Numerical investigation on cavitation erosion and evolution of choked flow in a tri-eccentric butterfly valve
The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great pressure resistance. When the local static pressure is lower than the saturation vapor pressure, the fluid phase is transformed into vapor, an...
Saved in:
Published in | Flow measurement and instrumentation Vol. 100; p. 102725 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great pressure resistance. When the local static pressure is lower than the saturation vapor pressure, the fluid phase is transformed into vapor, and cavitation occurs. Cavitation intensifies and the bubbles generated by cavitation severely hinder the flow when the inlet pressure remains constant and the outlet pressure further decreases. This phenomenon is known as choked flow. Choked flow is a derivative phenomenon of cavitation, which seriously threatens the lifetime of valves and the safety of the operation system. In this paper, a multiphase flow of the tri-eccentric butterfly valve is modeled to investigate the choked flow characteristics. The numerical results based on the proposed model are in good agreement with the experiments. The effect of the pressure drop on the mass flow rate and flow coefficient is studied and the liquid pressure recovery factor of the tri-eccentric butterfly is determined at the certain valve opening degree based on the Schnerr and Sauer cavitation model. The relationship between the pressure ratio and choked flow is studied by pressure and velocity contours. The susceptible erosion locations and primary causes of erosion for the tri-eccentric butterfly valve at the certain valve opening degree are investigated. By comparison of the distribution of the vapor volume fraction and vortex structures, the spatial correlation between vortex and choked flow is revealed. Meanwhile, the effect of the pressure ratios on the average vapor volume fraction at 70 % and 100 % valve opening degrees is studied. The evolution of choked flow in the tri-eccentric butterfly is revealed and the cause of choking is pointed out.
•A choked flow model of the tri-eccentric butterfly valve is established and verified by the experimental results.•The susceptible erosion locations and primary causes of erosion at the certain opening degree are investigated.•The spatial correlation between vortex and choked flow is revealed in the tri-eccentric butterfly.•The evolution of choked flow in the tri-eccentric butterfly is revealed. |
---|---|
AbstractList | The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great pressure resistance. When the local static pressure is lower than the saturation vapor pressure, the fluid phase is transformed into vapor, and cavitation occurs. Cavitation intensifies and the bubbles generated by cavitation severely hinder the flow when the inlet pressure remains constant and the outlet pressure further decreases. This phenomenon is known as choked flow. Choked flow is a derivative phenomenon of cavitation, which seriously threatens the lifetime of valves and the safety of the operation system. In this paper, a multiphase flow of the tri-eccentric butterfly valve is modeled to investigate the choked flow characteristics. The numerical results based on the proposed model are in good agreement with the experiments. The effect of the pressure drop on the mass flow rate and flow coefficient is studied and the liquid pressure recovery factor of the tri-eccentric butterfly is determined at the certain valve opening degree based on the Schnerr and Sauer cavitation model. The relationship between the pressure ratio and choked flow is studied by pressure and velocity contours. The susceptible erosion locations and primary causes of erosion for the tri-eccentric butterfly valve at the certain valve opening degree are investigated. By comparison of the distribution of the vapor volume fraction and vortex structures, the spatial correlation between vortex and choked flow is revealed. Meanwhile, the effect of the pressure ratios on the average vapor volume fraction at 70 % and 100 % valve opening degrees is studied. The evolution of choked flow in the tri-eccentric butterfly is revealed and the cause of choking is pointed out.
•A choked flow model of the tri-eccentric butterfly valve is established and verified by the experimental results.•The susceptible erosion locations and primary causes of erosion at the certain opening degree are investigated.•The spatial correlation between vortex and choked flow is revealed in the tri-eccentric butterfly.•The evolution of choked flow in the tri-eccentric butterfly is revealed. |
ArticleNumber | 102725 |
Author | Ma, Yushan Chen, Ruibo Yang, Xinliang Zhao, Xiaowei Xu, Le Lü, Yanjun |
Author_xml | – sequence: 1 givenname: Xinliang surname: Yang fullname: Yang, Xinliang organization: School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, PR China – sequence: 2 givenname: Yanjun surname: Lü fullname: Lü, Yanjun email: yanjunlu@xaut.edu.cn organization: School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, PR China – sequence: 3 givenname: Le surname: Xu fullname: Xu, Le organization: School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, PR China – sequence: 4 givenname: Yushan surname: Ma fullname: Ma, Yushan organization: Liupanshan Laboratory, Yinchuan, 750000, PR China – sequence: 5 givenname: Ruibo surname: Chen fullname: Chen, Ruibo organization: School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, PR China – sequence: 6 givenname: Xiaowei surname: Zhao fullname: Zhao, Xiaowei organization: School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, PR China |
BookMark | eNqNkE1PwzAMhnMYEhvwHyLuHWnatCkn0PiUJrjAOUoTBzK6FCVZ0f49qboD4jTJkm3Zfmy_CzRzvQOELnOyzEleXW2Wput_tiCDdSEuKaFlKtCashmak4axjDW8OkWLEDaEEE6Keo62L7steKtkh60bIET7IaPtHU6m5GDjlIHvw-il0xiGvttNPQarz_4LNB43JwCWOHqbgVLgUqBwu4sRvOn2eJDdAOfoxMguwMXBn6H3h_u31VO2fn18Xt2uM1XQMmacM1UVXAPn2hhaN-lWaipjWlbUugVaNq3mTc5IWUDBeEtKneoUgLWsUqY4QzcTV6W7gwcj1OGT6KXtRE7EKJnYiL-SiVEyMUmWENf_EN_ebqXfHzd8Nw1DenKw4EVQFpwCbT2oKHRvj8H8AhbPl2c |
CitedBy_id | crossref_primary_10_1016_j_flowmeasinst_2025_102834 |
Cites_doi | 10.1016/j.flowmeasinst.2023.102486 10.1016/j.expthermflusci.2019.05.003 10.1016/j.flowmeasinst.2022.102259 10.1016/j.ijheatmasstransfer.2018.09.065 10.1016/j.energy.2017.06.170 10.1063/5.0187768 10.1016/j.anucene.2023.109841 10.1016/j.ijmultiphaseflow.2022.104201 10.1016/j.flowmeasinst.2021.102044 10.1016/j.ymssp.2023.111100 10.1016/j.cej.2021.130234 10.1016/j.flowmeasinst.2019.101651 10.1016/j.engfailanal.2017.06.045 10.1016/j.ijheatmasstransfer.2022.122707 10.1007/s42241-018-0112-8 10.1016/j.ijhydene.2018.03.014 10.1016/j.flowmeasinst.2023.102333 10.1016/j.engfailanal.2023.107844 10.1007/s12206-022-0623-7 10.1007/s12206-017-0527-0 10.1016/j.ast.2019.105331 10.1007/s00348-023-03743-3 10.1016/j.applthermaleng.2017.02.087 10.1016/j.ultsonch.2020.105183 10.1016/j.ijheatfluidflow.2023.109168 10.1016/j.ijhydene.2016.02.013 10.1016/j.ijheatmasstransfer.2019.01.008 10.1016/j.ast.2022.107367 10.1016/j.ijheatmasstransfer.2021.121331 10.1063/5.0137019 10.1016/j.flowmeasinst.2024.102553 10.1016/j.ijheatmasstransfer.2017.03.100 10.1016/j.ijrefrig.2020.02.003 10.1063/5.0190279 10.1016/j.engfailanal.2021.106025 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.flowmeasinst.2024.102725 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
ExternalDocumentID | 10_1016_j_flowmeasinst_2024_102725 S095559862400205X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SST SSZ T5K UHS WH7 WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c324t-885c638de88dff2798032f6ffb537dbe249bd8915043e358b04d2f62ee5b56cf3 |
IEDL.DBID | .~1 |
ISSN | 0955-5986 |
IngestDate | Tue Jul 01 00:48:07 EDT 2025 Thu Apr 24 23:05:38 EDT 2025 Sat Dec 14 16:13:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tri-eccentric butterfly valve Choked flow Computational fluid dynamics Cavitation erosion Liquid pressure recovery factor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-885c638de88dff2798032f6ffb537dbe249bd8915043e358b04d2f62ee5b56cf3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_flowmeasinst_2024_102725 crossref_primary_10_1016_j_flowmeasinst_2024_102725 elsevier_sciencedirect_doi_10_1016_j_flowmeasinst_2024_102725 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Flow measurement and instrumentation |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – sequence: 0 name: Elsevier Ltd |
References | Zhang, Wang, Wu, Chen, Kim, Lin (bib13) 2023; 285 Romagnuolo, De Rosa, Frosina, Senatore (bib10) 2024; 209 Hammer, Deng, Austegard, Log, Munkejord (bib30) 2022; 156 Yu, Ma, Liu, Liu (bib1) 2024; 95 Jin, Gao, Chen, Qian (bib5) 2018; 43 Wang, Zhu, Xu, Li (bib20) 2022; 134 Qian, Xu, Fang, Zhao, Wu, Jin (bib21) 2023; 189 Zhang, Wang, Zhang, Kim, Lin (bib11) 2023; 35 Yang, Wang, Lu, Chen (bib19) 2019; 133 Jin, Kuznetsov (bib34) 2024; 1 Nguyen, Jung, Lee, Park, Kim, Suh, Lee (bib17) 2023; 15 Xu, Fang, Li, Wang, Li (bib22) 2021; 174 Lu, Wang, Li, Ryu (bib27) 2022; 189 Liu, Zhao, Qian (bib12) 2017; 80 Kracik, Dvorak (bib7) 2023; 103 Li, Gu, Zhang, Hu, Teng, Wang (bib25) 2021; 32 Su, Li, Zhang (bib14) 2024; 156 Wang, Wang, Xu, Ji, Long (bib28) 2019; 106 An, Ren, Bai, Bao (bib23) 2024; 96 Zhang, Wu, Wu, Ou, Kim, Lin (bib36) 2022; 36 Zhang, Qiu, Chen, Liu, Zhang, Dong, Liu (bib39) 2018; 30 Mu, Liu, Ma (bib6) 2019; 70 Qian, Wei, Zhang, Chen, Chen, Jiang, Jin (bib3) 2017; 135 Jin, Chen, Qian, Zhang, Chen, Wang, Fei (bib4) 2016; 41 Zhao, Wu, Jin, Qian (bib24) 2022; 88 Sun, Kim, Yang, Kim, Yoon (bib37) 2017; 31 Han, Liu, Wu, Zhao, Tan (bib18) 2017; 111 Wang, Liu (bib33) 2017; 117 Xu, Wang, Cheng, Ji, Long (bib29) 2020; 67 Zhang, Wu, Suryan, Lin, Zhang (bib16) 2024; 36 Yu, Yang, Niu, Sui, Du, Yuan (bib9) 2022; 121 Pinho, Peveroni, Vetrano, Buchlin, Steelant, Strengnart (bib38) 2019; 93 Yuan, Song, Liu (bib31) 2019; 129 Ren, Su, Ma, Zhao, Xu, Wu (bib35) 2023; 90 Jiang, Jia, Li, Kou, Sun (bib8) 2021; 81 Wang, Deng, Kou, Wang, Gao, Zhou (bib2) 2022; 87 Han, Wang, Yuen, Li, Guo, Yeoh (bib26) 2020; 113 Fang, Xu, Li, Wang, Li (bib32) 2021; 423 Zhang, Zhang, Wu, Wu, Kim, Lin (bib15) 2024; 65 Qian (10.1016/j.flowmeasinst.2024.102725_bib21) 2023; 189 Wang (10.1016/j.flowmeasinst.2024.102725_bib33) 2017; 117 Wang (10.1016/j.flowmeasinst.2024.102725_bib2) 2022; 87 Kracik (10.1016/j.flowmeasinst.2024.102725_bib7) 2023; 103 Zhang (10.1016/j.flowmeasinst.2024.102725_bib11) 2023; 35 Zhang (10.1016/j.flowmeasinst.2024.102725_bib15) 2024; 65 Zhang (10.1016/j.flowmeasinst.2024.102725_bib36) 2022; 36 Qian (10.1016/j.flowmeasinst.2024.102725_bib3) 2017; 135 Yu (10.1016/j.flowmeasinst.2024.102725_bib1) 2024; 95 Zhang (10.1016/j.flowmeasinst.2024.102725_bib16) 2024; 36 Nguyen (10.1016/j.flowmeasinst.2024.102725_bib17) 2023; 15 Zhang (10.1016/j.flowmeasinst.2024.102725_bib39) 2018; 30 Han (10.1016/j.flowmeasinst.2024.102725_bib18) 2017; 111 Lu (10.1016/j.flowmeasinst.2024.102725_bib27) 2022; 189 Han (10.1016/j.flowmeasinst.2024.102725_bib26) 2020; 113 Yuan (10.1016/j.flowmeasinst.2024.102725_bib31) 2019; 129 Zhang (10.1016/j.flowmeasinst.2024.102725_bib13) 2023; 285 Zhao (10.1016/j.flowmeasinst.2024.102725_bib24) 2022; 88 Pinho (10.1016/j.flowmeasinst.2024.102725_bib38) 2019; 93 Wang (10.1016/j.flowmeasinst.2024.102725_bib20) 2022; 134 Jin (10.1016/j.flowmeasinst.2024.102725_bib34) 2024; 1 Sun (10.1016/j.flowmeasinst.2024.102725_bib37) 2017; 31 Xu (10.1016/j.flowmeasinst.2024.102725_bib29) 2020; 67 Ren (10.1016/j.flowmeasinst.2024.102725_bib35) 2023; 90 Yu (10.1016/j.flowmeasinst.2024.102725_bib9) 2022; 121 Liu (10.1016/j.flowmeasinst.2024.102725_bib12) 2017; 80 Jin (10.1016/j.flowmeasinst.2024.102725_bib4) 2016; 41 Jiang (10.1016/j.flowmeasinst.2024.102725_bib8) 2021; 81 Wang (10.1016/j.flowmeasinst.2024.102725_bib28) 2019; 106 Hammer (10.1016/j.flowmeasinst.2024.102725_bib30) 2022; 156 Fang (10.1016/j.flowmeasinst.2024.102725_bib32) 2021; 423 Jin (10.1016/j.flowmeasinst.2024.102725_bib5) 2018; 43 Romagnuolo (10.1016/j.flowmeasinst.2024.102725_bib10) 2024; 209 Mu (10.1016/j.flowmeasinst.2024.102725_bib6) 2019; 70 Xu (10.1016/j.flowmeasinst.2024.102725_bib22) 2021; 174 Li (10.1016/j.flowmeasinst.2024.102725_bib25) 2021; 32 Su (10.1016/j.flowmeasinst.2024.102725_bib14) 2024; 156 Yang (10.1016/j.flowmeasinst.2024.102725_bib19) 2019; 133 An (10.1016/j.flowmeasinst.2024.102725_bib23) 2024; 96 |
References_xml | – volume: 121 year: 2022 ident: bib9 article-title: Theoretical and numerical study of choking mechanism of fluid flow in hyperloop system publication-title: Aerosp. Sci. Technol. – volume: 189 year: 2022 ident: bib27 article-title: Experimental and numerical analysis on vortex cavitation morphological characteristics in u-shape notch spool valve and the vortex cavitation coupled choked flow conditions publication-title: Int. J. Heat Mass Tran. – volume: 87 year: 2022 ident: bib2 article-title: Study on the influence of structural parameters on the flow and cavitation characteristics of tandem multi-stage pressure-reducing valves publication-title: Flow Meas. Instrum. – volume: 30 start-page: 767 year: 2018 end-page: 779 ident: bib39 article-title: A selected review of vortex identification methods with applications publication-title: J. Hydrodyn. – volume: 80 start-page: 312 year: 2017 end-page: 324 ident: bib12 article-title: Numerical analysis of cavitation erosion and particle erosion in butterfly valve publication-title: Eng. Fail. Anal. – volume: 134 year: 2022 ident: bib20 article-title: Effects of throttling structures on cavitation flow and circumferential uniformity in a control valve publication-title: Eng. Fail. Anal. – volume: 31 start-page: 2839 year: 2017 end-page: 2848 ident: bib37 article-title: Numerical investigation of the effect of surface roughness on the flow coefficient of an eccentric butterfly valve publication-title: J. Mech. Sci. Technol. – volume: 88 year: 2022 ident: bib24 article-title: Cavitation effect on flow resistance of sleeve regulating valve publication-title: Flow Meas. Instrum. – volume: 67 year: 2020 ident: bib29 article-title: Experimental study of the cavitation noise and vibration induced by the choked flow in a venturi reactor publication-title: Ultrason. Sonochem. – volume: 1 year: 2024 ident: bib34 article-title: Multiscale modeling and simulation of turbulent flows in porous media publication-title: Int. J. Fluid Eng. – volume: 174 year: 2021 ident: bib22 article-title: Numerical analysis of the energy loss mechanism in cavitation flow of a control valve publication-title: Int. J. Heat Mass Tran. – volume: 135 start-page: 650 year: 2017 end-page: 658 ident: bib3 article-title: Flow rate analysis of compressible superheated steam through pressure-reducing valves publication-title: Energy – volume: 96 year: 2024 ident: bib23 article-title: Numerical simulation of the temperature rise and cavitation flow in a hydraulic slide valve publication-title: Flow Meas. Instrum. – volume: 70 year: 2019 ident: bib6 article-title: Research on the measuring characteristics of a new design butterfly valve flowmeter publication-title: Flow Meas. Instrum. – volume: 189 year: 2023 ident: bib21 article-title: Effects of throttling windows on cavitation flow of sleeve control valve publication-title: Ann. Nucl. Energy – volume: 41 start-page: 5559 year: 2016 end-page: 5570 ident: bib4 article-title: Numerical analysis of flow and temperature characteristics in a high multi-stage pressure reducing valve for hydrogen refueling station publication-title: Int. J. Hydrogen. Energ. – volume: 111 start-page: 1 year: 2017 end-page: 16 ident: bib18 article-title: A numerical investigation in characteristics of flow force under cavitation state inside the water hydraulic poppet valves publication-title: Int. J. Heat Mass Tran. – volume: 117 start-page: 725 year: 2017 end-page: 739 ident: bib33 article-title: Unsteady flow behavior of a steam turbine control valve in the choked condition: field measurement, detached eddy simulation and acoustic modal analysis publication-title: Appl. Therm. Eng. – volume: 43 start-page: 8888 year: 2018 end-page: 8896 ident: bib5 article-title: Parametric study on Tesla valve with reverse flow for hydrogen decompression publication-title: Int. J. Hydrogen. Energ. – volume: 95 year: 2024 ident: bib1 article-title: Study on the design of single-seat control with stable flow regulation and its fluid flow characteristics and thermal stress publication-title: Flow Meas. Instrum. – volume: 133 start-page: 1099 year: 2019 end-page: 1109 ident: bib19 article-title: Cavitation reduction of a flapper-nozzle pilot valve using continuous microjets publication-title: Int. J. Heat Mass Tran. – volume: 15 year: 2023 ident: bib17 article-title: Experimental study on pressure characteristics and flow coefficient of butterfly valve publication-title: Int. J. Nav. Arch. Ocean. – volume: 113 start-page: 296 year: 2020 end-page: 307 ident: bib26 article-title: Characterization of choking flow behaviors inside steam ejectors based on the ejector refrigeration system publication-title: Int. J. Refrig. – volume: 90 year: 2023 ident: bib35 article-title: Influence of the flow area around the ball valve on the flow characteristics of the injector control valve publication-title: Flow Meas. Instrum. – volume: 32 start-page: 17 year: 2021 end-page: 26 ident: bib25 article-title: An experimental study on the choked flow characteristics of CO publication-title: J. Chem. Eng. – volume: 209 year: 2024 ident: bib10 article-title: Study of a proportional spool valve noise by means of functional data analysis: cavitation and intensity detection publication-title: Mech. Syst. Signal. Pr. – volume: 156 year: 2022 ident: bib30 article-title: Experiments and modelling of choked flow of CO publication-title: Int. J. Multiphas. Flow – volume: 93 year: 2019 ident: bib38 article-title: Experimental and numerical study of a cryogenic valve using liquid nitrogen and water publication-title: Aerosp. Sci. Technol. – volume: 81 year: 2021 ident: bib8 article-title: Prediction of gas-liquid two-phase choke flow using Gaussian process regression publication-title: Flow Meas. Instrum. – volume: 36 year: 2024 ident: bib16 article-title: Experimental study on cavitation inhibition in a butterfly valve with different plate shapes publication-title: Phys. Fluids – volume: 35 year: 2023 ident: bib11 article-title: Characteristics of cavitation evolution through a butterfly valve under transient regulation publication-title: Phys. Fluids – volume: 65 start-page: 4 year: 2024 ident: bib15 article-title: Experimental studies of cavitation evolution through a butterfly valve at different regulation conditions publication-title: Exp. Fluids. – volume: 103 year: 2023 ident: bib7 article-title: Effect of wall roughness on secondary flow choking in supersonic air ejector with adjustable motive nozzle publication-title: Int. J. Heat. Fluid. Fl. – volume: 129 start-page: 113 year: 2019 end-page: 131 ident: bib31 article-title: Investigation of flow dynamics and governing mechanism of choked flow for cavitating jet in a poppet valve publication-title: Int. J. Heat Mass Tran. – volume: 423 year: 2021 ident: bib32 article-title: Numerical investigation on the flow characteristics and choking mechanism of cavitation-induced choked flow in a venturi reactor publication-title: Chem. Eng. J. – volume: 106 start-page: 215 year: 2019 end-page: 225 ident: bib28 article-title: Experimental investigation on the cavitation performance in a venturi reactor with special emphasis on the choking flow publication-title: Exp. Therm. Fluid Sci. – volume: 36 start-page: 3457 year: 2022 end-page: 3467 ident: bib36 article-title: Effect of the opening of a butterfly valve on the dynamic evolution of cavitation publication-title: J. Mech. Sci. Technol. – volume: 285 year: 2023 ident: bib13 article-title: Effect of the opening degree on evolution of cryogenic cavitation through a butterfly valve publication-title: Energy – volume: 156 year: 2024 ident: bib14 article-title: Flow accelerated corrosion and thinning mechanism of the pipeline after the butterfly valve based on CFD publication-title: Eng. Fail. Anal. – volume: 95 year: 2024 ident: 10.1016/j.flowmeasinst.2024.102725_bib1 article-title: Study on the design of single-seat control with stable flow regulation and its fluid flow characteristics and thermal stress publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2023.102486 – volume: 106 start-page: 215 year: 2019 ident: 10.1016/j.flowmeasinst.2024.102725_bib28 article-title: Experimental investigation on the cavitation performance in a venturi reactor with special emphasis on the choking flow publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2019.05.003 – volume: 88 year: 2022 ident: 10.1016/j.flowmeasinst.2024.102725_bib24 article-title: Cavitation effect on flow resistance of sleeve regulating valve publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2022.102259 – volume: 129 start-page: 113 year: 2019 ident: 10.1016/j.flowmeasinst.2024.102725_bib31 article-title: Investigation of flow dynamics and governing mechanism of choked flow for cavitating jet in a poppet valve publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.09.065 – volume: 135 start-page: 650 year: 2017 ident: 10.1016/j.flowmeasinst.2024.102725_bib3 article-title: Flow rate analysis of compressible superheated steam through pressure-reducing valves publication-title: Energy doi: 10.1016/j.energy.2017.06.170 – volume: 36 issue: 2 year: 2024 ident: 10.1016/j.flowmeasinst.2024.102725_bib16 article-title: Experimental study on cavitation inhibition in a butterfly valve with different plate shapes publication-title: Phys. Fluids doi: 10.1063/5.0187768 – volume: 189 year: 2023 ident: 10.1016/j.flowmeasinst.2024.102725_bib21 article-title: Effects of throttling windows on cavitation flow of sleeve control valve publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2023.109841 – volume: 156 year: 2022 ident: 10.1016/j.flowmeasinst.2024.102725_bib30 article-title: Experiments and modelling of choked flow of CO2 in orifices and nozzles publication-title: Int. J. Multiphas. Flow doi: 10.1016/j.ijmultiphaseflow.2022.104201 – volume: 81 year: 2021 ident: 10.1016/j.flowmeasinst.2024.102725_bib8 article-title: Prediction of gas-liquid two-phase choke flow using Gaussian process regression publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2021.102044 – volume: 15 year: 2023 ident: 10.1016/j.flowmeasinst.2024.102725_bib17 article-title: Experimental study on pressure characteristics and flow coefficient of butterfly valve publication-title: Int. J. Nav. Arch. Ocean. – volume: 209 year: 2024 ident: 10.1016/j.flowmeasinst.2024.102725_bib10 article-title: Study of a proportional spool valve noise by means of functional data analysis: cavitation and intensity detection publication-title: Mech. Syst. Signal. Pr. doi: 10.1016/j.ymssp.2023.111100 – volume: 423 year: 2021 ident: 10.1016/j.flowmeasinst.2024.102725_bib32 article-title: Numerical investigation on the flow characteristics and choking mechanism of cavitation-induced choked flow in a venturi reactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130234 – volume: 70 year: 2019 ident: 10.1016/j.flowmeasinst.2024.102725_bib6 article-title: Research on the measuring characteristics of a new design butterfly valve flowmeter publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2019.101651 – volume: 32 start-page: 17 year: 2021 ident: 10.1016/j.flowmeasinst.2024.102725_bib25 article-title: An experimental study on the choked flow characteristics of CO2 pipelines in various phases, Chinese publication-title: J. Chem. Eng. – volume: 80 start-page: 312 year: 2017 ident: 10.1016/j.flowmeasinst.2024.102725_bib12 article-title: Numerical analysis of cavitation erosion and particle erosion in butterfly valve publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2017.06.045 – volume: 189 year: 2022 ident: 10.1016/j.flowmeasinst.2024.102725_bib27 article-title: Experimental and numerical analysis on vortex cavitation morphological characteristics in u-shape notch spool valve and the vortex cavitation coupled choked flow conditions publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2022.122707 – volume: 285 year: 2023 ident: 10.1016/j.flowmeasinst.2024.102725_bib13 article-title: Effect of the opening degree on evolution of cryogenic cavitation through a butterfly valve publication-title: Energy – volume: 30 start-page: 767 issue: 5 year: 2018 ident: 10.1016/j.flowmeasinst.2024.102725_bib39 article-title: A selected review of vortex identification methods with applications publication-title: J. Hydrodyn. doi: 10.1007/s42241-018-0112-8 – volume: 43 start-page: 8888 issue: 18 year: 2018 ident: 10.1016/j.flowmeasinst.2024.102725_bib5 article-title: Parametric study on Tesla valve with reverse flow for hydrogen decompression publication-title: Int. J. Hydrogen. Energ. doi: 10.1016/j.ijhydene.2018.03.014 – volume: 90 year: 2023 ident: 10.1016/j.flowmeasinst.2024.102725_bib35 article-title: Influence of the flow area around the ball valve on the flow characteristics of the injector control valve publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2023.102333 – volume: 156 year: 2024 ident: 10.1016/j.flowmeasinst.2024.102725_bib14 article-title: Flow accelerated corrosion and thinning mechanism of the pipeline after the butterfly valve based on CFD publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2023.107844 – volume: 36 start-page: 3457 issue: 7 year: 2022 ident: 10.1016/j.flowmeasinst.2024.102725_bib36 article-title: Effect of the opening of a butterfly valve on the dynamic evolution of cavitation publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-022-0623-7 – volume: 31 start-page: 2839 issue: 6 year: 2017 ident: 10.1016/j.flowmeasinst.2024.102725_bib37 article-title: Numerical investigation of the effect of surface roughness on the flow coefficient of an eccentric butterfly valve publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-017-0527-0 – volume: 93 year: 2019 ident: 10.1016/j.flowmeasinst.2024.102725_bib38 article-title: Experimental and numerical study of a cryogenic valve using liquid nitrogen and water publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.105331 – volume: 65 start-page: 4 issue: 1 year: 2024 ident: 10.1016/j.flowmeasinst.2024.102725_bib15 article-title: Experimental studies of cavitation evolution through a butterfly valve at different regulation conditions publication-title: Exp. Fluids. doi: 10.1007/s00348-023-03743-3 – volume: 117 start-page: 725 year: 2017 ident: 10.1016/j.flowmeasinst.2024.102725_bib33 article-title: Unsteady flow behavior of a steam turbine control valve in the choked condition: field measurement, detached eddy simulation and acoustic modal analysis publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.02.087 – volume: 67 year: 2020 ident: 10.1016/j.flowmeasinst.2024.102725_bib29 article-title: Experimental study of the cavitation noise and vibration induced by the choked flow in a venturi reactor publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2020.105183 – volume: 103 year: 2023 ident: 10.1016/j.flowmeasinst.2024.102725_bib7 article-title: Effect of wall roughness on secondary flow choking in supersonic air ejector with adjustable motive nozzle publication-title: Int. J. Heat. Fluid. Fl. doi: 10.1016/j.ijheatfluidflow.2023.109168 – volume: 41 start-page: 5559 issue: 12 year: 2016 ident: 10.1016/j.flowmeasinst.2024.102725_bib4 article-title: Numerical analysis of flow and temperature characteristics in a high multi-stage pressure reducing valve for hydrogen refueling station publication-title: Int. J. Hydrogen. Energ. doi: 10.1016/j.ijhydene.2016.02.013 – volume: 87 year: 2022 ident: 10.1016/j.flowmeasinst.2024.102725_bib2 article-title: Study on the influence of structural parameters on the flow and cavitation characteristics of tandem multi-stage pressure-reducing valves publication-title: Flow Meas. Instrum. – volume: 133 start-page: 1099 year: 2019 ident: 10.1016/j.flowmeasinst.2024.102725_bib19 article-title: Cavitation reduction of a flapper-nozzle pilot valve using continuous microjets publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.01.008 – volume: 121 year: 2022 ident: 10.1016/j.flowmeasinst.2024.102725_bib9 article-title: Theoretical and numerical study of choking mechanism of fluid flow in hyperloop system publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107367 – volume: 174 year: 2021 ident: 10.1016/j.flowmeasinst.2024.102725_bib22 article-title: Numerical analysis of the energy loss mechanism in cavitation flow of a control valve publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2021.121331 – volume: 35 issue: 2 year: 2023 ident: 10.1016/j.flowmeasinst.2024.102725_bib11 article-title: Characteristics of cavitation evolution through a butterfly valve under transient regulation publication-title: Phys. Fluids doi: 10.1063/5.0137019 – volume: 96 year: 2024 ident: 10.1016/j.flowmeasinst.2024.102725_bib23 article-title: Numerical simulation of the temperature rise and cavitation flow in a hydraulic slide valve publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2024.102553 – volume: 111 start-page: 1 year: 2017 ident: 10.1016/j.flowmeasinst.2024.102725_bib18 article-title: A numerical investigation in characteristics of flow force under cavitation state inside the water hydraulic poppet valves publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.03.100 – volume: 113 start-page: 296 year: 2020 ident: 10.1016/j.flowmeasinst.2024.102725_bib26 article-title: Characterization of choking flow behaviors inside steam ejectors based on the ejector refrigeration system publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2020.02.003 – volume: 1 year: 2024 ident: 10.1016/j.flowmeasinst.2024.102725_bib34 article-title: Multiscale modeling and simulation of turbulent flows in porous media publication-title: Int. J. Fluid Eng. doi: 10.1063/5.0190279 – volume: 134 year: 2022 ident: 10.1016/j.flowmeasinst.2024.102725_bib20 article-title: Effects of throttling structures on cavitation flow and circumferential uniformity in a control valve publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.106025 |
SSID | ssj0008037 |
Score | 2.3895047 |
Snippet | The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102725 |
SubjectTerms | Cavitation erosion Choked flow Computational fluid dynamics Liquid pressure recovery factor Tri-eccentric butterfly valve |
Title | Numerical investigation on cavitation erosion and evolution of choked flow in a tri-eccentric butterfly valve |
URI | https://dx.doi.org/10.1016/j.flowmeasinst.2024.102725 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kIuhBfOKbPXhdW5PdPA4eRJSq2IsWegv7mIVoTUVrxYu_3Zk8bAUPBSEQkuwkm8lkZjf55hvGjjsao6YOnPBeJ0KGEoTWkIpIpwbtI5JKU77zXS_q9uXNQA0W2EWTC0Owytr3Vz699Nb1nnatzfZLnrfviTyN2MUJBRl01IAy2GVMVn7yNYV5JJ2KNxMbC2rdEI-WGC8_HH08g8ZZ-RvhKgNJTAYxlc3-K0jNBJ6rNbZajxj5edWpdbYAxQZbmeER3GBLJY7Tvm2y59579QtmyPMpg8ao4LhYPakJuTngZWmtC8dhUlsfH3mOzvAJHKce4wm45uPXXKD-6RtwbrmpyloPPzka6AS2WP_q8uGiK-qKCsLiwGkskkRZfOEcJInzPohT1E7gI--NCmNnAOdixiXpKdGaQagS05EOjwcAyqjI-nCbtYpRATuMW6KOt1FsPZiSJU3G1sjAGKVjJcHtsrRRYWbru6OqF8OswZU9ZrPqz0j9WaX-XRb-yL5UpBtzSZ01Tyr7ZUIZRoc55Pf-Kb_PlmmrwrocsNb49R0OccQyNkelSR6xxfPr227vG-9G8Ho |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BFaIcqvKoCrTFB65ml8TO49BDhUDbFvYCSHuL_BhLoUsWwbKIC7-dmTzKInFAQooUKfYkzng8YyefvwHY6xuKmibyMgSTSRUrlMZgLhOTW7KPRGnD-51Ph8ngQv0Z6dECHHZ7YRhW2fr-xqfX3rq90mu12bsuy94Zk6cxuzijIKO-Hi3CB0XDl9MY7D8-4zyyfkOcSbUlV--YR2uQVxhP7q_Q0LL8loGVkWIqg5TzZr8WpeYiz_Fn-NROGcWvplVrsIDVOqzOEQmuw3IN5HS3G3A1vGv-wYxF-UyhMakEHc7MWkZugfRYPpvKC5y15icmQZA3_IdecIvpBsKI6U0pqQP4I3DphG3yWo8fBFnoDDfh4vjo_HAg25QK0tHMaSqzTDsacR6zzIcQpTlpJwpJCFbHqbdIizHrs_yAec0w1pntK0_lEaK2OnEh_gJL1aTCryAcc8e7JHUBbU2TplJnVWStNqlW6Lcg71RYuPbtOO3FuOiAZZfFvPoLVn_RqH8L4v-y1w3rxpukfnY9VbywoYLCwxvkt98pvwsrg_PTk-Lk9_DvDnzkkgb48g2Wpjd3-J2mL1P7ozbPJ2_58gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+on+cavitation+erosion+and+evolution+of+choked+flow+in+a+tri-eccentric+butterfly+valve&rft.jtitle=Flow+measurement+and+instrumentation&rft.au=Yang%2C+Xinliang&rft.au=L%C3%BC%2C+Yanjun&rft.au=Xu%2C+Le&rft.au=Ma%2C+Yushan&rft.date=2024-12-01&rft.issn=0955-5986&rft.volume=100&rft.spage=102725&rft_id=info:doi/10.1016%2Fj.flowmeasinst.2024.102725&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_flowmeasinst_2024_102725 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-5986&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-5986&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-5986&client=summon |