Li0.5PAA domains filled in porous sodium alginate skeleton: A 3D bicontinuous composite network binder to stabilize micro-silicon anode for high-performance lithium ion battery

•A cross-linked bicontinuous composite network binder is built.•LixPAA solution can penetrate deep into the pores of the SA network.•SA and Li0.5PAA interlock tightly each other via ester bonding.•The m-Si/b-Li0.5PAA@SA electrode exhibits remarkable cycle and rate performance.•The b-Li0.5PAA@SA netw...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 386; p. 138361
Main Authors Hu, Yi-Yang, You, Jin-Hai, Zhang, Shao-Jian, Lin, Hua, Ren, Wen-Feng, Deng, Li, Pan, Si-Yu, Huang, Ling, Zhou, Yao, Li, Jun-Tao, Sun, Shi-Gang
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A cross-linked bicontinuous composite network binder is built.•LixPAA solution can penetrate deep into the pores of the SA network.•SA and Li0.5PAA interlock tightly each other via ester bonding.•The m-Si/b-Li0.5PAA@SA electrode exhibits remarkable cycle and rate performance.•The b-Li0.5PAA@SA network binder can buffer the expansion of m-Si electrode. An important strategy to improve energy density of Li-ion batteries is to substitute the traditional graphite anode by Si-based anode which is endowed with ultra-high theoretical specific capacity. However, the commercialization of Si anodes is hindered by its huge volume variation that results in electrode pulverization. In the current study, we fill up the pores of sodium alginate (SA) network with lithiated polyacrylic acid (LixPAA) to form a cross-linked bicontinuous composite network binder (b-Li0.5PAA@SA), in which the pores of the SA skeleton are dominated with the Li0.5PAA domains; within such composite the SA and Li0.5PAA interlock tightly each other via extensive interfacial ester bonding. The resulting b-Li0.5PAA@SA network binder can effectively buffer the volume variation of Si microparticles (m-Si) during repeating cycling and prevent pulverization of the electrode, which is evidenced by a cycling capacity of 2762 mAh g−1 in the 1st cycle and a retention of 1584 mAh g−1 after 150 cycles. As a comparison, the m-Si electrode with only SA binder suffers from fatal capacity degradation after merely 20 cycles under the same conditions. Moreover, since the Li0.5PAA domains are ionic conductive and significantly reduce the porosity of the SA network, the b-Li0.5PAA@SA network binder could also enable a stable solid electrolyte interphase (SEI) film and fast electron/ion transfer, leading to an enhanced rate capability of the m-Si anodes. [Display omitted]
AbstractList An important strategy to improve energy density of Li-ion batteries is to substitute the traditional graphite anode by Si-based anode which is endowed with ultra-high theoretical specific capacity. However, the commercialization of Si anodes is hindered by its huge volume variation that results in electrode pulverization. In the current study, we fill up the pores of sodium alginate (SA) network with lithiated polyacrylic acid (LixPAA) to form a cross-linked bicontinuous composite network binder (b-Li0.5PAA@SA), in which the pores of the SA skeleton are dominated with the Li0.5PAA domains; within such composite the SA and Li0.5PAA interlock tightly each other via extensive interfacial ester bonding. The resulting b-Li0.5PAA@SA network binder can effectively buffer the volume variation of Si microparticles (m-Si) during repeating cycling and prevent pulverization of the electrode, which is evidenced by a cycling capacity of 2762 mAh g−1 in the 1st cycle and a retention of 1584 mAh g−1 after 150 cycles. As a comparison, the m-Si electrode with only SA binder suffers from fatal capacity degradation after merely 20 cycles under the same conditions. Moreover, since the Li0.5PAA domains are ionic conductive and significantly reduce the porosity of the SA network, the b-Li0.5PAA@SA network binder could also enable a stable solid electrolyte interphase (SEI) film and fast electron/ion transfer, leading to an enhanced rate capability of the m-Si anodes.
•A cross-linked bicontinuous composite network binder is built.•LixPAA solution can penetrate deep into the pores of the SA network.•SA and Li0.5PAA interlock tightly each other via ester bonding.•The m-Si/b-Li0.5PAA@SA electrode exhibits remarkable cycle and rate performance.•The b-Li0.5PAA@SA network binder can buffer the expansion of m-Si electrode. An important strategy to improve energy density of Li-ion batteries is to substitute the traditional graphite anode by Si-based anode which is endowed with ultra-high theoretical specific capacity. However, the commercialization of Si anodes is hindered by its huge volume variation that results in electrode pulverization. In the current study, we fill up the pores of sodium alginate (SA) network with lithiated polyacrylic acid (LixPAA) to form a cross-linked bicontinuous composite network binder (b-Li0.5PAA@SA), in which the pores of the SA skeleton are dominated with the Li0.5PAA domains; within such composite the SA and Li0.5PAA interlock tightly each other via extensive interfacial ester bonding. The resulting b-Li0.5PAA@SA network binder can effectively buffer the volume variation of Si microparticles (m-Si) during repeating cycling and prevent pulverization of the electrode, which is evidenced by a cycling capacity of 2762 mAh g−1 in the 1st cycle and a retention of 1584 mAh g−1 after 150 cycles. As a comparison, the m-Si electrode with only SA binder suffers from fatal capacity degradation after merely 20 cycles under the same conditions. Moreover, since the Li0.5PAA domains are ionic conductive and significantly reduce the porosity of the SA network, the b-Li0.5PAA@SA network binder could also enable a stable solid electrolyte interphase (SEI) film and fast electron/ion transfer, leading to an enhanced rate capability of the m-Si anodes. [Display omitted]
ArticleNumber 138361
Author Pan, Si-Yu
Zhou, Yao
Deng, Li
Li, Jun-Tao
Zhang, Shao-Jian
Lin, Hua
Huang, Ling
Ren, Wen-Feng
Hu, Yi-Yang
You, Jin-Hai
Sun, Shi-Gang
Author_xml – sequence: 1
  givenname: Yi-Yang
  surname: Hu
  fullname: Hu, Yi-Yang
  organization: College of Energy, Xiamen University, Xiamen 361005, China
– sequence: 2
  givenname: Jin-Hai
  surname: You
  fullname: You, Jin-Hai
  organization: College of Energy, Xiamen University, Xiamen 361005, China
– sequence: 3
  givenname: Shao-Jian
  surname: Zhang
  fullname: Zhang, Shao-Jian
  organization: College of Energy, Xiamen University, Xiamen 361005, China
– sequence: 4
  givenname: Hua
  surname: Lin
  fullname: Lin, Hua
  organization: College of Energy, Xiamen University, Xiamen 361005, China
– sequence: 5
  givenname: Wen-Feng
  surname: Ren
  fullname: Ren, Wen-Feng
  organization: State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
– sequence: 6
  givenname: Li
  surname: Deng
  fullname: Deng, Li
  organization: College of Energy, Xiamen University, Xiamen 361005, China
– sequence: 7
  givenname: Si-Yu
  surname: Pan
  fullname: Pan, Si-Yu
  organization: College of Energy, Xiamen University, Xiamen 361005, China
– sequence: 8
  givenname: Ling
  surname: Huang
  fullname: Huang, Ling
  organization: State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
– sequence: 9
  givenname: Yao
  surname: Zhou
  fullname: Zhou, Yao
  email: zhouy@xmu.edu.cn
  organization: College of Energy, Xiamen University, Xiamen 361005, China
– sequence: 10
  givenname: Jun-Tao
  surname: Li
  fullname: Li, Jun-Tao
  email: jtli@xmu.edu.cn
  organization: College of Energy, Xiamen University, Xiamen 361005, China
– sequence: 11
  givenname: Shi-Gang
  orcidid: 0000-0003-2327-4090
  surname: Sun
  fullname: Sun, Shi-Gang
  organization: State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
BookMark eNqNkc2KFDEUhYOMYM_oMxhwXWV-6ldwUYw6Cg260HVIJbemb09VUiapkfGpfMRJ0-LCjUIgueQ79yT3XJIL5x0Q8pKzkjPevD6WMINJOq9SMMFLLjvZ8Cdkx7tWFrKr-wuyY4zLomq65hm5jPHIGGublu3Irz2ysv4yDNT6RaOLdMJ5BkvR0dUHv0UavcVtoXq-RacT0HiXDZN3b-hA5Ts6ovEuodtOrPHL6iNmykH64cNdvnYWAk2exqRHnPEn0AVN8EXMRZZS7bwFOvlAD3h7KFYI-bxoZ4DOmA4nb8zYqFOC8PCcPJ30HOHF7_2KfPvw_uv1x2L_-ebT9bAvjBRVKsYe9NRBX9tRVKae2mrsuWG6ristmdBMyEbzqqmAiamXo20727WgWzn1veCNvCKvzn3X4L9vEJM6-i24bKlEXdVN1fNWZurtmcofijHApAwmnfJ7U9A4K87UKSR1VH9CUqeQ1DmkrG__0q8BFx0e_kM5nJWQh3CPEFQ0CHloFkPmlfX4zx6PNnu2uw
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_166858
crossref_primary_10_1002_ange_202310297
crossref_primary_10_1021_acs_langmuir_4c01151
crossref_primary_10_1002_anie_202310297
crossref_primary_10_1016_j_jpowsour_2024_235651
crossref_primary_10_1002_smll_202407297
crossref_primary_10_1007_s11581_024_05497_2
crossref_primary_10_1021_acsaem_2c03606
crossref_primary_10_1016_j_jpowsour_2024_235745
crossref_primary_10_1149_1945_7111_ac9556
crossref_primary_10_1016_j_electacta_2021_139442
crossref_primary_10_1016_j_electacta_2022_140704
crossref_primary_10_1021_acsaem_3c00534
crossref_primary_10_1016_j_jechem_2021_11_021
crossref_primary_10_1016_j_mtener_2022_101153
crossref_primary_10_1021_acsomega_1c04544
crossref_primary_10_1002_smll_202206141
crossref_primary_10_3389_fchem_2021_712225
crossref_primary_10_1016_j_ensm_2023_102909
crossref_primary_10_1002_adfm_202403032
crossref_primary_10_26599_NRE_2022_9120037
crossref_primary_10_1021_acs_jpcc_1c08339
Cites_doi 10.1016/j.jallcom.2018.05.286
10.1016/j.jpowsour.2017.12.086
10.1002/aenm.201703138
10.1021/jp404155y
10.1149/2.0241912jes
10.1016/j.elecom.2017.12.023
10.1016/j.jpowsour.2018.02.085
10.1016/j.apsusc.2012.10.165
10.1016/j.jpowsour.2017.12.068
10.1038/nchem.1802
10.1002/adfm.201500589
10.1016/j.jpowsour.2019.227472
10.1039/c2jm31286g
10.1039/C6QM00302H
10.1016/j.elecom.2006.11.014
10.1126/science.aal4373
10.1149/1.1739217
10.1039/C4CP04939J
10.1515/epoly-2015-0060
10.1016/j.electacta.2018.12.089
10.1021/nn507003z
10.1038/nenergy.2017.12
10.1016/j.jelechem.2019.05.019
10.1002/anie.200906287
10.1002/anie.201710806
10.1149/2.005302eel
10.1021/acsami.7b13205
10.1002/anie.201201568
10.1126/science.1209150
10.1039/b919877f
10.1016/j.jmps.2011.06.003
10.1016/j.jpowsour.2016.12.094
10.1021/nn405710w
10.1016/j.jpowsour.2009.03.017
10.1021/cr500207g
10.1039/C4CP02475C
10.1149/2.076205jes
10.1039/b923002e
10.1002/app.12910
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Aug 1, 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Aug 1, 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2021.138361
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2021_138361
S0013468621006514
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
RIG
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c324t-b9eaf8e95db24c5f74b91c0a554a302a0236a1464e02f93bd78d87ea73f992163
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 25 07:30:53 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Tue Jul 01 03:02:23 EDT 2025
Fri Feb 23 02:44:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Lithiated polyacrylic acid
Micro-silicon anode
Bicontinuous network binder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-b9eaf8e95db24c5f74b91c0a554a302a0236a1464e02f93bd78d87ea73f992163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2327-4090
PQID 2545649173
PQPubID 2045485
ParticipantIDs proquest_journals_2545649173
crossref_citationtrail_10_1016_j_electacta_2021_138361
crossref_primary_10_1016_j_electacta_2021_138361
elsevier_sciencedirect_doi_10_1016_j_electacta_2021_138361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Baranchugov, Markevich, Pollak, Salitra, Aurbach (bib0013) 2007; 9
Zhu, Du, Zhuang, Dai, Cao, Adkins, Zhou, Zheng (bib0035) 2019; 845
Yao, Yang, Deng, Wang (bib0025) 2018; 379
Wang, Wu, Chen, McDowell, Cui, Bao (bib0027) 2013; 5
Chou, Pan, Wang, Liu, Dou (bib0002) 2014; 16
Han, Yamagiwa, Yabuuchi, Son, Cui, Oji, Kogure, Harada, Ishikawa, Aoki, Komaba (bib0018) 2015; 17
Li, Meduri, Chen, Qi, Engelhard, Xu, Ding, Xiao, Wang, Wang, Zhang, Liu (bib0015) 2012; 22
Munaoka, Yan, Lopez, To, Park, Tok, Cui, Bao (bib0024) 2018; 8
Feng, Li, Liu, Kashkooli, Xiao, Cai, Chen (bib0006) 2018; 14
Li, Xu, Li, Yin, Wan, Guo (bib0004) 2017; 1
Sun, He, Li, Liu, Wan, Tan, Liu, An, Gong, Qu (bib0033) 2020; 454
Han, Yabuuchi, Hashimoto, Sasaki, Komaba (bib0036) 2012; 2
Xie, Tong, Su, Xu, Wang, Wang (bib0014) 2017; 342
J. Wu, Y. Zhou, Y. Meng, J. Zhang, Q. Liu, Q. Cao, Y. Yu, e-Polymers 15 (2015) 271-278.
Zheng, Engelhard, Mei, Jiao, Polzin, Zhang, Xu (bib0041) 2017; 2
He, Zhang (bib0032) 2018; 763
Liu, Li, Goodman, Zhang, Epstein, Huang, Pan, Kim, Choi, Huang, Liu, Hsia, Dillon, Braun (bib0017) 2015; 9
Liu, Zhang, Zhang, Li, Huang, Sun (bib0023) 2015; 25
Hatchard, Dahn (bib0003) 2004; 151
Kumeta, Nagashima, Matsui, Mizoguchi (bib0031) 2003; 90
Dalavi, Guduru, Lucht (bib0009) 2012; 159
Han, Piernas-Muñoz, Dogan, Kubal, Trask, Bloom, Vaughey, Key (bib0007) 2019; 166
Zhang, Yang, Chen, Huang, Zhang, Zeng, Wang, Liu, Deng (bib0029) 2018
Hays, Ruther, Kukay, Cao, Saito, Wood, Li (bib0037) 2018; 384
Choi, Kwon, Coskun, Choi (bib0019) 2017; 357
Ding, Xu, Yao, Wegner, Lieberwirth, Chen (bib0020) 2009; 192
Hu, Wang, Huang, Yu (bib0026) 2020; 449
Li, Shi, Yin, Zeng, Li, Li, Wan, Wen, Guo (bib0038) 2018; 57
Kim, Seo, Park, Cho (bib0010) 2010; 49
Pereira-Nabais, Światowska, Chagnes, Ozanam, Gohier, Tran-Van, Cojocaru, Cassir, Marcus (bib0039) 2013; 266
Cao, Naguib, Du, Stacy, Li, Hong, Xing, Voylov, Li, Wood, Sokolov, Nanda, Saito (bib0008) 2018; 10
Ryu, Choi, Cui, Nix (bib0012) 2011; 59
Koo, Kim, Cho, Lee, Choi, Cho (bib0030) 2012; 51
Zhang, Gao, Wang, Lu, Deng, You, Li, Zhou, Huang, Zhou, Sun (bib0043) 2018
Zhang, Zhang, Li, Wang, Zhang, Liu, Xie, Pei, Huang, Sun (bib0040) 2019; 298
Park, Kim, Kim, Sohn (bib0001) 2010; 39
Bogart, Oka, Lu, Gu, Wang, Korgel (bib0011) 2014; 8
Yang, Zhang, Zhang, Wang, Gao, Fang (bib0028) 2018; 87
Hu, Shkrob, Zhang, Zhang, Zhang, Li, Liao, Zhang, Lu, Zhang (bib0021) 2018; 378
Kovalenko, Zdyrko, Magasinski, Hertzberg, Milicev, Burtovyy, Luzinov, Yushin (bib0022) 2011; 334
Obrovac, Chevrier (bib0005) 2014; 114
Nie, Abraham, Chen, Bose, Lucht (bib0042) 2013; 117
Cho (bib0016) 2010; 20
Feng (10.1016/j.electacta.2021.138361_bib0006) 2018; 14
Ryu (10.1016/j.electacta.2021.138361_bib0012) 2011; 59
Park (10.1016/j.electacta.2021.138361_bib0001) 2010; 39
Hu (10.1016/j.electacta.2021.138361_bib0021) 2018; 378
Munaoka (10.1016/j.electacta.2021.138361_bib0024) 2018; 8
Liu (10.1016/j.electacta.2021.138361_bib0023) 2015; 25
Nie (10.1016/j.electacta.2021.138361_bib0042) 2013; 117
Kim (10.1016/j.electacta.2021.138361_bib0010) 2010; 49
Obrovac (10.1016/j.electacta.2021.138361_bib0005) 2014; 114
Choi (10.1016/j.electacta.2021.138361_bib0019) 2017; 357
Liu (10.1016/j.electacta.2021.138361_bib0017) 2015; 9
10.1016/j.electacta.2021.138361_bib0034
Cho (10.1016/j.electacta.2021.138361_bib0016) 2010; 20
Wang (10.1016/j.electacta.2021.138361_bib0027) 2013; 5
Yao (10.1016/j.electacta.2021.138361_bib0025) 2018; 379
Sun (10.1016/j.electacta.2021.138361_bib0033) 2020; 454
Zhang (10.1016/j.electacta.2021.138361_bib0043) 2018
Hu (10.1016/j.electacta.2021.138361_bib0026) 2020; 449
Dalavi (10.1016/j.electacta.2021.138361_bib0009) 2012; 159
Zhang (10.1016/j.electacta.2021.138361_bib0029) 2018
Cao (10.1016/j.electacta.2021.138361_bib0008) 2018; 10
Kovalenko (10.1016/j.electacta.2021.138361_bib0022) 2011; 334
Chou (10.1016/j.electacta.2021.138361_bib0002) 2014; 16
Koo (10.1016/j.electacta.2021.138361_bib0030) 2012; 51
He (10.1016/j.electacta.2021.138361_bib0032) 2018; 763
Li (10.1016/j.electacta.2021.138361_bib0038) 2018; 57
Pereira-Nabais (10.1016/j.electacta.2021.138361_bib0039) 2013; 266
Han (10.1016/j.electacta.2021.138361_bib0007) 2019; 166
Ding (10.1016/j.electacta.2021.138361_bib0020) 2009; 192
Kumeta (10.1016/j.electacta.2021.138361_bib0031) 2003; 90
Zheng (10.1016/j.electacta.2021.138361_bib0041) 2017; 2
Zhu (10.1016/j.electacta.2021.138361_bib0035) 2019; 845
Hatchard (10.1016/j.electacta.2021.138361_bib0003) 2004; 151
Bogart (10.1016/j.electacta.2021.138361_bib0011) 2014; 8
Baranchugov (10.1016/j.electacta.2021.138361_bib0013) 2007; 9
Han (10.1016/j.electacta.2021.138361_bib0036) 2012; 2
Li (10.1016/j.electacta.2021.138361_bib0004) 2017; 1
Yang (10.1016/j.electacta.2021.138361_bib0028) 2018; 87
Han (10.1016/j.electacta.2021.138361_bib0018) 2015; 17
Hays (10.1016/j.electacta.2021.138361_bib0037) 2018; 384
Xie (10.1016/j.electacta.2021.138361_bib0014) 2017; 342
Zhang (10.1016/j.electacta.2021.138361_bib0040) 2019; 298
Li (10.1016/j.electacta.2021.138361_bib0015) 2012; 22
References_xml – volume: 845
  start-page: 22
  year: 2019
  end-page: 30
  ident: bib0035
  publication-title: J. Electroanal. Chem.
– volume: 384
  start-page: 136
  year: 2018
  end-page: 144
  ident: bib0037
  publication-title: J. Power Sources
– volume: 39
  start-page: 3115
  year: 2010
  end-page: 3141
  ident: bib0001
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 1985
  year: 2015
  end-page: 1994
  ident: bib0017
  publication-title: ACS Nano
– volume: 2
  start-page: A17
  year: 2012
  end-page: A20
  ident: bib0036
  publication-title: ECS Electrochem. Lett.
– year: 2018
  ident: bib0029
  publication-title: Small
– reference: J. Wu, Y. Zhou, Y. Meng, J. Zhang, Q. Liu, Q. Cao, Y. Yu, e-Polymers 15 (2015) 271-278.
– volume: 159
  start-page: A642
  year: 2012
  end-page: A646
  ident: bib0009
  publication-title: J. Electrochem. Soc.
– volume: 14
  year: 2018
  ident: bib0006
  publication-title: Small
– volume: 57
  start-page: 1505
  year: 2018
  end-page: 1509
  ident: bib0038
  publication-title: Angew. Chem. Int. Ed.
– volume: 342
  start-page: 529
  year: 2017
  end-page: 536
  ident: bib0014
  publication-title: J. Power Sources
– year: 2018
  ident: bib0043
  publication-title: Small
– volume: 1
  start-page: 1691
  year: 2017
  end-page: 1708
  ident: bib0004
  publication-title: Mater. Chem. Front.
– volume: 266
  start-page: 5
  year: 2013
  end-page: 16
  ident: bib0039
  publication-title: Appl. Surf. Sci.
– volume: 87
  start-page: 22
  year: 2018
  end-page: 26
  ident: bib0028
  publication-title: Electrochem. Commun.
– volume: 114
  start-page: 11444
  year: 2014
  end-page: 11502
  ident: bib0005
  publication-title: Chem. Rev.
– volume: 51
  start-page: 8762
  year: 2012
  end-page: 8767
  ident: bib0030
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 17012
  year: 2017
  ident: bib0041
  publication-title: Nat. Energy
– volume: 20
  start-page: 4009
  year: 2010
  end-page: 4014
  ident: bib0016
  publication-title: J. Mater. Chem.
– volume: 17
  start-page: 3783
  year: 2015
  end-page: 3795
  ident: bib0018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 117
  start-page: 13403
  year: 2013
  end-page: 13412
  ident: bib0042
  publication-title: J. Phys. Chem. C
– volume: 8
  year: 2018
  ident: bib0024
  publication-title: Adv. Energy Mater.
– volume: 25
  start-page: 3599
  year: 2015
  end-page: 3605
  ident: bib0023
  publication-title: Adv. Funct. Mater.
– volume: 379
  start-page: 26
  year: 2018
  end-page: 32
  ident: bib0025
  publication-title: J. Power Sources
– volume: 151
  start-page: A838
  year: 2004
  end-page: A842
  ident: bib0003
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 11014
  year: 2012
  end-page: 11017
  ident: bib0015
  publication-title: J. Mater. Chem.
– volume: 334
  start-page: 75
  year: 2011
  end-page: 79
  ident: bib0022
  publication-title: Science
– volume: 5
  start-page: 1042
  year: 2013
  end-page: 1048
  ident: bib0027
  publication-title: Nat. Chem.
– volume: 449
  year: 2020
  ident: bib0026
  publication-title: J. Power Sources
– volume: 59
  start-page: 1717
  year: 2011
  end-page: 1730
  ident: bib0012
  publication-title: J. Mech. Phys. Solids.
– volume: 90
  start-page: 2420
  year: 2003
  end-page: 2427
  ident: bib0031
  publication-title: J. Appl. Polym. Sci.
– volume: 357
  start-page: 279
  year: 2017
  end-page: 283
  ident: bib0019
  publication-title: Science
– volume: 166
  start-page: A2396
  year: 2019
  end-page: A2402
  ident: bib0007
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 3470
  year: 2018
  end-page: 3478
  ident: bib0008
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 915
  year: 2014
  end-page: 922
  ident: bib0011
  publication-title: ACS Nano
– volume: 192
  start-page: 644
  year: 2009
  end-page: 651
  ident: bib0020
  publication-title: J. Power Sources
– volume: 298
  start-page: 496
  year: 2019
  end-page: 504
  ident: bib0040
  publication-title: Electrochim. Acta
– volume: 378
  start-page: 671
  year: 2018
  end-page: 676
  ident: bib0021
  publication-title: J. Power Sources
– volume: 763
  start-page: 228
  year: 2018
  end-page: 240
  ident: bib0032
  publication-title: J. Alloys Compd.
– volume: 454
  year: 2020
  ident: bib0033
  publication-title: J. Power Sources
– volume: 16
  start-page: 20347
  year: 2014
  end-page: 20359
  ident: bib0002
  publication-title: Phys. Chem. Chem. Phys.
– volume: 49
  start-page: 2146
  year: 2010
  end-page: 2149
  ident: bib0010
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 796
  year: 2007
  end-page: 800
  ident: bib0013
  publication-title: Electrochem. Commun.
– volume: 763
  start-page: 228
  year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0032
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.05.286
– volume: 379
  start-page: 26
  year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0025
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.12.086
– volume: 14
  year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0006
  publication-title: Small
– volume: 8
  year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0024
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703138
– volume: 117
  start-page: 13403
  year: 2013
  ident: 10.1016/j.electacta.2021.138361_bib0042
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp404155y
– volume: 166
  start-page: A2396
  year: 2019
  ident: 10.1016/j.electacta.2021.138361_bib0007
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0241912jes
– volume: 87
  start-page: 22
  year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0028
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.12.023
– volume: 384
  start-page: 136
  year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0037
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.085
– volume: 266
  start-page: 5
  year: 2013
  ident: 10.1016/j.electacta.2021.138361_bib0039
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.10.165
– volume: 378
  start-page: 671
  year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0021
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.12.068
– volume: 5
  start-page: 1042
  year: 2013
  ident: 10.1016/j.electacta.2021.138361_bib0027
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1802
– volume: 25
  start-page: 3599
  year: 2015
  ident: 10.1016/j.electacta.2021.138361_bib0023
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500589
– volume: 449
  year: 2020
  ident: 10.1016/j.electacta.2021.138361_bib0026
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227472
– volume: 22
  start-page: 11014
  year: 2012
  ident: 10.1016/j.electacta.2021.138361_bib0015
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31286g
– volume: 1
  start-page: 1691
  year: 2017
  ident: 10.1016/j.electacta.2021.138361_bib0004
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C6QM00302H
– volume: 9
  start-page: 796
  year: 2007
  ident: 10.1016/j.electacta.2021.138361_bib0013
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.11.014
– volume: 357
  start-page: 279
  year: 2017
  ident: 10.1016/j.electacta.2021.138361_bib0019
  publication-title: Science
  doi: 10.1126/science.aal4373
– volume: 151
  start-page: A838
  year: 2004
  ident: 10.1016/j.electacta.2021.138361_bib0003
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1739217
– volume: 454
  year: 2020
  ident: 10.1016/j.electacta.2021.138361_bib0033
  publication-title: J. Power Sources
– volume: 17
  start-page: 3783
  year: 2015
  ident: 10.1016/j.electacta.2021.138361_bib0018
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04939J
– year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0029
  publication-title: Small
– ident: 10.1016/j.electacta.2021.138361_bib0034
  doi: 10.1515/epoly-2015-0060
– volume: 298
  start-page: 496
  year: 2019
  ident: 10.1016/j.electacta.2021.138361_bib0040
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.089
– volume: 9
  start-page: 1985
  year: 2015
  ident: 10.1016/j.electacta.2021.138361_bib0017
  publication-title: ACS Nano
  doi: 10.1021/nn507003z
– volume: 2
  start-page: 17012
  year: 2017
  ident: 10.1016/j.electacta.2021.138361_bib0041
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.12
– volume: 845
  start-page: 22
  year: 2019
  ident: 10.1016/j.electacta.2021.138361_bib0035
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.05.019
– volume: 49
  start-page: 2146
  year: 2010
  ident: 10.1016/j.electacta.2021.138361_bib0010
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200906287
– volume: 57
  start-page: 1505
  year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0038
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710806
– volume: 2
  start-page: A17
  year: 2012
  ident: 10.1016/j.electacta.2021.138361_bib0036
  publication-title: ECS Electrochem. Lett.
  doi: 10.1149/2.005302eel
– volume: 10
  start-page: 3470
  year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0008
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13205
– volume: 51
  start-page: 8762
  year: 2012
  ident: 10.1016/j.electacta.2021.138361_bib0030
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201568
– volume: 334
  start-page: 75
  year: 2011
  ident: 10.1016/j.electacta.2021.138361_bib0022
  publication-title: Science
  doi: 10.1126/science.1209150
– volume: 39
  start-page: 3115
  year: 2010
  ident: 10.1016/j.electacta.2021.138361_bib0001
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b919877f
– volume: 59
  start-page: 1717
  year: 2011
  ident: 10.1016/j.electacta.2021.138361_bib0012
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2011.06.003
– volume: 342
  start-page: 529
  year: 2017
  ident: 10.1016/j.electacta.2021.138361_bib0014
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.094
– volume: 8
  start-page: 915
  year: 2014
  ident: 10.1016/j.electacta.2021.138361_bib0011
  publication-title: ACS Nano
  doi: 10.1021/nn405710w
– volume: 192
  start-page: 644
  year: 2009
  ident: 10.1016/j.electacta.2021.138361_bib0020
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.03.017
– volume: 114
  start-page: 11444
  year: 2014
  ident: 10.1016/j.electacta.2021.138361_bib0005
  publication-title: Chem. Rev.
  doi: 10.1021/cr500207g
– volume: 16
  start-page: 20347
  year: 2014
  ident: 10.1016/j.electacta.2021.138361_bib0002
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02475C
– year: 2018
  ident: 10.1016/j.electacta.2021.138361_bib0043
  publication-title: Small
– volume: 159
  start-page: A642
  year: 2012
  ident: 10.1016/j.electacta.2021.138361_bib0009
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.076205jes
– volume: 20
  start-page: 4009
  year: 2010
  ident: 10.1016/j.electacta.2021.138361_bib0016
  publication-title: J. Mater. Chem.
  doi: 10.1039/b923002e
– volume: 90
  start-page: 2420
  year: 2003
  ident: 10.1016/j.electacta.2021.138361_bib0031
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.12910
SSID ssj0007670
Score 2.4793231
Snippet •A cross-linked bicontinuous composite network binder is built.•LixPAA solution can penetrate deep into the pores of the SA network.•SA and Li0.5PAA interlock...
An important strategy to improve energy density of Li-ion batteries is to substitute the traditional graphite anode by Si-based anode which is endowed with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 138361
SubjectTerms Anodes
Bicontinuous network binder
Bonding strength
Commercialization
Cycles
Domains
Electrodes
Flux density
Lithiated polyacrylic acid
Lithium
Lithium-ion batteries
Micro-silicon anode
Microparticles
Polyacrylic acid
Porosity
Rechargeable batteries
Silicon
Sodium alginate
Solid electrolytes
Three dimensional composites
Title Li0.5PAA domains filled in porous sodium alginate skeleton: A 3D bicontinuous composite network binder to stabilize micro-silicon anode for high-performance lithium ion battery
URI https://dx.doi.org/10.1016/j.electacta.2021.138361
https://www.proquest.com/docview/2545649173
Volume 386
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPZQeUEtBpTw0h16zxI4Tb7hFW9DSVqiHInGz7NhR07LJqske4MBv4id2Jg8oSBUHpFyceBIrM5r5RvpmhrFPgjC6UjxQMU8CydGMjUh9oHKRW5N7Y3zX7fM8mV_IL5fx5RqbjbUwRKscfH_v0ztvPdw5Gv7m0bIsqcaXR5IKHDjF0W6YtZSKrHxy-0DzUIkKxykGtPsRx6sbNWPwwkRR8AnHdC3h_4tQT3x1F4BO37LNATlC1h_uHVvz1RZ7PRsHtm2xN__0FnzP7r6V4ST-nmXg6gWm_w0UVPbnoKwAMTcm_NDUrlwtwFzRbIbWQ_MbT4pY8BgyiD6DLYnHXlYr2kvUc-J3eah64jg-proYaGtAgEkU2xsPC6L3BQ0uUBRMVTsPiIqBmiIHy4caBUDw_5O-jVYBtmvxeb3NLk5PfszmwTCeIcgRhbWBTb0ppj6NnRUyjwslbcrz0CBAMVEoDPWmN-iIpQ9FkUbWqambKm9UVKSpQBy4w9aruvIfGAhyLvimuCgSabjDtDWOE4fexBRJavNdlowq0fnQu5xGaFzpkaT2S9_rUpMuda_LXRbeCy779h3PixyPOtePLFFjkHleeH-0Ej04g0YLQqkS8-Lo40vevcc2aNWzD_fZevtn5Q8QEbX2sDP5Q_YqO_s6P_8LUZkODw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPdAeqkJblZbHHLhmiR0n3nBbbUFbWFAPIHGz7NhR07LJqske2gO_iZ_YmTygVKo4IOWS2ONYmcn4G-mbGcYOBGF0pXigYp4EkqMZG5H6QGUisybzxvi22udFMruSp9fx9RqbDrkwRKvsfX_n01tv3T857L_m4bIoKMeXR5ISHDido9TM-oXE35faGIxuH3geKlHh0MaApj8iebW9ZgxeGCkKPuIYryX8f0fUP866PYFO3rDXPXSESbe7Tbbmyy22MR06tm2xV38VF3zL7uZFOIq_TibgqgXG_zXklPfnoCgBQTdG_FBXrlgtwNxQc4bGQ_0Dd4pg8AgmEH0GWxCRvShXNJe450Tw8lB2zHEcpsQYaCpAhEkc298eFsTvC2q8QVEwZeU8ICwGqoocLB-SFADR_zd6N5oF2LbG56937Ork-HI6C_r-DEGGMKwJbOpNPvZp7KyQWZwraVOehQYRiolCYag4vUFPLH0o8jSyTo3dWHmjojxNBQLB92y9rEr_gYEg74IrxXmeSMMdxq1xnDh0JyZPUptts2RQic764uXUQ-NGDyy17_pel5p0qTtdbrPwXnDZ1e94WuRo0Ll-ZIoaT5mnhXcGK9G9N6i1IJgqMTCOPj5n7X22Mbs8n-v5l4uzT-wljXRUxB223vxc-V2ER43da83_D1pED50
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Li0.5PAA+domains+filled+in+porous+sodium+alginate+skeleton%3A+A+3D+bicontinuous+composite+network+binder+to+stabilize+micro-silicon+anode+for+high-performance+lithium+ion+battery&rft.jtitle=Electrochimica+acta&rft.au=Hu%2C+Yi-Yang&rft.au=You%2C+Jin-Hai&rft.au=Zhang%2C+Shao-Jian&rft.au=Lin%2C+Hua&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=386&rft_id=info:doi/10.1016%2Fj.electacta.2021.138361&rft.externalDocID=S0013468621006514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon