Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models

A quickest intrusion detection algorithm is proposed to detect false data injection attacks (FDIAs) in smart grids with time-varying dynamic models. The quickest detection algorithm aims at minimizing the worst case detection delays (WDDs) of cyberattacks, subject to an upper bound of the false alar...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of emerging and selected topics in power electronics Vol. 10; no. 1; pp. 1292 - 1302
Main Authors Nath, Samrat, Akingeneye, Israel, Wu, Jingxian, Han, Zhu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-6777
2168-6785
DOI10.1109/JESTPE.2019.2936587

Cover

Loading…
Abstract A quickest intrusion detection algorithm is proposed to detect false data injection attacks (FDIAs) in smart grids with time-varying dynamic models. The quickest detection algorithm aims at minimizing the worst case detection delays (WDDs) of cyberattacks, subject to an upper bound of the false alarm rate. Since power-grid state transitions could be caused by either cyberattacks or sudden change in loads or grid configurations, we propose to distinguish between an FDIA and a sudden system change by using a time-varying dynamic model, which can accurately capture the dynamic state transitions due to changes in system configurations. A dynamic state estimation algorithm is developed to estimate and track the time-varying and nonstationary power-grid states. The quickest detection algorithm is developed by analyzing the statistical properties of dynamic state estimations, such that the algorithm minimizes the WDD while accurately distinguishing FDIA from sudden system changes. A Markov-chain-based analytical model is used to identify the detector's parameter and quantify its performance. Simulation results demonstrate that the proposed algorithm can accurately detect and remove false data injections or system faults with minimum delays. The proposed algorithm can be implemented to harden intelligent electronic devices (IEDs) or supervisory control and data acquisition (SCADA) systems to improve their resilience to cyberattacks or system faults, thus improving the cybersecurity of smart grids.
AbstractList Not provided.
A quickest intrusion detection algorithm is proposed to detect false data injection attacks (FDIAs) in smart grids with time-varying dynamic models. The quickest detection algorithm aims at minimizing the worst case detection delays (WDDs) of cyberattacks, subject to an upper bound of the false alarm rate. Since power-grid state transitions could be caused by either cyberattacks or sudden change in loads or grid configurations, we propose to distinguish between an FDIA and a sudden system change by using a time-varying dynamic model, which can accurately capture the dynamic state transitions due to changes in system configurations. A dynamic state estimation algorithm is developed to estimate and track the time-varying and nonstationary power-grid states. The quickest detection algorithm is developed by analyzing the statistical properties of dynamic state estimations, such that the algorithm minimizes the WDD while accurately distinguishing FDIA from sudden system changes. A Markov-chain-based analytical model is used to identify the detector's parameter and quantify its performance. Simulation results demonstrate that the proposed algorithm can accurately detect and remove false data injections or system faults with minimum delays. The proposed algorithm can be implemented to harden intelligent electronic devices (IEDs) or supervisory control and data acquisition (SCADA) systems to improve their resilience to cyberattacks or system faults, thus improving the cybersecurity of smart grids.
Author Wu, Jingxian
Nath, Samrat
Akingeneye, Israel
Han, Zhu
Author_xml – sequence: 1
  givenname: Samrat
  orcidid: 0000-0002-3117-8560
  surname: Nath
  fullname: Nath, Samrat
  organization: Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA
– sequence: 2
  givenname: Israel
  orcidid: 0000-0001-6683-0435
  surname: Akingeneye
  fullname: Akingeneye, Israel
  organization: Intel Corporation, San Diego, CA, USA
– sequence: 3
  givenname: Jingxian
  orcidid: 0000-0003-1167-6930
  surname: Wu
  fullname: Wu, Jingxian
  email: wuj@uark.edu
  organization: Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA
– sequence: 4
  givenname: Zhu
  orcidid: 0000-0002-6606-5822
  surname: Han
  fullname: Han, Zhu
  organization: Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
BackLink https://www.osti.gov/biblio/1980397$$D View this record in Osti.gov
BookMark eNqFkEtPAyEUhYnRRK39BW6Irlt5zPBYmr6s0ahpXROGYSK1Qh1oTP-9NNN04UY2EHLOved8l-DUB28BuMZoiDGSd4-TxfJ1MiQIyyGRlJWCn4ALgpkYMC7K0-Ob83PQj3GF8hGklFxcgOXb1plPGxMc22RNcsHD0MCpXkcLxzppOPerw_99Stp8Rug8XHzpNsFZ62r449IHHO-8_nIGPofaruMVOGv2A_qHuwfep5Pl6GHw9DKbj-6fBoaSIg2qQiPEeEOFLblocI2pRoZbwjQjyGCuBRKUiBrJiknCqkoUta1xWWlccKFpD9x0c0NMTkXjcoMPE7zPgRWWAlHJs-i2E23a8L3NTdUqbFufcynCSMHLAlOaVbRTmTbE2NpGbVqXS-4URmqPWXWY1R6zOmDOLvnHlTPoPazUarf-x3vdeZ219rhN5MpCFPQXFTiLag
CODEN IJESN2
CitedBy_id crossref_primary_10_1109_TIA_2022_3161607
crossref_primary_10_1016_j_iot_2023_100926
crossref_primary_10_1109_JSEN_2022_3173945
crossref_primary_10_3390_en16186678
crossref_primary_10_3390_electronics11233854
crossref_primary_10_1109_JESTIE_2023_3327051
crossref_primary_10_3390_en15155565
crossref_primary_10_1109_ACCESS_2023_3273730
crossref_primary_10_1049_blc2_12081
crossref_primary_10_1109_OJPEL_2024_3512452
crossref_primary_10_1080_07474946_2020_1826795
crossref_primary_10_3390_en18061479
crossref_primary_10_1145_3592797
crossref_primary_10_1109_ACCESS_2020_2977632
Cites_doi 10.1109/TSG.2015.2388545
10.1109/9.763211
10.1201/9781482296426
10.1109/GlobalSIP.2018.8646596
10.1109/MSP.2009.76
10.1109/TII.2018.2825243
10.1109/TSG.2015.2495133
10.1109/TSG.2014.2382714
10.1017/cbo9780511754678
10.1109/PESGM.2014.6939486
10.1049/ip-c.1983.0046
10.1109/59.982205
10.1109/TSP.2007.894238
10.1109/JSYST.2014.2323266
10.1109/PSCE.2009.4840192
10.1002/sec.835
10.1109/PESMG.2013.6672638
10.1109/TSG.2011.2163807
10.1109/EEEIC.2011.5874822
10.1109/LSP.2008.920016
10.1109/TSG.2011.2159999
10.1145/1410234.1410240
10.1007/978-1-4615-4561-3
10.1109/TPWRS.2009.2030295
10.1109/MSP.2012.2185911
10.1109/ACCESS.2018.2873981
10.1109/MSP.2011.67
10.1109/SUPERGEN.2009.5348376
10.1002/bltj.21560
10.1201/b17279
10.1109/18.737522
10.1109/59.207380
10.1214/aos/1176350164
10.1109/ICASSP.2013.6638665
10.1214/aoms/1177693055
10.1049/ip-c.1982.0032
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
CorporateAuthor Univ. of Arkansas, Fayetteville, AR (United States)
CorporateAuthor_xml – name: Univ. of Arkansas, Fayetteville, AR (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
OTOTI
DOI 10.1109/JESTPE.2019.2936587
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-6785
EndPage 1302
ExternalDocumentID 1980397
10_1109_JESTPE_2019_2936587
8808884
Genre orig-research
GrantInformation_xml – fundername: U.S. Multidisciplinary University Research Initiative AFOSR
  grantid: MURI 18RT0073
  funderid: 10.13039/100000181
– fundername: NSF
  grantid: CNS-1717454; CNS-1731424; CNS-1702850; CNS-1646607
  funderid: 10.13039/100000001
– fundername: U.S. Department of Energy
  grantid: DE-OE0000779
  funderid: 10.13039/100000015
– fundername: National Science Foundation
  grantid: ECCS-1711087
  funderid: 10.13039/100000001
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
8FD
L7M
OTOTI
ID FETCH-LOGICAL-c324t-b4a0067f38e578f1d13a0c7e26a620c17a808328d09b6926bb84ded15ba1478a3
IEDL.DBID RIE
ISSN 2168-6777
IngestDate Mon Jun 12 04:07:01 EDT 2023
Mon Jun 30 09:38:11 EDT 2025
Tue Jul 01 04:32:04 EDT 2025
Thu Apr 24 22:50:58 EDT 2025
Wed Aug 27 03:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-b4a0067f38e578f1d13a0c7e26a620c17a808328d09b6926bb84ded15ba1478a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Electricity (OE)
OE0000779
ORCID 0000-0001-6683-0435
0000-0002-3117-8560
0000-0003-1167-6930
0000-0002-6606-5822
0000000166830435
0000000311676930
0000000231178560
0000000266065822
PQID 2624754133
PQPubID 2040420
PageCount 11
ParticipantIDs osti_scitechconnect_1980397
proquest_journals_2624754133
crossref_primary_10_1109_JESTPE_2019_2936587
crossref_citationtrail_10_1109_JESTPE_2019_2936587
ieee_primary_8808884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
– name: United States
PublicationTitle IEEE journal of emerging and selected topics in power electronics
PublicationTitleAbbrev JESTPE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Akram (ref38) 2015; 6
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Kay (ref23) 1993
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/TSG.2015.2388545
– ident: ref33
  doi: 10.1109/9.763211
– ident: ref35
  doi: 10.1201/9781482296426
– ident: ref30
  doi: 10.1109/GlobalSIP.2018.8646596
– ident: ref1
  doi: 10.1109/MSP.2009.76
– ident: ref22
  doi: 10.1109/TII.2018.2825243
– volume-title: Fundamentals of Statistical Signal Processing: Estimation Theory
  year: 1993
  ident: ref23
– ident: ref5
  doi: 10.1109/TSG.2015.2495133
– ident: ref11
  doi: 10.1109/TSG.2014.2382714
– ident: ref25
  doi: 10.1017/cbo9780511754678
– ident: ref12
  doi: 10.1109/PESGM.2014.6939486
– ident: ref14
  doi: 10.1049/ip-c.1983.0046
– ident: ref15
  doi: 10.1109/59.982205
– ident: ref31
  doi: 10.1109/TSP.2007.894238
– ident: ref8
  doi: 10.1109/JSYST.2014.2323266
– ident: ref18
  doi: 10.1109/PSCE.2009.4840192
– ident: ref20
  doi: 10.1002/sec.835
– ident: ref13
  doi: 10.1109/PESMG.2013.6672638
– ident: ref10
  doi: 10.1109/TSG.2011.2163807
– volume: 6
  start-page: 1748
  issue: 7
  year: 2015
  ident: ref38
  article-title: Newton Raphson method
  publication-title: Int. J. Sci. Eng. Res.
– ident: ref6
  doi: 10.1109/EEEIC.2011.5874822
– ident: ref34
  doi: 10.1109/LSP.2008.920016
– ident: ref3
  doi: 10.1109/TSG.2011.2159999
– ident: ref9
  doi: 10.1145/1410234.1410240
– ident: ref37
  doi: 10.1007/978-1-4615-4561-3
– ident: ref16
  doi: 10.1109/TPWRS.2009.2030295
– ident: ref2
  doi: 10.1109/MSP.2012.2185911
– ident: ref24
  doi: 10.1109/ACCESS.2018.2873981
– ident: ref4
  doi: 10.1109/MSP.2011.67
– ident: ref17
  doi: 10.1109/SUPERGEN.2009.5348376
– ident: ref7
  doi: 10.1002/bltj.21560
– ident: ref26
  doi: 10.1201/b17279
– ident: ref29
  doi: 10.1109/18.737522
– ident: ref36
  doi: 10.1109/59.207380
– ident: ref27
  doi: 10.1214/aos/1176350164
– ident: ref32
  doi: 10.1109/ICASSP.2013.6638665
– ident: ref28
  doi: 10.1214/aoms/1177693055
– ident: ref19
  doi: 10.1049/ip-c.1982.0032
SSID ssj0000825978
Score 2.3666594
Snippet A quickest intrusion detection algorithm is proposed to detect false data injection attacks (FDIAs) in smart grids with time-varying dynamic models. The...
Not provided.
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1292
SubjectTerms Algorithms
Configurations
Cyberattack
Cybersecurity
Delays
Detection algorithms
dynamic load change
Dynamic models
dynamic state estimation
Electronic devices
Engineering
False alarms
false data injection
Fault detection
Heuristic algorithms
Markov chains
Parameter identification
power system
Power system dynamics
Smart grid
Smart grids
State estimation
Supervisory control and data acquisition
Upper bounds
Title Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models
URI https://ieeexplore.ieee.org/document/8808884
https://www.proquest.com/docview/2624754133
https://www.osti.gov/biblio/1980397
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0EsLcgHjs02drx-HCt2l1KpCNSt1FtkO460tGRR13vh1zPjZFe8hDglipzI9sx4vpnMA-Ct9qJtKM5P6NYXkgtdWOtDQaaAFaZR1pO_4_KjOr-WFzeTmz042eXCxBhz8Fkc023-l9-swoZcZafIa2iwyX3YR8Otz9Xa-VPI1LH54BVcmUJprYciQ7y0pxezq8WnGUVy2TEqOFS7-hdFlDur4GWFcvXHqZxVzfwxXG4n2UeY3I43yY_D99_qN_7vKp7AowFzsrOeSZ7CXuyewcOfKhEewuLzZonyvE5sGlOOzurYqmVzZM7Ipi459qH7Mjw_S4kS89myY1dfkfPY-_tlw8ihy6Z9f3tGHdbu1s_hej5bvDsvhoYLRUBclQovHWmvtjIRBbnlDa9cGXQUyilRBq4dTr1CCpbWKyuU90Y2seET77jUxlUv4KBbdfElMLRiTIvowBmNCKepjIytj1Zp6eUklu0IxHb36zBUI6emGHd1tkpKW_ckq4lk9UCyEZzsXvrWF-P49_BD2v3d0GHjR3BEZK4RYlCd3EABRSHV3JoSwdkIjrfUrwdxXtdCCaknqO-rV3__5hE8EJQXkcO5j-Eg3W_ia0Qryb_JbPoDCe3iog
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXUpQV84NhsY8fx41ixu2xLtwJ1K_Vm2YkjLZQs6nov_HrGTnbFS4hTosiJbM-Mv5nJPADeSseaOsb5Mdm4jFMmM61dlUVTQDNVC-2iv2N2KabX_PymvNmB420ujPc-BZ_5YbxN__LrZbWOrrIT5DU02Pg9uI-4X9IuW2vrUYnGjk5HL6NCZUJK2ZcZork-OR9fzT-OYyyXHiLEIfDKX6Ao9VbByxIl649zOYHN5DHMNtPsYky-DNfBDavvv1Vw_N91PIFHvdZJTjs2eQo7vn0Gez_VItyH-af1AiV6FcjIhxSf1ZJlQybInp6MbLDkrP3cPz8NIabmk0VLrr4i75H3d4uaRJcuGXUd7knssXa7eg7Xk_H83TTrWy5kFWpWIXPcRvxqCuVRlBta08LmlfRMWMHyikqLUy-Qhrl2QjPhnOK1r2npLOVS2eIF7LbL1h8AQTtGNagfWCVRx6kLxX3jvBaSO176vBkA2-y-qfp65LEtxq1JdkmuTUcyE0lmepIN4Hj70reuHMe_h-_H3d8O7Td-AIeRzAaVjFgpt4ohRVUwVKsc1bMBHG2ob3qBXhkmGJclIn7x8u_ffAMPpvPZhbk4u_xwCA9ZzJJIwd1HsBvu1v4V6i7BvU4s-wMG9OXr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quickest+Detection+of+False+Data+Injection+Attacks+in+Smart+Grid+with+Dynamic+Models&rft.jtitle=IEEE+journal+of+emerging+and+selected+topics+in+power+electronics&rft.au=Nath%2C+Samrat&rft.au=Akingeneye%2C+Israel&rft.au=Wu%2C+Jingxian&rft.au=Han%2C+Zhu&rft.date=2022-02-01&rft.pub=IEEE&rft.issn=2168-6777&rft.volume=10&rft.issue=1&rft.spage=1292&rft.epage=1302&rft_id=info:doi/10.1109%2FJESTPE.2019.2936587&rft.externalDocID=8808884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6777&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6777&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6777&client=summon