Stability and Performance Analysis for Positive Fractional-Order Systems With Time-Varying Delays
This paper addresses the stability and L ∞ -gain analysis problem for continuous-time positive fractional-order delay systems with incommensurate orders between zero and one. A necessary and sufficient condition is firstly given to characterize the positivity of continuous-time fractional-order syst...
Saved in:
Published in | IEEE transactions on automatic control Vol. 61; no. 9; pp. 2676 - 2681 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper addresses the stability and L ∞ -gain analysis problem for continuous-time positive fractional-order delay systems with incommensurate orders between zero and one. A necessary and sufficient condition is firstly given to characterize the positivity of continuous-time fractional-order systems with bounded time-varying delays. Moreover, by exploiting the monotonic and asymptotic property of the constant delay system by virtue of the positivity, and comparing the trajectory of the time-varying delay system with that of the constant delay system, it is proved that the asymptotic stability of positive fractional-order systems is not sensitive to the magnitude of delays. In addition, it is shown that the L ∞ -gain of a positive fractional-order system is independent of the magnitude of delays and fully determined by the system matrices. Finally, a numerical example is given to show the validity of the theoretical results. |
---|---|
AbstractList | This paper addresses the stability and $L_{\infty}$-gain analysis problem for continuous-time positive fractional-order delay systems with incommensurate orders between zero and one. A necessary and sufficient condition is firstly given to characterize the positivity of continuous-time fractional-order systems with bounded time-varying delays. Moreover, by exploiting the monotonic and asymptotic property of the constant delay system by virtue of the positivity, and comparing the trajectory of the time-varying delay system with that of the constant delay system, it is proved that the asymptotic stability of positive fractional-order systems is not sensitive to the magnitude of delays. In addition, it is shown that the $L_{\infty}$-gain of a positive fractional-order system is independent of the magnitude of delays and fully determined by the system matrices. Finally, a numerical example is given to show the validity of the theoretical results. This paper addresses the stability and [Formula Omitted]-gain analysis problem for continuous-time positive fractional-order delay systems with incommensurate orders between zero and one. A necessary and sufficient condition is firstly given to characterize the positivity of continuous-time fractional-order systems with bounded time-varying delays. Moreover, by exploiting the monotonic and asymptotic property of the constant delay system by virtue of the positivity, and comparing the trajectory of the time-varying delay system with that of the constant delay system, it is proved that the asymptotic stability of positive fractional-order systems is not sensitive to the magnitude of delays. In addition, it is shown that the [Formula Omitted]-gain of a positive fractional-order system is independent of the magnitude of delays and fully determined by the system matrices. Finally, a numerical example is given to show the validity of the theoretical results. This paper addresses the stability and L ∞ -gain analysis problem for continuous-time positive fractional-order delay systems with incommensurate orders between zero and one. A necessary and sufficient condition is firstly given to characterize the positivity of continuous-time fractional-order systems with bounded time-varying delays. Moreover, by exploiting the monotonic and asymptotic property of the constant delay system by virtue of the positivity, and comparing the trajectory of the time-varying delay system with that of the constant delay system, it is proved that the asymptotic stability of positive fractional-order systems is not sensitive to the magnitude of delays. In addition, it is shown that the L ∞ -gain of a positive fractional-order system is independent of the magnitude of delays and fully determined by the system matrices. Finally, a numerical example is given to show the validity of the theoretical results. |
Author | Jun Shen Lam, James |
Author_xml | – sequence: 1 surname: Jun Shen fullname: Jun Shen email: junshen2009@gmail.com organization: Coll. of Autom. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China – sequence: 2 givenname: James surname: Lam fullname: Lam, James email: james.lam@hku.hk organization: Dept. of Mech. Eng., Univ. of Hong Kong, Hong Kong, China |
BookMark | eNp9kEtLAzEURoMoWB97wU3AjZupeUzSzLJUq4JgoVWXQyZzo5F5aJIK8-_NUHHhwk1Cbs6X3HuO0H7Xd4DQGSVTSklxtZkvpoxQMWWC5ILKPTShQqiMCcb30YQQqrKCKXmIjkJ4T0eZ53SC9DrqyjUuDlh3NV6Bt71vdWcAzzvdDMEFnCp41QcX3Rfgpdcmuj7dZY--Bo_XQ4jQBvzi4hveuBayZ-0H173ia2j0EE7QgdVNgNOf_Rg9LW82i7vs4fH2fjF_yAxnecyKmsHYsCJ1bS0HsFoSpdgsN9rowuTSplXZmsuqqCqj5UxBJXguuGG2pvwYXe7e_fD95xZCLFsXDDSN7qDfhpIqLoSccUkSevEHfe-3Po00UlSMJJOJIjvK-D4ED7b88K5Ns5WUlKPzMjkvR-flj_MUkX8ixkU96opeu-a_4Pku6ADg958Zz1nBCP8Gk8yRDg |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1007_s11424_022_1018_7 crossref_primary_10_1016_j_jfranklin_2021_07_001 crossref_primary_10_1016_j_amc_2019_124766 crossref_primary_10_1002_rnc_3919 crossref_primary_10_1007_s40815_018_0559_3 crossref_primary_10_1007_s40815_021_01105_x crossref_primary_10_3934_dcdss_2024118 crossref_primary_10_1049_iet_cta_2018_5619 crossref_primary_10_1016_j_jfranklin_2017_12_020 crossref_primary_10_3390_fractalfract8100575 crossref_primary_10_1016_j_automatica_2022_110570 crossref_primary_10_1002_acs_2963 crossref_primary_10_1016_j_jfranklin_2018_06_013 crossref_primary_10_1016_j_jfranklin_2019_12_029 crossref_primary_10_1016_j_jfranklin_2021_04_021 crossref_primary_10_1016_j_jfranklin_2021_07_013 crossref_primary_10_1109_TCSII_2019_2922771 crossref_primary_10_1016_j_amc_2019_124631 crossref_primary_10_3390_fractalfract8110660 crossref_primary_10_1051_cocv_2023057 crossref_primary_10_1109_TCSI_2021_3113050 crossref_primary_10_1049_iet_cta_2019_0209 crossref_primary_10_1093_imamci_dnad003 crossref_primary_10_1007_s11071_021_06403_5 crossref_primary_10_1016_j_jfranklin_2022_06_035 crossref_primary_10_1142_S1793962319410095 crossref_primary_10_1109_LCSYS_2021_3130638 crossref_primary_10_1002_asjc_2193 crossref_primary_10_1016_j_fss_2024_109221 crossref_primary_10_1109_TCSII_2023_3265656 crossref_primary_10_1049_iet_cta_2018_5325 crossref_primary_10_1109_TCSII_2018_2880777 crossref_primary_10_1002_rnc_5256 crossref_primary_10_3390_electronics12234782 crossref_primary_10_1016_j_jfranklin_2016_12_030 crossref_primary_10_1115_1_4042467 crossref_primary_10_1109_ACCESS_2019_2933726 crossref_primary_10_1016_j_cnsns_2024_107899 crossref_primary_10_1016_j_jfranklin_2021_10_008 crossref_primary_10_1016_j_fraope_2023_100025 crossref_primary_10_1049_iet_cta_2016_1341 crossref_primary_10_1109_TFUZZ_2020_2966420 crossref_primary_10_1016_j_jfranklin_2022_03_006 crossref_primary_10_1002_rnc_7468 crossref_primary_10_1007_s00034_018_0752_5 crossref_primary_10_1016_j_matpr_2020_04_841 crossref_primary_10_1016_j_ifacol_2018_11_178 crossref_primary_10_1016_j_jfranklin_2024_107106 crossref_primary_10_1007_s40314_020_01190_y crossref_primary_10_1109_ACCESS_2019_2922422 crossref_primary_10_1016_j_chaos_2021_111265 crossref_primary_10_1007_s13540_022_00065_9 crossref_primary_10_1007_s11071_022_07622_0 crossref_primary_10_1007_s11424_018_7347_x crossref_primary_10_1186_s13662_018_1470_9 crossref_primary_10_1109_TNNLS_2020_2977994 crossref_primary_10_1080_00207721_2017_1412535 crossref_primary_10_1109_ACCESS_2019_2936539 crossref_primary_10_1016_j_jfranklin_2019_02_042 crossref_primary_10_1007_s11071_022_08060_8 crossref_primary_10_1007_s11071_018_4516_3 crossref_primary_10_1002_mmce_22443 crossref_primary_10_1002_asjc_1644 crossref_primary_10_1049_iet_cta_2018_5225 crossref_primary_10_3390_fractalfract6110622 crossref_primary_10_1007_s11071_018_4597_z crossref_primary_10_1007_s12190_024_02174_5 crossref_primary_10_1177_09596518231204053 crossref_primary_10_1002_rnc_4461 crossref_primary_10_1109_TCSI_2023_3325161 crossref_primary_10_1002_asjc_3015 crossref_primary_10_1177_0142331218755577 crossref_primary_10_1007_s00034_023_02368_5 crossref_primary_10_1109_TAC_2018_2791485 crossref_primary_10_1007_s40815_023_01667_y crossref_primary_10_1177_09596518221142178 crossref_primary_10_1016_j_cnsns_2023_107511 crossref_primary_10_1007_s11071_022_07554_9 crossref_primary_10_1049_iet_cds_2017_0306 crossref_primary_10_1177_01423312211005619 crossref_primary_10_1016_j_jfranklin_2022_03_029 crossref_primary_10_1016_j_jfranklin_2020_05_033 crossref_primary_10_1016_j_jfranklin_2023_11_028 crossref_primary_10_1016_j_jfranklin_2021_03_026 crossref_primary_10_1016_j_ins_2021_08_034 crossref_primary_10_1016_j_ifacol_2022_05_015 crossref_primary_10_1002_acs_3211 crossref_primary_10_1007_s11071_019_05258_1 crossref_primary_10_1007_s40435_022_00988_4 crossref_primary_10_1016_j_cnsns_2022_106270 crossref_primary_10_1016_j_jfranklin_2017_03_019 crossref_primary_10_1007_s11424_020_8338_2 crossref_primary_10_1016_j_chaos_2023_113948 crossref_primary_10_1016_j_fss_2019_06_013 crossref_primary_10_1016_j_nahs_2020_100868 crossref_primary_10_1177_0959651820945828 crossref_primary_10_1016_j_jare_2020_04_006 crossref_primary_10_1007_s11071_025_11003_8 crossref_primary_10_1109_TCYB_2019_2963034 crossref_primary_10_1007_s40313_024_01082_0 crossref_primary_10_1002_asjc_1739 crossref_primary_10_1177_0142331220944897 crossref_primary_10_1109_TCYB_2019_2938754 crossref_primary_10_1007_s40815_021_01202_x crossref_primary_10_1016_j_amc_2025_129409 crossref_primary_10_1016_j_amc_2018_12_069 crossref_primary_10_1007_s11063_022_10778_w crossref_primary_10_1109_ACCESS_2019_2949642 crossref_primary_10_1109_TSMC_2019_2956320 crossref_primary_10_1177_0142331218757864 crossref_primary_10_1049_iet_cta_2017_0315 crossref_primary_10_3390_fractalfract6100591 crossref_primary_10_3390_math12203212 crossref_primary_10_1137_19M1299797 crossref_primary_10_1016_j_cnsns_2019_105089 crossref_primary_10_1016_j_jfranklin_2019_03_039 crossref_primary_10_1115_1_4041607 crossref_primary_10_1109_TSMC_2018_2877042 crossref_primary_10_1016_j_ifacol_2020_12_2016 crossref_primary_10_1515_fca_2020_0010 crossref_primary_10_1016_j_jfranklin_2024_106686 crossref_primary_10_1109_ACCESS_2019_2944633 |
Cites_doi | 10.1109/TAC.2010.2041982 10.3182/20080706-5-KR-1001.00662 10.1137/1.9781611971262 10.1007/978-3-642-20502-6 10.1002/rnc.2859 10.1109/TAC.2004.825967 10.1109/TAC.2010.2088790 10.1109/TAC.2009.2033738 10.1016/j.automatica.2009.11.006 10.1109/TCSII.2006.886888 10.1109/TAC.2009.2013056 10.1080/00207170310001635400 10.1109/TAC.2012.2203031 10.1016/j.camwa.2009.08.019 10.1155/2013/256071 10.1007/978-1-4471-0221-2 10.1109/TCSII.2009.2023305 10.1016/j.automatica.2009.04.003 10.1080/00207720903353641 10.1109/TCSI.2010.2096111 10.1023/A:1016592219341 10.1002/asjc.579 10.2307/44153996 10.1109/TCSII.2011.2158258 10.2478/v10006-008-0020-0 10.1016/j.sysconle.2003.09.006 10.1109/TAC.2012.2190211 10.1515/9781400832248 10.1090/S0002-9904-1948-09132-7 10.1016/j.automatica.2013.11.039 10.1007/978-3-642-20267-4_32 10.1016/j.automatica.2012.05.072 10.1109/TAC.2014.2303231 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
DOI | 10.1109/TAC.2015.2504516 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 2681 |
ExternalDocumentID | 4164715331 10_1109_TAC_2015_2504516 7342920 |
Genre | orig-research |
GrantInformation_xml | – fundername: GRF HKU grantid: 17204014 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
ID | FETCH-LOGICAL-c324t-9d2e155880ddff3eefa6088274caca9c46fa9c8fd36b9bbca678eb53453c2fd13 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Fri Jul 11 08:42:10 EDT 2025 Mon Jun 30 10:24:30 EDT 2025 Tue Jul 01 03:35:53 EDT 2025 Thu Apr 24 22:56:13 EDT 2025 Wed Aug 27 02:52:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-9d2e155880ddff3eefa6088274caca9c46fa9c8fd36b9bbca678eb53453c2fd13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1815183526 |
PQPubID | 85475 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1109_TAC_2015_2504516 ieee_primary_7342920 proquest_miscellaneous_1835567360 crossref_primary_10_1109_TAC_2015_2504516 proquest_journals_1815183526 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. 2016-9-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 kaczorek (ref9) 2002 ref37 ref15 ref36 ref31 shen (ref28) 2014 ref30 ref33 miller (ref34) 1999; 23 ref11 ref10 liu (ref8) 2010; 55 ref1 ref17 ref16 ref19 ref18 lu (ref14) 2010; 55 liu (ref23) 2009; 56 ref24 ref26 ref25 matignon (ref12) 0 ref20 ref22 ref21 podlubny (ref32) 1999 ref27 jacquez (ref2) 1985 ref29 ref7 ref4 ref3 ref6 ref5 |
References_xml | – volume: 55 start-page: 1024 year: 2010 ident: ref8 article-title: Stability analysis for continuoustime positive systems with time-varying delays publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2010.2041982 – ident: ref21 doi: 10.3182/20080706-5-KR-1001.00662 – ident: ref35 doi: 10.1137/1.9781611971262 – ident: ref7 doi: 10.1007/978-3-642-20502-6 – ident: ref25 doi: 10.1002/rnc.2859 – ident: ref26 doi: 10.1109/TAC.2004.825967 – ident: ref19 doi: 10.1109/TAC.2010.2088790 – volume: 55 start-page: 152 year: 2010 ident: ref14 article-title: Robust stability and stabilization of fractional-order interval systems with the fractional order $\alpha$: The $0<\alpha<1$ case publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2009.2033738 – ident: ref18 doi: 10.1016/j.automatica.2009.11.006 – ident: ref10 doi: 10.1109/TCSII.2006.886888 – ident: ref13 doi: 10.1109/TAC.2009.2013056 – year: 1999 ident: ref32 publication-title: Fractional Differential Equations – ident: ref27 doi: 10.1080/00207170310001635400 – ident: ref30 doi: 10.1109/TAC.2012.2203031 – ident: ref16 doi: 10.1016/j.camwa.2009.08.019 – ident: ref37 doi: 10.1155/2013/256071 – year: 2002 ident: ref9 publication-title: Positive 1D and 2D Systems doi: 10.1007/978-1-4471-0221-2 – volume: 56 start-page: 600 year: 2009 ident: ref23 article-title: Stability analysis of positive systems with bounded time-varying delays publication-title: IEEE Trans Circuits Syst II Express Briefs doi: 10.1109/TCSII.2009.2023305 – ident: ref15 doi: 10.1016/j.automatica.2009.04.003 – ident: ref22 doi: 10.1080/00207720903353641 – ident: ref3 doi: 10.1109/TCSI.2010.2096111 – ident: ref36 doi: 10.1023/A:1016592219341 – ident: ref6 doi: 10.1002/asjc.579 – volume: 23 start-page: 753 year: 1999 ident: ref34 article-title: A note on the complete monotonicity of the generalized Mittag-Leffler function publication-title: Real Anal Exchange doi: 10.2307/44153996 – ident: ref31 doi: 10.1109/TCSII.2011.2158258 – ident: ref4 doi: 10.2478/v10006-008-0020-0 – ident: ref20 doi: 10.1016/j.sysconle.2003.09.006 – ident: ref11 doi: 10.1109/TAC.2012.2190211 – year: 1985 ident: ref2 publication-title: Compartmental Analysis in Biology and Medicine – ident: ref1 doi: 10.1515/9781400832248 – ident: ref33 doi: 10.1090/S0002-9904-1948-09132-7 – year: 2014 ident: ref28 article-title: $\ell_{8}/L_{\infty}$-gain analysis for positive linear systems with unbounded time-varying delays publication-title: IEEE Trans Autom Control – ident: ref24 doi: 10.1016/j.automatica.2013.11.039 – ident: ref29 doi: 10.1007/978-3-642-20267-4_32 – start-page: 963 year: 0 ident: ref12 article-title: Stability results for fractional differential equations with applications to control processing publication-title: Proc IMACS-SMC – ident: ref17 doi: 10.1016/j.automatica.2012.05.072 – ident: ref5 doi: 10.1109/TAC.2014.2303231 |
SSID | ssj0016441 |
Score | 2.5438216 |
Snippet | This paper addresses the stability and L ∞ -gain analysis problem for continuous-time positive fractional-order delay systems with incommensurate orders... This paper addresses the stability and [Formula Omitted]-gain analysis problem for continuous-time positive fractional-order delay systems with incommensurate... This paper addresses the stability and $L_{\infty}$-gain analysis problem for continuous-time positive fractional-order delay systems with incommensurate... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2676 |
SubjectTerms | Asymptotic properties Asymptotic stability Automatic control Constants Delay Delay systems Delays Fractional-order systems Lyapunov methods Mathematical models positive systems Stability Stability criteria time-delay systems Time-varying systems Trajectories |
Title | Stability and Performance Analysis for Positive Fractional-Order Systems With Time-Varying Delays |
URI | https://ieeexplore.ieee.org/document/7342920 https://www.proquest.com/docview/1815183526 https://www.proquest.com/docview/1835567360 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQoLTq8qhcqRekZjeJ7bA5IugKVaLlwOsW-TFWq66yaMkiwa9nxsmmqKCqlyhK7MTKeDyfMzPfAHxWpbTWkgJmoXCJ0ikmxkibYDnOjUnRjiMT0-n34uRCfbvW1yvwpc-FQcQYfIZDPo2-fD9zC_5VNjqQsbjSKqzSxq3N1eo9BmzX21WXFDgf9y7JtBydHx5xDJceMl2X5srmT0xQrKnybCGO1mWyDqfLcbVBJb-Hi8YO3cNflI3_O_ANeNPBTHHYzotNWMH6Lbx-Qj64BYZwZoyMvRem9uLsTwaBWDKVCLoizmJY1x2KybxNgjDT5AcTdoqO7Vxc_Wp-Cs4lSS7NnNOmxDFOzf3tO7iYfD0_Okm6gguJI1zVJKXPkfAFqbT3IUjEYAqG4AfKGWdKp4pAx3HwsrCltc6QpUOrpdLS5cFn8j2s1bMaP4BQWRYyQ9gqk6iC8kZ77TKvtcyt8sEPYLSUQeU6NnIuijGt4q4kLSuSWsVSqzqpDWC_73HTMnH8o-0WC6Fv133_AewuxVx1qnpbEcTRGeNQ6vWpv01Kxp4TU-NswW0IlnEEXLr98pN34BW9v2iDz3ZhrZkvcI_QSmM_xmn6CKQ554c |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QA8jH0w0TGGJ-0FibRxbGfN4zSoCqxjDx3sLfLHWSCqFHUp0vjrOTtpmNiEeImixI5OOZ_vl9zd7wCOZCGMMWSA3Oc2kSrFRGthEiyGmdYpmmFkYpqc5-NL-eFKXa3Bm64WBhFj8hn2w2mM5bu5XYZfZYNjEZsrPYCH5PcVb6q1uphB8OzNvksmnA27oGRaDKYnpyGLS_UDYZcKvc1vOaHYVeXOVhz9y-gpTFaSNWkl3_vL2vTtr79IG_9X9E3YaIEmO2lWxhasYbUNT27RD-6AJqQZc2NvmK4cu_hTQ8BWXCWMrrCLmNj1E9lo0ZRB6FnyKVB2spbvnH35Vn9loZok-awXoXCKvcWZvrl-Bpejd9PTcdK2XEgsIas6KVyGhDDIqJ3zXiB6nQcQfiyttrqwMvd0HHonclMYYzX5OjRKSCVs5h0Xu7BezSt8Dkxy7rkmdMUFSi-dVk5Z7pQSmZHOux4MVjoobctHHtpizMr4XZIWJWmtDForW6314HU340fDxfGPsTtBCd249v33YH-l5rI11uuSQI7iAYnSrMPuNplZiJ3oCufLMIaAWciBS_fuf_IreDSeTs7Ks_fnH1_AY5Ilb1LR9mG9XizxJWGX2hzEJfsb3QDq0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Performance+Analysis+for+Positive+Fractional-Order+Systems+With+Time-Varying+Delays&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Jun+Shen&rft.au=Lam%2C+James&rft.date=2016-09-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=61&rft.issue=9&rft.spage=2676&rft.epage=2681&rft_id=info:doi/10.1109%2FTAC.2015.2504516&rft.externalDocID=7342920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |