Wind Turbine Modeling With Data-Driven Methods and Radially Uniform Designs

This paper proposes a radially uniform (RU) design to sample representative datasets from a large volume of wind turbine data to build accurate data-driven models. The sampling capability and computational complexity are theoretically analyzed. It is shown that the RU design is representative of the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 12; no. 3; pp. 1261 - 1269
Main Authors Tan, Matthias, Zijun Zhang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a radially uniform (RU) design to sample representative datasets from a large volume of wind turbine data to build accurate data-driven models. The sampling capability and computational complexity are theoretically analyzed. It is shown that the RU design is representative of the original dataset and has computational complexity that is of the same order as sorting algorithms. Five algorithms, the neural networks (NN), multivariate adaptive regression splines (MARS), support vector machines (SVM), k nearest neighbors (kNN), and linear regression (LR) are applied to model the wind turbine power output, drive-train vibratory acceleration, and tower vibratory acceleration based on the training dataset and sampled datasets. Extensive computational experiments are conducted to demonstrate advantages of the RU sampler over the random and maximin samplers. Results show that RU sampler outperforms the random sampler for building all five types of models and is more effective than the maximin sampler for building nonlinear models.
AbstractList This paper proposes a radially uniform (RU) design to sample representative datasets from a large volume of wind turbine data to build accurate data-driven models. The sampling capability and computational complexity are theoretically analyzed. It is shown that the RU design is representative of the original dataset and has computational complexity that is of the same order as sorting algorithms. Five algorithms, the neural networks (NN), multivariate adaptive regression splines (MARS), support vector machines (SVM), $k$ nearest neighbors (kNN), and linear regression (LR) are applied to model the wind turbine power output, drive-train vibratory acceleration, and tower vibratory acceleration based on the training dataset and sampled datasets. Extensive computational experiments are conducted to demonstrate advantages of the RU sampler over the random and maximin samplers. Results show that RU sampler outperforms the random sampler for building all five types of models and is more effective than the maximin sampler for building nonlinear models.
This paper proposes a radially uniform (RU) design to sample representative datasets from a large volume of wind turbine data to build accurate data-driven models. The sampling capability and computational complexity are theoretically analyzed. It is shown that the RU design is representative of the original dataset and has computational complexity that is of the same order as sorting algorithms. Five algorithms, the neural networks (NN), multivariate adaptive regression splines (MARS), support vector machines (SVM), [Formula Omitted] nearest neighbors (kNN), and linear regression (LR) are applied to model the wind turbine power output, drive-train vibratory acceleration, and tower vibratory acceleration based on the training dataset and sampled datasets. Extensive computational experiments are conducted to demonstrate advantages of the RU sampler over the random and maximin samplers. Results show that RU sampler outperforms the random sampler for building all five types of models and is more effective than the maximin sampler for building nonlinear models.
Author Tan, Matthias
Zijun Zhang
Author_xml – sequence: 1
  givenname: Matthias
  surname: Tan
  fullname: Tan, Matthias
  email: matthtan@cityu.edu.hk
  organization: Dept. of Syst. Eng. & Eng. Manage., City Univ. of Hong Kong, Kowloon Tong, China
– sequence: 2
  surname: Zijun Zhang
  fullname: Zijun Zhang
  email: zijzhang@cityu.edu.hk
  organization: Dept. of Syst. Eng. & Eng. Manage., City Univ. of Hong Kong, Kowloon Tong, China
BookMark eNp9kE1LAzEQhoNUsK3eBS8LXrxszfc2R2n9KCqCVHoM2c1sm7JNarIV-u_dUvHgwdPM4XneGd4B6vngAaFLgkeEYHU7n81GFBM5ooJRRskJ6hPFSY6xwL1uF4LkjGJ2hgYprTFmBWaqj54Xzttsvoul85C9BguN88ts4dpVNjWtyafRfYHPXqFdBZsy09HvxjrTNPvsw7s6xE02heSWPp2j09o0CS5-5hB9PNzPJ0_5y9vjbHL3kleM8jY3QgjOoZAWOC2rQpGylBUYiYlVuOS2HjPBJedSGUaoxFYqrmrBalYbQS0boptj7jaGzx2kVm9cqqBpjIewS5qMqeBKUlF06PUfdB120XffaVIo0eUyoToKH6kqhpQi1Hob3cbEvSZYH9rVXbv60K7-abdT5B-lcq1pXfBtNK75T7w6ig4Afu8UnHBeMPYNmSyGqQ
CODEN ITIICH
CitedBy_id crossref_primary_10_3390_en17163897
crossref_primary_10_3390_w12113085
crossref_primary_10_1109_TII_2018_2885365
crossref_primary_10_1109_JESTPE_2021_3049242
crossref_primary_10_3390_batteries9100508
crossref_primary_10_1007_s40435_021_00813_4
crossref_primary_10_1109_ACCESS_2019_2956203
crossref_primary_10_1109_TII_2017_2702754
crossref_primary_10_1007_s43236_024_00949_4
crossref_primary_10_1109_TIA_2018_2836953
crossref_primary_10_1088_1361_6501_ac3944
crossref_primary_10_1109_TII_2021_3130721
crossref_primary_10_1109_TIA_2019_2901732
crossref_primary_10_1109_TII_2016_2558477
crossref_primary_10_3390_s20071835
crossref_primary_10_32604_iasc_2021_018338
crossref_primary_10_1109_TII_2017_2743761
crossref_primary_10_1109_TII_2021_3056428
crossref_primary_10_1016_j_apenergy_2019_114469
crossref_primary_10_1109_TII_2023_3333673
crossref_primary_10_1109_TSMC_2024_3408872
crossref_primary_10_1214_24_EJS2251
Cites_doi 10.1214/aos/1176347963
10.1080/08982110903179069
10.1016/0169-7439(92)80076-G
10.1109/TII.2015.2431642
10.1016/S0098-3004(98)00020-X
10.1109/TEC.2012.2189887
10.1115/1.4001461
10.1109/TII.2013.2290069
10.1109/TEC.2010.2043436
10.1016/0378-3758(90)90122-B
10.1007/978-1-4757-3799-8
10.1080/00401706.2013.804439
10.1007/978-3-642-23753-9_4
10.1080/00401706.1969.10490666
10.2307/1268315
10.1016/0304-3975(94)90178-3
10.1109/TII.2015.2396011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TII.2016.2532321
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 1269
ExternalDocumentID 4087111781
10_1109_TII_2016_2532321
7414473
Genre orig-research
GrantInformation_xml – fundername: Early Career Scheme Grant from the Research Grants Council of the Hong Kong Special Administrative Region
  grantid: CityU 138313; CityU 21201414
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c324t-a55544e76de42bc791bb6cea601d90b4df835464469a31260d6949f53f3fa52d3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Fri Jul 11 16:02:46 EDT 2025
Mon Jun 30 10:20:00 EDT 2025
Thu Apr 24 22:52:54 EDT 2025
Tue Jul 01 03:06:06 EDT 2025
Tue Aug 26 16:43:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords neural networks (NN)
wind power prediction
wind energy
Data mining
data processing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-a55544e76de42bc791bb6cea601d90b4df835464469a31260d6949f53f3fa52d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1795949359
PQPubID 85507
PageCount 9
ParticipantIDs crossref_primary_10_1109_TII_2016_2532321
proquest_journals_1795949359
proquest_miscellaneous_1825496257
ieee_primary_7414473
crossref_citationtrail_10_1109_TII_2016_2532321
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref23) 2010
ref12
ref15
ref14
ref11
cormen (ref20) 2009
ref22
ref10
ref2
ref1
ref17
ref16
ref18
drucker (ref8) 1997
wu (ref19) 2009
ref9
ref4
ref3
crochemore (ref21) 1994; 698
ref6
ref5
shakhnarovish (ref7) 2005
References_xml – year: 2009
  ident: ref19
  publication-title: Experiments Planning Analysis and Optimization
– ident: ref9
  doi: 10.1214/aos/1176347963
– year: 2010
  ident: ref23
  publication-title: SAS/QC(R) 9 2 User's Guide
– start-page: 155
  year: 1997
  ident: ref8
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems 9
– ident: ref12
  doi: 10.1080/08982110903179069
– ident: ref14
  doi: 10.1016/0169-7439(92)80076-G
– ident: ref5
  doi: 10.1109/TII.2015.2431642
– ident: ref13
  doi: 10.1016/S0098-3004(98)00020-X
– ident: ref3
  doi: 10.1109/TEC.2012.2189887
– ident: ref22
  doi: 10.1115/1.4001461
– ident: ref2
  doi: 10.1109/TII.2013.2290069
– volume: 698
  year: 1994
  ident: ref21
  publication-title: Text Algorithms
– ident: ref4
  doi: 10.1109/TEC.2010.2043436
– ident: ref17
  doi: 10.1016/0378-3758(90)90122-B
– ident: ref18
  doi: 10.1007/978-1-4757-3799-8
– ident: ref16
  doi: 10.1080/00401706.2013.804439
– year: 2009
  ident: ref20
  publication-title: Introduction to Algorithms
– ident: ref10
  doi: 10.1007/978-3-642-23753-9_4
– ident: ref11
  doi: 10.1080/00401706.1969.10490666
– ident: ref15
  doi: 10.2307/1268315
– ident: ref6
  doi: 10.1016/0304-3975(94)90178-3
– ident: ref1
  doi: 10.1109/TII.2015.2396011
– year: 2005
  ident: ref7
  publication-title: Nearest-Neighbor Methods in Learning and Vision
SSID ssj0037039
Score 2.2773392
Snippet This paper proposes a radially uniform (RU) design to sample representative datasets from a large volume of wind turbine data to build accurate data-driven...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1261
SubjectTerms Acceleration
Algorithm design and analysis
Algorithms
Computation
Computational modeling
Data mining
Data models
data processing
Datasets
Design analysis
Mathematical models
Neural networks
Prediction algorithms
Regression
Samplers
Training
Training data
wind energy
wind power prediction
Wind turbines
Title Wind Turbine Modeling With Data-Driven Methods and Radially Uniform Designs
URI https://ieeexplore.ieee.org/document/7414473
https://www.proquest.com/docview/1795949359
https://www.proquest.com/docview/1825496257
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BJziwI8omI3FBIm0cO0l9RBTEonJARXCLvEUgqha1yQG-nrGTVGxC3CJlssjj5T175g3AEeNahzm1gYy6SFA0o4FS6JA4yXOhk9hwL-rTv00u7_n1Y_w4ByezXBhrrQ8-s2136c_yzViXbqusg6sf5ymbh3kkblWuVjPrMuy5wmujxjRgUciaI8lQdAZXVy6GK2lHMUMAQb8sQb6myo-J2K8uFyvQb_6rCip5aZeFauv3b5KN__3xVViuYSY5rfrFGszZ0TosfRIf3ICbB6TjZFBOkBtb4mqiucx08vBcPJGeLGTQm7iZkPR9jekpkWh955QMhsM3glDVoV3S8wEg0024vzgfnF0GdWmFQCOCKgIZI4zgNk2M5ZHSqaBKJdpKpGdGhIqb3G0IIVZKhGQUOY9JBBd5zHKWyzgybAsWRuOR3QaCACCUqaFaMcpV10jDlZJCUslzqjhtQadp7UzXuuOu_MUw8_wjFBn6J3P-yWr_tOB49sRrpbnxh-2Ga-6ZXd3SLdhrHJrVg3KaUVdXnbtU5BYczm7jcHJnJHJkxyXaeMaMpDDd-f3Nu7Dovl9Fi-3BQjEp7T7ikkId-A75AbPt3Sw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFCioSwsYCQ4cshvHdlIfekAs1S7b7QFt1d6CXxFVV1m0m6hqf0v_Cv-NsZOseIlbJW6RMrYSz3jmG3seAG8YNyYuqItUso8OimE00hoZItKikCYVloeiPtPjdHTCP52Jsw24WefCOOdC8Jnr-8dwl28XpvZHZQO0fpxnXavqibu6RAdtdTAeIjffJsnhx9mHUdT2EIgMQoUqUgLtJXdZah1PtMkk1To1TqEfYmWsuS38yQeCglQqRhHc21RyWQhWsEKJxDKc9w7cRZwhkiY7rNPzDPeKDNVYBY1YErPuEjSWg9l47KPG0n4iGEIW-ovRC11c_lD9wZ4dbsH3biWaMJaLfl3pvrn-rUjk_7pUj-BhC6TJ-0byH8OGK5_Ag5_KK27D5PS8tGRWL9H7d8R3ffO59-T0vPpKhqpS0XDpdT2Zhi7aK6KQ-rOv1TCfXxEE4x7Pk2EIcVk9hZNb-ZtnsFkuSrcDBCFOrDJLjWaU632rLNdaSUUVL6jmtAeDjru5aSur-wYf8zx4WLHMUR5yLw95Kw89eLce8a2pKvIP2m3P3jVdy9ke7HUClLdqZ5VT3zme-2TrHrxev0aF4W-BVOkWNdKEMwF0e7Pnf5_5FdwbzaZH-dH4eLIL9_23NLFxe7BZLWv3AlFYpV-GzUDgy22L1A-5OTlV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Turbine+Modeling+With+Data-Driven+Methods+and+Radially+Uniform+Designs&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Tan%2C+Matthias&rft.au=Zhang%2C+Zijun&rft.date=2016-06-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=12&rft.issue=3&rft.spage=1261&rft.epage=1269&rft_id=info:doi/10.1109%2FTII.2016.2532321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2016_2532321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon