Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM)

•An experimental Comparative study is proposed.•Upon different media types in Abrasive Flow Machining Process.•The effect of these medias, on SLM Surfaces has been studied.•SLM surface evolution, were characterized, by XRD stress analysis.•SLM surface evolution, were characterized by Roughness analy...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 54; pp. 1 - 6
Main Authors Duval-Chaneac, M.S., Han, S., Claudin, C., Salvatore, F., Bajolet, J., Rech, J.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An experimental Comparative study is proposed.•Upon different media types in Abrasive Flow Machining Process.•The effect of these medias, on SLM Surfaces has been studied.•SLM surface evolution, were characterized, by XRD stress analysis.•SLM surface evolution, were characterized by Roughness analysis. Selective laser melting (SLM) is increasingly adopted in mold industry because it can produce parts having complicated geometries, such as internal cavities and conformal cooling channel. However, the surface roughness value, Ra of the internal SLM surface is about 10 μm. The rough internal surface can make an adverse effect on fatigue life of the mold. Abrasive flow machining is well suited for finishing process of such hard-to-reach internal surfaces. Maraging steel 300 is employed because it is widely used in mold industry. In order to examine areal roughness evolution on SLM part’s internal surface during AFM, a fixture tube and an SLM part, which can be taken apart and assembled together during AFM, were designed and made. Non-heat treated (as build) and heat treated maraging steel 300 SLM part were prepared because mold industry often requires both non-heat treated and heat treated molds. Their initial areal surface roughness value, Sa ranges from 12 to 14 μm. Four different AFM media varying medium viscosity and abrasive grain concentration were used for comparative study. Areal roughness evolution on both non-heat treated and heat treated SLM surfaces during AFM and residual stress on their surfaces after AFM were measured. Their areal surface roughness, Sa ranges from 2 to 10 μm, depending on AFM media viscosity and concentration. On the non-heat treated SLM surfaces, the average increase of compressive residual stress perpendicular to AFM media flow, σyy was estimated to be 360 MPa. In contrast, on the heat treated SLM surfaces, the average increase of compressive residual stress parallel to AFM media flow, σxx was found to be 600 MPa. Those results suggest effects of AFM media on areal roughness evolution and possible interactions between the abrasive grains and SLM part surface.
AbstractList •An experimental Comparative study is proposed.•Upon different media types in Abrasive Flow Machining Process.•The effect of these medias, on SLM Surfaces has been studied.•SLM surface evolution, were characterized, by XRD stress analysis.•SLM surface evolution, were characterized by Roughness analysis. Selective laser melting (SLM) is increasingly adopted in mold industry because it can produce parts having complicated geometries, such as internal cavities and conformal cooling channel. However, the surface roughness value, Ra of the internal SLM surface is about 10 μm. The rough internal surface can make an adverse effect on fatigue life of the mold. Abrasive flow machining is well suited for finishing process of such hard-to-reach internal surfaces. Maraging steel 300 is employed because it is widely used in mold industry. In order to examine areal roughness evolution on SLM part’s internal surface during AFM, a fixture tube and an SLM part, which can be taken apart and assembled together during AFM, were designed and made. Non-heat treated (as build) and heat treated maraging steel 300 SLM part were prepared because mold industry often requires both non-heat treated and heat treated molds. Their initial areal surface roughness value, Sa ranges from 12 to 14 μm. Four different AFM media varying medium viscosity and abrasive grain concentration were used for comparative study. Areal roughness evolution on both non-heat treated and heat treated SLM surfaces during AFM and residual stress on their surfaces after AFM were measured. Their areal surface roughness, Sa ranges from 2 to 10 μm, depending on AFM media viscosity and concentration. On the non-heat treated SLM surfaces, the average increase of compressive residual stress perpendicular to AFM media flow, σyy was estimated to be 360 MPa. In contrast, on the heat treated SLM surfaces, the average increase of compressive residual stress parallel to AFM media flow, σxx was found to be 600 MPa. Those results suggest effects of AFM media on areal roughness evolution and possible interactions between the abrasive grains and SLM part surface.
Author Rech, J.
Bajolet, J.
Salvatore, F.
Han, S.
Duval-Chaneac, M.S.
Claudin, C.
Author_xml – sequence: 1
  givenname: M.S.
  surname: Duval-Chaneac
  fullname: Duval-Chaneac, M.S.
  email: marie-salome.duval-chaneac@enise.fr
  organization: Univ Lyon, 58 rue, Jean Parot, 42023, Saint Etienne ENISE, France
– sequence: 2
  givenname: S.
  surname: Han
  fullname: Han, S.
  organization: Univ Lyon, 58 rue, Jean Parot, 42023, Saint Etienne ENISE, France
– sequence: 3
  givenname: C.
  surname: Claudin
  fullname: Claudin, C.
  organization: Univ Lyon, 58 rue, Jean Parot, 42023, Saint Etienne ENISE, France
– sequence: 4
  givenname: F.
  surname: Salvatore
  fullname: Salvatore, F.
  organization: Univ Lyon, 58 rue, Jean Parot, 42023, Saint Etienne ENISE, France
– sequence: 5
  givenname: J.
  surname: Bajolet
  fullname: Bajolet, J.
  organization: IPC, Centre Technique d’Innovation en Plasturgie, 2 ruePierre et Marie Curie 01100 Bellignat, France
– sequence: 6
  givenname: J.
  orcidid: 0000-0002-8433-5566
  surname: Rech
  fullname: Rech, J.
  organization: Univ Lyon, 58 rue, Jean Parot, 42023, Saint Etienne ENISE, France
BookMark eNqNkEtPAjEUhRuDiYD-h8aVLGa87TwKrjSKjwTiQl03pdxCydAhbRX59xZxYVy5usk953zJOT3Sca1DQs4Z5AxYfbnKNx61DTa93SLnwIY5FDlAfUS6bCiKjBeCd0gXWMmyuqhGJ6QXwgoAxBDKLlmNPzfo7RpdVA0N8X2-o62jxjobltYtaGuodRG9S3KjAnq6xibulYuXyXRAw7s3SiPd2rikauZVsB9ITdNu6VrphPi23txPB6fk2Kgm4NnP7ZO3-_Hr7WM2eX54ur2ZZLrgZcxGXNSlMLyqqro2JR_NUHGDMEeNlcAhQilAzDiHWmg-U0qxWuOIaV0aXTFd9MnVgat9G4JHIzepoPI7yUDuV5Mr-Xs1uV9NQiHTail8_SesbVQxOaNXtvkf4u6AwFTyw6KXQVt0Guc2RaKct_Y_mC8yHJaQ
CitedBy_id crossref_primary_10_1007_s00170_021_06893_y
crossref_primary_10_1007_s00170_023_11229_z
crossref_primary_10_1007_s00170_024_13475_1
crossref_primary_10_1080_17452759_2024_2345389
crossref_primary_10_1016_j_jmapro_2025_02_073
crossref_primary_10_1007_s11665_021_06037_z
crossref_primary_10_1007_s00170_022_09353_3
crossref_primary_10_1016_j_jmatprotec_2018_12_024
crossref_primary_10_1016_j_matpr_2021_11_428
crossref_primary_10_1177_09544062241310703
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126590
crossref_primary_10_1088_2051_672X_abaffe
crossref_primary_10_1149_1945_7111_ac3782
crossref_primary_10_1016_j_wear_2023_204813
crossref_primary_10_1007_s00170_022_09410_x
crossref_primary_10_1016_j_jmatprotec_2023_118157
crossref_primary_10_1016_j_precisioneng_2019_08_011
crossref_primary_10_1080_17452759_2020_1830346
crossref_primary_10_1080_17452759_2021_1896970
crossref_primary_10_1016_j_matpr_2021_04_223
crossref_primary_10_1016_j_mfglet_2023_08_091
crossref_primary_10_1016_j_addma_2020_101428
crossref_primary_10_1080_09205071_2021_1954554
crossref_primary_10_1016_j_precisioneng_2020_11_003
crossref_primary_10_1016_j_addma_2022_103290
crossref_primary_10_1016_j_mfglet_2024_09_060
crossref_primary_10_3103_S1068798X23090113
crossref_primary_10_35121_ijapie201904234
crossref_primary_10_1016_j_jmrt_2024_03_110
crossref_primary_10_1016_j_jmapro_2024_11_090
crossref_primary_10_1016_j_mtcomm_2023_106939
crossref_primary_10_1007_s00170_020_05173_5
crossref_primary_10_1007_s00170_020_05288_9
crossref_primary_10_1016_j_procir_2020_02_022
crossref_primary_10_1007_s00170_019_04485_5
crossref_primary_10_1007_s00170_023_10814_6
crossref_primary_10_1007_s00170_022_09382_y
crossref_primary_10_1007_s00170_023_12495_7
crossref_primary_10_1007_s40964_021_00197_z
crossref_primary_10_1007_s40964_022_00325_3
crossref_primary_10_1016_j_icheatmasstransfer_2022_106128
crossref_primary_10_1016_j_jmapro_2023_06_012
crossref_primary_10_3390_mi13020263
crossref_primary_10_1007_s40964_024_00741_7
crossref_primary_10_1016_j_jmapro_2020_09_065
crossref_primary_10_1016_j_jmapro_2024_09_074
crossref_primary_10_1007_s40684_023_00551_2
crossref_primary_10_1007_s00170_021_07604_3
crossref_primary_10_1080_10426914_2022_2149788
crossref_primary_10_1016_j_precisioneng_2020_03_006
crossref_primary_10_1089_3dp_2021_0214
crossref_primary_10_1016_j_cirpj_2020_08_010
crossref_primary_10_1080_10426914_2023_2289678
crossref_primary_10_1016_j_jmapro_2025_01_087
crossref_primary_10_1016_j_prostr_2024_03_011
crossref_primary_10_1016_j_ijmachtools_2021_103800
Cites_doi 10.1016/j.wear.2008.08.014
10.1016/j.wear.2015.08.013
10.1016/j.procir.2016.03.172
10.1115/1.2899761
10.1016/S0890-6955(99)00038-3
10.1016/j.proeng.2011.11.097
10.1016/S1003-6326(10)60279-8
10.1016/S0890-6955(01)00043-8
10.1016/j.protcy.2016.08.224
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.precisioneng.2018.03.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2372
EndPage 6
ExternalDocumentID 10_1016_j_precisioneng_2018_03_006
S0141635917304464
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c324t-927647f255566f429bea2fe0dece57e8e04707b22067c2baaa16ce91cc4fc51c3
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Tue Jul 01 02:12:58 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Fri Feb 23 02:23:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Selective laser melting
Abrasive flow machining
Areal roughness
Residual stress
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-927647f255566f429bea2fe0dece57e8e04707b22067c2baaa16ce91cc4fc51c3
ORCID 0000-0002-8433-5566
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_precisioneng_2018_03_006
crossref_citationtrail_10_1016_j_precisioneng_2018_03_006
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2018_03_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationTitle Precision engineering
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kumar, Hiremath (bib0005) 2016; 25
Wang, Tsai, Liang, Liu, Weng (bib0030) 2009; 19
Fang, Zhao, Sun, Zheng, Ma (bib0065) 2009; 266
Williams, Rajurkar (bib0010) 1992; 114
Bremerstein, Potthoff, Michaelis, Schmiedel, Uhlmann, Blug (bib0035) 2015; 342–343
Jain, Jain (bib0045) 2001; 41
Jain, Jain, Dixit (bib0055) 1999; 39
Jain (bib0015) 2006; 26
Katom, Adachi (bib0060) 2018
Kenda, Pusavec, Kermouche, Kopac (bib0040) 2011; 19
Uhlmann, Mihotovic, Roßkamp, Dethlefs (bib0020) 2016; 46
Bährea, Brünneta, Swata Kenda, Pusavec, Kopac (bib0025) 2011; 19
Cubberly, Bakerjian (bib0050) 2018
Jain (10.1016/j.precisioneng.2018.03.006_bib0015) 2006; 26
Bremerstein (10.1016/j.precisioneng.2018.03.006_bib0035) 2015; 342–343
Katom (10.1016/j.precisioneng.2018.03.006_bib0060) 2018
Jain (10.1016/j.precisioneng.2018.03.006_bib0045) 2001; 41
Uhlmann (10.1016/j.precisioneng.2018.03.006_bib0020) 2016; 46
Fang (10.1016/j.precisioneng.2018.03.006_bib0065) 2009; 266
Cubberly (10.1016/j.precisioneng.2018.03.006_bib0050) 2018
Williams (10.1016/j.precisioneng.2018.03.006_bib0010) 1992; 114
Kumar (10.1016/j.precisioneng.2018.03.006_bib0005) 2016; 25
Bährea (10.1016/j.precisioneng.2018.03.006_bib0025) 2011; 19
Jain (10.1016/j.precisioneng.2018.03.006_bib0055) 1999; 39
Wang (10.1016/j.precisioneng.2018.03.006_bib0030) 2009; 19
Kenda (10.1016/j.precisioneng.2018.03.006_bib0040) 2011; 19
References_xml – year: 2018
  ident: bib0060
  article-title: Wear mechanisms, chapter 7
  publication-title: Modern tribology handbook
– volume: 266
  start-page: 678
  year: 2009
  end-page: 687
  ident: bib0065
  article-title: Temperature as sensitive monitor for efficiency of work in abrasive machining
  publication-title: Wear
– year: 2018
  ident: bib0050
  article-title: Chapter 15
  publication-title: Tool and manufacturing engineers handbook
– volume: 39
  start-page: 1903
  year: 1999
  end-page: 1923
  ident: bib0055
  article-title: Modeling of material removal and surface roughness in abrasive flow machining process
  publication-title: Int J Mach Tools Manuf
– volume: 19
  start-page: 172
  year: 2011
  end-page: 177
  ident: bib0025
  article-title: Investigation of one-way abrasive flow machining and in-process measurement of axial forces
  publication-title: Procedia Engineering
– volume: 19
  start-page: 250
  year: 2009
  end-page: 257
  ident: bib0030
  article-title: Uniform surface polished method of complex holes in abrasive flow machining
  publication-title: Trans Nonferrous Metals Soc China
– volume: 114
  start-page: 74
  year: 1992
  end-page: 81
  ident: bib0010
  article-title: Stochastic modeling and analysis of abrasive flow machining
  publication-title: J Eng Ind
– volume: 46
  start-page: 51
  year: 2016
  end-page: 54
  ident: bib0020
  article-title: A pragmatic modeling approach in abrasive flow machining for complex shaped automotive components
  publication-title: Procedia CIRP
– volume: 25
  start-page: 1297
  year: 2016
  end-page: 1304
  ident: bib0005
  article-title: A review on abrasive flow machining
  publication-title: Procedia Technol
– volume: 41
  start-page: 1689
  year: 2001
  end-page: 1704
  ident: bib0045
  article-title: Specific energy and temperature determination in abrasive flow machining process
  publication-title: Int J Mach Tools Manuf
– volume: 19
  start-page: 172
  year: 2011
  end-page: 177
  ident: bib0040
  publication-title: Procedia Eng
– volume: 26
  start-page: 128
  year: 2006
  end-page: 139
  ident: bib0015
  article-title: Forces prediction during material deformation in abrasive flow machining
  publication-title: Wear
– volume: 342–343
  start-page: 44
  year: 2015
  end-page: 51
  ident: bib0035
  article-title: Wear of abrasive media and its effect on abrasive flow machining results
  publication-title: Wear
– volume: 266
  start-page: 678
  year: 2009
  ident: 10.1016/j.precisioneng.2018.03.006_bib0065
  article-title: Temperature as sensitive monitor for efficiency of work in abrasive machining
  publication-title: Wear
  doi: 10.1016/j.wear.2008.08.014
– volume: 26
  start-page: 128
  year: 2006
  ident: 10.1016/j.precisioneng.2018.03.006_bib0015
  article-title: Forces prediction during material deformation in abrasive flow machining
  publication-title: Wear
– volume: 342–343
  start-page: 44
  year: 2015
  ident: 10.1016/j.precisioneng.2018.03.006_bib0035
  article-title: Wear of abrasive media and its effect on abrasive flow machining results
  publication-title: Wear
  doi: 10.1016/j.wear.2015.08.013
– year: 2018
  ident: 10.1016/j.precisioneng.2018.03.006_bib0050
  article-title: Chapter 15
– volume: 46
  start-page: 51
  year: 2016
  ident: 10.1016/j.precisioneng.2018.03.006_bib0020
  article-title: A pragmatic modeling approach in abrasive flow machining for complex shaped automotive components
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.03.172
– volume: 114
  start-page: 74
  year: 1992
  ident: 10.1016/j.precisioneng.2018.03.006_bib0010
  article-title: Stochastic modeling and analysis of abrasive flow machining
  publication-title: J Eng Ind
  doi: 10.1115/1.2899761
– volume: 19
  start-page: 172
  year: 2011
  ident: 10.1016/j.precisioneng.2018.03.006_bib0025
  article-title: Investigation of one-way abrasive flow machining and in-process measurement of axial forces
  publication-title: Procedia Engineering
– volume: 39
  start-page: 1903
  year: 1999
  ident: 10.1016/j.precisioneng.2018.03.006_bib0055
  article-title: Modeling of material removal and surface roughness in abrasive flow machining process
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(99)00038-3
– volume: 19
  start-page: 172
  year: 2011
  ident: 10.1016/j.precisioneng.2018.03.006_bib0040
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.11.097
– volume: 19
  start-page: 250
  year: 2009
  ident: 10.1016/j.precisioneng.2018.03.006_bib0030
  article-title: Uniform surface polished method of complex holes in abrasive flow machining
  publication-title: Trans Nonferrous Metals Soc China
  doi: 10.1016/S1003-6326(10)60279-8
– volume: 41
  start-page: 1689
  year: 2001
  ident: 10.1016/j.precisioneng.2018.03.006_bib0045
  article-title: Specific energy and temperature determination in abrasive flow machining process
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(01)00043-8
– year: 2018
  ident: 10.1016/j.precisioneng.2018.03.006_bib0060
  article-title: Wear mechanisms, chapter 7
– volume: 25
  start-page: 1297
  year: 2016
  ident: 10.1016/j.precisioneng.2018.03.006_bib0005
  article-title: A review on abrasive flow machining
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2016.08.224
SSID ssj0007804
Score 2.4237833
Snippet •An experimental Comparative study is proposed.•Upon different media types in Abrasive Flow Machining Process.•The effect of these medias, on SLM Surfaces has...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Abrasive flow machining
Areal roughness
Residual stress
Selective laser melting
Title Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM)
URI https://dx.doi.org/10.1016/j.precisioneng.2018.03.006
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUqWGBAPEV5VB4Y6BAaJ85rYKiqVuXRLlCpm2U7NmqVplVoxca345sHBImhEmOie6Xo2PI9do7PRehGRbYdx1padhgJi-rAsQSJhRWbWqUMP6KhB5eTR2N_OKGPU2_aQL3qLgzIKsu1v1jT89W6fNMp0eysZrMOyJIMmfDMfsOFv5LgCUppALP87vNH5gEGO4WMkVgQXRmP5hqvVVY1sknfQOYVFoan_t9FqlZ4BofooGSMuFt81BFqqPQY7dd8BE_QvF_z6ce5YyxepliDbQicMOGlxrPi6C_Bhi6rDC9UAoJnfPvyPGrj902muVQYTmUxNxtoELVjnSw_8CJXW-ah3cGofYomg_5rb2iVTRQsabjS2oqcwKeBNjsHQ9y0qT5CcUcrO1ZSeWY4lE0DOxAO2LhLR3DOiS9VRKSkWnpEumdoJzUAnSMsPIcqhxPOfYfyUJsgIhQlUaxI5HHdRFGFGpOlwzg0ukhYJSWbszriDBBntssM4k3kfueuCp-NrbLuq8Fhv2YNMwVhi_yLf-Zfoj14KsR9V2hnnW3UtSEpa9HKZ2EL7XYfnobjL3J56ts
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOVZ8qfXro0A4RcXASMnRAqAjKY2mR2CzbsSsQBERB_fv15YGo1KFS18QnRWfr7rvL5-8AHnTkunFslOM2IukwE3qOpLF0YpurtMVHrOHj5eTBMOiM2OvYH5egVdyFQVplHvuzmJ5G6_xJLfdmbTmZ1JCWZMGEb-uNOv6VZHtQQXUqvwyVZrfXGW4DMmrsZExG6qBBoT2a0ryWq2KWTfKBTK9Gpnka_J6ndnJP-xiOctBImtl3nUBJJ6dwuCMleAbTlx2pfpKKxpJFQgwqh2CTiSwMmWTdvxmxiFmvyFzPkPNMHt_6gyfyuVkZoTTBxiwRtoZGXjsxs8UXmaeEy3Rpsz14OodR--W91XHyOQqOsnBp7UReGLDQ2OLBYjdjE5DUwjPajbXSvt0R7bLQDaWHSu7Kk0IIGigdUaWYUT5V9QsoJ9ZBl0Ck7zHtCSpE4DHRMHYRlZrRKNY08oWpQlR4jatcZBxnXcx4wSab8l2Pc_Q4d-vcerwK9a3tMpPa-JPVc7E5_MfB4TYn_MH-6p_297DfeR_0eb877F3DAb7JuH43UF6vNvrWYpa1vMvP5Dd6f-2M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+on+finishing+of+internal+laser+melting+%28SLM%29+surface+with+abrasive+flow+machining+%28AFM%29&rft.jtitle=Precision+engineering&rft.au=Duval-Chaneac%2C+M.S.&rft.au=Han%2C+S.&rft.au=Claudin%2C+C.&rft.au=Salvatore%2C+F.&rft.date=2018-10-01&rft.issn=0141-6359&rft.volume=54&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1016%2Fj.precisioneng.2018.03.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2018_03_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon