Susceptor based design strategies for enhancing microwave hybrid heating capability via experimental analysis, 3D multi-physics simulation and parametric optimization

Microwave processing has gained remarkable recognition based upon volumetric processing that is energy efficient. Susceptor-assisted microwave heating is a fast-emerging technology because of its advantages over traditional microwave processing. Susceptor help to speed up microwave processing by off...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of thermal sciences Vol. 196; p. 108674
Main Authors Mohanty, A., Patel, D.K., Panigrahi, S.K.
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.02.2024
Subjects
Online AccessGet full text
ISSN1290-0729
1778-4166
DOI10.1016/j.ijthermalsci.2023.108674

Cover

Abstract Microwave processing has gained remarkable recognition based upon volumetric processing that is energy efficient. Susceptor-assisted microwave heating is a fast-emerging technology because of its advantages over traditional microwave processing. Susceptor help to speed up microwave processing by offering two-way heating with less heat loss from the material's surface. The present investigation brings out ways (theoretical, simulation and experimental) to select appropriate susceptor material by considering different types of microwaves absorbing material (alumina, yttria stabilized zirconia, boron nitride and silicon carbide) for efficient microwave heating. Theoretical analysis (dielectric properties, penetration depth, absorption loss and reflection loss) suggests silicon carbide (SiC) to be the most suitable susceptor. COMSOL Multiphysics based simulation in conjunction with experimental results were utilized for critical understanding of SiC susceptor heating. The influence of physical parameters: microwave input power, microwave frequency, placement of susceptor inside cavity and dimension of susceptor on electric field distribution and temperature profile of SiC susceptor are also investigated and presented in detail. Among all susceptor materials, SiC exhibited highest heating rate in similar operating parameters. The temperature obtained for SiC susceptor during microwave heating without casket (80 °C) was significantly lower than that with casket insulation (1003 °C). A susceptor of 10 mm thickness with cross-section of 625 mm2 was found to be the optimum dimension for SiC susceptor. The maximum temperature obtained by the SiC susceptor was 658 °C, 1003 °C, 1182 °C and 1380 °C for input power of 800 W, 1200 W, 1600 W and 2000 W respectively. Simulation data were validated with experimental results. The results exhibit a good agreement between simulation results and experimental data. •Theoretical calculations were carried out to select the best susceptor material.•Heating susceptor within casket insulation was found to be more effective.•A coupled heat and electromagnetic transfer model were considered for simulation.•The effect of frequency, power, susceptor position and dimension were discussed.•The accuracy of simulations temperature result is verified with experimental data.
AbstractList Microwave processing has gained remarkable recognition based upon volumetric processing that is energy efficient. Susceptor-assisted microwave heating is a fast-emerging technology because of its advantages over traditional microwave processing. Susceptor help to speed up microwave processing by offering two-way heating with less heat loss from the material's surface. The present investigation brings out ways (theoretical, simulation and experimental) to select appropriate susceptor material by considering different types of microwaves absorbing material (alumina, yttria stabilized zirconia, boron nitride and silicon carbide) for efficient microwave heating. Theoretical analysis (dielectric properties, penetration depth, absorption loss and reflection loss) suggests silicon carbide (SiC) to be the most suitable susceptor. COMSOL Multiphysics based simulation in conjunction with experimental results were utilized for critical understanding of SiC susceptor heating. The influence of physical parameters: microwave input power, microwave frequency, placement of susceptor inside cavity and dimension of susceptor on electric field distribution and temperature profile of SiC susceptor are also investigated and presented in detail. Among all susceptor materials, SiC exhibited highest heating rate in similar operating parameters. The temperature obtained for SiC susceptor during microwave heating without casket (80 °C) was significantly lower than that with casket insulation (1003 °C). A susceptor of 10 mm thickness with cross-section of 625 mm2 was found to be the optimum dimension for SiC susceptor. The maximum temperature obtained by the SiC susceptor was 658 °C, 1003 °C, 1182 °C and 1380 °C for input power of 800 W, 1200 W, 1600 W and 2000 W respectively. Simulation data were validated with experimental results. The results exhibit a good agreement between simulation results and experimental data. •Theoretical calculations were carried out to select the best susceptor material.•Heating susceptor within casket insulation was found to be more effective.•A coupled heat and electromagnetic transfer model were considered for simulation.•The effect of frequency, power, susceptor position and dimension were discussed.•The accuracy of simulations temperature result is verified with experimental data.
ArticleNumber 108674
Author Panigrahi, S.K.
Patel, D.K.
Mohanty, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Mohanty
  fullname: Mohanty, A.
  email: aveekmohanty@gmail.com
– sequence: 2
  givenname: D.K.
  surname: Patel
  fullname: Patel, D.K.
  email: deepakpatelraj@gmail.com
– sequence: 3
  givenname: S.K.
  surname: Panigrahi
  fullname: Panigrahi, S.K.
  email: skpanigrahi@iitm.ac.in
BookMark eNqNkM9u1DAQxi1UJNrCO1icyWInXifmBGr5J1XiAJytsTPZzCpxIttdWB6I58Tb5YA49TQefzOf5vtdsYuwBGTspRQbKaR-vd_QPo8YZ5iSp00t6qYInW7VE3Yp27arlNT6orxrIyrR1uYZu0ppL4RojTCX7PfX--RxzUvkDhL2vMdEu8BTjpBxR5j4UDQMIwRPYcdn8nH5AQfk49FF6vmIkE-ChxUcTZSP_EDA8eeKkWYMGSYOAaZjovSKN7d8vp8yVetYPnziiUpfHJZQpnq-QoQZcyTPlzXTTL8etOfs6VAi4ou_9Zp9__D-282n6u7Lx8837-4q39QqV-C8H5yTUoLqazNAt3ViMKodjNFSK9UYUK5tt0bU2juz1bpzQnUNQD1INM01e3v2LSFTijhYT_nhgsKDJiuFPXG3e_svd3vibs_ci8Wb_yzWwgHi8XHLt-dlLCEPhNGWCQwee4ros-0XeozNH7CpruM
CitedBy_id crossref_primary_10_1016_j_ijthermalsci_2024_109082
crossref_primary_10_1016_j_conbuildmat_2025_140693
crossref_primary_10_1016_j_mtcomm_2025_111653
crossref_primary_10_1016_j_rinma_2025_100693
crossref_primary_10_1016_j_tsep_2024_103054
crossref_primary_10_1016_j_jeurceramsoc_2024_117047
crossref_primary_10_1177_09544089241296595
crossref_primary_10_1016_j_applthermaleng_2024_124047
crossref_primary_10_1016_j_ijthermalsci_2024_109349
crossref_primary_10_1016_j_measurement_2024_114460
crossref_primary_10_1088_1402_4896_ad6d06
crossref_primary_10_1007_s13369_024_09903_9
crossref_primary_10_1016_j_jmapro_2023_12_022
Cites_doi 10.1179/1743294414Y.0000000359
10.1016/j.pisc.2016.04.044
10.1016/j.compositesa.2015.10.035
10.1016/j.carbon.2010.09.010
10.1016/j.ces.2010.04.039
10.1016/j.ces.2006.03.001
10.1111/jace.12623
10.1016/j.jfoodeng.2020.110409
10.1002/aic.12766
10.1016/j.ceramint.2019.08.055
10.1007/s11665-012-0142-2
10.1016/j.applthermaleng.2019.114250
10.1016/j.ceramint.2014.08.011
10.1016/j.surfcoat.2016.03.009
10.1016/S1359-835X(99)00020-2
10.1007/BF03001876
10.1016/j.ijheatmasstransfer.2011.01.015
10.1016/j.applthermaleng.2017.08.012
10.1002/pssc.200461281
10.1063/1.351191
10.1016/j.surfcoat.2011.05.018
10.1080/10402004.2014.996310
10.1016/S0378-3820(03)00094-8
10.1007/s11431-008-0221-7
10.1088/2053-1591/aac805
10.1016/j.vacuum.2016.06.021
10.1007/s12633-021-01426-4
10.1016/j.matchar.2014.08.015
10.1016/j.wear.2010.12.037
10.1115/1.4039996
10.1680/jnaen.18.00008
10.1016/j.applthermaleng.2015.10.041
10.1016/j.jfoodeng.2012.03.013
10.1016/j.ultsonch.2018.09.004
10.1016/j.jfoodeng.2013.12.015
10.1177/0954408911414652
10.1016/j.jmapro.2016.12.013
10.1002/1521-3951(199703)200:1<39::AID-PSSB39>3.0.CO;2-R
10.1080/10408436.2016.1192987
10.1021/ef300914f
10.1007/s11665-017-3110-z
10.1016/j.jmapro.2012.05.007
10.1016/j.apsusc.2012.02.019
10.2474/trol.11.333
10.1080/10426914.2014.952028
10.1016/j.icheatmasstransfer.2013.09.008
10.1016/j.fuel.2021.121942
10.1016/j.ijthermalsci.2015.01.003
10.1007/s11665-022-07092-w
10.1063/1.2713087
10.1016/j.apsusc.2016.02.114
10.1016/j.jmrt.2016.01.002
10.1002/adem.201800163
10.1016/j.jmapro.2014.01.001
10.1016/j.scriptamat.2016.10.008
10.1016/j.fuproc.2009.08.021
10.3390/ma9040231
10.1177/2041297510393451
10.1016/0009-2509(91)85093-D
10.1016/j.wear.2015.11.003
10.1016/j.ijheatmasstransfer.2015.02.021
10.1016/j.energy.2015.11.034
ContentType Journal Article
Copyright 2023 Elsevier Masson SAS
Copyright_xml – notice: 2023 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ijthermalsci.2023.108674
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1778-4166
ExternalDocumentID 10_1016_j_ijthermalsci_2023_108674
S1290072923005355
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c324t-abccfbb111a4d29fa85b0f947f996164439a4b7759026cb95668b0483aa2f1e93
IEDL.DBID AIKHN
ISSN 1290-0729
IngestDate Tue Jul 01 02:46:38 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
Fri Feb 23 02:35:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Susceptor dimension
Microwave heating
Dielectric
COMSOL simulations
Susceptor position
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-abccfbb111a4d29fa85b0f947f996164439a4b7759026cb95668b0483aa2f1e93
ParticipantIDs crossref_citationtrail_10_1016_j_ijthermalsci_2023_108674
crossref_primary_10_1016_j_ijthermalsci_2023_108674
elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2023_108674
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle International journal of thermal sciences
PublicationYear 2024
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Kumar, Mohanty, Lingappa, Srinath, Panigrahi (bib36) 2020; 256
Zhu, Li, Yang, Zhou, Wang (bib57) 2022; 308
Bagha, Sehgal, Amit, Kumar (bib49) 2017; 25
Peng, Hwang, Kim, Mouris, Hutcheon (bib52) 2012; 26
Tayier, Janasekaran (bib50) 2022; 5
Chandrasekaran, Ramanathan, Basak (bib4) 2012; 58
Ma, Diehl, Johnson, Martin, Miskovsky, Smith, Weisel, Weiss, Zimmerman (bib44) 2007; 101
Kriegsmann (bib70) 1992; 71
Bhattacharya, Basak (bib6) 2017; 42
Prasad, Lingappa, Joladarashi, Ramesh, Sachin (bib37) 2021; 46
Bhoi, Singh, Pratap (bib31) 2019 Jul 1; vol. 1240
Rattanadecho (bib46) 2006; 61
Menéndez, Juárez-Pérez, Ruisánchez, Bermúdez, Arenillas (bib28) 2011; 49
Frei (bib54) 2013
Parris, Kenkre (bib71) 1997; 200
Handa, Goyal, Sehgal (bib35) 2023; 32
Zafar, Sharma (bib24) 2016 Apr 30; 11
Lin, Li, Chen, Zheng, Hong, Wang (bib40) 2017; 126
Mishra, Sharma (bib3) 2016; 81
Lin, Li, Dai, Zhu, Yao (bib39) 2016; 93
Pitchai, Birla, Subbiah, Jones, Thippareddi (bib63) 2012; 112
Tamang, Aravindan (bib42) 2019; 162
Thostenson, Chou (bib67) 1999; 30
Patel, Bhoi, Singh (bib43) 2022; 14
Singh, Kaushal, Gupta, Bhowmick (bib15) 2018; 140
Gupta, Bhovi, Sharma, Dutta (bib9) 2012; 14
Menéndez, Arenillas, Fidalgo, Fernández, Zubizarreta, Calvo, Miguel Bermúdez (bib34) 2010; 91
Zafar, Sharma (bib21) 2016 Jan 15; 346
Liu, Sheen (bib68) 2008; 51
Gupta, Sharma (bib12) 2012
Nair, Arora, Grewal (bib27) 2019; 50
Peng, Hwang, Andriese, Zhang, Li, Jiang (bib53) 2014; 40
Hebbale, Srinath (bib19) 2016; 5
Hebbale, Srinath (bib20) 2016; 8
Nair, Arora, Mandal, Das, Grewal (bib26) 2018; 20
Uslu, Atalay (bib48) 2004; 85
McGill, Walkiewicz, Smyres (bib47) 1988
Zafar, Sharma (bib25) 2016 May 1; 370
Bhattacharya, Basak (bib5) 2016; 97
Moon, Yang, Yakovlev (bib41) 2015; 87
Pitchai, Birla, Subbiah, Jones, Thippareddi (bib64) 2012; 112
Srinath, Sharma, Kumar (bib29) 2011; 225
Gupta, Sharma (bib8) 2011; 205
Sun, Wang, Yue (bib2) 2016; 9
Ariharan, Hazra, Balani (bib32) 2018; 7
Kaushal, Gupta, Bhowmick (bib17) 2018; 27
Gupta, Sharma (bib7) 2012; 226
Chandrasekaran, Basak, Srinivasan (bib33) 2013; 48
Ciacci, Galgano, Di Blasi (bib60) 2010; 65
Zafar, Sharma (bib22) 2016 Apr 15; 291
Zafar, Sharma (bib23) 2016 Sep 1; 131
Kaushal, Gupta, Bhowmick (bib16) 2018; 5
Ayappa, Davis, Crapiste, Davis, Gordon (bib65) 1991; 46
Heuguet, Marinel, Thuault, Badev (bib69) 2013; 96
Zafar, Sharma (bib10) 2014; 96
Zafar, Bansal, Sharma, Arora, Ramesh (bib18) 2014; 30
Klinbun, Rattanadecho, Pakdee (bib45) 2011; 54
Shang, Zhai, Zhang, Wei, Chen, Liu, Peng (bib51) 2019; 45
Pitchai, Chen, Birla, Gonzalez, Jones, Subbiah (bib61) 2014; 128
Gothall (bib55) 2017
Salema, Afzal (bib66) 2015; 91
Zhang, Yang, Yan, Zhu, Gao, Zhao, Zhang, Chen, Fan (bib56) 2021; 294
Zafar, Sharma (bib14) 2015; 58
Gupta, Sharma (bib30) 2014; 16
Ghammaz, Lefeuvre, Teissandier (bib62) 2003; 58
Sharma, Gupta (bib13) 2012; 258
Baeraky (bib59) 2005; 2
Suresh, Ramesh, Srinath (bib38) 2021
Manière, Zahrah, Olevsky (bib58) 2017; 128
Singh, Gupta, Jain, Sharma (bib1) 2015; 30
Gupta, Sharma (bib11) 2011; 271
Gupta (10.1016/j.ijthermalsci.2023.108674_bib11) 2011; 271
Baeraky (10.1016/j.ijthermalsci.2023.108674_bib59) 2005; 2
Tayier (10.1016/j.ijthermalsci.2023.108674_bib50) 2022; 5
Bhattacharya (10.1016/j.ijthermalsci.2023.108674_bib5) 2016; 97
Ghammaz (10.1016/j.ijthermalsci.2023.108674_bib62) 2003; 58
Kriegsmann (10.1016/j.ijthermalsci.2023.108674_bib70) 1992; 71
Uslu (10.1016/j.ijthermalsci.2023.108674_bib48) 2004; 85
Frei (10.1016/j.ijthermalsci.2023.108674_bib54) 2013
Zafar (10.1016/j.ijthermalsci.2023.108674_bib18) 2014; 30
Kaushal (10.1016/j.ijthermalsci.2023.108674_bib17) 2018; 27
Lin (10.1016/j.ijthermalsci.2023.108674_bib39) 2016; 93
Nair (10.1016/j.ijthermalsci.2023.108674_bib27) 2019; 50
Ma (10.1016/j.ijthermalsci.2023.108674_bib44) 2007; 101
Singh (10.1016/j.ijthermalsci.2023.108674_bib15) 2018; 140
Bhoi (10.1016/j.ijthermalsci.2023.108674_bib31) 2019; vol. 1240
Singh (10.1016/j.ijthermalsci.2023.108674_bib1) 2015; 30
Zafar (10.1016/j.ijthermalsci.2023.108674_bib24) 2016; 11
Prasad (10.1016/j.ijthermalsci.2023.108674_bib37) 2021; 46
Lin (10.1016/j.ijthermalsci.2023.108674_bib40) 2017; 126
Klinbun (10.1016/j.ijthermalsci.2023.108674_bib45) 2011; 54
Liu (10.1016/j.ijthermalsci.2023.108674_bib68) 2008; 51
Kumar (10.1016/j.ijthermalsci.2023.108674_bib36) 2020; 256
Menéndez (10.1016/j.ijthermalsci.2023.108674_bib34) 2010; 91
Zafar (10.1016/j.ijthermalsci.2023.108674_bib23) 2016; 131
Gothall (10.1016/j.ijthermalsci.2023.108674_bib55) 2017
Menéndez (10.1016/j.ijthermalsci.2023.108674_bib28) 2011; 49
Moon (10.1016/j.ijthermalsci.2023.108674_bib41) 2015; 87
Sharma (10.1016/j.ijthermalsci.2023.108674_bib13) 2012; 258
Zhang (10.1016/j.ijthermalsci.2023.108674_bib56) 2021; 294
Patel (10.1016/j.ijthermalsci.2023.108674_bib43) 2022; 14
Ciacci (10.1016/j.ijthermalsci.2023.108674_bib60) 2010; 65
Zafar (10.1016/j.ijthermalsci.2023.108674_bib21) 2016; 346
Gupta (10.1016/j.ijthermalsci.2023.108674_bib12) 2012
Nair (10.1016/j.ijthermalsci.2023.108674_bib26) 2018; 20
Heuguet (10.1016/j.ijthermalsci.2023.108674_bib69) 2013; 96
Srinath (10.1016/j.ijthermalsci.2023.108674_bib29) 2011; 225
Pitchai (10.1016/j.ijthermalsci.2023.108674_bib63) 2012; 112
Hebbale (10.1016/j.ijthermalsci.2023.108674_bib19) 2016; 5
Gupta (10.1016/j.ijthermalsci.2023.108674_bib9) 2012; 14
Ayappa (10.1016/j.ijthermalsci.2023.108674_bib65) 1991; 46
Gupta (10.1016/j.ijthermalsci.2023.108674_bib7) 2012; 226
Zafar (10.1016/j.ijthermalsci.2023.108674_bib14) 2015; 58
Gupta (10.1016/j.ijthermalsci.2023.108674_bib8) 2011; 205
Zafar (10.1016/j.ijthermalsci.2023.108674_bib22) 2016; 291
Sun (10.1016/j.ijthermalsci.2023.108674_bib2) 2016; 9
Handa (10.1016/j.ijthermalsci.2023.108674_bib35) 2023; 32
Parris (10.1016/j.ijthermalsci.2023.108674_bib71) 1997; 200
Bhattacharya (10.1016/j.ijthermalsci.2023.108674_bib6) 2017; 42
Zafar (10.1016/j.ijthermalsci.2023.108674_bib25) 2016; 370
Shang (10.1016/j.ijthermalsci.2023.108674_bib51) 2019; 45
Chandrasekaran (10.1016/j.ijthermalsci.2023.108674_bib33) 2013; 48
Peng (10.1016/j.ijthermalsci.2023.108674_bib53) 2014; 40
Suresh (10.1016/j.ijthermalsci.2023.108674_bib38) 2021
Zhu (10.1016/j.ijthermalsci.2023.108674_bib57) 2022; 308
Bagha (10.1016/j.ijthermalsci.2023.108674_bib49) 2017; 25
Peng (10.1016/j.ijthermalsci.2023.108674_bib52) 2012; 26
Salema (10.1016/j.ijthermalsci.2023.108674_bib66) 2015; 91
McGill (10.1016/j.ijthermalsci.2023.108674_bib47) 1988
Chandrasekaran (10.1016/j.ijthermalsci.2023.108674_bib4) 2012; 58
Hebbale (10.1016/j.ijthermalsci.2023.108674_bib20) 2016; 8
Ariharan (10.1016/j.ijthermalsci.2023.108674_bib32) 2018; 7
Mishra (10.1016/j.ijthermalsci.2023.108674_bib3) 2016; 81
Tamang (10.1016/j.ijthermalsci.2023.108674_bib42) 2019; 162
Thostenson (10.1016/j.ijthermalsci.2023.108674_bib67) 1999; 30
Pitchai (10.1016/j.ijthermalsci.2023.108674_bib64) 2012; 112
Pitchai (10.1016/j.ijthermalsci.2023.108674_bib61) 2014; 128
Zafar (10.1016/j.ijthermalsci.2023.108674_bib10) 2014; 96
Manière (10.1016/j.ijthermalsci.2023.108674_bib58) 2017; 128
Rattanadecho (10.1016/j.ijthermalsci.2023.108674_bib46) 2006; 61
Kaushal (10.1016/j.ijthermalsci.2023.108674_bib16) 2018; 5
Gupta (10.1016/j.ijthermalsci.2023.108674_bib30) 2014; 16
References_xml – volume: 370
  start-page: 92
  year: 2016 May 1
  end-page: 101
  ident: bib25
  article-title: Structure-property correlations in nanostructured WC–12Co microwave clad
  publication-title: Appl. Surf. Sci.
– volume: 140
  year: 2018
  ident: bib15
  article-title: On development and dry sliding wear behavior of microwave processed Ni/Al2O3 composite clad
  publication-title: J. Tribol.
– volume: 30
  start-page: 852
  year: 2014
  end-page: 859
  ident: bib18
  article-title: Dry erosion wear performance of Inconel 718 microwave clad
  publication-title: Surf. Eng.
– volume: 30
  start-page: 1
  year: 2015
  end-page: 29
  ident: bib1
  article-title: Microwave processing of materials and applications in manufacturing industries: a review
  publication-title: Mater. Manuf. Process.
– volume: vol. 1240
  year: 2019 Jul 1
  ident: bib31
  article-title: A study on microwave susceptor material for hybrid heating
  publication-title: InJournal of Physics: Conference Series
– volume: 162
  year: 2019
  ident: bib42
  article-title: 3D numerical modelling of microwave heating of SiC susceptor
  publication-title: Appl. Therm. Eng.
– volume: 20
  year: 2018
  ident: bib26
  article-title: High‐performance microwave‐derived multi‐principal element alloy coatings for tribological application
  publication-title: Adv. Eng. Mater.
– volume: 27
  start-page: 777
  year: 2018
  end-page: 786
  ident: bib17
  article-title: On development and wear behavior of microwave-processed functionally graded Ni-SiC clads on SS-304 substrate
  publication-title: J. Mater. Eng. Perform.
– volume: 5
  start-page: 293
  year: 2016
  end-page: 301
  ident: bib19
  article-title: Microstructural investigation of Ni based cladding developed on austenitic SS-304 through microwave irradiation
  publication-title: J. Mater. Res. Technol.
– volume: 14
  start-page: 6621
  year: 2022
  end-page: 6635
  ident: bib43
  article-title: Microwave heating capabilities of different susceptor material
  publication-title: Exper. Simul. Stud. Silicon
– volume: 93
  start-page: 1145
  year: 2016
  end-page: 1154
  ident: bib39
  article-title: Three-dimensional simulation of microwave heating coal sample with varying parameters
  publication-title: Appl. Therm. Eng.
– volume: 85
  start-page: 21
  year: 2004
  end-page: 29
  ident: bib48
  article-title: Microwave heating of coal for enhanced magnetic removal of pyrite
  publication-title: Fuel Process. Technol.
– start-page: 1
  year: 2021
  end-page: 2
  ident: bib38
  article-title: Development of self-lubricating nickel based composite clad using microwave heating in improving resistance to wear at elevated temperatures
  publication-title: Met. Mater. Int.
– volume: 61
  start-page: 4798
  year: 2006
  end-page: 4811
  ident: bib46
  article-title: The simulation of microwave heating of wood using a rectangular wave guide: influence of frequency and sample size
  publication-title: Chem. Eng. Sci.
– volume: 2
  start-page: 2577
  year: 2005
  end-page: 2580
  ident: bib59
  article-title: Determination of microwave electrical characteristics of boron nitride at high temperature
  publication-title: Phys. Status Solidi
– volume: 54
  start-page: 1763
  year: 2011
  end-page: 1774
  ident: bib45
  article-title: Microwave heating of saturated packed bed using a rectangular waveguide (TE10 mode): influence of particle size, sample dimension, frequency, and placement inside the guide
  publication-title: Int. J. Heat Mass Tran.
– volume: 7
  start-page: 37
  year: 2018
  end-page: 43
  ident: bib32
  article-title: High-temperature oxidation of graphite
  publication-title: Nanomater. Energy
– volume: 87
  start-page: 359
  year: 2015
  end-page: 368
  ident: bib41
  article-title: Microwave-induced temperature fields in cylindrical samples of graphite powder–experimental and modeling studies
  publication-title: Int. J. Heat Mass Tran.
– start-page: 124
  year: 1988
  ident: bib47
  article-title: The effects of power level on the microwave heating of selected chemicals and minerals
  publication-title: MRS Online Proc. Libr.
– volume: 46
  start-page: 1005
  year: 1991
  end-page: 1016
  ident: bib65
  article-title: Microwave heating: an evaluation of power formulations
  publication-title: Chem. Eng. Sci.
– volume: 200
  start-page: 39
  year: 1997
  end-page: 47
  ident: bib71
  article-title: Thermal runaway in ceramics arising from the temperature dependence of the thermal conductivity
  publication-title: Phys. Status Solidi
– volume: 16
  start-page: 176
  year: 2014
  end-page: 182
  ident: bib30
  article-title: Microwave cladding: a new approach in surface engineering
  publication-title: J. Manuf. Process.
– volume: 71
  start-page: 1960
  year: 1992
  end-page: 1966
  ident: bib70
  article-title: Thermal runaway in microwave heated ceramics: a one‐dimensional model
  publication-title: J. Appl. Phys.
– volume: 51
  start-page: 2233
  year: 2008
  end-page: 2241
  ident: bib68
  article-title: Analysis and control of the thermal runaway of ceramic slab under microwave heating
  publication-title: Sci. China E
– volume: 45
  start-page: 23493
  year: 2019
  end-page: 23500
  ident: bib51
  article-title: Electromagnetic waves transmission performance of alumina refractory ceramics in 2.45 GHz microwave heating
  publication-title: Ceram. Int.
– volume: 58
  start-page: 1178
  year: 2003
  end-page: 1188
  ident: bib62
  article-title: Spectral behavior of domestic microwave ovens and its effects on the ISM band
  publication-title: Ann. Telecommun.
– volume: 96
  start-page: 3728
  year: 2013
  end-page: 3736
  ident: bib69
  article-title: Effects of the susceptor dielectric properties on the microwave sintering of alumina
  publication-title: J. Am. Ceram. Soc.
– volume: 81
  start-page: 78
  year: 2016
  end-page: 97
  ident: bib3
  article-title: Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 346
  start-page: 29
  year: 2016 Jan 15
  end-page: 45
  ident: bib21
  article-title: Abrasive and erosive wear behaviour of nanometric WC–12Co microwave clads
  publication-title: Wear
– volume: 5
  start-page: 58
  year: 2022
  end-page: 73
  ident: bib50
  article-title: Microwave hybrid heating (MHH) of Ni-based alloy powder on Ni and steel-based metals–A review on fundamentals and parameters
  publication-title: Int. J. Lightweight Mater. Manuf.
– volume: 256
  year: 2020
  ident: bib36
  article-title: Enhancement of surface properties of austenitic stainless steel by nickel-based alloy cladding developed using microwave energy technique
  publication-title: Mater. Chem. Phys.
– volume: 225
  start-page: 1083
  year: 2011
  end-page: 1091
  ident: bib29
  article-title: A novel route for joining of austenitic stainless steel (SS-316) using microwave energy
  publication-title: Proc. IME B J. Eng. Manufact.
– volume: 205
  start-page: 5147
  year: 2011
  end-page: 5155
  ident: bib8
  article-title: Development and microstructural characterization of microwave cladding on austenitic stainless steel
  publication-title: Surf. Coating. Technol.
– volume: 291
  start-page: 413
  year: 2016 Apr 15
  end-page: 422
  ident: bib22
  article-title: Investigations on flexural performance and residual stresses in nanometric WC-12Co microwave clads
  publication-title: Surf. Coating. Technol.
– volume: 91
  start-page: 1
  year: 2010
  end-page: 8
  ident: bib34
  article-title: Microwave heating processes involving carbon materials
  publication-title: Fuel Process. Technol.
– volume: 9
  start-page: 231
  year: 2016
  ident: bib2
  article-title: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies
  publication-title: Materials
– volume: 25
  start-page: 290
  year: 2017
  end-page: 295
  ident: bib49
  article-title: Effects of powder size of interface material on selective hybrid carbon microwave joining of SS304–SS304
  publication-title: J. Manuf. Process.
– volume: 58
  start-page: 330
  year: 2012
  end-page: 363
  ident: bib4
  article-title: Microwave material processing—a review
  publication-title: AIChE J.
– volume: 126
  start-page: 949
  year: 2017
  end-page: 962
  ident: bib40
  article-title: Sensitivity analysis on the microwave heating of coal: a coupled electromagnetic and heat transfer model
  publication-title: Appl. Therm. Eng.
– year: 2017
  ident: bib55
  article-title: How to Inspect Your Mesh in COMSOL Multiphysics®
– volume: 294
  year: 2021
  ident: bib56
  article-title: Continuous flow microwave system with helical tubes for liquid food heating
  publication-title: J. Food Eng.
– volume: 128
  start-page: 49
  year: 2017
  end-page: 52
  ident: bib58
  article-title: Inherent heating instability of direct microwave sintering process: Sample analysis for porous 3Y-ZrO2
  publication-title: Scripta Materialia
– volume: 49
  start-page: 346
  year: 2011
  end-page: 349
  ident: bib28
  article-title: Ball lightning plasma and plasma arc formation during the microwave heating of carbons
  publication-title: Carbon
– volume: 271
  start-page: 1642
  year: 2011
  end-page: 1650
  ident: bib11
  article-title: Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation
  publication-title: Wear
– volume: 48
  start-page: 22
  year: 2013
  end-page: 27
  ident: bib33
  article-title: Microwave heating characteristics of graphite-based powder mixtures
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 128
  start-page: 60
  year: 2014
  end-page: 71
  ident: bib61
  article-title: A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation
  publication-title: J. Food Eng.
– volume: 308
  year: 2022
  ident: bib57
  article-title: Drying characteristics of oil shale under microwave heating based on a fully coupled three-dimensional electromagnetic-thermal-multiphase transport model
  publication-title: Fuel
– volume: 30
  start-page: 1055
  year: 1999
  end-page: 1071
  ident: bib67
  article-title: Microwave processing: fundamentals and applications
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 112
  start-page: 100
  year: 2012
  end-page: 111
  ident: bib63
  article-title: Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens
  publication-title: J. Food Eng.
– volume: 258
  start-page: 5583
  year: 2012
  end-page: 5592
  ident: bib13
  article-title: On microstructure and flexural strength of metal–ceramic composite cladding developed through microwave heating
  publication-title: Appl. Surf. Sci.
– volume: 14
  start-page: 243
  year: 2012
  end-page: 249
  ident: bib9
  article-title: Development and characterization of microwave composite cladding
  publication-title: J. Manuf. Process.
– volume: 40
  start-page: 16563
  year: 2014
  end-page: 16568
  ident: bib53
  article-title: Absorption characteristics of single-layer ceramics under oblique incident microwave irradiation
  publication-title: Ceram. Int.
– volume: 42
  start-page: 433
  year: 2017
  end-page: 469
  ident: bib6
  article-title: Susceptor-assisted enhanced microwave processing of ceramics-a review
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 58
  start-page: 584
  year: 2015
  end-page: 591
  ident: bib14
  article-title: On friction and wear behavior of WC-12Co microwave clad
  publication-title: Tribol. Trans.
– volume: 46
  start-page: 2387
  year: 2021
  end-page: 2391
  ident: bib37
  article-title: Characterization and sliding wear behavior of CoMoCrSi+ Flyash composite cladding processed by microwave irradiation
  publication-title: Mater. Today: Proc.
– volume: 226
  start-page: 132
  year: 2012
  end-page: 141
  ident: bib7
  article-title: Copper coating on austenitic stainless steel using microwave hybrid heating
  publication-title: Proc. IME E J. Process Mech. Eng.
– volume: 96
  start-page: 241
  year: 2014
  end-page: 248
  ident: bib10
  article-title: Development and characterization of WC–12Co microwave clad materials
  publication-title: characterization
– volume: 50
  start-page: 114
  year: 2019
  end-page: 125
  ident: bib27
  article-title: Microwave synthesized complex concentrated alloy coatings: plausible solution to cavitation induced erosion-corrosion
  publication-title: Ultrason. Sonochem.
– volume: 8
  start-page: 257
  year: 2016
  end-page: 259
  ident: bib20
  article-title: Microstructure and experimental design analysis of nickel based clad developed through microwave energy
  publication-title: Perspect. Sci.
– year: 2013
  ident: bib54
  article-title: Meshing Your Geometry: when to Use the Various Element Types
– volume: 26
  start-page: 5146
  year: 2012
  end-page: 5151
  ident: bib52
  article-title: Microwave absorption capability of high volatile bituminous coal during pyrolysis
  publication-title: Energy & fuels
– volume: 32
  start-page: 170
  year: 2023
  end-page: 175
  ident: bib35
  article-title: Low cost joining of Inconel 625 and super duplex stainless steel 2507 through novel technique
  publication-title: J. Mater. Eng. Perform.
– volume: 65
  start-page: 4117
  year: 2010
  end-page: 4133
  ident: bib60
  article-title: Numerical simulation of the electromagnetic field and the heat and mass transfer processes during microwave-induced pyrolysis of a wood block
  publication-title: Chem. Eng. Sci.
– volume: 11
  start-page: 333
  year: 2016 Apr 30
  end-page: 340
  ident: bib24
  article-title: Prediction of tribological behavior of WC-12Co nanostructured microwave clad through ANN
  publication-title: Tribol. Online
– volume: 101
  year: 2007
  ident: bib44
  article-title: Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts
  publication-title: J. Appl. Phys.
– volume: 5
  year: 2018
  ident: bib16
  article-title: On processing of Ni-Cr3C2 based functionally graded clads through microwave heating
  publication-title: Mater. Res. Express
– volume: 97
  start-page: 306
  year: 2016
  end-page: 338
  ident: bib5
  article-title: A review on the susceptor assisted microwave processing of materials
  publication-title: Energy
– start-page: 2165
  year: 2012
  end-page: 2172
  ident: bib12
  article-title: Microstructural characterization of cermet cladding developed through microwave irradiation
  publication-title: J. Mater. Eng. Perform.
– volume: 112
  start-page: 100
  year: 2012
  end-page: 111
  ident: bib64
  article-title: Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens
  publication-title: J. Food Eng.
– volume: 131
  start-page: 213
  year: 2016 Sep 1
  end-page: 222
  ident: bib23
  article-title: Microstructure and wear performance of heat-treated WC-12Co microwave clad
  publication-title: Vacuum
– volume: 91
  start-page: 12
  year: 2015
  end-page: 24
  ident: bib66
  article-title: Numerical simulation of heating behaviour in biomass bed and pellets under multimode microwave system
  publication-title: Int. J. Therm. Sci.
– start-page: 1
  year: 2021
  ident: 10.1016/j.ijthermalsci.2023.108674_bib38
  article-title: Development of self-lubricating nickel based composite clad using microwave heating in improving resistance to wear at elevated temperatures
  publication-title: Met. Mater. Int.
– volume: 30
  start-page: 852
  issue: 11
  year: 2014
  ident: 10.1016/j.ijthermalsci.2023.108674_bib18
  article-title: Dry erosion wear performance of Inconel 718 microwave clad
  publication-title: Surf. Eng.
  doi: 10.1179/1743294414Y.0000000359
– volume: 8
  start-page: 257
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib20
  article-title: Microstructure and experimental design analysis of nickel based clad developed through microwave energy
  publication-title: Perspect. Sci.
  doi: 10.1016/j.pisc.2016.04.044
– volume: 81
  start-page: 78
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib3
  article-title: Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.10.035
– volume: 49
  start-page: 346
  issue: 1
  year: 2011
  ident: 10.1016/j.ijthermalsci.2023.108674_bib28
  article-title: Ball lightning plasma and plasma arc formation during the microwave heating of carbons
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.09.010
– volume: 65
  start-page: 4117
  issue: 14
  year: 2010
  ident: 10.1016/j.ijthermalsci.2023.108674_bib60
  article-title: Numerical simulation of the electromagnetic field and the heat and mass transfer processes during microwave-induced pyrolysis of a wood block
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.04.039
– volume: 61
  start-page: 4798
  issue: 14
  year: 2006
  ident: 10.1016/j.ijthermalsci.2023.108674_bib46
  article-title: The simulation of microwave heating of wood using a rectangular wave guide: influence of frequency and sample size
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.03.001
– year: 2013
  ident: 10.1016/j.ijthermalsci.2023.108674_bib54
– year: 2017
  ident: 10.1016/j.ijthermalsci.2023.108674_bib55
– volume: 96
  start-page: 3728
  issue: 12
  year: 2013
  ident: 10.1016/j.ijthermalsci.2023.108674_bib69
  article-title: Effects of the susceptor dielectric properties on the microwave sintering of alumina
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12623
– volume: 294
  year: 2021
  ident: 10.1016/j.ijthermalsci.2023.108674_bib56
  article-title: Continuous flow microwave system with helical tubes for liquid food heating
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.110409
– volume: 58
  start-page: 330
  issue: 2
  year: 2012
  ident: 10.1016/j.ijthermalsci.2023.108674_bib4
  article-title: Microwave material processing—a review
  publication-title: AIChE J.
  doi: 10.1002/aic.12766
– volume: 45
  start-page: 23493
  issue: 17
  year: 2019
  ident: 10.1016/j.ijthermalsci.2023.108674_bib51
  article-title: Electromagnetic waves transmission performance of alumina refractory ceramics in 2.45 GHz microwave heating
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.08.055
– start-page: 2165
  year: 2012
  ident: 10.1016/j.ijthermalsci.2023.108674_bib12
  article-title: Microstructural characterization of cermet cladding developed through microwave irradiation
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-012-0142-2
– volume: 162
  year: 2019
  ident: 10.1016/j.ijthermalsci.2023.108674_bib42
  article-title: 3D numerical modelling of microwave heating of SiC susceptor
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114250
– volume: 40
  start-page: 16563
  issue: 10
  year: 2014
  ident: 10.1016/j.ijthermalsci.2023.108674_bib53
  article-title: Absorption characteristics of single-layer ceramics under oblique incident microwave irradiation
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.08.011
– volume: 291
  start-page: 413
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib22
  article-title: Investigations on flexural performance and residual stresses in nanometric WC-12Co microwave clads
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2016.03.009
– volume: 30
  start-page: 1055
  issue: 9
  year: 1999
  ident: 10.1016/j.ijthermalsci.2023.108674_bib67
  article-title: Microwave processing: fundamentals and applications
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/S1359-835X(99)00020-2
– volume: 58
  start-page: 1178
  issue: 7
  year: 2003
  ident: 10.1016/j.ijthermalsci.2023.108674_bib62
  article-title: Spectral behavior of domestic microwave ovens and its effects on the ISM band
  publication-title: Ann. Telecommun.
  doi: 10.1007/BF03001876
– volume: 54
  start-page: 1763
  issue: 9–10
  year: 2011
  ident: 10.1016/j.ijthermalsci.2023.108674_bib45
  article-title: Microwave heating of saturated packed bed using a rectangular waveguide (TE10 mode): influence of particle size, sample dimension, frequency, and placement inside the guide
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2011.01.015
– volume: 126
  start-page: 949
  year: 2017
  ident: 10.1016/j.ijthermalsci.2023.108674_bib40
  article-title: Sensitivity analysis on the microwave heating of coal: a coupled electromagnetic and heat transfer model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.08.012
– volume: 2
  start-page: 2577
  issue: 7
  year: 2005
  ident: 10.1016/j.ijthermalsci.2023.108674_bib59
  article-title: Determination of microwave electrical characteristics of boron nitride at high temperature
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssc.200461281
– volume: 71
  start-page: 1960
  issue: 4
  year: 1992
  ident: 10.1016/j.ijthermalsci.2023.108674_bib70
  article-title: Thermal runaway in microwave heated ceramics: a one‐dimensional model
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.351191
– volume: 205
  start-page: 5147
  issue: 21–22
  year: 2011
  ident: 10.1016/j.ijthermalsci.2023.108674_bib8
  article-title: Development and microstructural characterization of microwave cladding on austenitic stainless steel
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2011.05.018
– volume: 58
  start-page: 584
  issue: 4
  year: 2015
  ident: 10.1016/j.ijthermalsci.2023.108674_bib14
  article-title: On friction and wear behavior of WC-12Co microwave clad
  publication-title: Tribol. Trans.
  doi: 10.1080/10402004.2014.996310
– start-page: 124
  year: 1988
  ident: 10.1016/j.ijthermalsci.2023.108674_bib47
  article-title: The effects of power level on the microwave heating of selected chemicals and minerals
  publication-title: MRS Online Proc. Libr.
– volume: 85
  start-page: 21
  issue: 1
  year: 2004
  ident: 10.1016/j.ijthermalsci.2023.108674_bib48
  article-title: Microwave heating of coal for enhanced magnetic removal of pyrite
  publication-title: Fuel Process. Technol.
  doi: 10.1016/S0378-3820(03)00094-8
– volume: 51
  start-page: 2233
  issue: 12
  year: 2008
  ident: 10.1016/j.ijthermalsci.2023.108674_bib68
  article-title: Analysis and control of the thermal runaway of ceramic slab under microwave heating
  publication-title: Sci. China E
  doi: 10.1007/s11431-008-0221-7
– volume: 5
  issue: 6
  year: 2018
  ident: 10.1016/j.ijthermalsci.2023.108674_bib16
  article-title: On processing of Ni-Cr3C2 based functionally graded clads through microwave heating
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aac805
– volume: 131
  start-page: 213
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib23
  article-title: Microstructure and wear performance of heat-treated WC-12Co microwave clad
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2016.06.021
– volume: 14
  start-page: 6621
  issue: 12
  year: 2022
  ident: 10.1016/j.ijthermalsci.2023.108674_bib43
  article-title: Microwave heating capabilities of different susceptor material
  publication-title: Exper. Simul. Stud. Silicon
  doi: 10.1007/s12633-021-01426-4
– volume: 96
  start-page: 241
  year: 2014
  ident: 10.1016/j.ijthermalsci.2023.108674_bib10
  article-title: Development and characterization of WC–12Co microwave clad materials
  publication-title: characterization
  doi: 10.1016/j.matchar.2014.08.015
– volume: 271
  start-page: 1642
  issue: 9–10
  year: 2011
  ident: 10.1016/j.ijthermalsci.2023.108674_bib11
  article-title: Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation
  publication-title: Wear
  doi: 10.1016/j.wear.2010.12.037
– volume: 140
  issue: 6
  year: 2018
  ident: 10.1016/j.ijthermalsci.2023.108674_bib15
  article-title: On development and dry sliding wear behavior of microwave processed Ni/Al2O3 composite clad
  publication-title: J. Tribol.
  doi: 10.1115/1.4039996
– volume: 7
  start-page: 37
  issue: 2
  year: 2018
  ident: 10.1016/j.ijthermalsci.2023.108674_bib32
  article-title: High-temperature oxidation of graphite
  publication-title: Nanomater. Energy
  doi: 10.1680/jnaen.18.00008
– volume: 93
  start-page: 1145
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib39
  article-title: Three-dimensional simulation of microwave heating coal sample with varying parameters
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.10.041
– volume: 112
  start-page: 100
  issue: 1–2
  year: 2012
  ident: 10.1016/j.ijthermalsci.2023.108674_bib63
  article-title: Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2012.03.013
– volume: 50
  start-page: 114
  year: 2019
  ident: 10.1016/j.ijthermalsci.2023.108674_bib27
  article-title: Microwave synthesized complex concentrated alloy coatings: plausible solution to cavitation induced erosion-corrosion
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.09.004
– volume: 128
  start-page: 60
  year: 2014
  ident: 10.1016/j.ijthermalsci.2023.108674_bib61
  article-title: A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2013.12.015
– volume: 226
  start-page: 132
  issue: 2
  year: 2012
  ident: 10.1016/j.ijthermalsci.2023.108674_bib7
  article-title: Copper coating on austenitic stainless steel using microwave hybrid heating
  publication-title: Proc. IME E J. Process Mech. Eng.
  doi: 10.1177/0954408911414652
– volume: 46
  start-page: 2387
  year: 2021
  ident: 10.1016/j.ijthermalsci.2023.108674_bib37
  article-title: Characterization and sliding wear behavior of CoMoCrSi+ Flyash composite cladding processed by microwave irradiation
  publication-title: Mater. Today: Proc.
– volume: 25
  start-page: 290
  year: 2017
  ident: 10.1016/j.ijthermalsci.2023.108674_bib49
  article-title: Effects of powder size of interface material on selective hybrid carbon microwave joining of SS304–SS304
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2016.12.013
– volume: 200
  start-page: 39
  issue: 1
  year: 1997
  ident: 10.1016/j.ijthermalsci.2023.108674_bib71
  article-title: Thermal runaway in ceramics arising from the temperature dependence of the thermal conductivity
  publication-title: Phys. Status Solidi
  doi: 10.1002/1521-3951(199703)200:1<39::AID-PSSB39>3.0.CO;2-R
– volume: 42
  start-page: 433
  issue: 6
  year: 2017
  ident: 10.1016/j.ijthermalsci.2023.108674_bib6
  article-title: Susceptor-assisted enhanced microwave processing of ceramics-a review
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408436.2016.1192987
– volume: 26
  start-page: 5146
  issue: 8
  year: 2012
  ident: 10.1016/j.ijthermalsci.2023.108674_bib52
  article-title: Microwave absorption capability of high volatile bituminous coal during pyrolysis
  publication-title: Energy & fuels
  doi: 10.1021/ef300914f
– volume: 27
  start-page: 777
  year: 2018
  ident: 10.1016/j.ijthermalsci.2023.108674_bib17
  article-title: On development and wear behavior of microwave-processed functionally graded Ni-SiC clads on SS-304 substrate
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-017-3110-z
– volume: 14
  start-page: 243
  issue: 3
  year: 2012
  ident: 10.1016/j.ijthermalsci.2023.108674_bib9
  article-title: Development and characterization of microwave composite cladding
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2012.05.007
– volume: 258
  start-page: 5583
  issue: 15
  year: 2012
  ident: 10.1016/j.ijthermalsci.2023.108674_bib13
  article-title: On microstructure and flexural strength of metal–ceramic composite cladding developed through microwave heating
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.02.019
– volume: 11
  start-page: 333
  issue: 2
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib24
  article-title: Prediction of tribological behavior of WC-12Co nanostructured microwave clad through ANN
  publication-title: Tribol. Online
  doi: 10.2474/trol.11.333
– volume: vol. 1240
  year: 2019
  ident: 10.1016/j.ijthermalsci.2023.108674_bib31
  article-title: A study on microwave susceptor material for hybrid heating
– volume: 30
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.ijthermalsci.2023.108674_bib1
  article-title: Microwave processing of materials and applications in manufacturing industries: a review
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2014.952028
– volume: 48
  start-page: 22
  year: 2013
  ident: 10.1016/j.ijthermalsci.2023.108674_bib33
  article-title: Microwave heating characteristics of graphite-based powder mixtures
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2013.09.008
– volume: 308
  year: 2022
  ident: 10.1016/j.ijthermalsci.2023.108674_bib57
  article-title: Drying characteristics of oil shale under microwave heating based on a fully coupled three-dimensional electromagnetic-thermal-multiphase transport model
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121942
– volume: 91
  start-page: 12
  year: 2015
  ident: 10.1016/j.ijthermalsci.2023.108674_bib66
  article-title: Numerical simulation of heating behaviour in biomass bed and pellets under multimode microwave system
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2015.01.003
– volume: 32
  start-page: 170
  issue: 1
  year: 2023
  ident: 10.1016/j.ijthermalsci.2023.108674_bib35
  article-title: Low cost joining of Inconel 625 and super duplex stainless steel 2507 through novel technique
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-022-07092-w
– volume: 101
  issue: 7
  year: 2007
  ident: 10.1016/j.ijthermalsci.2023.108674_bib44
  article-title: Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2713087
– volume: 370
  start-page: 92
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib25
  article-title: Structure-property correlations in nanostructured WC–12Co microwave clad
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.02.114
– volume: 5
  start-page: 293
  issue: 4
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib19
  article-title: Microstructural investigation of Ni based cladding developed on austenitic SS-304 through microwave irradiation
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2016.01.002
– volume: 20
  issue: 9
  year: 2018
  ident: 10.1016/j.ijthermalsci.2023.108674_bib26
  article-title: High‐performance microwave‐derived multi‐principal element alloy coatings for tribological application
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201800163
– volume: 256
  year: 2020
  ident: 10.1016/j.ijthermalsci.2023.108674_bib36
  article-title: Enhancement of surface properties of austenitic stainless steel by nickel-based alloy cladding developed using microwave energy technique
  publication-title: Mater. Chem. Phys.
– volume: 16
  start-page: 176
  issue: 2
  year: 2014
  ident: 10.1016/j.ijthermalsci.2023.108674_bib30
  article-title: Microwave cladding: a new approach in surface engineering
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2014.01.001
– volume: 128
  start-page: 49
  year: 2017
  ident: 10.1016/j.ijthermalsci.2023.108674_bib58
  article-title: Inherent heating instability of direct microwave sintering process: Sample analysis for porous 3Y-ZrO2
  publication-title: Scripta Materialia
  doi: 10.1016/j.scriptamat.2016.10.008
– volume: 91
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.ijthermalsci.2023.108674_bib34
  article-title: Microwave heating processes involving carbon materials
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2009.08.021
– volume: 9
  start-page: 231
  issue: 4
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib2
  article-title: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies
  publication-title: Materials
  doi: 10.3390/ma9040231
– volume: 225
  start-page: 1083
  issue: 7
  year: 2011
  ident: 10.1016/j.ijthermalsci.2023.108674_bib29
  article-title: A novel route for joining of austenitic stainless steel (SS-316) using microwave energy
  publication-title: Proc. IME B J. Eng. Manufact.
  doi: 10.1177/2041297510393451
– volume: 46
  start-page: 1005
  issue: 4
  year: 1991
  ident: 10.1016/j.ijthermalsci.2023.108674_bib65
  article-title: Microwave heating: an evaluation of power formulations
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(91)85093-D
– volume: 112
  start-page: 100
  issue: 1–2
  year: 2012
  ident: 10.1016/j.ijthermalsci.2023.108674_bib64
  article-title: Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2012.03.013
– volume: 346
  start-page: 29
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib21
  article-title: Abrasive and erosive wear behaviour of nanometric WC–12Co microwave clads
  publication-title: Wear
  doi: 10.1016/j.wear.2015.11.003
– volume: 87
  start-page: 359
  year: 2015
  ident: 10.1016/j.ijthermalsci.2023.108674_bib41
  article-title: Microwave-induced temperature fields in cylindrical samples of graphite powder–experimental and modeling studies
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2015.02.021
– volume: 5
  start-page: 58
  issue: 1
  year: 2022
  ident: 10.1016/j.ijthermalsci.2023.108674_bib50
  article-title: Microwave hybrid heating (MHH) of Ni-based alloy powder on Ni and steel-based metals–A review on fundamentals and parameters
  publication-title: Int. J. Lightweight Mater. Manuf.
– volume: 97
  start-page: 306
  year: 2016
  ident: 10.1016/j.ijthermalsci.2023.108674_bib5
  article-title: A review on the susceptor assisted microwave processing of materials
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.034
SSID ssj0007909
Score 2.4931946
Snippet Microwave processing has gained remarkable recognition based upon volumetric processing that is energy efficient. Susceptor-assisted microwave heating is a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108674
SubjectTerms COMSOL simulations
Dielectric
Microwave heating
Susceptor dimension
Susceptor position
Title Susceptor based design strategies for enhancing microwave hybrid heating capability via experimental analysis, 3D multi-physics simulation and parametric optimization
URI https://dx.doi.org/10.1016/j.ijthermalsci.2023.108674
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB1BuJRDRaEVlA_NgSMmsb1eZw89IChKi-ACSNys_SyOsINICMqlP6e_szv2GgWpB6Qebe9I1s7qzczqzRuAQ2bj2KhERVIMXcSsr1kVyVY6y3nmJBtIRVcDl1d8dMt-3mV3K3Da9cIQrTJgf4vpDVqHN_2wm_3Hsuxf0w0K6V4naSNSkq3CWpIKnvVg7eTHxejqFZBz0TA9aH1EBp32aEPzKseUaFXe17o8plnizeyhnP07Ti3FnvMN-BiSRjxp_-sTrNh6E9aXpAS34M_185QYKpMnpMBk0DTUDJzOOi0I9Okp2vqeBDbqX1gRE-9Fzi3eL6hrCwmV6YP24bNhzC5wXkpcHgGAMkiYHGF6hg0XMWqvRqY4LaswCcyvMkiS4hVN69I48ahUhXbPz3B7_v3mdBSFGQyR9qnWLJJKa6eUR0TJTCKcHGZq4ATLnS-UfKnl8xnJVJ6TCgzXyldbfKhIpl7KxMVWpF-gV09quw3ojJPKaBOnXLAh58Jkktk0dizJzUBmOyC6HS90ECinORkPRcdEGxfL3irIW0XrrR1IX20fW5mOd1l96xxbvDl0hY8n77D_-p_2u_DBP7GWBL4HvdnTs933Oc5MHcDq8e_4IJzkvwaMA9U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLY4BmBAnKKcb2AktEmcpBkYEIcKtCyAxBb5hCCSVrSAWPg5_E78HAeKxIDEGvtJkZ_1Ln3-PkJ2qfJ9yQPusbStPapMz8qRtlKrOI40oy3GcTTQu4w7N_T8NrqdIEf1WxiEVbrYX8V0G63dl6Y7zeYgz5tXOEFB3usgtCQl0SSZplGYIK5v__0b55GkFueBuz3cXjOPWpBX_oBlVmE8LfJ9VBK3ykMJ_T1LjWWe0wUy70pGOKz-apFMqHKJzI0RCS6Tj6vnIeJT-k-AaUmCtMAMGI5qJggwxSmo8h7pNco7KBCH98peFNy_4ZstwJiMC8IkT4uXfYOXnMG4AAAwR2CyB-ExWCSiVw1GhjDMC6cDZnZJQELxArW6BPRNTCrcY88VcnN6cn3U8ZwCgydMoTXyGBdCc27iIaMySDVrR7ylU5po0yaZRstUM4zyJEEOmFhw02vFbY4k9YwF2ldpuEqmyn6p1ghoqRmXQvphnNJ2HKcyYlSFvqZBIlssapC0PvFMOHpyVMl4zGoc2kM27q0MvZVV3mqQ8Mt2UJF0_MnqoHZs9uPKZSab_MF-_Z_2O2Smc93rZt2zy4sNMmtWaAUH3yRTo6dntWWqnRHftrf5E0kDBKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Susceptor+based+design+strategies+for+enhancing+microwave+hybrid+heating+capability+via+experimental+analysis%2C+3D+multi-physics+simulation+and+parametric+optimization&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Mohanty%2C+A.&rft.au=Patel%2C+D.K.&rft.au=Panigrahi%2C+S.K.&rft.date=2024-02-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1290-0729&rft.eissn=1778-4166&rft.volume=196&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2023.108674&rft.externalDocID=S1290072923005355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon