Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models
A quickest intrusion detection algorithm is proposed to detect false data injection attacks (FDIAs) in smart grids with time-varying dynamic models. The quickest detection algorithm aims at minimizing the worst case detection delays (WDDs) of cyberattacks, subject to an upper bound of the false alar...
Saved in:
Published in | IEEE journal of emerging and selected topics in power electronics Vol. 10; no. 1; pp. 1292 - 1302 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-6777 2168-6785 |
DOI | 10.1109/JESTPE.2019.2936587 |
Cover
Loading…
Abstract | A quickest intrusion detection algorithm is proposed to detect false data injection attacks (FDIAs) in smart grids with time-varying dynamic models. The quickest detection algorithm aims at minimizing the worst case detection delays (WDDs) of cyberattacks, subject to an upper bound of the false alarm rate. Since power-grid state transitions could be caused by either cyberattacks or sudden change in loads or grid configurations, we propose to distinguish between an FDIA and a sudden system change by using a time-varying dynamic model, which can accurately capture the dynamic state transitions due to changes in system configurations. A dynamic state estimation algorithm is developed to estimate and track the time-varying and nonstationary power-grid states. The quickest detection algorithm is developed by analyzing the statistical properties of dynamic state estimations, such that the algorithm minimizes the WDD while accurately distinguishing FDIA from sudden system changes. A Markov-chain-based analytical model is used to identify the detector's parameter and quantify its performance. Simulation results demonstrate that the proposed algorithm can accurately detect and remove false data injections or system faults with minimum delays. The proposed algorithm can be implemented to harden intelligent electronic devices (IEDs) or supervisory control and data acquisition (SCADA) systems to improve their resilience to cyberattacks or system faults, thus improving the cybersecurity of smart grids. |
---|---|
AbstractList | Not provided. A quickest intrusion detection algorithm is proposed to detect false data injection attacks (FDIAs) in smart grids with time-varying dynamic models. The quickest detection algorithm aims at minimizing the worst case detection delays (WDDs) of cyberattacks, subject to an upper bound of the false alarm rate. Since power-grid state transitions could be caused by either cyberattacks or sudden change in loads or grid configurations, we propose to distinguish between an FDIA and a sudden system change by using a time-varying dynamic model, which can accurately capture the dynamic state transitions due to changes in system configurations. A dynamic state estimation algorithm is developed to estimate and track the time-varying and nonstationary power-grid states. The quickest detection algorithm is developed by analyzing the statistical properties of dynamic state estimations, such that the algorithm minimizes the WDD while accurately distinguishing FDIA from sudden system changes. A Markov-chain-based analytical model is used to identify the detector's parameter and quantify its performance. Simulation results demonstrate that the proposed algorithm can accurately detect and remove false data injections or system faults with minimum delays. The proposed algorithm can be implemented to harden intelligent electronic devices (IEDs) or supervisory control and data acquisition (SCADA) systems to improve their resilience to cyberattacks or system faults, thus improving the cybersecurity of smart grids. |
Author | Wu, Jingxian Nath, Samrat Akingeneye, Israel Han, Zhu |
Author_xml | – sequence: 1 givenname: Samrat orcidid: 0000-0002-3117-8560 surname: Nath fullname: Nath, Samrat organization: Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA – sequence: 2 givenname: Israel orcidid: 0000-0001-6683-0435 surname: Akingeneye fullname: Akingeneye, Israel organization: Intel Corporation, San Diego, CA, USA – sequence: 3 givenname: Jingxian orcidid: 0000-0003-1167-6930 surname: Wu fullname: Wu, Jingxian email: wuj@uark.edu organization: Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA – sequence: 4 givenname: Zhu orcidid: 0000-0002-6606-5822 surname: Han fullname: Han, Zhu organization: Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA |
BackLink | https://www.osti.gov/biblio/1980397$$D View this record in Osti.gov |
BookMark | eNqFkEtPAyEUhYnRRK39BW6Irlt5zPBYmr6s0ahpXROGYSK1Qh1oTP-9NNN04UY2EHLOved8l-DUB28BuMZoiDGSd4-TxfJ1MiQIyyGRlJWCn4ALgpkYMC7K0-Ob83PQj3GF8hGklFxcgOXb1plPGxMc22RNcsHD0MCpXkcLxzppOPerw_99Stp8Rug8XHzpNsFZ62r449IHHO-8_nIGPofaruMVOGv2A_qHuwfep5Pl6GHw9DKbj-6fBoaSIg2qQiPEeEOFLblocI2pRoZbwjQjyGCuBRKUiBrJiknCqkoUta1xWWlccKFpD9x0c0NMTkXjcoMPE7zPgRWWAlHJs-i2E23a8L3NTdUqbFufcynCSMHLAlOaVbRTmTbE2NpGbVqXS-4URmqPWXWY1R6zOmDOLvnHlTPoPazUarf-x3vdeZ219rhN5MpCFPQXFTiLag |
CODEN | IJESN2 |
CitedBy_id | crossref_primary_10_1109_TIA_2022_3161607 crossref_primary_10_1016_j_iot_2023_100926 crossref_primary_10_1109_JSEN_2022_3173945 crossref_primary_10_3390_en16186678 crossref_primary_10_3390_electronics11233854 crossref_primary_10_1109_JESTIE_2023_3327051 crossref_primary_10_3390_en15155565 crossref_primary_10_1109_ACCESS_2023_3273730 crossref_primary_10_1049_blc2_12081 crossref_primary_10_1109_OJPEL_2024_3512452 crossref_primary_10_1080_07474946_2020_1826795 crossref_primary_10_3390_en18061479 crossref_primary_10_1145_3592797 crossref_primary_10_1109_ACCESS_2020_2977632 |
Cites_doi | 10.1109/TSG.2015.2388545 10.1109/9.763211 10.1201/9781482296426 10.1109/GlobalSIP.2018.8646596 10.1109/MSP.2009.76 10.1109/TII.2018.2825243 10.1109/TSG.2015.2495133 10.1109/TSG.2014.2382714 10.1017/cbo9780511754678 10.1109/PESGM.2014.6939486 10.1049/ip-c.1983.0046 10.1109/59.982205 10.1109/TSP.2007.894238 10.1109/JSYST.2014.2323266 10.1109/PSCE.2009.4840192 10.1002/sec.835 10.1109/PESMG.2013.6672638 10.1109/TSG.2011.2163807 10.1109/EEEIC.2011.5874822 10.1109/LSP.2008.920016 10.1109/TSG.2011.2159999 10.1145/1410234.1410240 10.1007/978-1-4615-4561-3 10.1109/TPWRS.2009.2030295 10.1109/MSP.2012.2185911 10.1109/ACCESS.2018.2873981 10.1109/MSP.2011.67 10.1109/SUPERGEN.2009.5348376 10.1002/bltj.21560 10.1201/b17279 10.1109/18.737522 10.1109/59.207380 10.1214/aos/1176350164 10.1109/ICASSP.2013.6638665 10.1214/aoms/1177693055 10.1049/ip-c.1982.0032 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
CorporateAuthor | Univ. of Arkansas, Fayetteville, AR (United States) |
CorporateAuthor_xml | – name: Univ. of Arkansas, Fayetteville, AR (United States) |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M OTOTI |
DOI | 10.1109/JESTPE.2019.2936587 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-6785 |
EndPage | 1302 |
ExternalDocumentID | 1980397 10_1109_JESTPE_2019_2936587 8808884 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. Multidisciplinary University Research Initiative AFOSR grantid: MURI 18RT0073 funderid: 10.13039/100000181 – fundername: NSF grantid: CNS-1717454; CNS-1731424; CNS-1702850; CNS-1646607 funderid: 10.13039/100000001 – fundername: U.S. Department of Energy grantid: DE-OE0000779 funderid: 10.13039/100000015 – fundername: National Science Foundation grantid: ECCS-1711087 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG 7SP 8FD L7M OTOTI |
ID | FETCH-LOGICAL-c324t-b4a0067f38e578f1d13a0c7e26a620c17a808328d09b6926bb84ded15ba1478a3 |
IEDL.DBID | RIE |
ISSN | 2168-6777 |
IngestDate | Mon Jun 12 04:07:01 EDT 2023 Mon Jun 30 09:38:11 EDT 2025 Tue Jul 01 04:32:04 EDT 2025 Thu Apr 24 22:50:58 EDT 2025 Wed Aug 27 03:00:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-b4a0067f38e578f1d13a0c7e26a620c17a808328d09b6926bb84ded15ba1478a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Electricity (OE) OE0000779 |
ORCID | 0000-0001-6683-0435 0000-0002-3117-8560 0000-0003-1167-6930 0000-0002-6606-5822 0000000166830435 0000000311676930 0000000231178560 0000000266065822 |
PQID | 2624754133 |
PQPubID | 2040420 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1980397 proquest_journals_2624754133 crossref_primary_10_1109_JESTPE_2019_2936587 crossref_citationtrail_10_1109_JESTPE_2019_2936587 ieee_primary_8808884 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway – name: United States |
PublicationTitle | IEEE journal of emerging and selected topics in power electronics |
PublicationTitleAbbrev | JESTPE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 Akram (ref38) 2015; 6 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Kay (ref23) 1993 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref21 doi: 10.1109/TSG.2015.2388545 – ident: ref33 doi: 10.1109/9.763211 – ident: ref35 doi: 10.1201/9781482296426 – ident: ref30 doi: 10.1109/GlobalSIP.2018.8646596 – ident: ref1 doi: 10.1109/MSP.2009.76 – ident: ref22 doi: 10.1109/TII.2018.2825243 – volume-title: Fundamentals of Statistical Signal Processing: Estimation Theory year: 1993 ident: ref23 – ident: ref5 doi: 10.1109/TSG.2015.2495133 – ident: ref11 doi: 10.1109/TSG.2014.2382714 – ident: ref25 doi: 10.1017/cbo9780511754678 – ident: ref12 doi: 10.1109/PESGM.2014.6939486 – ident: ref14 doi: 10.1049/ip-c.1983.0046 – ident: ref15 doi: 10.1109/59.982205 – ident: ref31 doi: 10.1109/TSP.2007.894238 – ident: ref8 doi: 10.1109/JSYST.2014.2323266 – ident: ref18 doi: 10.1109/PSCE.2009.4840192 – ident: ref20 doi: 10.1002/sec.835 – ident: ref13 doi: 10.1109/PESMG.2013.6672638 – ident: ref10 doi: 10.1109/TSG.2011.2163807 – volume: 6 start-page: 1748 issue: 7 year: 2015 ident: ref38 article-title: Newton Raphson method publication-title: Int. J. Sci. Eng. Res. – ident: ref6 doi: 10.1109/EEEIC.2011.5874822 – ident: ref34 doi: 10.1109/LSP.2008.920016 – ident: ref3 doi: 10.1109/TSG.2011.2159999 – ident: ref9 doi: 10.1145/1410234.1410240 – ident: ref37 doi: 10.1007/978-1-4615-4561-3 – ident: ref16 doi: 10.1109/TPWRS.2009.2030295 – ident: ref2 doi: 10.1109/MSP.2012.2185911 – ident: ref24 doi: 10.1109/ACCESS.2018.2873981 – ident: ref4 doi: 10.1109/MSP.2011.67 – ident: ref17 doi: 10.1109/SUPERGEN.2009.5348376 – ident: ref7 doi: 10.1002/bltj.21560 – ident: ref26 doi: 10.1201/b17279 – ident: ref29 doi: 10.1109/18.737522 – ident: ref36 doi: 10.1109/59.207380 – ident: ref27 doi: 10.1214/aos/1176350164 – ident: ref32 doi: 10.1109/ICASSP.2013.6638665 – ident: ref28 doi: 10.1214/aoms/1177693055 – ident: ref19 doi: 10.1049/ip-c.1982.0032 |
SSID | ssj0000825978 |
Score | 2.3666594 |
Snippet | A quickest intrusion detection algorithm is proposed to detect false data injection attacks (FDIAs) in smart grids with time-varying dynamic models. The... Not provided. |
SourceID | osti proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1292 |
SubjectTerms | Algorithms Configurations Cyberattack Cybersecurity Delays Detection algorithms dynamic load change Dynamic models dynamic state estimation Electronic devices Engineering False alarms false data injection Fault detection Heuristic algorithms Markov chains Parameter identification power system Power system dynamics Smart grid Smart grids State estimation Supervisory control and data acquisition Upper bounds |
Title | Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models |
URI | https://ieeexplore.ieee.org/document/8808884 https://www.proquest.com/docview/2624754133 https://www.osti.gov/biblio/1980397 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0EsLcgHjs02drx-HCt2l1KpCNSt1FtkO460tGRR13vh1zPjZFe8hDglipzI9sx4vpnMA-Ct9qJtKM5P6NYXkgtdWOtDQaaAFaZR1pO_4_KjOr-WFzeTmz042eXCxBhz8Fkc023-l9-swoZcZafIa2iwyX3YR8Otz9Xa-VPI1LH54BVcmUJprYciQ7y0pxezq8WnGUVy2TEqOFS7-hdFlDur4GWFcvXHqZxVzfwxXG4n2UeY3I43yY_D99_qN_7vKp7AowFzsrOeSZ7CXuyewcOfKhEewuLzZonyvE5sGlOOzurYqmVzZM7Ipi459qH7Mjw_S4kS89myY1dfkfPY-_tlw8ihy6Z9f3tGHdbu1s_hej5bvDsvhoYLRUBclQovHWmvtjIRBbnlDa9cGXQUyilRBq4dTr1CCpbWKyuU90Y2seET77jUxlUv4KBbdfElMLRiTIvowBmNCKepjIytj1Zp6eUklu0IxHb36zBUI6emGHd1tkpKW_ckq4lk9UCyEZzsXvrWF-P49_BD2v3d0GHjR3BEZK4RYlCd3EABRSHV3JoSwdkIjrfUrwdxXtdCCaknqO-rV3__5hE8EJQXkcO5j-Eg3W_ia0Qryb_JbPoDCe3iog |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXUpQV84NhsY8fx41ixu2xLtwJ1K_Vm2YkjLZQs6nov_HrGTnbFS4hTosiJbM-Mv5nJPADeSseaOsb5Mdm4jFMmM61dlUVTQDNVC-2iv2N2KabX_PymvNmB420ujPc-BZ_5YbxN__LrZbWOrrIT5DU02Pg9uI-4X9IuW2vrUYnGjk5HL6NCZUJK2ZcZork-OR9fzT-OYyyXHiLEIfDKX6Ao9VbByxIl649zOYHN5DHMNtPsYky-DNfBDavvv1Vw_N91PIFHvdZJTjs2eQo7vn0Gez_VItyH-af1AiV6FcjIhxSf1ZJlQybInp6MbLDkrP3cPz8NIabmk0VLrr4i75H3d4uaRJcuGXUd7knssXa7eg7Xk_H83TTrWy5kFWpWIXPcRvxqCuVRlBta08LmlfRMWMHyikqLUy-Qhrl2QjPhnOK1r2npLOVS2eIF7LbL1h8AQTtGNagfWCVRx6kLxX3jvBaSO176vBkA2-y-qfp65LEtxq1JdkmuTUcyE0lmepIN4Hj70reuHMe_h-_H3d8O7Td-AIeRzAaVjFgpt4ohRVUwVKsc1bMBHG2ob3qBXhkmGJclIn7x8u_ffAMPpvPZhbk4u_xwCA9ZzJJIwd1HsBvu1v4V6i7BvU4s-wMG9OXr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quickest+Detection+of+False+Data+Injection+Attacks+in+Smart+Grid+with+Dynamic+Models&rft.jtitle=IEEE+journal+of+emerging+and+selected+topics+in+power+electronics&rft.au=Nath%2C+Samrat&rft.au=Akingeneye%2C+Israel&rft.au=Wu%2C+Jingxian&rft.au=Han%2C+Zhu&rft.date=2022-02-01&rft.pub=IEEE&rft.issn=2168-6777&rft.volume=10&rft.issue=1&rft.spage=1292&rft.epage=1302&rft_id=info:doi/10.1109%2FJESTPE.2019.2936587&rft.externalDocID=8808884 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6777&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6777&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6777&client=summon |