Wind Turbine Modeling With Data-Driven Methods and Radially Uniform Designs
This paper proposes a radially uniform (RU) design to sample representative datasets from a large volume of wind turbine data to build accurate data-driven models. The sampling capability and computational complexity are theoretically analyzed. It is shown that the RU design is representative of the...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 12; no. 3; pp. 1261 - 1269 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a radially uniform (RU) design to sample representative datasets from a large volume of wind turbine data to build accurate data-driven models. The sampling capability and computational complexity are theoretically analyzed. It is shown that the RU design is representative of the original dataset and has computational complexity that is of the same order as sorting algorithms. Five algorithms, the neural networks (NN), multivariate adaptive regression splines (MARS), support vector machines (SVM), k nearest neighbors (kNN), and linear regression (LR) are applied to model the wind turbine power output, drive-train vibratory acceleration, and tower vibratory acceleration based on the training dataset and sampled datasets. Extensive computational experiments are conducted to demonstrate advantages of the RU sampler over the random and maximin samplers. Results show that RU sampler outperforms the random sampler for building all five types of models and is more effective than the maximin sampler for building nonlinear models. |
---|---|
AbstractList | This paper proposes a radially uniform (RU) design to sample representative datasets from a large volume of wind turbine data to build accurate data-driven models. The sampling capability and computational complexity are theoretically analyzed. It is shown that the RU design is representative of the original dataset and has computational complexity that is of the same order as sorting algorithms. Five algorithms, the neural networks (NN), multivariate adaptive regression splines (MARS), support vector machines (SVM), $k$ nearest neighbors (kNN), and linear regression (LR) are applied to model the wind turbine power output, drive-train vibratory acceleration, and tower vibratory acceleration based on the training dataset and sampled datasets. Extensive computational experiments are conducted to demonstrate advantages of the RU sampler over the random and maximin samplers. Results show that RU sampler outperforms the random sampler for building all five types of models and is more effective than the maximin sampler for building nonlinear models. This paper proposes a radially uniform (RU) design to sample representative datasets from a large volume of wind turbine data to build accurate data-driven models. The sampling capability and computational complexity are theoretically analyzed. It is shown that the RU design is representative of the original dataset and has computational complexity that is of the same order as sorting algorithms. Five algorithms, the neural networks (NN), multivariate adaptive regression splines (MARS), support vector machines (SVM), [Formula Omitted] nearest neighbors (kNN), and linear regression (LR) are applied to model the wind turbine power output, drive-train vibratory acceleration, and tower vibratory acceleration based on the training dataset and sampled datasets. Extensive computational experiments are conducted to demonstrate advantages of the RU sampler over the random and maximin samplers. Results show that RU sampler outperforms the random sampler for building all five types of models and is more effective than the maximin sampler for building nonlinear models. |
Author | Tan, Matthias Zijun Zhang |
Author_xml | – sequence: 1 givenname: Matthias surname: Tan fullname: Tan, Matthias email: matthtan@cityu.edu.hk organization: Dept. of Syst. Eng. & Eng. Manage., City Univ. of Hong Kong, Kowloon Tong, China – sequence: 2 surname: Zijun Zhang fullname: Zijun Zhang email: zijzhang@cityu.edu.hk organization: Dept. of Syst. Eng. & Eng. Manage., City Univ. of Hong Kong, Kowloon Tong, China |
BookMark | eNp9kE1LAzEQhoNUsK3eBS8LXrxszfc2R2n9KCqCVHoM2c1sm7JNarIV-u_dUvHgwdPM4XneGd4B6vngAaFLgkeEYHU7n81GFBM5ooJRRskJ6hPFSY6xwL1uF4LkjGJ2hgYprTFmBWaqj54Xzttsvoul85C9BguN88ts4dpVNjWtyafRfYHPXqFdBZsy09HvxjrTNPvsw7s6xE02heSWPp2j09o0CS5-5hB9PNzPJ0_5y9vjbHL3kleM8jY3QgjOoZAWOC2rQpGylBUYiYlVuOS2HjPBJedSGUaoxFYqrmrBalYbQS0boptj7jaGzx2kVm9cqqBpjIewS5qMqeBKUlF06PUfdB120XffaVIo0eUyoToKH6kqhpQi1Hob3cbEvSZYH9rVXbv60K7-abdT5B-lcq1pXfBtNK75T7w6ig4Afu8UnHBeMPYNmSyGqQ |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_3390_en17163897 crossref_primary_10_3390_w12113085 crossref_primary_10_1109_TII_2018_2885365 crossref_primary_10_1109_JESTPE_2021_3049242 crossref_primary_10_3390_batteries9100508 crossref_primary_10_1007_s40435_021_00813_4 crossref_primary_10_1109_ACCESS_2019_2956203 crossref_primary_10_1109_TII_2017_2702754 crossref_primary_10_1007_s43236_024_00949_4 crossref_primary_10_1109_TIA_2018_2836953 crossref_primary_10_1088_1361_6501_ac3944 crossref_primary_10_1109_TII_2021_3130721 crossref_primary_10_1109_TIA_2019_2901732 crossref_primary_10_1109_TII_2016_2558477 crossref_primary_10_3390_s20071835 crossref_primary_10_32604_iasc_2021_018338 crossref_primary_10_1109_TII_2017_2743761 crossref_primary_10_1109_TII_2021_3056428 crossref_primary_10_1016_j_apenergy_2019_114469 crossref_primary_10_1109_TII_2023_3333673 crossref_primary_10_1109_TSMC_2024_3408872 crossref_primary_10_1214_24_EJS2251 |
Cites_doi | 10.1214/aos/1176347963 10.1080/08982110903179069 10.1016/0169-7439(92)80076-G 10.1109/TII.2015.2431642 10.1016/S0098-3004(98)00020-X 10.1109/TEC.2012.2189887 10.1115/1.4001461 10.1109/TII.2013.2290069 10.1109/TEC.2010.2043436 10.1016/0378-3758(90)90122-B 10.1007/978-1-4757-3799-8 10.1080/00401706.2013.804439 10.1007/978-3-642-23753-9_4 10.1080/00401706.1969.10490666 10.2307/1268315 10.1016/0304-3975(94)90178-3 10.1109/TII.2015.2396011 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TII.2016.2532321 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 1269 |
ExternalDocumentID | 4087111781 10_1109_TII_2016_2532321 7414473 |
Genre | orig-research |
GrantInformation_xml | – fundername: Early Career Scheme Grant from the Research Grants Council of the Hong Kong Special Administrative Region grantid: CityU 138313; CityU 21201414 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c324t-a55544e76de42bc791bb6cea601d90b4df835464469a31260d6949f53f3fa52d3 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Fri Jul 11 16:02:46 EDT 2025 Mon Jun 30 10:20:00 EDT 2025 Thu Apr 24 22:52:54 EDT 2025 Tue Jul 01 03:06:06 EDT 2025 Tue Aug 26 16:43:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | neural networks (NN) wind power prediction wind energy Data mining data processing |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-a55544e76de42bc791bb6cea601d90b4df835464469a31260d6949f53f3fa52d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1795949359 |
PQPubID | 85507 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_TII_2016_2532321 proquest_journals_1795949359 proquest_miscellaneous_1825496257 ieee_primary_7414473 crossref_citationtrail_10_1109_TII_2016_2532321 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 (ref23) 2010 ref12 ref15 ref14 ref11 cormen (ref20) 2009 ref22 ref10 ref2 ref1 ref17 ref16 ref18 drucker (ref8) 1997 wu (ref19) 2009 ref9 ref4 ref3 crochemore (ref21) 1994; 698 ref6 ref5 shakhnarovish (ref7) 2005 |
References_xml | – year: 2009 ident: ref19 publication-title: Experiments Planning Analysis and Optimization – ident: ref9 doi: 10.1214/aos/1176347963 – year: 2010 ident: ref23 publication-title: SAS/QC(R) 9 2 User's Guide – start-page: 155 year: 1997 ident: ref8 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems 9 – ident: ref12 doi: 10.1080/08982110903179069 – ident: ref14 doi: 10.1016/0169-7439(92)80076-G – ident: ref5 doi: 10.1109/TII.2015.2431642 – ident: ref13 doi: 10.1016/S0098-3004(98)00020-X – ident: ref3 doi: 10.1109/TEC.2012.2189887 – ident: ref22 doi: 10.1115/1.4001461 – ident: ref2 doi: 10.1109/TII.2013.2290069 – volume: 698 year: 1994 ident: ref21 publication-title: Text Algorithms – ident: ref4 doi: 10.1109/TEC.2010.2043436 – ident: ref17 doi: 10.1016/0378-3758(90)90122-B – ident: ref18 doi: 10.1007/978-1-4757-3799-8 – ident: ref16 doi: 10.1080/00401706.2013.804439 – year: 2009 ident: ref20 publication-title: Introduction to Algorithms – ident: ref10 doi: 10.1007/978-3-642-23753-9_4 – ident: ref11 doi: 10.1080/00401706.1969.10490666 – ident: ref15 doi: 10.2307/1268315 – ident: ref6 doi: 10.1016/0304-3975(94)90178-3 – ident: ref1 doi: 10.1109/TII.2015.2396011 – year: 2005 ident: ref7 publication-title: Nearest-Neighbor Methods in Learning and Vision |
SSID | ssj0037039 |
Score | 2.2773392 |
Snippet | This paper proposes a radially uniform (RU) design to sample representative datasets from a large volume of wind turbine data to build accurate data-driven... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1261 |
SubjectTerms | Acceleration Algorithm design and analysis Algorithms Computation Computational modeling Data mining Data models data processing Datasets Design analysis Mathematical models Neural networks Prediction algorithms Regression Samplers Training Training data wind energy wind power prediction Wind turbines |
Title | Wind Turbine Modeling With Data-Driven Methods and Radially Uniform Designs |
URI | https://ieeexplore.ieee.org/document/7414473 https://www.proquest.com/docview/1795949359 https://www.proquest.com/docview/1825496257 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BJziwI8omI3FBIm0cO0l9RBTEonJARXCLvEUgqha1yQG-nrGTVGxC3CJlssjj5T175g3AEeNahzm1gYy6SFA0o4FS6JA4yXOhk9hwL-rTv00u7_n1Y_w4ByezXBhrrQ8-s2136c_yzViXbqusg6sf5ymbh3kkblWuVjPrMuy5wmujxjRgUciaI8lQdAZXVy6GK2lHMUMAQb8sQb6myo-J2K8uFyvQb_6rCip5aZeFauv3b5KN__3xVViuYSY5rfrFGszZ0TosfRIf3ICbB6TjZFBOkBtb4mqiucx08vBcPJGeLGTQm7iZkPR9jekpkWh955QMhsM3glDVoV3S8wEg0024vzgfnF0GdWmFQCOCKgIZI4zgNk2M5ZHSqaBKJdpKpGdGhIqb3G0IIVZKhGQUOY9JBBd5zHKWyzgybAsWRuOR3QaCACCUqaFaMcpV10jDlZJCUslzqjhtQadp7UzXuuOu_MUw8_wjFBn6J3P-yWr_tOB49sRrpbnxh-2Ga-6ZXd3SLdhrHJrVg3KaUVdXnbtU5BYczm7jcHJnJHJkxyXaeMaMpDDd-f3Nu7Dovl9Fi-3BQjEp7T7ikkId-A75AbPt3Sw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFCioSwsYCQ4cshvHdlIfekAs1S7b7QFt1d6CXxFVV1m0m6hqf0v_Cv-NsZOseIlbJW6RMrYSz3jmG3seAG8YNyYuqItUso8OimE00hoZItKikCYVloeiPtPjdHTCP52Jsw24WefCOOdC8Jnr-8dwl28XpvZHZQO0fpxnXavqibu6RAdtdTAeIjffJsnhx9mHUdT2EIgMQoUqUgLtJXdZah1PtMkk1To1TqEfYmWsuS38yQeCglQqRhHc21RyWQhWsEKJxDKc9w7cRZwhkiY7rNPzDPeKDNVYBY1YErPuEjSWg9l47KPG0n4iGEIW-ovRC11c_lD9wZ4dbsH3biWaMJaLfl3pvrn-rUjk_7pUj-BhC6TJ-0byH8OGK5_Ag5_KK27D5PS8tGRWL9H7d8R3ffO59-T0vPpKhqpS0XDpdT2Zhi7aK6KQ-rOv1TCfXxEE4x7Pk2EIcVk9hZNb-ZtnsFkuSrcDBCFOrDJLjWaU632rLNdaSUUVL6jmtAeDjru5aSur-wYf8zx4WLHMUR5yLw95Kw89eLce8a2pKvIP2m3P3jVdy9ke7HUClLdqZ5VT3zme-2TrHrxev0aF4W-BVOkWNdKEMwF0e7Pnf5_5FdwbzaZH-dH4eLIL9_23NLFxe7BZLWv3AlFYpV-GzUDgy22L1A-5OTlV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Turbine+Modeling+With+Data-Driven+Methods+and+Radially+Uniform+Designs&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Tan%2C+Matthias&rft.au=Zhang%2C+Zijun&rft.date=2016-06-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=12&rft.issue=3&rft.spage=1261&rft.epage=1269&rft_id=info:doi/10.1109%2FTII.2016.2532321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2016_2532321 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |