Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM)
•An experimental Comparative study is proposed.•Upon different media types in Abrasive Flow Machining Process.•The effect of these medias, on SLM Surfaces has been studied.•SLM surface evolution, were characterized, by XRD stress analysis.•SLM surface evolution, were characterized by Roughness analy...
Saved in:
Published in | Precision engineering Vol. 54; pp. 1 - 6 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An experimental Comparative study is proposed.•Upon different media types in Abrasive Flow Machining Process.•The effect of these medias, on SLM Surfaces has been studied.•SLM surface evolution, were characterized, by XRD stress analysis.•SLM surface evolution, were characterized by Roughness analysis.
Selective laser melting (SLM) is increasingly adopted in mold industry because it can produce parts having complicated geometries, such as internal cavities and conformal cooling channel. However, the surface roughness value, Ra of the internal SLM surface is about 10 μm. The rough internal surface can make an adverse effect on fatigue life of the mold. Abrasive flow machining is well suited for finishing process of such hard-to-reach internal surfaces. Maraging steel 300 is employed because it is widely used in mold industry. In order to examine areal roughness evolution on SLM part’s internal surface during AFM, a fixture tube and an SLM part, which can be taken apart and assembled together during AFM, were designed and made. Non-heat treated (as build) and heat treated maraging steel 300 SLM part were prepared because mold industry often requires both non-heat treated and heat treated molds. Their initial areal surface roughness value, Sa ranges from 12 to 14 μm. Four different AFM media varying medium viscosity and abrasive grain concentration were used for comparative study. Areal roughness evolution on both non-heat treated and heat treated SLM surfaces during AFM and residual stress on their surfaces after AFM were measured. Their areal surface roughness, Sa ranges from 2 to 10 μm, depending on AFM media viscosity and concentration. On the non-heat treated SLM surfaces, the average increase of compressive residual stress perpendicular to AFM media flow, σyy was estimated to be 360 MPa. In contrast, on the heat treated SLM surfaces, the average increase of compressive residual stress parallel to AFM media flow, σxx was found to be 600 MPa. Those results suggest effects of AFM media on areal roughness evolution and possible interactions between the abrasive grains and SLM part surface. |
---|---|
AbstractList | •An experimental Comparative study is proposed.•Upon different media types in Abrasive Flow Machining Process.•The effect of these medias, on SLM Surfaces has been studied.•SLM surface evolution, were characterized, by XRD stress analysis.•SLM surface evolution, were characterized by Roughness analysis.
Selective laser melting (SLM) is increasingly adopted in mold industry because it can produce parts having complicated geometries, such as internal cavities and conformal cooling channel. However, the surface roughness value, Ra of the internal SLM surface is about 10 μm. The rough internal surface can make an adverse effect on fatigue life of the mold. Abrasive flow machining is well suited for finishing process of such hard-to-reach internal surfaces. Maraging steel 300 is employed because it is widely used in mold industry. In order to examine areal roughness evolution on SLM part’s internal surface during AFM, a fixture tube and an SLM part, which can be taken apart and assembled together during AFM, were designed and made. Non-heat treated (as build) and heat treated maraging steel 300 SLM part were prepared because mold industry often requires both non-heat treated and heat treated molds. Their initial areal surface roughness value, Sa ranges from 12 to 14 μm. Four different AFM media varying medium viscosity and abrasive grain concentration were used for comparative study. Areal roughness evolution on both non-heat treated and heat treated SLM surfaces during AFM and residual stress on their surfaces after AFM were measured. Their areal surface roughness, Sa ranges from 2 to 10 μm, depending on AFM media viscosity and concentration. On the non-heat treated SLM surfaces, the average increase of compressive residual stress perpendicular to AFM media flow, σyy was estimated to be 360 MPa. In contrast, on the heat treated SLM surfaces, the average increase of compressive residual stress parallel to AFM media flow, σxx was found to be 600 MPa. Those results suggest effects of AFM media on areal roughness evolution and possible interactions between the abrasive grains and SLM part surface. |
Author | Rech, J. Bajolet, J. Salvatore, F. Han, S. Duval-Chaneac, M.S. Claudin, C. |
Author_xml | – sequence: 1 givenname: M.S. surname: Duval-Chaneac fullname: Duval-Chaneac, M.S. email: marie-salome.duval-chaneac@enise.fr organization: Univ Lyon, 58 rue, Jean Parot, 42023, Saint Etienne ENISE, France – sequence: 2 givenname: S. surname: Han fullname: Han, S. organization: Univ Lyon, 58 rue, Jean Parot, 42023, Saint Etienne ENISE, France – sequence: 3 givenname: C. surname: Claudin fullname: Claudin, C. organization: Univ Lyon, 58 rue, Jean Parot, 42023, Saint Etienne ENISE, France – sequence: 4 givenname: F. surname: Salvatore fullname: Salvatore, F. organization: Univ Lyon, 58 rue, Jean Parot, 42023, Saint Etienne ENISE, France – sequence: 5 givenname: J. surname: Bajolet fullname: Bajolet, J. organization: IPC, Centre Technique d’Innovation en Plasturgie, 2 ruePierre et Marie Curie 01100 Bellignat, France – sequence: 6 givenname: J. orcidid: 0000-0002-8433-5566 surname: Rech fullname: Rech, J. organization: Univ Lyon, 58 rue, Jean Parot, 42023, Saint Etienne ENISE, France |
BookMark | eNqNkEtPAjEUhRuDiYD-h8aVLGa87TwKrjSKjwTiQl03pdxCydAhbRX59xZxYVy5usk953zJOT3Sca1DQs4Z5AxYfbnKNx61DTa93SLnwIY5FDlAfUS6bCiKjBeCd0gXWMmyuqhGJ6QXwgoAxBDKLlmNPzfo7RpdVA0N8X2-o62jxjobltYtaGuodRG9S3KjAnq6xibulYuXyXRAw7s3SiPd2rikauZVsB9ITdNu6VrphPi23txPB6fk2Kgm4NnP7ZO3-_Hr7WM2eX54ur2ZZLrgZcxGXNSlMLyqqro2JR_NUHGDMEeNlcAhQilAzDiHWmg-U0qxWuOIaV0aXTFd9MnVgat9G4JHIzepoPI7yUDuV5Mr-Xs1uV9NQiHTail8_SesbVQxOaNXtvkf4u6AwFTyw6KXQVt0Guc2RaKct_Y_mC8yHJaQ |
CitedBy_id | crossref_primary_10_1007_s00170_021_06893_y crossref_primary_10_1007_s00170_023_11229_z crossref_primary_10_1007_s00170_024_13475_1 crossref_primary_10_1080_17452759_2024_2345389 crossref_primary_10_1016_j_jmapro_2025_02_073 crossref_primary_10_1007_s11665_021_06037_z crossref_primary_10_1007_s00170_022_09353_3 crossref_primary_10_1016_j_jmatprotec_2018_12_024 crossref_primary_10_1016_j_matpr_2021_11_428 crossref_primary_10_1177_09544062241310703 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126590 crossref_primary_10_1088_2051_672X_abaffe crossref_primary_10_1149_1945_7111_ac3782 crossref_primary_10_1016_j_wear_2023_204813 crossref_primary_10_1007_s00170_022_09410_x crossref_primary_10_1016_j_jmatprotec_2023_118157 crossref_primary_10_1016_j_precisioneng_2019_08_011 crossref_primary_10_1080_17452759_2020_1830346 crossref_primary_10_1080_17452759_2021_1896970 crossref_primary_10_1016_j_matpr_2021_04_223 crossref_primary_10_1016_j_mfglet_2023_08_091 crossref_primary_10_1016_j_addma_2020_101428 crossref_primary_10_1080_09205071_2021_1954554 crossref_primary_10_1016_j_precisioneng_2020_11_003 crossref_primary_10_1016_j_addma_2022_103290 crossref_primary_10_1016_j_mfglet_2024_09_060 crossref_primary_10_3103_S1068798X23090113 crossref_primary_10_35121_ijapie201904234 crossref_primary_10_1016_j_jmrt_2024_03_110 crossref_primary_10_1016_j_jmapro_2024_11_090 crossref_primary_10_1016_j_mtcomm_2023_106939 crossref_primary_10_1007_s00170_020_05173_5 crossref_primary_10_1007_s00170_020_05288_9 crossref_primary_10_1016_j_procir_2020_02_022 crossref_primary_10_1007_s00170_019_04485_5 crossref_primary_10_1007_s00170_023_10814_6 crossref_primary_10_1007_s00170_022_09382_y crossref_primary_10_1007_s00170_023_12495_7 crossref_primary_10_1007_s40964_021_00197_z crossref_primary_10_1007_s40964_022_00325_3 crossref_primary_10_1016_j_icheatmasstransfer_2022_106128 crossref_primary_10_1016_j_jmapro_2023_06_012 crossref_primary_10_3390_mi13020263 crossref_primary_10_1007_s40964_024_00741_7 crossref_primary_10_1016_j_jmapro_2020_09_065 crossref_primary_10_1016_j_jmapro_2024_09_074 crossref_primary_10_1007_s40684_023_00551_2 crossref_primary_10_1007_s00170_021_07604_3 crossref_primary_10_1080_10426914_2022_2149788 crossref_primary_10_1016_j_precisioneng_2020_03_006 crossref_primary_10_1089_3dp_2021_0214 crossref_primary_10_1016_j_cirpj_2020_08_010 crossref_primary_10_1080_10426914_2023_2289678 crossref_primary_10_1016_j_jmapro_2025_01_087 crossref_primary_10_1016_j_prostr_2024_03_011 crossref_primary_10_1016_j_ijmachtools_2021_103800 |
Cites_doi | 10.1016/j.wear.2008.08.014 10.1016/j.wear.2015.08.013 10.1016/j.procir.2016.03.172 10.1115/1.2899761 10.1016/S0890-6955(99)00038-3 10.1016/j.proeng.2011.11.097 10.1016/S1003-6326(10)60279-8 10.1016/S0890-6955(01)00043-8 10.1016/j.protcy.2016.08.224 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2018.03.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2372 |
EndPage | 6 |
ExternalDocumentID | 10_1016_j_precisioneng_2018_03_006 S0141635917304464 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c324t-927647f255566f429bea2fe0dece57e8e04707b22067c2baaa16ce91cc4fc51c3 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Tue Jul 01 02:12:58 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Fri Feb 23 02:23:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Selective laser melting Abrasive flow machining Areal roughness Residual stress |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-927647f255566f429bea2fe0dece57e8e04707b22067c2baaa16ce91cc4fc51c3 |
ORCID | 0000-0002-8433-5566 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_precisioneng_2018_03_006 crossref_citationtrail_10_1016_j_precisioneng_2018_03_006 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2018_03_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationTitle | Precision engineering |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kumar, Hiremath (bib0005) 2016; 25 Wang, Tsai, Liang, Liu, Weng (bib0030) 2009; 19 Fang, Zhao, Sun, Zheng, Ma (bib0065) 2009; 266 Williams, Rajurkar (bib0010) 1992; 114 Bremerstein, Potthoff, Michaelis, Schmiedel, Uhlmann, Blug (bib0035) 2015; 342–343 Jain, Jain (bib0045) 2001; 41 Jain, Jain, Dixit (bib0055) 1999; 39 Jain (bib0015) 2006; 26 Katom, Adachi (bib0060) 2018 Kenda, Pusavec, Kermouche, Kopac (bib0040) 2011; 19 Uhlmann, Mihotovic, Roßkamp, Dethlefs (bib0020) 2016; 46 Bährea, Brünneta, Swata Kenda, Pusavec, Kopac (bib0025) 2011; 19 Cubberly, Bakerjian (bib0050) 2018 Jain (10.1016/j.precisioneng.2018.03.006_bib0015) 2006; 26 Bremerstein (10.1016/j.precisioneng.2018.03.006_bib0035) 2015; 342–343 Katom (10.1016/j.precisioneng.2018.03.006_bib0060) 2018 Jain (10.1016/j.precisioneng.2018.03.006_bib0045) 2001; 41 Uhlmann (10.1016/j.precisioneng.2018.03.006_bib0020) 2016; 46 Fang (10.1016/j.precisioneng.2018.03.006_bib0065) 2009; 266 Cubberly (10.1016/j.precisioneng.2018.03.006_bib0050) 2018 Williams (10.1016/j.precisioneng.2018.03.006_bib0010) 1992; 114 Kumar (10.1016/j.precisioneng.2018.03.006_bib0005) 2016; 25 Bährea (10.1016/j.precisioneng.2018.03.006_bib0025) 2011; 19 Jain (10.1016/j.precisioneng.2018.03.006_bib0055) 1999; 39 Wang (10.1016/j.precisioneng.2018.03.006_bib0030) 2009; 19 Kenda (10.1016/j.precisioneng.2018.03.006_bib0040) 2011; 19 |
References_xml | – year: 2018 ident: bib0060 article-title: Wear mechanisms, chapter 7 publication-title: Modern tribology handbook – volume: 266 start-page: 678 year: 2009 end-page: 687 ident: bib0065 article-title: Temperature as sensitive monitor for efficiency of work in abrasive machining publication-title: Wear – year: 2018 ident: bib0050 article-title: Chapter 15 publication-title: Tool and manufacturing engineers handbook – volume: 39 start-page: 1903 year: 1999 end-page: 1923 ident: bib0055 article-title: Modeling of material removal and surface roughness in abrasive flow machining process publication-title: Int J Mach Tools Manuf – volume: 19 start-page: 172 year: 2011 end-page: 177 ident: bib0025 article-title: Investigation of one-way abrasive flow machining and in-process measurement of axial forces publication-title: Procedia Engineering – volume: 19 start-page: 250 year: 2009 end-page: 257 ident: bib0030 article-title: Uniform surface polished method of complex holes in abrasive flow machining publication-title: Trans Nonferrous Metals Soc China – volume: 114 start-page: 74 year: 1992 end-page: 81 ident: bib0010 article-title: Stochastic modeling and analysis of abrasive flow machining publication-title: J Eng Ind – volume: 46 start-page: 51 year: 2016 end-page: 54 ident: bib0020 article-title: A pragmatic modeling approach in abrasive flow machining for complex shaped automotive components publication-title: Procedia CIRP – volume: 25 start-page: 1297 year: 2016 end-page: 1304 ident: bib0005 article-title: A review on abrasive flow machining publication-title: Procedia Technol – volume: 41 start-page: 1689 year: 2001 end-page: 1704 ident: bib0045 article-title: Specific energy and temperature determination in abrasive flow machining process publication-title: Int J Mach Tools Manuf – volume: 19 start-page: 172 year: 2011 end-page: 177 ident: bib0040 publication-title: Procedia Eng – volume: 26 start-page: 128 year: 2006 end-page: 139 ident: bib0015 article-title: Forces prediction during material deformation in abrasive flow machining publication-title: Wear – volume: 342–343 start-page: 44 year: 2015 end-page: 51 ident: bib0035 article-title: Wear of abrasive media and its effect on abrasive flow machining results publication-title: Wear – volume: 266 start-page: 678 year: 2009 ident: 10.1016/j.precisioneng.2018.03.006_bib0065 article-title: Temperature as sensitive monitor for efficiency of work in abrasive machining publication-title: Wear doi: 10.1016/j.wear.2008.08.014 – volume: 26 start-page: 128 year: 2006 ident: 10.1016/j.precisioneng.2018.03.006_bib0015 article-title: Forces prediction during material deformation in abrasive flow machining publication-title: Wear – volume: 342–343 start-page: 44 year: 2015 ident: 10.1016/j.precisioneng.2018.03.006_bib0035 article-title: Wear of abrasive media and its effect on abrasive flow machining results publication-title: Wear doi: 10.1016/j.wear.2015.08.013 – year: 2018 ident: 10.1016/j.precisioneng.2018.03.006_bib0050 article-title: Chapter 15 – volume: 46 start-page: 51 year: 2016 ident: 10.1016/j.precisioneng.2018.03.006_bib0020 article-title: A pragmatic modeling approach in abrasive flow machining for complex shaped automotive components publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.03.172 – volume: 114 start-page: 74 year: 1992 ident: 10.1016/j.precisioneng.2018.03.006_bib0010 article-title: Stochastic modeling and analysis of abrasive flow machining publication-title: J Eng Ind doi: 10.1115/1.2899761 – volume: 19 start-page: 172 year: 2011 ident: 10.1016/j.precisioneng.2018.03.006_bib0025 article-title: Investigation of one-way abrasive flow machining and in-process measurement of axial forces publication-title: Procedia Engineering – volume: 39 start-page: 1903 year: 1999 ident: 10.1016/j.precisioneng.2018.03.006_bib0055 article-title: Modeling of material removal and surface roughness in abrasive flow machining process publication-title: Int J Mach Tools Manuf doi: 10.1016/S0890-6955(99)00038-3 – volume: 19 start-page: 172 year: 2011 ident: 10.1016/j.precisioneng.2018.03.006_bib0040 publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.11.097 – volume: 19 start-page: 250 year: 2009 ident: 10.1016/j.precisioneng.2018.03.006_bib0030 article-title: Uniform surface polished method of complex holes in abrasive flow machining publication-title: Trans Nonferrous Metals Soc China doi: 10.1016/S1003-6326(10)60279-8 – volume: 41 start-page: 1689 year: 2001 ident: 10.1016/j.precisioneng.2018.03.006_bib0045 article-title: Specific energy and temperature determination in abrasive flow machining process publication-title: Int J Mach Tools Manuf doi: 10.1016/S0890-6955(01)00043-8 – year: 2018 ident: 10.1016/j.precisioneng.2018.03.006_bib0060 article-title: Wear mechanisms, chapter 7 – volume: 25 start-page: 1297 year: 2016 ident: 10.1016/j.precisioneng.2018.03.006_bib0005 article-title: A review on abrasive flow machining publication-title: Procedia Technol doi: 10.1016/j.protcy.2016.08.224 |
SSID | ssj0007804 |
Score | 2.4237833 |
Snippet | •An experimental Comparative study is proposed.•Upon different media types in Abrasive Flow Machining Process.•The effect of these medias, on SLM Surfaces has... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Abrasive flow machining Areal roughness Residual stress Selective laser melting |
Title | Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM) |
URI | https://dx.doi.org/10.1016/j.precisioneng.2018.03.006 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUqWGBAPEV5VB4Y6BAaJ85rYKiqVuXRLlCpm2U7NmqVplVoxca345sHBImhEmOie6Xo2PI9do7PRehGRbYdx1padhgJi-rAsQSJhRWbWqUMP6KhB5eTR2N_OKGPU2_aQL3qLgzIKsu1v1jT89W6fNMp0eysZrMOyJIMmfDMfsOFv5LgCUppALP87vNH5gEGO4WMkVgQXRmP5hqvVVY1sknfQOYVFoan_t9FqlZ4BofooGSMuFt81BFqqPQY7dd8BE_QvF_z6ce5YyxepliDbQicMOGlxrPi6C_Bhi6rDC9UAoJnfPvyPGrj902muVQYTmUxNxtoELVjnSw_8CJXW-ah3cGofYomg_5rb2iVTRQsabjS2oqcwKeBNjsHQ9y0qT5CcUcrO1ZSeWY4lE0DOxAO2LhLR3DOiS9VRKSkWnpEumdoJzUAnSMsPIcqhxPOfYfyUJsgIhQlUaxI5HHdRFGFGpOlwzg0ukhYJSWbszriDBBntssM4k3kfueuCp-NrbLuq8Fhv2YNMwVhi_yLf-Zfoj14KsR9V2hnnW3UtSEpa9HKZ2EL7XYfnobjL3J56ts |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOVZ8qfXro0A4RcXASMnRAqAjKY2mR2CzbsSsQBERB_fv15YGo1KFS18QnRWfr7rvL5-8AHnTkunFslOM2IukwE3qOpLF0YpurtMVHrOHj5eTBMOiM2OvYH5egVdyFQVplHvuzmJ5G6_xJLfdmbTmZ1JCWZMGEb-uNOv6VZHtQQXUqvwyVZrfXGW4DMmrsZExG6qBBoT2a0ryWq2KWTfKBTK9Gpnka_J6ndnJP-xiOctBImtl3nUBJJ6dwuCMleAbTlx2pfpKKxpJFQgwqh2CTiSwMmWTdvxmxiFmvyFzPkPNMHt_6gyfyuVkZoTTBxiwRtoZGXjsxs8UXmaeEy3Rpsz14OodR--W91XHyOQqOsnBp7UReGLDQ2OLBYjdjE5DUwjPajbXSvt0R7bLQDaWHSu7Kk0IIGigdUaWYUT5V9QsoJ9ZBl0Ck7zHtCSpE4DHRMHYRlZrRKNY08oWpQlR4jatcZBxnXcx4wSab8l2Pc_Q4d-vcerwK9a3tMpPa-JPVc7E5_MfB4TYn_MH-6p_297DfeR_0eb877F3DAb7JuH43UF6vNvrWYpa1vMvP5Dd6f-2M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+on+finishing+of+internal+laser+melting+%28SLM%29+surface+with+abrasive+flow+machining+%28AFM%29&rft.jtitle=Precision+engineering&rft.au=Duval-Chaneac%2C+M.S.&rft.au=Han%2C+S.&rft.au=Claudin%2C+C.&rft.au=Salvatore%2C+F.&rft.date=2018-10-01&rft.issn=0141-6359&rft.volume=54&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1016%2Fj.precisioneng.2018.03.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2018_03_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |