Susceptor based design strategies for enhancing microwave hybrid heating capability via experimental analysis, 3D multi-physics simulation and parametric optimization
Microwave processing has gained remarkable recognition based upon volumetric processing that is energy efficient. Susceptor-assisted microwave heating is a fast-emerging technology because of its advantages over traditional microwave processing. Susceptor help to speed up microwave processing by off...
Saved in:
Published in | International journal of thermal sciences Vol. 196; p. 108674 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1290-0729 1778-4166 |
DOI | 10.1016/j.ijthermalsci.2023.108674 |
Cover
Abstract | Microwave processing has gained remarkable recognition based upon volumetric processing that is energy efficient. Susceptor-assisted microwave heating is a fast-emerging technology because of its advantages over traditional microwave processing. Susceptor help to speed up microwave processing by offering two-way heating with less heat loss from the material's surface. The present investigation brings out ways (theoretical, simulation and experimental) to select appropriate susceptor material by considering different types of microwaves absorbing material (alumina, yttria stabilized zirconia, boron nitride and silicon carbide) for efficient microwave heating. Theoretical analysis (dielectric properties, penetration depth, absorption loss and reflection loss) suggests silicon carbide (SiC) to be the most suitable susceptor. COMSOL Multiphysics based simulation in conjunction with experimental results were utilized for critical understanding of SiC susceptor heating. The influence of physical parameters: microwave input power, microwave frequency, placement of susceptor inside cavity and dimension of susceptor on electric field distribution and temperature profile of SiC susceptor are also investigated and presented in detail. Among all susceptor materials, SiC exhibited highest heating rate in similar operating parameters. The temperature obtained for SiC susceptor during microwave heating without casket (80 °C) was significantly lower than that with casket insulation (1003 °C). A susceptor of 10 mm thickness with cross-section of 625 mm2 was found to be the optimum dimension for SiC susceptor. The maximum temperature obtained by the SiC susceptor was 658 °C, 1003 °C, 1182 °C and 1380 °C for input power of 800 W, 1200 W, 1600 W and 2000 W respectively. Simulation data were validated with experimental results. The results exhibit a good agreement between simulation results and experimental data.
•Theoretical calculations were carried out to select the best susceptor material.•Heating susceptor within casket insulation was found to be more effective.•A coupled heat and electromagnetic transfer model were considered for simulation.•The effect of frequency, power, susceptor position and dimension were discussed.•The accuracy of simulations temperature result is verified with experimental data. |
---|---|
AbstractList | Microwave processing has gained remarkable recognition based upon volumetric processing that is energy efficient. Susceptor-assisted microwave heating is a fast-emerging technology because of its advantages over traditional microwave processing. Susceptor help to speed up microwave processing by offering two-way heating with less heat loss from the material's surface. The present investigation brings out ways (theoretical, simulation and experimental) to select appropriate susceptor material by considering different types of microwaves absorbing material (alumina, yttria stabilized zirconia, boron nitride and silicon carbide) for efficient microwave heating. Theoretical analysis (dielectric properties, penetration depth, absorption loss and reflection loss) suggests silicon carbide (SiC) to be the most suitable susceptor. COMSOL Multiphysics based simulation in conjunction with experimental results were utilized for critical understanding of SiC susceptor heating. The influence of physical parameters: microwave input power, microwave frequency, placement of susceptor inside cavity and dimension of susceptor on electric field distribution and temperature profile of SiC susceptor are also investigated and presented in detail. Among all susceptor materials, SiC exhibited highest heating rate in similar operating parameters. The temperature obtained for SiC susceptor during microwave heating without casket (80 °C) was significantly lower than that with casket insulation (1003 °C). A susceptor of 10 mm thickness with cross-section of 625 mm2 was found to be the optimum dimension for SiC susceptor. The maximum temperature obtained by the SiC susceptor was 658 °C, 1003 °C, 1182 °C and 1380 °C for input power of 800 W, 1200 W, 1600 W and 2000 W respectively. Simulation data were validated with experimental results. The results exhibit a good agreement between simulation results and experimental data.
•Theoretical calculations were carried out to select the best susceptor material.•Heating susceptor within casket insulation was found to be more effective.•A coupled heat and electromagnetic transfer model were considered for simulation.•The effect of frequency, power, susceptor position and dimension were discussed.•The accuracy of simulations temperature result is verified with experimental data. |
ArticleNumber | 108674 |
Author | Panigrahi, S.K. Patel, D.K. Mohanty, A. |
Author_xml | – sequence: 1 givenname: A. surname: Mohanty fullname: Mohanty, A. email: aveekmohanty@gmail.com – sequence: 2 givenname: D.K. surname: Patel fullname: Patel, D.K. email: deepakpatelraj@gmail.com – sequence: 3 givenname: S.K. surname: Panigrahi fullname: Panigrahi, S.K. email: skpanigrahi@iitm.ac.in |
BookMark | eNqNkM9u1DAQxi1UJNrCO1icyWInXifmBGr5J1XiAJytsTPZzCpxIttdWB6I58Tb5YA49TQefzOf5vtdsYuwBGTspRQbKaR-vd_QPo8YZ5iSp00t6qYInW7VE3Yp27arlNT6orxrIyrR1uYZu0ppL4RojTCX7PfX--RxzUvkDhL2vMdEu8BTjpBxR5j4UDQMIwRPYcdn8nH5AQfk49FF6vmIkE-ChxUcTZSP_EDA8eeKkWYMGSYOAaZjovSKN7d8vp8yVetYPnziiUpfHJZQpnq-QoQZcyTPlzXTTL8etOfs6VAi4ou_9Zp9__D-282n6u7Lx8837-4q39QqV-C8H5yTUoLqazNAt3ViMKodjNFSK9UYUK5tt0bU2juz1bpzQnUNQD1INM01e3v2LSFTijhYT_nhgsKDJiuFPXG3e_svd3vibs_ci8Wb_yzWwgHi8XHLt-dlLCEPhNGWCQwee4ros-0XeozNH7CpruM |
CitedBy_id | crossref_primary_10_1016_j_ijthermalsci_2024_109082 crossref_primary_10_1016_j_conbuildmat_2025_140693 crossref_primary_10_1016_j_mtcomm_2025_111653 crossref_primary_10_1016_j_rinma_2025_100693 crossref_primary_10_1016_j_tsep_2024_103054 crossref_primary_10_1016_j_jeurceramsoc_2024_117047 crossref_primary_10_1177_09544089241296595 crossref_primary_10_1016_j_applthermaleng_2024_124047 crossref_primary_10_1016_j_ijthermalsci_2024_109349 crossref_primary_10_1016_j_measurement_2024_114460 crossref_primary_10_1088_1402_4896_ad6d06 crossref_primary_10_1007_s13369_024_09903_9 crossref_primary_10_1016_j_jmapro_2023_12_022 |
Cites_doi | 10.1179/1743294414Y.0000000359 10.1016/j.pisc.2016.04.044 10.1016/j.compositesa.2015.10.035 10.1016/j.carbon.2010.09.010 10.1016/j.ces.2010.04.039 10.1016/j.ces.2006.03.001 10.1111/jace.12623 10.1016/j.jfoodeng.2020.110409 10.1002/aic.12766 10.1016/j.ceramint.2019.08.055 10.1007/s11665-012-0142-2 10.1016/j.applthermaleng.2019.114250 10.1016/j.ceramint.2014.08.011 10.1016/j.surfcoat.2016.03.009 10.1016/S1359-835X(99)00020-2 10.1007/BF03001876 10.1016/j.ijheatmasstransfer.2011.01.015 10.1016/j.applthermaleng.2017.08.012 10.1002/pssc.200461281 10.1063/1.351191 10.1016/j.surfcoat.2011.05.018 10.1080/10402004.2014.996310 10.1016/S0378-3820(03)00094-8 10.1007/s11431-008-0221-7 10.1088/2053-1591/aac805 10.1016/j.vacuum.2016.06.021 10.1007/s12633-021-01426-4 10.1016/j.matchar.2014.08.015 10.1016/j.wear.2010.12.037 10.1115/1.4039996 10.1680/jnaen.18.00008 10.1016/j.applthermaleng.2015.10.041 10.1016/j.jfoodeng.2012.03.013 10.1016/j.ultsonch.2018.09.004 10.1016/j.jfoodeng.2013.12.015 10.1177/0954408911414652 10.1016/j.jmapro.2016.12.013 10.1002/1521-3951(199703)200:1<39::AID-PSSB39>3.0.CO;2-R 10.1080/10408436.2016.1192987 10.1021/ef300914f 10.1007/s11665-017-3110-z 10.1016/j.jmapro.2012.05.007 10.1016/j.apsusc.2012.02.019 10.2474/trol.11.333 10.1080/10426914.2014.952028 10.1016/j.icheatmasstransfer.2013.09.008 10.1016/j.fuel.2021.121942 10.1016/j.ijthermalsci.2015.01.003 10.1007/s11665-022-07092-w 10.1063/1.2713087 10.1016/j.apsusc.2016.02.114 10.1016/j.jmrt.2016.01.002 10.1002/adem.201800163 10.1016/j.jmapro.2014.01.001 10.1016/j.scriptamat.2016.10.008 10.1016/j.fuproc.2009.08.021 10.3390/ma9040231 10.1177/2041297510393451 10.1016/0009-2509(91)85093-D 10.1016/j.wear.2015.11.003 10.1016/j.ijheatmasstransfer.2015.02.021 10.1016/j.energy.2015.11.034 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Masson SAS |
Copyright_xml | – notice: 2023 Elsevier Masson SAS |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijthermalsci.2023.108674 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1778-4166 |
ExternalDocumentID | 10_1016_j_ijthermalsci_2023_108674 S1290072923005355 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSG SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c324t-abccfbb111a4d29fa85b0f947f996164439a4b7759026cb95668b0483aa2f1e93 |
IEDL.DBID | AIKHN |
ISSN | 1290-0729 |
IngestDate | Tue Jul 01 02:46:38 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 Fri Feb 23 02:35:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Susceptor dimension Microwave heating Dielectric COMSOL simulations Susceptor position |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-abccfbb111a4d29fa85b0f947f996164439a4b7759026cb95668b0483aa2f1e93 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijthermalsci_2023_108674 crossref_primary_10_1016_j_ijthermalsci_2023_108674 elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2023_108674 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of thermal sciences |
PublicationYear | 2024 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Kumar, Mohanty, Lingappa, Srinath, Panigrahi (bib36) 2020; 256 Zhu, Li, Yang, Zhou, Wang (bib57) 2022; 308 Bagha, Sehgal, Amit, Kumar (bib49) 2017; 25 Peng, Hwang, Kim, Mouris, Hutcheon (bib52) 2012; 26 Tayier, Janasekaran (bib50) 2022; 5 Chandrasekaran, Ramanathan, Basak (bib4) 2012; 58 Ma, Diehl, Johnson, Martin, Miskovsky, Smith, Weisel, Weiss, Zimmerman (bib44) 2007; 101 Kriegsmann (bib70) 1992; 71 Bhattacharya, Basak (bib6) 2017; 42 Prasad, Lingappa, Joladarashi, Ramesh, Sachin (bib37) 2021; 46 Bhoi, Singh, Pratap (bib31) 2019 Jul 1; vol. 1240 Rattanadecho (bib46) 2006; 61 Menéndez, Juárez-Pérez, Ruisánchez, Bermúdez, Arenillas (bib28) 2011; 49 Frei (bib54) 2013 Parris, Kenkre (bib71) 1997; 200 Handa, Goyal, Sehgal (bib35) 2023; 32 Zafar, Sharma (bib24) 2016 Apr 30; 11 Lin, Li, Chen, Zheng, Hong, Wang (bib40) 2017; 126 Mishra, Sharma (bib3) 2016; 81 Lin, Li, Dai, Zhu, Yao (bib39) 2016; 93 Pitchai, Birla, Subbiah, Jones, Thippareddi (bib63) 2012; 112 Tamang, Aravindan (bib42) 2019; 162 Thostenson, Chou (bib67) 1999; 30 Patel, Bhoi, Singh (bib43) 2022; 14 Singh, Kaushal, Gupta, Bhowmick (bib15) 2018; 140 Gupta, Bhovi, Sharma, Dutta (bib9) 2012; 14 Menéndez, Arenillas, Fidalgo, Fernández, Zubizarreta, Calvo, Miguel Bermúdez (bib34) 2010; 91 Zafar, Sharma (bib21) 2016 Jan 15; 346 Liu, Sheen (bib68) 2008; 51 Gupta, Sharma (bib12) 2012 Nair, Arora, Grewal (bib27) 2019; 50 Peng, Hwang, Andriese, Zhang, Li, Jiang (bib53) 2014; 40 Hebbale, Srinath (bib19) 2016; 5 Hebbale, Srinath (bib20) 2016; 8 Nair, Arora, Mandal, Das, Grewal (bib26) 2018; 20 Uslu, Atalay (bib48) 2004; 85 McGill, Walkiewicz, Smyres (bib47) 1988 Zafar, Sharma (bib25) 2016 May 1; 370 Bhattacharya, Basak (bib5) 2016; 97 Moon, Yang, Yakovlev (bib41) 2015; 87 Pitchai, Birla, Subbiah, Jones, Thippareddi (bib64) 2012; 112 Srinath, Sharma, Kumar (bib29) 2011; 225 Gupta, Sharma (bib8) 2011; 205 Sun, Wang, Yue (bib2) 2016; 9 Ariharan, Hazra, Balani (bib32) 2018; 7 Kaushal, Gupta, Bhowmick (bib17) 2018; 27 Gupta, Sharma (bib7) 2012; 226 Chandrasekaran, Basak, Srinivasan (bib33) 2013; 48 Ciacci, Galgano, Di Blasi (bib60) 2010; 65 Zafar, Sharma (bib22) 2016 Apr 15; 291 Zafar, Sharma (bib23) 2016 Sep 1; 131 Kaushal, Gupta, Bhowmick (bib16) 2018; 5 Ayappa, Davis, Crapiste, Davis, Gordon (bib65) 1991; 46 Heuguet, Marinel, Thuault, Badev (bib69) 2013; 96 Zafar, Sharma (bib10) 2014; 96 Zafar, Bansal, Sharma, Arora, Ramesh (bib18) 2014; 30 Klinbun, Rattanadecho, Pakdee (bib45) 2011; 54 Shang, Zhai, Zhang, Wei, Chen, Liu, Peng (bib51) 2019; 45 Pitchai, Chen, Birla, Gonzalez, Jones, Subbiah (bib61) 2014; 128 Gothall (bib55) 2017 Salema, Afzal (bib66) 2015; 91 Zhang, Yang, Yan, Zhu, Gao, Zhao, Zhang, Chen, Fan (bib56) 2021; 294 Zafar, Sharma (bib14) 2015; 58 Gupta, Sharma (bib30) 2014; 16 Ghammaz, Lefeuvre, Teissandier (bib62) 2003; 58 Sharma, Gupta (bib13) 2012; 258 Baeraky (bib59) 2005; 2 Suresh, Ramesh, Srinath (bib38) 2021 Manière, Zahrah, Olevsky (bib58) 2017; 128 Singh, Gupta, Jain, Sharma (bib1) 2015; 30 Gupta, Sharma (bib11) 2011; 271 Gupta (10.1016/j.ijthermalsci.2023.108674_bib11) 2011; 271 Baeraky (10.1016/j.ijthermalsci.2023.108674_bib59) 2005; 2 Tayier (10.1016/j.ijthermalsci.2023.108674_bib50) 2022; 5 Bhattacharya (10.1016/j.ijthermalsci.2023.108674_bib5) 2016; 97 Ghammaz (10.1016/j.ijthermalsci.2023.108674_bib62) 2003; 58 Kriegsmann (10.1016/j.ijthermalsci.2023.108674_bib70) 1992; 71 Uslu (10.1016/j.ijthermalsci.2023.108674_bib48) 2004; 85 Frei (10.1016/j.ijthermalsci.2023.108674_bib54) 2013 Zafar (10.1016/j.ijthermalsci.2023.108674_bib18) 2014; 30 Kaushal (10.1016/j.ijthermalsci.2023.108674_bib17) 2018; 27 Lin (10.1016/j.ijthermalsci.2023.108674_bib39) 2016; 93 Nair (10.1016/j.ijthermalsci.2023.108674_bib27) 2019; 50 Ma (10.1016/j.ijthermalsci.2023.108674_bib44) 2007; 101 Singh (10.1016/j.ijthermalsci.2023.108674_bib15) 2018; 140 Bhoi (10.1016/j.ijthermalsci.2023.108674_bib31) 2019; vol. 1240 Singh (10.1016/j.ijthermalsci.2023.108674_bib1) 2015; 30 Zafar (10.1016/j.ijthermalsci.2023.108674_bib24) 2016; 11 Prasad (10.1016/j.ijthermalsci.2023.108674_bib37) 2021; 46 Lin (10.1016/j.ijthermalsci.2023.108674_bib40) 2017; 126 Klinbun (10.1016/j.ijthermalsci.2023.108674_bib45) 2011; 54 Liu (10.1016/j.ijthermalsci.2023.108674_bib68) 2008; 51 Kumar (10.1016/j.ijthermalsci.2023.108674_bib36) 2020; 256 Menéndez (10.1016/j.ijthermalsci.2023.108674_bib34) 2010; 91 Zafar (10.1016/j.ijthermalsci.2023.108674_bib23) 2016; 131 Gothall (10.1016/j.ijthermalsci.2023.108674_bib55) 2017 Menéndez (10.1016/j.ijthermalsci.2023.108674_bib28) 2011; 49 Moon (10.1016/j.ijthermalsci.2023.108674_bib41) 2015; 87 Sharma (10.1016/j.ijthermalsci.2023.108674_bib13) 2012; 258 Zhang (10.1016/j.ijthermalsci.2023.108674_bib56) 2021; 294 Patel (10.1016/j.ijthermalsci.2023.108674_bib43) 2022; 14 Ciacci (10.1016/j.ijthermalsci.2023.108674_bib60) 2010; 65 Zafar (10.1016/j.ijthermalsci.2023.108674_bib21) 2016; 346 Gupta (10.1016/j.ijthermalsci.2023.108674_bib12) 2012 Nair (10.1016/j.ijthermalsci.2023.108674_bib26) 2018; 20 Heuguet (10.1016/j.ijthermalsci.2023.108674_bib69) 2013; 96 Srinath (10.1016/j.ijthermalsci.2023.108674_bib29) 2011; 225 Pitchai (10.1016/j.ijthermalsci.2023.108674_bib63) 2012; 112 Hebbale (10.1016/j.ijthermalsci.2023.108674_bib19) 2016; 5 Gupta (10.1016/j.ijthermalsci.2023.108674_bib9) 2012; 14 Ayappa (10.1016/j.ijthermalsci.2023.108674_bib65) 1991; 46 Gupta (10.1016/j.ijthermalsci.2023.108674_bib7) 2012; 226 Zafar (10.1016/j.ijthermalsci.2023.108674_bib14) 2015; 58 Gupta (10.1016/j.ijthermalsci.2023.108674_bib8) 2011; 205 Zafar (10.1016/j.ijthermalsci.2023.108674_bib22) 2016; 291 Sun (10.1016/j.ijthermalsci.2023.108674_bib2) 2016; 9 Handa (10.1016/j.ijthermalsci.2023.108674_bib35) 2023; 32 Parris (10.1016/j.ijthermalsci.2023.108674_bib71) 1997; 200 Bhattacharya (10.1016/j.ijthermalsci.2023.108674_bib6) 2017; 42 Zafar (10.1016/j.ijthermalsci.2023.108674_bib25) 2016; 370 Shang (10.1016/j.ijthermalsci.2023.108674_bib51) 2019; 45 Chandrasekaran (10.1016/j.ijthermalsci.2023.108674_bib33) 2013; 48 Peng (10.1016/j.ijthermalsci.2023.108674_bib53) 2014; 40 Suresh (10.1016/j.ijthermalsci.2023.108674_bib38) 2021 Zhu (10.1016/j.ijthermalsci.2023.108674_bib57) 2022; 308 Bagha (10.1016/j.ijthermalsci.2023.108674_bib49) 2017; 25 Peng (10.1016/j.ijthermalsci.2023.108674_bib52) 2012; 26 Salema (10.1016/j.ijthermalsci.2023.108674_bib66) 2015; 91 McGill (10.1016/j.ijthermalsci.2023.108674_bib47) 1988 Chandrasekaran (10.1016/j.ijthermalsci.2023.108674_bib4) 2012; 58 Hebbale (10.1016/j.ijthermalsci.2023.108674_bib20) 2016; 8 Ariharan (10.1016/j.ijthermalsci.2023.108674_bib32) 2018; 7 Mishra (10.1016/j.ijthermalsci.2023.108674_bib3) 2016; 81 Tamang (10.1016/j.ijthermalsci.2023.108674_bib42) 2019; 162 Thostenson (10.1016/j.ijthermalsci.2023.108674_bib67) 1999; 30 Pitchai (10.1016/j.ijthermalsci.2023.108674_bib64) 2012; 112 Pitchai (10.1016/j.ijthermalsci.2023.108674_bib61) 2014; 128 Zafar (10.1016/j.ijthermalsci.2023.108674_bib10) 2014; 96 Manière (10.1016/j.ijthermalsci.2023.108674_bib58) 2017; 128 Rattanadecho (10.1016/j.ijthermalsci.2023.108674_bib46) 2006; 61 Kaushal (10.1016/j.ijthermalsci.2023.108674_bib16) 2018; 5 Gupta (10.1016/j.ijthermalsci.2023.108674_bib30) 2014; 16 |
References_xml | – volume: 370 start-page: 92 year: 2016 May 1 end-page: 101 ident: bib25 article-title: Structure-property correlations in nanostructured WC–12Co microwave clad publication-title: Appl. Surf. Sci. – volume: 140 year: 2018 ident: bib15 article-title: On development and dry sliding wear behavior of microwave processed Ni/Al2O3 composite clad publication-title: J. Tribol. – volume: 30 start-page: 852 year: 2014 end-page: 859 ident: bib18 article-title: Dry erosion wear performance of Inconel 718 microwave clad publication-title: Surf. Eng. – volume: 30 start-page: 1 year: 2015 end-page: 29 ident: bib1 article-title: Microwave processing of materials and applications in manufacturing industries: a review publication-title: Mater. Manuf. Process. – volume: vol. 1240 year: 2019 Jul 1 ident: bib31 article-title: A study on microwave susceptor material for hybrid heating publication-title: InJournal of Physics: Conference Series – volume: 162 year: 2019 ident: bib42 article-title: 3D numerical modelling of microwave heating of SiC susceptor publication-title: Appl. Therm. Eng. – volume: 20 year: 2018 ident: bib26 article-title: High‐performance microwave‐derived multi‐principal element alloy coatings for tribological application publication-title: Adv. Eng. Mater. – volume: 27 start-page: 777 year: 2018 end-page: 786 ident: bib17 article-title: On development and wear behavior of microwave-processed functionally graded Ni-SiC clads on SS-304 substrate publication-title: J. Mater. Eng. Perform. – volume: 5 start-page: 293 year: 2016 end-page: 301 ident: bib19 article-title: Microstructural investigation of Ni based cladding developed on austenitic SS-304 through microwave irradiation publication-title: J. Mater. Res. Technol. – volume: 14 start-page: 6621 year: 2022 end-page: 6635 ident: bib43 article-title: Microwave heating capabilities of different susceptor material publication-title: Exper. Simul. Stud. Silicon – volume: 93 start-page: 1145 year: 2016 end-page: 1154 ident: bib39 article-title: Three-dimensional simulation of microwave heating coal sample with varying parameters publication-title: Appl. Therm. Eng. – volume: 85 start-page: 21 year: 2004 end-page: 29 ident: bib48 article-title: Microwave heating of coal for enhanced magnetic removal of pyrite publication-title: Fuel Process. Technol. – start-page: 1 year: 2021 end-page: 2 ident: bib38 article-title: Development of self-lubricating nickel based composite clad using microwave heating in improving resistance to wear at elevated temperatures publication-title: Met. Mater. Int. – volume: 61 start-page: 4798 year: 2006 end-page: 4811 ident: bib46 article-title: The simulation of microwave heating of wood using a rectangular wave guide: influence of frequency and sample size publication-title: Chem. Eng. Sci. – volume: 2 start-page: 2577 year: 2005 end-page: 2580 ident: bib59 article-title: Determination of microwave electrical characteristics of boron nitride at high temperature publication-title: Phys. Status Solidi – volume: 54 start-page: 1763 year: 2011 end-page: 1774 ident: bib45 article-title: Microwave heating of saturated packed bed using a rectangular waveguide (TE10 mode): influence of particle size, sample dimension, frequency, and placement inside the guide publication-title: Int. J. Heat Mass Tran. – volume: 7 start-page: 37 year: 2018 end-page: 43 ident: bib32 article-title: High-temperature oxidation of graphite publication-title: Nanomater. Energy – volume: 87 start-page: 359 year: 2015 end-page: 368 ident: bib41 article-title: Microwave-induced temperature fields in cylindrical samples of graphite powder–experimental and modeling studies publication-title: Int. J. Heat Mass Tran. – start-page: 124 year: 1988 ident: bib47 article-title: The effects of power level on the microwave heating of selected chemicals and minerals publication-title: MRS Online Proc. Libr. – volume: 46 start-page: 1005 year: 1991 end-page: 1016 ident: bib65 article-title: Microwave heating: an evaluation of power formulations publication-title: Chem. Eng. Sci. – volume: 200 start-page: 39 year: 1997 end-page: 47 ident: bib71 article-title: Thermal runaway in ceramics arising from the temperature dependence of the thermal conductivity publication-title: Phys. Status Solidi – volume: 16 start-page: 176 year: 2014 end-page: 182 ident: bib30 article-title: Microwave cladding: a new approach in surface engineering publication-title: J. Manuf. Process. – volume: 71 start-page: 1960 year: 1992 end-page: 1966 ident: bib70 article-title: Thermal runaway in microwave heated ceramics: a one‐dimensional model publication-title: J. Appl. Phys. – volume: 51 start-page: 2233 year: 2008 end-page: 2241 ident: bib68 article-title: Analysis and control of the thermal runaway of ceramic slab under microwave heating publication-title: Sci. China E – volume: 45 start-page: 23493 year: 2019 end-page: 23500 ident: bib51 article-title: Electromagnetic waves transmission performance of alumina refractory ceramics in 2.45 GHz microwave heating publication-title: Ceram. Int. – volume: 58 start-page: 1178 year: 2003 end-page: 1188 ident: bib62 article-title: Spectral behavior of domestic microwave ovens and its effects on the ISM band publication-title: Ann. Telecommun. – volume: 96 start-page: 3728 year: 2013 end-page: 3736 ident: bib69 article-title: Effects of the susceptor dielectric properties on the microwave sintering of alumina publication-title: J. Am. Ceram. Soc. – volume: 81 start-page: 78 year: 2016 end-page: 97 ident: bib3 article-title: Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing publication-title: Compos. Appl. Sci. Manuf. – volume: 346 start-page: 29 year: 2016 Jan 15 end-page: 45 ident: bib21 article-title: Abrasive and erosive wear behaviour of nanometric WC–12Co microwave clads publication-title: Wear – volume: 5 start-page: 58 year: 2022 end-page: 73 ident: bib50 article-title: Microwave hybrid heating (MHH) of Ni-based alloy powder on Ni and steel-based metals–A review on fundamentals and parameters publication-title: Int. J. Lightweight Mater. Manuf. – volume: 256 year: 2020 ident: bib36 article-title: Enhancement of surface properties of austenitic stainless steel by nickel-based alloy cladding developed using microwave energy technique publication-title: Mater. Chem. Phys. – volume: 225 start-page: 1083 year: 2011 end-page: 1091 ident: bib29 article-title: A novel route for joining of austenitic stainless steel (SS-316) using microwave energy publication-title: Proc. IME B J. Eng. Manufact. – volume: 205 start-page: 5147 year: 2011 end-page: 5155 ident: bib8 article-title: Development and microstructural characterization of microwave cladding on austenitic stainless steel publication-title: Surf. Coating. Technol. – volume: 291 start-page: 413 year: 2016 Apr 15 end-page: 422 ident: bib22 article-title: Investigations on flexural performance and residual stresses in nanometric WC-12Co microwave clads publication-title: Surf. Coating. Technol. – volume: 91 start-page: 1 year: 2010 end-page: 8 ident: bib34 article-title: Microwave heating processes involving carbon materials publication-title: Fuel Process. Technol. – volume: 9 start-page: 231 year: 2016 ident: bib2 article-title: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies publication-title: Materials – volume: 25 start-page: 290 year: 2017 end-page: 295 ident: bib49 article-title: Effects of powder size of interface material on selective hybrid carbon microwave joining of SS304–SS304 publication-title: J. Manuf. Process. – volume: 58 start-page: 330 year: 2012 end-page: 363 ident: bib4 article-title: Microwave material processing—a review publication-title: AIChE J. – volume: 126 start-page: 949 year: 2017 end-page: 962 ident: bib40 article-title: Sensitivity analysis on the microwave heating of coal: a coupled electromagnetic and heat transfer model publication-title: Appl. Therm. Eng. – year: 2017 ident: bib55 article-title: How to Inspect Your Mesh in COMSOL Multiphysics® – volume: 294 year: 2021 ident: bib56 article-title: Continuous flow microwave system with helical tubes for liquid food heating publication-title: J. Food Eng. – volume: 128 start-page: 49 year: 2017 end-page: 52 ident: bib58 article-title: Inherent heating instability of direct microwave sintering process: Sample analysis for porous 3Y-ZrO2 publication-title: Scripta Materialia – volume: 49 start-page: 346 year: 2011 end-page: 349 ident: bib28 article-title: Ball lightning plasma and plasma arc formation during the microwave heating of carbons publication-title: Carbon – volume: 271 start-page: 1642 year: 2011 end-page: 1650 ident: bib11 article-title: Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation publication-title: Wear – volume: 48 start-page: 22 year: 2013 end-page: 27 ident: bib33 article-title: Microwave heating characteristics of graphite-based powder mixtures publication-title: Int. Commun. Heat Mass Tran. – volume: 128 start-page: 60 year: 2014 end-page: 71 ident: bib61 article-title: A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation publication-title: J. Food Eng. – volume: 308 year: 2022 ident: bib57 article-title: Drying characteristics of oil shale under microwave heating based on a fully coupled three-dimensional electromagnetic-thermal-multiphase transport model publication-title: Fuel – volume: 30 start-page: 1055 year: 1999 end-page: 1071 ident: bib67 article-title: Microwave processing: fundamentals and applications publication-title: Compos. Appl. Sci. Manuf. – volume: 112 start-page: 100 year: 2012 end-page: 111 ident: bib63 article-title: Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens publication-title: J. Food Eng. – volume: 258 start-page: 5583 year: 2012 end-page: 5592 ident: bib13 article-title: On microstructure and flexural strength of metal–ceramic composite cladding developed through microwave heating publication-title: Appl. Surf. Sci. – volume: 14 start-page: 243 year: 2012 end-page: 249 ident: bib9 article-title: Development and characterization of microwave composite cladding publication-title: J. Manuf. Process. – volume: 40 start-page: 16563 year: 2014 end-page: 16568 ident: bib53 article-title: Absorption characteristics of single-layer ceramics under oblique incident microwave irradiation publication-title: Ceram. Int. – volume: 42 start-page: 433 year: 2017 end-page: 469 ident: bib6 article-title: Susceptor-assisted enhanced microwave processing of ceramics-a review publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 58 start-page: 584 year: 2015 end-page: 591 ident: bib14 article-title: On friction and wear behavior of WC-12Co microwave clad publication-title: Tribol. Trans. – volume: 46 start-page: 2387 year: 2021 end-page: 2391 ident: bib37 article-title: Characterization and sliding wear behavior of CoMoCrSi+ Flyash composite cladding processed by microwave irradiation publication-title: Mater. Today: Proc. – volume: 226 start-page: 132 year: 2012 end-page: 141 ident: bib7 article-title: Copper coating on austenitic stainless steel using microwave hybrid heating publication-title: Proc. IME E J. Process Mech. Eng. – volume: 96 start-page: 241 year: 2014 end-page: 248 ident: bib10 article-title: Development and characterization of WC–12Co microwave clad materials publication-title: characterization – volume: 50 start-page: 114 year: 2019 end-page: 125 ident: bib27 article-title: Microwave synthesized complex concentrated alloy coatings: plausible solution to cavitation induced erosion-corrosion publication-title: Ultrason. Sonochem. – volume: 8 start-page: 257 year: 2016 end-page: 259 ident: bib20 article-title: Microstructure and experimental design analysis of nickel based clad developed through microwave energy publication-title: Perspect. Sci. – year: 2013 ident: bib54 article-title: Meshing Your Geometry: when to Use the Various Element Types – volume: 26 start-page: 5146 year: 2012 end-page: 5151 ident: bib52 article-title: Microwave absorption capability of high volatile bituminous coal during pyrolysis publication-title: Energy & fuels – volume: 32 start-page: 170 year: 2023 end-page: 175 ident: bib35 article-title: Low cost joining of Inconel 625 and super duplex stainless steel 2507 through novel technique publication-title: J. Mater. Eng. Perform. – volume: 65 start-page: 4117 year: 2010 end-page: 4133 ident: bib60 article-title: Numerical simulation of the electromagnetic field and the heat and mass transfer processes during microwave-induced pyrolysis of a wood block publication-title: Chem. Eng. Sci. – volume: 11 start-page: 333 year: 2016 Apr 30 end-page: 340 ident: bib24 article-title: Prediction of tribological behavior of WC-12Co nanostructured microwave clad through ANN publication-title: Tribol. Online – volume: 101 year: 2007 ident: bib44 article-title: Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts publication-title: J. Appl. Phys. – volume: 5 year: 2018 ident: bib16 article-title: On processing of Ni-Cr3C2 based functionally graded clads through microwave heating publication-title: Mater. Res. Express – volume: 97 start-page: 306 year: 2016 end-page: 338 ident: bib5 article-title: A review on the susceptor assisted microwave processing of materials publication-title: Energy – start-page: 2165 year: 2012 end-page: 2172 ident: bib12 article-title: Microstructural characterization of cermet cladding developed through microwave irradiation publication-title: J. Mater. Eng. Perform. – volume: 112 start-page: 100 year: 2012 end-page: 111 ident: bib64 article-title: Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens publication-title: J. Food Eng. – volume: 131 start-page: 213 year: 2016 Sep 1 end-page: 222 ident: bib23 article-title: Microstructure and wear performance of heat-treated WC-12Co microwave clad publication-title: Vacuum – volume: 91 start-page: 12 year: 2015 end-page: 24 ident: bib66 article-title: Numerical simulation of heating behaviour in biomass bed and pellets under multimode microwave system publication-title: Int. J. Therm. Sci. – start-page: 1 year: 2021 ident: 10.1016/j.ijthermalsci.2023.108674_bib38 article-title: Development of self-lubricating nickel based composite clad using microwave heating in improving resistance to wear at elevated temperatures publication-title: Met. Mater. Int. – volume: 30 start-page: 852 issue: 11 year: 2014 ident: 10.1016/j.ijthermalsci.2023.108674_bib18 article-title: Dry erosion wear performance of Inconel 718 microwave clad publication-title: Surf. Eng. doi: 10.1179/1743294414Y.0000000359 – volume: 8 start-page: 257 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib20 article-title: Microstructure and experimental design analysis of nickel based clad developed through microwave energy publication-title: Perspect. Sci. doi: 10.1016/j.pisc.2016.04.044 – volume: 81 start-page: 78 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib3 article-title: Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.10.035 – volume: 49 start-page: 346 issue: 1 year: 2011 ident: 10.1016/j.ijthermalsci.2023.108674_bib28 article-title: Ball lightning plasma and plasma arc formation during the microwave heating of carbons publication-title: Carbon doi: 10.1016/j.carbon.2010.09.010 – volume: 65 start-page: 4117 issue: 14 year: 2010 ident: 10.1016/j.ijthermalsci.2023.108674_bib60 article-title: Numerical simulation of the electromagnetic field and the heat and mass transfer processes during microwave-induced pyrolysis of a wood block publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.04.039 – volume: 61 start-page: 4798 issue: 14 year: 2006 ident: 10.1016/j.ijthermalsci.2023.108674_bib46 article-title: The simulation of microwave heating of wood using a rectangular wave guide: influence of frequency and sample size publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.03.001 – year: 2013 ident: 10.1016/j.ijthermalsci.2023.108674_bib54 – year: 2017 ident: 10.1016/j.ijthermalsci.2023.108674_bib55 – volume: 96 start-page: 3728 issue: 12 year: 2013 ident: 10.1016/j.ijthermalsci.2023.108674_bib69 article-title: Effects of the susceptor dielectric properties on the microwave sintering of alumina publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12623 – volume: 294 year: 2021 ident: 10.1016/j.ijthermalsci.2023.108674_bib56 article-title: Continuous flow microwave system with helical tubes for liquid food heating publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2020.110409 – volume: 58 start-page: 330 issue: 2 year: 2012 ident: 10.1016/j.ijthermalsci.2023.108674_bib4 article-title: Microwave material processing—a review publication-title: AIChE J. doi: 10.1002/aic.12766 – volume: 45 start-page: 23493 issue: 17 year: 2019 ident: 10.1016/j.ijthermalsci.2023.108674_bib51 article-title: Electromagnetic waves transmission performance of alumina refractory ceramics in 2.45 GHz microwave heating publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.08.055 – start-page: 2165 year: 2012 ident: 10.1016/j.ijthermalsci.2023.108674_bib12 article-title: Microstructural characterization of cermet cladding developed through microwave irradiation publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-012-0142-2 – volume: 162 year: 2019 ident: 10.1016/j.ijthermalsci.2023.108674_bib42 article-title: 3D numerical modelling of microwave heating of SiC susceptor publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114250 – volume: 40 start-page: 16563 issue: 10 year: 2014 ident: 10.1016/j.ijthermalsci.2023.108674_bib53 article-title: Absorption characteristics of single-layer ceramics under oblique incident microwave irradiation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.08.011 – volume: 291 start-page: 413 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib22 article-title: Investigations on flexural performance and residual stresses in nanometric WC-12Co microwave clads publication-title: Surf. Coating. Technol. doi: 10.1016/j.surfcoat.2016.03.009 – volume: 30 start-page: 1055 issue: 9 year: 1999 ident: 10.1016/j.ijthermalsci.2023.108674_bib67 article-title: Microwave processing: fundamentals and applications publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/S1359-835X(99)00020-2 – volume: 58 start-page: 1178 issue: 7 year: 2003 ident: 10.1016/j.ijthermalsci.2023.108674_bib62 article-title: Spectral behavior of domestic microwave ovens and its effects on the ISM band publication-title: Ann. Telecommun. doi: 10.1007/BF03001876 – volume: 54 start-page: 1763 issue: 9–10 year: 2011 ident: 10.1016/j.ijthermalsci.2023.108674_bib45 article-title: Microwave heating of saturated packed bed using a rectangular waveguide (TE10 mode): influence of particle size, sample dimension, frequency, and placement inside the guide publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2011.01.015 – volume: 126 start-page: 949 year: 2017 ident: 10.1016/j.ijthermalsci.2023.108674_bib40 article-title: Sensitivity analysis on the microwave heating of coal: a coupled electromagnetic and heat transfer model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.08.012 – volume: 2 start-page: 2577 issue: 7 year: 2005 ident: 10.1016/j.ijthermalsci.2023.108674_bib59 article-title: Determination of microwave electrical characteristics of boron nitride at high temperature publication-title: Phys. Status Solidi doi: 10.1002/pssc.200461281 – volume: 71 start-page: 1960 issue: 4 year: 1992 ident: 10.1016/j.ijthermalsci.2023.108674_bib70 article-title: Thermal runaway in microwave heated ceramics: a one‐dimensional model publication-title: J. Appl. Phys. doi: 10.1063/1.351191 – volume: 205 start-page: 5147 issue: 21–22 year: 2011 ident: 10.1016/j.ijthermalsci.2023.108674_bib8 article-title: Development and microstructural characterization of microwave cladding on austenitic stainless steel publication-title: Surf. Coating. Technol. doi: 10.1016/j.surfcoat.2011.05.018 – volume: 58 start-page: 584 issue: 4 year: 2015 ident: 10.1016/j.ijthermalsci.2023.108674_bib14 article-title: On friction and wear behavior of WC-12Co microwave clad publication-title: Tribol. Trans. doi: 10.1080/10402004.2014.996310 – start-page: 124 year: 1988 ident: 10.1016/j.ijthermalsci.2023.108674_bib47 article-title: The effects of power level on the microwave heating of selected chemicals and minerals publication-title: MRS Online Proc. Libr. – volume: 85 start-page: 21 issue: 1 year: 2004 ident: 10.1016/j.ijthermalsci.2023.108674_bib48 article-title: Microwave heating of coal for enhanced magnetic removal of pyrite publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(03)00094-8 – volume: 51 start-page: 2233 issue: 12 year: 2008 ident: 10.1016/j.ijthermalsci.2023.108674_bib68 article-title: Analysis and control of the thermal runaway of ceramic slab under microwave heating publication-title: Sci. China E doi: 10.1007/s11431-008-0221-7 – volume: 5 issue: 6 year: 2018 ident: 10.1016/j.ijthermalsci.2023.108674_bib16 article-title: On processing of Ni-Cr3C2 based functionally graded clads through microwave heating publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aac805 – volume: 131 start-page: 213 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib23 article-title: Microstructure and wear performance of heat-treated WC-12Co microwave clad publication-title: Vacuum doi: 10.1016/j.vacuum.2016.06.021 – volume: 14 start-page: 6621 issue: 12 year: 2022 ident: 10.1016/j.ijthermalsci.2023.108674_bib43 article-title: Microwave heating capabilities of different susceptor material publication-title: Exper. Simul. Stud. Silicon doi: 10.1007/s12633-021-01426-4 – volume: 96 start-page: 241 year: 2014 ident: 10.1016/j.ijthermalsci.2023.108674_bib10 article-title: Development and characterization of WC–12Co microwave clad materials publication-title: characterization doi: 10.1016/j.matchar.2014.08.015 – volume: 271 start-page: 1642 issue: 9–10 year: 2011 ident: 10.1016/j.ijthermalsci.2023.108674_bib11 article-title: Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation publication-title: Wear doi: 10.1016/j.wear.2010.12.037 – volume: 140 issue: 6 year: 2018 ident: 10.1016/j.ijthermalsci.2023.108674_bib15 article-title: On development and dry sliding wear behavior of microwave processed Ni/Al2O3 composite clad publication-title: J. Tribol. doi: 10.1115/1.4039996 – volume: 7 start-page: 37 issue: 2 year: 2018 ident: 10.1016/j.ijthermalsci.2023.108674_bib32 article-title: High-temperature oxidation of graphite publication-title: Nanomater. Energy doi: 10.1680/jnaen.18.00008 – volume: 93 start-page: 1145 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib39 article-title: Three-dimensional simulation of microwave heating coal sample with varying parameters publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.10.041 – volume: 112 start-page: 100 issue: 1–2 year: 2012 ident: 10.1016/j.ijthermalsci.2023.108674_bib63 article-title: Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2012.03.013 – volume: 50 start-page: 114 year: 2019 ident: 10.1016/j.ijthermalsci.2023.108674_bib27 article-title: Microwave synthesized complex concentrated alloy coatings: plausible solution to cavitation induced erosion-corrosion publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.09.004 – volume: 128 start-page: 60 year: 2014 ident: 10.1016/j.ijthermalsci.2023.108674_bib61 article-title: A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2013.12.015 – volume: 226 start-page: 132 issue: 2 year: 2012 ident: 10.1016/j.ijthermalsci.2023.108674_bib7 article-title: Copper coating on austenitic stainless steel using microwave hybrid heating publication-title: Proc. IME E J. Process Mech. Eng. doi: 10.1177/0954408911414652 – volume: 46 start-page: 2387 year: 2021 ident: 10.1016/j.ijthermalsci.2023.108674_bib37 article-title: Characterization and sliding wear behavior of CoMoCrSi+ Flyash composite cladding processed by microwave irradiation publication-title: Mater. Today: Proc. – volume: 25 start-page: 290 year: 2017 ident: 10.1016/j.ijthermalsci.2023.108674_bib49 article-title: Effects of powder size of interface material on selective hybrid carbon microwave joining of SS304–SS304 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2016.12.013 – volume: 200 start-page: 39 issue: 1 year: 1997 ident: 10.1016/j.ijthermalsci.2023.108674_bib71 article-title: Thermal runaway in ceramics arising from the temperature dependence of the thermal conductivity publication-title: Phys. Status Solidi doi: 10.1002/1521-3951(199703)200:1<39::AID-PSSB39>3.0.CO;2-R – volume: 42 start-page: 433 issue: 6 year: 2017 ident: 10.1016/j.ijthermalsci.2023.108674_bib6 article-title: Susceptor-assisted enhanced microwave processing of ceramics-a review publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408436.2016.1192987 – volume: 26 start-page: 5146 issue: 8 year: 2012 ident: 10.1016/j.ijthermalsci.2023.108674_bib52 article-title: Microwave absorption capability of high volatile bituminous coal during pyrolysis publication-title: Energy & fuels doi: 10.1021/ef300914f – volume: 27 start-page: 777 year: 2018 ident: 10.1016/j.ijthermalsci.2023.108674_bib17 article-title: On development and wear behavior of microwave-processed functionally graded Ni-SiC clads on SS-304 substrate publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-017-3110-z – volume: 14 start-page: 243 issue: 3 year: 2012 ident: 10.1016/j.ijthermalsci.2023.108674_bib9 article-title: Development and characterization of microwave composite cladding publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2012.05.007 – volume: 258 start-page: 5583 issue: 15 year: 2012 ident: 10.1016/j.ijthermalsci.2023.108674_bib13 article-title: On microstructure and flexural strength of metal–ceramic composite cladding developed through microwave heating publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.02.019 – volume: 11 start-page: 333 issue: 2 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib24 article-title: Prediction of tribological behavior of WC-12Co nanostructured microwave clad through ANN publication-title: Tribol. Online doi: 10.2474/trol.11.333 – volume: vol. 1240 year: 2019 ident: 10.1016/j.ijthermalsci.2023.108674_bib31 article-title: A study on microwave susceptor material for hybrid heating – volume: 30 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.ijthermalsci.2023.108674_bib1 article-title: Microwave processing of materials and applications in manufacturing industries: a review publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2014.952028 – volume: 48 start-page: 22 year: 2013 ident: 10.1016/j.ijthermalsci.2023.108674_bib33 article-title: Microwave heating characteristics of graphite-based powder mixtures publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2013.09.008 – volume: 308 year: 2022 ident: 10.1016/j.ijthermalsci.2023.108674_bib57 article-title: Drying characteristics of oil shale under microwave heating based on a fully coupled three-dimensional electromagnetic-thermal-multiphase transport model publication-title: Fuel doi: 10.1016/j.fuel.2021.121942 – volume: 91 start-page: 12 year: 2015 ident: 10.1016/j.ijthermalsci.2023.108674_bib66 article-title: Numerical simulation of heating behaviour in biomass bed and pellets under multimode microwave system publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2015.01.003 – volume: 32 start-page: 170 issue: 1 year: 2023 ident: 10.1016/j.ijthermalsci.2023.108674_bib35 article-title: Low cost joining of Inconel 625 and super duplex stainless steel 2507 through novel technique publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-022-07092-w – volume: 101 issue: 7 year: 2007 ident: 10.1016/j.ijthermalsci.2023.108674_bib44 article-title: Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts publication-title: J. Appl. Phys. doi: 10.1063/1.2713087 – volume: 370 start-page: 92 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib25 article-title: Structure-property correlations in nanostructured WC–12Co microwave clad publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.02.114 – volume: 5 start-page: 293 issue: 4 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib19 article-title: Microstructural investigation of Ni based cladding developed on austenitic SS-304 through microwave irradiation publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2016.01.002 – volume: 20 issue: 9 year: 2018 ident: 10.1016/j.ijthermalsci.2023.108674_bib26 article-title: High‐performance microwave‐derived multi‐principal element alloy coatings for tribological application publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201800163 – volume: 256 year: 2020 ident: 10.1016/j.ijthermalsci.2023.108674_bib36 article-title: Enhancement of surface properties of austenitic stainless steel by nickel-based alloy cladding developed using microwave energy technique publication-title: Mater. Chem. Phys. – volume: 16 start-page: 176 issue: 2 year: 2014 ident: 10.1016/j.ijthermalsci.2023.108674_bib30 article-title: Microwave cladding: a new approach in surface engineering publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2014.01.001 – volume: 128 start-page: 49 year: 2017 ident: 10.1016/j.ijthermalsci.2023.108674_bib58 article-title: Inherent heating instability of direct microwave sintering process: Sample analysis for porous 3Y-ZrO2 publication-title: Scripta Materialia doi: 10.1016/j.scriptamat.2016.10.008 – volume: 91 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.ijthermalsci.2023.108674_bib34 article-title: Microwave heating processes involving carbon materials publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2009.08.021 – volume: 9 start-page: 231 issue: 4 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib2 article-title: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies publication-title: Materials doi: 10.3390/ma9040231 – volume: 225 start-page: 1083 issue: 7 year: 2011 ident: 10.1016/j.ijthermalsci.2023.108674_bib29 article-title: A novel route for joining of austenitic stainless steel (SS-316) using microwave energy publication-title: Proc. IME B J. Eng. Manufact. doi: 10.1177/2041297510393451 – volume: 46 start-page: 1005 issue: 4 year: 1991 ident: 10.1016/j.ijthermalsci.2023.108674_bib65 article-title: Microwave heating: an evaluation of power formulations publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(91)85093-D – volume: 112 start-page: 100 issue: 1–2 year: 2012 ident: 10.1016/j.ijthermalsci.2023.108674_bib64 article-title: Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2012.03.013 – volume: 346 start-page: 29 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib21 article-title: Abrasive and erosive wear behaviour of nanometric WC–12Co microwave clads publication-title: Wear doi: 10.1016/j.wear.2015.11.003 – volume: 87 start-page: 359 year: 2015 ident: 10.1016/j.ijthermalsci.2023.108674_bib41 article-title: Microwave-induced temperature fields in cylindrical samples of graphite powder–experimental and modeling studies publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.02.021 – volume: 5 start-page: 58 issue: 1 year: 2022 ident: 10.1016/j.ijthermalsci.2023.108674_bib50 article-title: Microwave hybrid heating (MHH) of Ni-based alloy powder on Ni and steel-based metals–A review on fundamentals and parameters publication-title: Int. J. Lightweight Mater. Manuf. – volume: 97 start-page: 306 year: 2016 ident: 10.1016/j.ijthermalsci.2023.108674_bib5 article-title: A review on the susceptor assisted microwave processing of materials publication-title: Energy doi: 10.1016/j.energy.2015.11.034 |
SSID | ssj0007909 |
Score | 2.4931946 |
Snippet | Microwave processing has gained remarkable recognition based upon volumetric processing that is energy efficient. Susceptor-assisted microwave heating is a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108674 |
SubjectTerms | COMSOL simulations Dielectric Microwave heating Susceptor dimension Susceptor position |
Title | Susceptor based design strategies for enhancing microwave hybrid heating capability via experimental analysis, 3D multi-physics simulation and parametric optimization |
URI | https://dx.doi.org/10.1016/j.ijthermalsci.2023.108674 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB1BuJRDRaEVlA_NgSMmsb1eZw89IChKi-ACSNys_SyOsINICMqlP6e_szv2GgWpB6Qebe9I1s7qzczqzRuAQ2bj2KhERVIMXcSsr1kVyVY6y3nmJBtIRVcDl1d8dMt-3mV3K3Da9cIQrTJgf4vpDVqHN_2wm_3Hsuxf0w0K6V4naSNSkq3CWpIKnvVg7eTHxejqFZBz0TA9aH1EBp32aEPzKseUaFXe17o8plnizeyhnP07Ti3FnvMN-BiSRjxp_-sTrNh6E9aXpAS34M_185QYKpMnpMBk0DTUDJzOOi0I9Okp2vqeBDbqX1gRE-9Fzi3eL6hrCwmV6YP24bNhzC5wXkpcHgGAMkiYHGF6hg0XMWqvRqY4LaswCcyvMkiS4hVN69I48ahUhXbPz3B7_v3mdBSFGQyR9qnWLJJKa6eUR0TJTCKcHGZq4ATLnS-UfKnl8xnJVJ6TCgzXyldbfKhIpl7KxMVWpF-gV09quw3ojJPKaBOnXLAh58Jkktk0dizJzUBmOyC6HS90ECinORkPRcdEGxfL3irIW0XrrR1IX20fW5mOd1l96xxbvDl0hY8n77D_-p_2u_DBP7GWBL4HvdnTs933Oc5MHcDq8e_4IJzkvwaMA9U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLY4BmBAnKKcb2AktEmcpBkYEIcKtCyAxBb5hCCSVrSAWPg5_E78HAeKxIDEGvtJkZ_1Ln3-PkJ2qfJ9yQPusbStPapMz8qRtlKrOI40oy3GcTTQu4w7N_T8NrqdIEf1WxiEVbrYX8V0G63dl6Y7zeYgz5tXOEFB3usgtCQl0SSZplGYIK5v__0b55GkFueBuz3cXjOPWpBX_oBlVmE8LfJ9VBK3ykMJ_T1LjWWe0wUy70pGOKz-apFMqHKJzI0RCS6Tj6vnIeJT-k-AaUmCtMAMGI5qJggwxSmo8h7pNco7KBCH98peFNy_4ZstwJiMC8IkT4uXfYOXnMG4AAAwR2CyB-ExWCSiVw1GhjDMC6cDZnZJQELxArW6BPRNTCrcY88VcnN6cn3U8ZwCgydMoTXyGBdCc27iIaMySDVrR7ylU5po0yaZRstUM4zyJEEOmFhw02vFbY4k9YwF2ldpuEqmyn6p1ghoqRmXQvphnNJ2HKcyYlSFvqZBIlssapC0PvFMOHpyVMl4zGoc2kM27q0MvZVV3mqQ8Mt2UJF0_MnqoHZs9uPKZSab_MF-_Z_2O2Smc93rZt2zy4sNMmtWaAUH3yRTo6dntWWqnRHftrf5E0kDBKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Susceptor+based+design+strategies+for+enhancing+microwave+hybrid+heating+capability+via+experimental+analysis%2C+3D+multi-physics+simulation+and+parametric+optimization&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Mohanty%2C+A.&rft.au=Patel%2C+D.K.&rft.au=Panigrahi%2C+S.K.&rft.date=2024-02-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1290-0729&rft.eissn=1778-4166&rft.volume=196&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2023.108674&rft.externalDocID=S1290072923005355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon |