University, Xiamen 361005, China – sequence: 3 givenname: Shao-Jian surname: Zhang fullname: Zhang, Shao-Jian organization: College of Energy, Xiamen University, Xiamen 361005, China – sequence: 4 givenname: Hua surname: Lin fullname: Lin, Hua organization: College of Energy, Xiamen University, Xiamen 361005, China – sequence: 5 givenname: Wen-Feng surname: Ren fullname: Ren, Wen-Feng organization: State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China – sequence: 6 givenname: Li surname: Deng fullname: Deng, Li organization: College of Energy, Xiamen University, Xiamen 361005, China – sequence: 7 givenname: Si-Yu surname: Pan fullname: Pan, Si-Yu organization: College of Energy, Xiamen University, Xiamen 361005, China – sequence: 8 givenname: Ling surname: Huang fullname: Huang, Ling organization: State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China – sequence: 9 givenname: Yao surname: Zhou fullname: Zhou, Yao email: zhouy@xmu.edu.cn organization: College of Energy, Xiamen University, Xiamen 361005, China – sequence: 10 givenname: Jun-Tao surname: Li fullname: Li, Jun-Tao email: jtli@xmu.edu.cn organization: College of Energy, Xiamen University, Xiamen 361005, China – sequence: 11 givenname: Shi-Gang orcidid: 0000-0003-2327-4090 surname: Sun fullname: Sun, Shi-Gang organization: State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China |
BookMark | eNqNkc2KFDEUhYOMYM_oMxhwXWV-6ldwUYw6Cg260HVIJbemb09VUiapkfGpfMRJ0-LCjUIgueQ79yT3XJIL5x0Q8pKzkjPevD6WMINJOq9SMMFLLjvZ8Cdkx7tWFrKr-wuyY4zLomq65hm5jPHIGGublu3Irz2ysv4yDNT6RaOLdMJ5BkvR0dUHv0UavcVtoXq-RacT0HiXDZN3b-hA5Ts6ovEuodtOrPHL6iNmykH64cNdvnYWAk2exqRHnPEn0AVN8EXMRZZS7bwFOvlAD3h7KFYI-bxoZ4DOmA4nb8zYqFOC8PCcPJ30HOHF7_2KfPvw_uv1x2L_-ebT9bAvjBRVKsYe9NRBX9tRVKae2mrsuWG6ristmdBMyEbzqqmAiamXo20727WgWzn1veCNvCKvzn3X4L9vEJM6-i24bKlEXdVN1fNWZurtmcofijHApAwmnfJ7U9A4K87UKSR1VH9CUqeQ1DmkrG__0q8BFx0e_kM5nJWQh3CPEFQ0CHloFkPmlfX4zx6PNnu2uw |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_166858 crossref_primary_10_1002_ange_202310297 crossref_primary_10_1021_acs_langmuir_4c01151 crossref_primary_10_1002_anie_202310297 crossref_primary_10_1016_j_jpowsour_2024_235651 crossref_primary_10_1002_smll_202407297 crossref_primary_10_1007_s11581_024_05497_2 crossref_primary_10_1021_acsaem_2c03606 crossref_primary_10_1016_j_jpowsour_2024_235745 crossref_primary_10_1149_1945_7111_ac9556 crossref_primary_10_1016_j_electacta_2021_139442 crossref_primary_10_1016_j_electacta_2022_140704 crossref_primary_10_1021_acsaem_3c00534 crossref_primary_10_1016_j_jechem_2021_11_021 crossref_primary_10_1016_j_mtener_2022_101153 crossref_primary_10_1021_acsomega_1c04544 crossref_primary_10_1002_smll_202206141 crossref_primary_10_3389_fchem_2021_712225 crossref_primary_10_1016_j_ensm_2023_102909 crossref_primary_10_1002_adfm_202403032 crossref_primary_10_26599_NRE_2022_9120037 crossref_primary_10_1021_acs_jpcc_1c08339 |
Cites_doi | 10.1016/j.jallcom.2018.05.286 10.1016/j.jpowsour.2017.12.086 10.1002/aenm.201703138 10.1021/jp404155y 10.1149/2.0241912jes 10.1016/j.elecom.2017.12.023 10.1016/j.jpowsour.2018.02.085 10.1016/j.apsusc.2012.10.165 10.1016/j.jpowsour.2017.12.068 10.1038/nchem.1802 10.1002/adfm.201500589 10.1016/j.jpowsour.2019.227472 10.1039/c2jm31286g 10.1039/C6QM00302H 10.1016/j.elecom.2006.11.014 10.1126/science.aal4373 10.1149/1.1739217 10.1039/C4CP04939J 10.1515/epoly-2015-0060 10.1016/j.electacta.2018.12.089 10.1021/nn507003z 10.1038/nenergy.2017.12 10.1016/j.jelechem.2019.05.019 10.1002/anie.200906287 10.1002/anie.201710806 10.1149/2.005302eel 10.1021/acsami.7b13205 10.1002/anie.201201568 10.1126/science.1209150 10.1039/b919877f 10.1016/j.jmps.2011.06.003 10.1016/j.jpowsour.2016.12.094 10.1021/nn405710w 10.1016/j.jpowsour.2009.03.017 10.1021/cr500207g 10.1039/C4CP02475C 10.1149/2.076205jes 10.1039/b923002e 10.1002/app.12910 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Aug 1, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Aug 1, 2021 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2021.138361 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2021_138361 S0013468621006514 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- RIG SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c324t-b9eaf8e95db24c5f74b91c0a554a302a0236a1464e02f93bd78d87ea73f992163 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 07:30:53 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Tue Jul 01 03:02:23 EDT 2025 Fri Feb 23 02:44:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Lithiated polyacrylic acid Micro-silicon anode Bicontinuous network binder |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-b9eaf8e95db24c5f74b91c0a554a302a0236a1464e02f93bd78d87ea73f992163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2327-4090 |
PQID | 2545649173 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2545649173 crossref_citationtrail_10_1016_j_electacta_2021_138361 crossref_primary_10_1016_j_electacta_2021_138361 elsevier_sciencedirect_doi_10_1016_j_electacta_2021_138361 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Baranchugov, Markevich, Pollak, Salitra, Aurbach (bib0013) 2007; 9 Zhu, Du, Zhuang, Dai, Cao, Adkins, Zhou, Zheng (bib0035) 2019; 845 Yao, Yang, Deng, Wang (bib0025) 2018; 379 Wang, Wu, Chen, McDowell, Cui, Bao (bib0027) 2013; 5 Chou, Pan, Wang, Liu, Dou (bib0002) 2014; 16 Han, Yamagiwa, Yabuuchi, Son, Cui, Oji, Kogure, Harada, Ishikawa, Aoki, Komaba (bib0018) 2015; 17 Li, Meduri, Chen, Qi, Engelhard, Xu, Ding, Xiao, Wang, Wang, Zhang, Liu (bib0015) 2012; 22 Munaoka, Yan, Lopez, To, Park, Tok, Cui, Bao (bib0024) 2018; 8 Feng, Li, Liu, Kashkooli, Xiao, Cai, Chen (bib0006) 2018; 14 Li, Xu, Li, Yin, Wan, Guo (bib0004) 2017; 1 Sun, He, Li, Liu, Wan, Tan, Liu, An, Gong, Qu (bib0033) 2020; 454 Han, Yabuuchi, Hashimoto, Sasaki, Komaba (bib0036) 2012; 2 Xie, Tong, Su, Xu, Wang, Wang (bib0014) 2017; 342 J. Wu, Y. Zhou, Y. Meng, J. Zhang, Q. Liu, Q. Cao, Y. Yu, e-Polymers 15 (2015) 271-278. Zheng, Engelhard, Mei, Jiao, Polzin, Zhang, Xu (bib0041) 2017; 2 He, Zhang (bib0032) 2018; 763 Liu, Li, Goodman, Zhang, Epstein, Huang, Pan, Kim, Choi, Huang, Liu, Hsia, Dillon, Braun (bib0017) 2015; 9 Liu, Zhang, Zhang, Li, Huang, Sun (bib0023) 2015; 25 Hatchard, Dahn (bib0003) 2004; 151 Kumeta, Nagashima, Matsui, Mizoguchi (bib0031) 2003; 90 Dalavi, Guduru, Lucht (bib0009) 2012; 159 Han, Piernas-Muñoz, Dogan, Kubal, Trask, Bloom, Vaughey, Key (bib0007) 2019; 166 Zhang, Yang, Chen, Huang, Zhang, Zeng, Wang, Liu, Deng (bib0029) 2018 Hays, Ruther, Kukay, Cao, Saito, Wood, Li (bib0037) 2018; 384 Choi, Kwon, Coskun, Choi (bib0019) 2017; 357 Ding, Xu, Yao, Wegner, Lieberwirth, Chen (bib0020) 2009; 192 Hu, Wang, Huang, Yu (bib0026) 2020; 449 Li, Shi, Yin, Zeng, Li, Li, Wan, Wen, Guo (bib0038) 2018; 57 Kim, Seo, Park, Cho (bib0010) 2010; 49 Pereira-Nabais, Światowska, Chagnes, Ozanam, Gohier, Tran-Van, Cojocaru, Cassir, Marcus (bib0039) 2013; 266 Cao, Naguib, Du, Stacy, Li, Hong, Xing, Voylov, Li, Wood, Sokolov, Nanda, Saito (bib0008) 2018; 10 Ryu, Choi, Cui, Nix (bib0012) 2011; 59 Koo, Kim, Cho, Lee, Choi, Cho (bib0030) 2012; 51 Zhang, Gao, Wang, Lu, Deng, You, Li, Zhou, Huang, Zhou, Sun (bib0043) 2018 Zhang, Zhang, Li, Wang, Zhang, Liu, Xie, Pei, Huang, Sun (bib0040) 2019; 298 Park, Kim, Kim, Sohn (bib0001) 2010; 39 Bogart, Oka, Lu, Gu, Wang, Korgel (bib0011) 2014; 8 Yang, Zhang, Zhang, Wang, Gao, Fang (bib0028) 2018; 87 Hu, Shkrob, Zhang, Zhang, Zhang, Li, Liao, Zhang, Lu, Zhang (bib0021) 2018; 378 Kovalenko, Zdyrko, Magasinski, Hertzberg, Milicev, Burtovyy, Luzinov, Yushin (bib0022) 2011; 334 Obrovac, Chevrier (bib0005) 2014; 114 Nie, Abraham, Chen, Bose, Lucht (bib0042) 2013; 117 Cho (bib0016) 2010; 20 Feng (10.1016/j.electacta.2021.138361_bib0006) 2018; 14 Ryu (10.1016/j.electacta.2021.138361_bib0012) 2011; 59 Park (10.1016/j.electacta.2021.138361_bib0001) 2010; 39 Hu (10.1016/j.electacta.2021.138361_bib0021) 2018; 378 Munaoka (10.1016/j.electacta.2021.138361_bib0024) 2018; 8 Liu (10.1016/j.electacta.2021.138361_bib0023) 2015; 25 Nie (10.1016/j.electacta.2021.138361_bib0042) 2013; 117 Kim (10.1016/j.electacta.2021.138361_bib0010) 2010; 49 Obrovac (10.1016/j.electacta.2021.138361_bib0005) 2014; 114 Choi (10.1016/j.electacta.2021.138361_bib0019) 2017; 357 Liu (10.1016/j.electacta.2021.138361_bib0017) 2015; 9 10.1016/j.electacta.2021.138361_bib0034 Cho (10.1016/j.electacta.2021.138361_bib0016) 2010; 20 Wang (10.1016/j.electacta.2021.138361_bib0027) 2013; 5 Yao (10.1016/j.electacta.2021.138361_bib0025) 2018; 379 Sun (10.1016/j.electacta.2021.138361_bib0033) 2020; 454 Zhang (10.1016/j.electacta.2021.138361_bib0043) 2018 Hu (10.1016/j.electacta.2021.138361_bib0026) 2020; 449 Dalavi (10.1016/j.electacta.2021.138361_bib0009) 2012; 159 Zhang (10.1016/j.electacta.2021.138361_bib0029) 2018 Cao (10.1016/j.electacta.2021.138361_bib0008) 2018; 10 Kovalenko (10.1016/j.electacta.2021.138361_bib0022) 2011; 334 Chou (10.1016/j.electacta.2021.138361_bib0002) 2014; 16 Koo (10.1016/j.electacta.2021.138361_bib0030) 2012; 51 He (10.1016/j.electacta.2021.138361_bib0032) 2018; 763 Li (10.1016/j.electacta.2021.138361_bib0038) 2018; 57 Pereira-Nabais (10.1016/j.electacta.2021.138361_bib0039) 2013; 266 Han (10.1016/j.electacta.2021.138361_bib0007) 2019; 166 Ding (10.1016/j.electacta.2021.138361_bib0020) 2009; 192 Kumeta (10.1016/j.electacta.2021.138361_bib0031) 2003; 90 Zheng (10.1016/j.electacta.2021.138361_bib0041) 2017; 2 Zhu (10.1016/j.electacta.2021.138361_bib0035) 2019; 845 Hatchard (10.1016/j.electacta.2021.138361_bib0003) 2004; 151 Bogart (10.1016/j.electacta.2021.138361_bib0011) 2014; 8 Baranchugov (10.1016/j.electacta.2021.138361_bib0013) 2007; 9 Han (10.1016/j.electacta.2021.138361_bib0036) 2012; 2 Li (10.1016/j.electacta.2021.138361_bib0004) 2017; 1 Yang (10.1016/j.electacta.2021.138361_bib0028) 2018; 87 Han (10.1016/j.electacta.2021.138361_bib0018) 2015; 17 Hays (10.1016/j.electacta.2021.138361_bib0037) 2018; 384 Xie (10.1016/j.electacta.2021.138361_bib0014) 2017; 342 Zhang (10.1016/j.electacta.2021.138361_bib0040) 2019; 298 Li (10.1016/j.electacta.2021.138361_bib0015) 2012; 22 |
References_xml | – volume: 845 start-page: 22 year: 2019 end-page: 30 ident: bib0035 publication-title: J. Electroanal. Chem. – volume: 384 start-page: 136 year: 2018 end-page: 144 ident: bib0037 publication-title: J. Power Sources – volume: 39 start-page: 3115 year: 2010 end-page: 3141 ident: bib0001 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1985 year: 2015 end-page: 1994 ident: bib0017 publication-title: ACS Nano – volume: 2 start-page: A17 year: 2012 end-page: A20 ident: bib0036 publication-title: ECS Electrochem. Lett. – year: 2018 ident: bib0029 publication-title: Small – reference: J. Wu, Y. Zhou, Y. Meng, J. Zhang, Q. Liu, Q. Cao, Y. Yu, e-Polymers 15 (2015) 271-278. – volume: 159 start-page: A642 year: 2012 end-page: A646 ident: bib0009 publication-title: J. Electrochem. Soc. – volume: 14 year: 2018 ident: bib0006 publication-title: Small – volume: 57 start-page: 1505 year: 2018 end-page: 1509 ident: bib0038 publication-title: Angew. Chem. Int. Ed. – volume: 342 start-page: 529 year: 2017 end-page: 536 ident: bib0014 publication-title: J. Power Sources – year: 2018 ident: bib0043 publication-title: Small – volume: 1 start-page: 1691 year: 2017 end-page: 1708 ident: bib0004 publication-title: Mater. Chem. Front. – volume: 266 start-page: 5 year: 2013 end-page: 16 ident: bib0039 publication-title: Appl. Surf. Sci. – volume: 87 start-page: 22 year: 2018 end-page: 26 ident: bib0028 publication-title: Electrochem. Commun. – volume: 114 start-page: 11444 year: 2014 end-page: 11502 ident: bib0005 publication-title: Chem. Rev. – volume: 51 start-page: 8762 year: 2012 end-page: 8767 ident: bib0030 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 17012 year: 2017 ident: bib0041 publication-title: Nat. Energy – volume: 20 start-page: 4009 year: 2010 end-page: 4014 ident: bib0016 publication-title: J. Mater. Chem. – volume: 17 start-page: 3783 year: 2015 end-page: 3795 ident: bib0018 publication-title: Phys. Chem. Chem. Phys. – volume: 117 start-page: 13403 year: 2013 end-page: 13412 ident: bib0042 publication-title: J. Phys. Chem. C – volume: 8 year: 2018 ident: bib0024 publication-title: Adv. Energy Mater. – volume: 25 start-page: 3599 year: 2015 end-page: 3605 ident: bib0023 publication-title: Adv. Funct. Mater. – volume: 379 start-page: 26 year: 2018 end-page: 32 ident: bib0025 publication-title: J. Power Sources – volume: 151 start-page: A838 year: 2004 end-page: A842 ident: bib0003 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 11014 year: 2012 end-page: 11017 ident: bib0015 publication-title: J. Mater. Chem. – volume: 334 start-page: 75 year: 2011 end-page: 79 ident: bib0022 publication-title: Science – volume: 5 start-page: 1042 year: 2013 end-page: 1048 ident: bib0027 publication-title: Nat. Chem. – volume: 449 year: 2020 ident: bib0026 publication-title: J. Power Sources – volume: 59 start-page: 1717 year: 2011 end-page: 1730 ident: bib0012 publication-title: J. Mech. Phys. Solids. – volume: 90 start-page: 2420 year: 2003 end-page: 2427 ident: bib0031 publication-title: J. Appl. Polym. Sci. – volume: 357 start-page: 279 year: 2017 end-page: 283 ident: bib0019 publication-title: Science – volume: 166 start-page: A2396 year: 2019 end-page: A2402 ident: bib0007 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 3470 year: 2018 end-page: 3478 ident: bib0008 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 915 year: 2014 end-page: 922 ident: bib0011 publication-title: ACS Nano – volume: 192 start-page: 644 year: 2009 end-page: 651 ident: bib0020 publication-title: J. Power Sources – volume: 298 start-page: 496 year: 2019 end-page: 504 ident: bib0040 publication-title: Electrochim. Acta – volume: 378 start-page: 671 year: 2018 end-page: 676 ident: bib0021 publication-title: J. Power Sources – volume: 763 start-page: 228 year: 2018 end-page: 240 ident: bib0032 publication-title: J. Alloys Compd. – volume: 454 year: 2020 ident: bib0033 publication-title: J. Power Sources – volume: 16 start-page: 20347 year: 2014 end-page: 20359 ident: bib0002 publication-title: Phys. Chem. Chem. Phys. – volume: 49 start-page: 2146 year: 2010 end-page: 2149 ident: bib0010 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 796 year: 2007 end-page: 800 ident: bib0013 publication-title: Electrochem. Commun. – volume: 763 start-page: 228 year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0032 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.05.286 – volume: 379 start-page: 26 year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0025 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.086 – volume: 14 year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0006 publication-title: Small – volume: 8 year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0024 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703138 – volume: 117 start-page: 13403 year: 2013 ident: 10.1016/j.electacta.2021.138361_bib0042 publication-title: J. Phys. Chem. C doi: 10.1021/jp404155y – volume: 166 start-page: A2396 year: 2019 ident: 10.1016/j.electacta.2021.138361_bib0007 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0241912jes – volume: 87 start-page: 22 year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0028 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.12.023 – volume: 384 start-page: 136 year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0037 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.085 – volume: 266 start-page: 5 year: 2013 ident: 10.1016/j.electacta.2021.138361_bib0039 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.10.165 – volume: 378 start-page: 671 year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0021 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.068 – volume: 5 start-page: 1042 year: 2013 ident: 10.1016/j.electacta.2021.138361_bib0027 publication-title: Nat. Chem. doi: 10.1038/nchem.1802 – volume: 25 start-page: 3599 year: 2015 ident: 10.1016/j.electacta.2021.138361_bib0023 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500589 – volume: 449 year: 2020 ident: 10.1016/j.electacta.2021.138361_bib0026 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227472 – volume: 22 start-page: 11014 year: 2012 ident: 10.1016/j.electacta.2021.138361_bib0015 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31286g – volume: 1 start-page: 1691 year: 2017 ident: 10.1016/j.electacta.2021.138361_bib0004 publication-title: Mater. Chem. Front. doi: 10.1039/C6QM00302H – volume: 9 start-page: 796 year: 2007 ident: 10.1016/j.electacta.2021.138361_bib0013 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.11.014 – volume: 357 start-page: 279 year: 2017 ident: 10.1016/j.electacta.2021.138361_bib0019 publication-title: Science doi: 10.1126/science.aal4373 – volume: 151 start-page: A838 year: 2004 ident: 10.1016/j.electacta.2021.138361_bib0003 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1739217 – volume: 454 year: 2020 ident: 10.1016/j.electacta.2021.138361_bib0033 publication-title: J. Power Sources – volume: 17 start-page: 3783 year: 2015 ident: 10.1016/j.electacta.2021.138361_bib0018 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04939J – year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0029 publication-title: Small – ident: 10.1016/j.electacta.2021.138361_bib0034 doi: 10.1515/epoly-2015-0060 – volume: 298 start-page: 496 year: 2019 ident: 10.1016/j.electacta.2021.138361_bib0040 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.089 – volume: 9 start-page: 1985 year: 2015 ident: 10.1016/j.electacta.2021.138361_bib0017 publication-title: ACS Nano doi: 10.1021/nn507003z – volume: 2 start-page: 17012 year: 2017 ident: 10.1016/j.electacta.2021.138361_bib0041 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.12 – volume: 845 start-page: 22 year: 2019 ident: 10.1016/j.electacta.2021.138361_bib0035 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.05.019 – volume: 49 start-page: 2146 year: 2010 ident: 10.1016/j.electacta.2021.138361_bib0010 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200906287 – volume: 57 start-page: 1505 year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0038 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710806 – volume: 2 start-page: A17 year: 2012 ident: 10.1016/j.electacta.2021.138361_bib0036 publication-title: ECS Electrochem. Lett. doi: 10.1149/2.005302eel – volume: 10 start-page: 3470 year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0008 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13205 – volume: 51 start-page: 8762 year: 2012 ident: 10.1016/j.electacta.2021.138361_bib0030 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201201568 – volume: 334 start-page: 75 year: 2011 ident: 10.1016/j.electacta.2021.138361_bib0022 publication-title: Science doi: 10.1126/science.1209150 – volume: 39 start-page: 3115 year: 2010 ident: 10.1016/j.electacta.2021.138361_bib0001 publication-title: Chem. Soc. Rev. doi: 10.1039/b919877f – volume: 59 start-page: 1717 year: 2011 ident: 10.1016/j.electacta.2021.138361_bib0012 publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2011.06.003 – volume: 342 start-page: 529 year: 2017 ident: 10.1016/j.electacta.2021.138361_bib0014 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.094 – volume: 8 start-page: 915 year: 2014 ident: 10.1016/j.electacta.2021.138361_bib0011 publication-title: ACS Nano doi: 10.1021/nn405710w – volume: 192 start-page: 644 year: 2009 ident: 10.1016/j.electacta.2021.138361_bib0020 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.03.017 – volume: 114 start-page: 11444 year: 2014 ident: 10.1016/j.electacta.2021.138361_bib0005 publication-title: Chem. Rev. doi: 10.1021/cr500207g – volume: 16 start-page: 20347 year: 2014 ident: 10.1016/j.electacta.2021.138361_bib0002 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02475C – year: 2018 ident: 10.1016/j.electacta.2021.138361_bib0043 publication-title: Small – volume: 159 start-page: A642 year: 2012 ident: 10.1016/j.electacta.2021.138361_bib0009 publication-title: J. Electrochem. Soc. doi: 10.1149/2.076205jes – volume: 20 start-page: 4009 year: 2010 ident: 10.1016/j.electacta.2021.138361_bib0016 publication-title: J. Mater. Chem. doi: 10.1039/b923002e – volume: 90 start-page: 2420 year: 2003 ident: 10.1016/j.electacta.2021.138361_bib0031 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.12910 |
SSID | ssj0007670 |
Score | 2.4793231 |
Snippet | •A cross-linked bicontinuous composite network binder is built.•LixPAA solution can penetrate deep into the pores of the SA network.•SA and Li0.5PAA interlock... An important strategy to improve energy density of Li-ion batteries is to substitute the traditional graphite anode by Si-based anode which is endowed with... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 138361 |
SubjectTerms | Anodes Bicontinuous network binder Bonding strength Commercialization Cycles Domains Electrodes Flux density Lithiated polyacrylic acid Lithium Lithium-ion batteries Micro-silicon anode Microparticles Polyacrylic acid Porosity Rechargeable batteries Silicon Sodium alginate Solid electrolytes Three dimensional composites |
Title | Li0.5PAA domains filled in porous sodium alginate skeleton: A 3D bicontinuous composite network binder to stabilize micro-silicon anode for high-performance lithium ion battery |
URI | https://dx.doi.org/10.1016/j.electacta.2021.138361 https://www.proquest.com/docview/2545649173 |
Volume | 386 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPZQeUEtBpTw0h16zxI4Tb7hFW9DSVqiHInGz7NhR07LJqske4MBv4id2Jg8oSBUHpFyceBIrM5r5RvpmhrFPgjC6UjxQMU8CydGMjUh9oHKRW5N7Y3zX7fM8mV_IL5fx5RqbjbUwRKscfH_v0ztvPdw5Gv7m0bIsqcaXR5IKHDjF0W6YtZSKrHxy-0DzUIkKxykGtPsRx6sbNWPwwkRR8AnHdC3h_4tQT3x1F4BO37LNATlC1h_uHVvz1RZ7PRsHtm2xN__0FnzP7r6V4ST-nmXg6gWm_w0UVPbnoKwAMTcm_NDUrlwtwFzRbIbWQ_MbT4pY8BgyiD6DLYnHXlYr2kvUc-J3eah64jg-proYaGtAgEkU2xsPC6L3BQ0uUBRMVTsPiIqBmiIHy4caBUDw_5O-jVYBtmvxeb3NLk5PfszmwTCeIcgRhbWBTb0ppj6NnRUyjwslbcrz0CBAMVEoDPWmN-iIpQ9FkUbWqambKm9UVKSpQBy4w9aruvIfGAhyLvimuCgSabjDtDWOE4fexBRJavNdlowq0fnQu5xGaFzpkaT2S9_rUpMuda_LXRbeCy779h3PixyPOtePLFFjkHleeH-0Ej04g0YLQqkS8-Lo40vevcc2aNWzD_fZevtn5Q8QEbX2sDP5Q_YqO_s6P_8LUZkODw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPdAeqkJblZbHHLhmiR0n3nBbbUFbWFAPIHGz7NhR07LJqske2gO_iZ_YmTygVKo4IOWS2ONYmcn4G-mbGcYOBGF0pXigYp4EkqMZG5H6QGUisybzxvi22udFMruSp9fx9RqbDrkwRKvsfX_n01tv3T857L_m4bIoKMeXR5ISHDido9TM-oXE35faGIxuH3geKlHh0MaApj8iebW9ZgxeGCkKPuIYryX8f0fUP866PYFO3rDXPXSESbe7Tbbmyy22MR06tm2xV38VF3zL7uZFOIq_TibgqgXG_zXklPfnoCgBQTdG_FBXrlgtwNxQc4bGQ_0Dd4pg8AgmEH0GWxCRvShXNJe450Tw8lB2zHEcpsQYaCpAhEkc298eFsTvC2q8QVEwZeU8ICwGqoocLB-SFADR_zd6N5oF2LbG56937Ork-HI6C_r-DEGGMKwJbOpNPvZp7KyQWZwraVOehQYRiolCYag4vUFPLH0o8jSyTo3dWHmjojxNBQLB92y9rEr_gYEg74IrxXmeSMMdxq1xnDh0JyZPUptts2RQic764uXUQ-NGDyy17_pel5p0qTtdbrPwXnDZ1e94WuRo0Ll-ZIoaT5mnhXcGK9G9N6i1IJgqMTCOPj5n7X22Mbs8n-v5l4uzT-wljXRUxB223vxc-V2ER43da83_D1pED50 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Li0.5PAA+domains+filled+in+porous+sodium+alginate+skeleton%3A+A+3D+bicontinuous+composite+network+binder+to+stabilize+micro-silicon+anode+for+high-performance+lithium+ion+battery&rft.jtitle=Electrochimica+acta&rft.au=Hu%2C+Yi-Yang&rft.au=You%2C+Jin-Hai&rft.au=Zhang%2C+Shao-Jian&rft.au=Lin%2C+Hua&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=386&rft_id=info:doi/10.1016%2Fj.electacta.2021.138361&rft.externalDocID=S0013468621006514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |