Numerical investigation on cavitation erosion and evolution of choked flow in a tri-eccentric butterfly valve

The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great pressure resistance. When the local static pressure is lower than the saturation vapor pressure, the fluid phase is transformed into vapor, an...

Full description

Saved in:
Bibliographic Details
Published inFlow measurement and instrumentation Vol. 100; p. 102725
Main Authors Yang, Xinliang, Lü, Yanjun, Xu, Le, Ma, Yushan, Chen, Ruibo, Zhao, Xiaowei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great pressure resistance. When the local static pressure is lower than the saturation vapor pressure, the fluid phase is transformed into vapor, and cavitation occurs. Cavitation intensifies and the bubbles generated by cavitation severely hinder the flow when the inlet pressure remains constant and the outlet pressure further decreases. This phenomenon is known as choked flow. Choked flow is a derivative phenomenon of cavitation, which seriously threatens the lifetime of valves and the safety of the operation system. In this paper, a multiphase flow of the tri-eccentric butterfly valve is modeled to investigate the choked flow characteristics. The numerical results based on the proposed model are in good agreement with the experiments. The effect of the pressure drop on the mass flow rate and flow coefficient is studied and the liquid pressure recovery factor of the tri-eccentric butterfly is determined at the certain valve opening degree based on the Schnerr and Sauer cavitation model. The relationship between the pressure ratio and choked flow is studied by pressure and velocity contours. The susceptible erosion locations and primary causes of erosion for the tri-eccentric butterfly valve at the certain valve opening degree are investigated. By comparison of the distribution of the vapor volume fraction and vortex structures, the spatial correlation between vortex and choked flow is revealed. Meanwhile, the effect of the pressure ratios on the average vapor volume fraction at 70 % and 100 % valve opening degrees is studied. The evolution of choked flow in the tri-eccentric butterfly is revealed and the cause of choking is pointed out. •A choked flow model of the tri-eccentric butterfly valve is established and verified by the experimental results.•The susceptible erosion locations and primary causes of erosion at the certain opening degree are investigated.•The spatial correlation between vortex and choked flow is revealed in the tri-eccentric butterfly.•The evolution of choked flow in the tri-eccentric butterfly is revealed.
AbstractList The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great pressure resistance. When the local static pressure is lower than the saturation vapor pressure, the fluid phase is transformed into vapor, and cavitation occurs. Cavitation intensifies and the bubbles generated by cavitation severely hinder the flow when the inlet pressure remains constant and the outlet pressure further decreases. This phenomenon is known as choked flow. Choked flow is a derivative phenomenon of cavitation, which seriously threatens the lifetime of valves and the safety of the operation system. In this paper, a multiphase flow of the tri-eccentric butterfly valve is modeled to investigate the choked flow characteristics. The numerical results based on the proposed model are in good agreement with the experiments. The effect of the pressure drop on the mass flow rate and flow coefficient is studied and the liquid pressure recovery factor of the tri-eccentric butterfly is determined at the certain valve opening degree based on the Schnerr and Sauer cavitation model. The relationship between the pressure ratio and choked flow is studied by pressure and velocity contours. The susceptible erosion locations and primary causes of erosion for the tri-eccentric butterfly valve at the certain valve opening degree are investigated. By comparison of the distribution of the vapor volume fraction and vortex structures, the spatial correlation between vortex and choked flow is revealed. Meanwhile, the effect of the pressure ratios on the average vapor volume fraction at 70 % and 100 % valve opening degrees is studied. The evolution of choked flow in the tri-eccentric butterfly is revealed and the cause of choking is pointed out. •A choked flow model of the tri-eccentric butterfly valve is established and verified by the experimental results.•The susceptible erosion locations and primary causes of erosion at the certain opening degree are investigated.•The spatial correlation between vortex and choked flow is revealed in the tri-eccentric butterfly.•The evolution of choked flow in the tri-eccentric butterfly is revealed.
ArticleNumber 102725
Author Ma, Yushan
Chen, Ruibo
Yang, Xinliang
Zhao, Xiaowei
Xu, Le
Lü, Yanjun
Author_xml – sequence: 1
  givenname: Xinliang
  surname: Yang
  fullname: Yang, Xinliang
  organization: School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, PR China
– sequence: 2
  givenname: Yanjun
  surname:
  fullname: Lü, Yanjun
  email: yanjunlu@xaut.edu.cn
  organization: School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, PR China
– sequence: 3
  givenname: Le
  surname: Xu
  fullname: Xu, Le
  organization: School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, PR China
– sequence: 4
  givenname: Yushan
  surname: Ma
  fullname: Ma, Yushan
  organization: Liupanshan Laboratory, Yinchuan, 750000, PR China
– sequence: 5
  givenname: Ruibo
  surname: Chen
  fullname: Chen, Ruibo
  organization: School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, PR China
– sequence: 6
  givenname: Xiaowei
  surname: Zhao
  fullname: Zhao, Xiaowei
  organization: School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, PR China
BookMark eNqNkE1PwzAMhnMYEhvwHyLuHWnatCkn0PiUJrjAOUoTBzK6FCVZ0f49qboD4jTJkm3Zfmy_CzRzvQOELnOyzEleXW2Wput_tiCDdSEuKaFlKtCashmak4axjDW8OkWLEDaEEE6Keo62L7steKtkh60bIET7IaPtHU6m5GDjlIHvw-il0xiGvttNPQarz_4LNB43JwCWOHqbgVLgUqBwu4sRvOn2eJDdAOfoxMguwMXBn6H3h_u31VO2fn18Xt2uM1XQMmacM1UVXAPn2hhaN-lWaipjWlbUugVaNq3mTc5IWUDBeEtKneoUgLWsUqY4QzcTV6W7gwcj1OGT6KXtRE7EKJnYiL-SiVEyMUmWENf_EN_ebqXfHzd8Nw1DenKw4EVQFpwCbT2oKHRvj8H8AhbPl2c
CitedBy_id crossref_primary_10_1016_j_flowmeasinst_2025_102834
Cites_doi 10.1016/j.flowmeasinst.2023.102486
10.1016/j.expthermflusci.2019.05.003
10.1016/j.flowmeasinst.2022.102259
10.1016/j.ijheatmasstransfer.2018.09.065
10.1016/j.energy.2017.06.170
10.1063/5.0187768
10.1016/j.anucene.2023.109841
10.1016/j.ijmultiphaseflow.2022.104201
10.1016/j.flowmeasinst.2021.102044
10.1016/j.ymssp.2023.111100
10.1016/j.cej.2021.130234
10.1016/j.flowmeasinst.2019.101651
10.1016/j.engfailanal.2017.06.045
10.1016/j.ijheatmasstransfer.2022.122707
10.1007/s42241-018-0112-8
10.1016/j.ijhydene.2018.03.014
10.1016/j.flowmeasinst.2023.102333
10.1016/j.engfailanal.2023.107844
10.1007/s12206-022-0623-7
10.1007/s12206-017-0527-0
10.1016/j.ast.2019.105331
10.1007/s00348-023-03743-3
10.1016/j.applthermaleng.2017.02.087
10.1016/j.ultsonch.2020.105183
10.1016/j.ijheatfluidflow.2023.109168
10.1016/j.ijhydene.2016.02.013
10.1016/j.ijheatmasstransfer.2019.01.008
10.1016/j.ast.2022.107367
10.1016/j.ijheatmasstransfer.2021.121331
10.1063/5.0137019
10.1016/j.flowmeasinst.2024.102553
10.1016/j.ijheatmasstransfer.2017.03.100
10.1016/j.ijrefrig.2020.02.003
10.1063/5.0190279
10.1016/j.engfailanal.2021.106025
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.flowmeasinst.2024.102725
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_flowmeasinst_2024_102725
S095559862400205X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c324t-885c638de88dff2798032f6ffb537dbe249bd8915043e358b04d2f62ee5b56cf3
IEDL.DBID .~1
ISSN 0955-5986
IngestDate Tue Jul 01 00:48:07 EDT 2025
Thu Apr 24 23:05:38 EDT 2025
Sat Dec 14 16:13:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tri-eccentric butterfly valve
Choked flow
Computational fluid dynamics
Cavitation erosion
Liquid pressure recovery factor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-885c638de88dff2798032f6ffb537dbe249bd8915043e358b04d2f62ee5b56cf3
ParticipantIDs crossref_citationtrail_10_1016_j_flowmeasinst_2024_102725
crossref_primary_10_1016_j_flowmeasinst_2024_102725
elsevier_sciencedirect_doi_10_1016_j_flowmeasinst_2024_102725
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Flow measurement and instrumentation
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Zhang, Wang, Wu, Chen, Kim, Lin (bib13) 2023; 285
Romagnuolo, De Rosa, Frosina, Senatore (bib10) 2024; 209
Hammer, Deng, Austegard, Log, Munkejord (bib30) 2022; 156
Yu, Ma, Liu, Liu (bib1) 2024; 95
Jin, Gao, Chen, Qian (bib5) 2018; 43
Wang, Zhu, Xu, Li (bib20) 2022; 134
Qian, Xu, Fang, Zhao, Wu, Jin (bib21) 2023; 189
Zhang, Wang, Zhang, Kim, Lin (bib11) 2023; 35
Yang, Wang, Lu, Chen (bib19) 2019; 133
Jin, Kuznetsov (bib34) 2024; 1
Nguyen, Jung, Lee, Park, Kim, Suh, Lee (bib17) 2023; 15
Xu, Fang, Li, Wang, Li (bib22) 2021; 174
Lu, Wang, Li, Ryu (bib27) 2022; 189
Liu, Zhao, Qian (bib12) 2017; 80
Kracik, Dvorak (bib7) 2023; 103
Li, Gu, Zhang, Hu, Teng, Wang (bib25) 2021; 32
Su, Li, Zhang (bib14) 2024; 156
Wang, Wang, Xu, Ji, Long (bib28) 2019; 106
An, Ren, Bai, Bao (bib23) 2024; 96
Zhang, Wu, Wu, Ou, Kim, Lin (bib36) 2022; 36
Zhang, Qiu, Chen, Liu, Zhang, Dong, Liu (bib39) 2018; 30
Mu, Liu, Ma (bib6) 2019; 70
Qian, Wei, Zhang, Chen, Chen, Jiang, Jin (bib3) 2017; 135
Jin, Chen, Qian, Zhang, Chen, Wang, Fei (bib4) 2016; 41
Zhao, Wu, Jin, Qian (bib24) 2022; 88
Sun, Kim, Yang, Kim, Yoon (bib37) 2017; 31
Han, Liu, Wu, Zhao, Tan (bib18) 2017; 111
Wang, Liu (bib33) 2017; 117
Xu, Wang, Cheng, Ji, Long (bib29) 2020; 67
Zhang, Wu, Suryan, Lin, Zhang (bib16) 2024; 36
Yu, Yang, Niu, Sui, Du, Yuan (bib9) 2022; 121
Pinho, Peveroni, Vetrano, Buchlin, Steelant, Strengnart (bib38) 2019; 93
Yuan, Song, Liu (bib31) 2019; 129
Ren, Su, Ma, Zhao, Xu, Wu (bib35) 2023; 90
Jiang, Jia, Li, Kou, Sun (bib8) 2021; 81
Wang, Deng, Kou, Wang, Gao, Zhou (bib2) 2022; 87
Han, Wang, Yuen, Li, Guo, Yeoh (bib26) 2020; 113
Fang, Xu, Li, Wang, Li (bib32) 2021; 423
Zhang, Zhang, Wu, Wu, Kim, Lin (bib15) 2024; 65
Qian (10.1016/j.flowmeasinst.2024.102725_bib21) 2023; 189
Wang (10.1016/j.flowmeasinst.2024.102725_bib33) 2017; 117
Wang (10.1016/j.flowmeasinst.2024.102725_bib2) 2022; 87
Kracik (10.1016/j.flowmeasinst.2024.102725_bib7) 2023; 103
Zhang (10.1016/j.flowmeasinst.2024.102725_bib11) 2023; 35
Zhang (10.1016/j.flowmeasinst.2024.102725_bib15) 2024; 65
Zhang (10.1016/j.flowmeasinst.2024.102725_bib36) 2022; 36
Qian (10.1016/j.flowmeasinst.2024.102725_bib3) 2017; 135
Yu (10.1016/j.flowmeasinst.2024.102725_bib1) 2024; 95
Zhang (10.1016/j.flowmeasinst.2024.102725_bib16) 2024; 36
Nguyen (10.1016/j.flowmeasinst.2024.102725_bib17) 2023; 15
Zhang (10.1016/j.flowmeasinst.2024.102725_bib39) 2018; 30
Han (10.1016/j.flowmeasinst.2024.102725_bib18) 2017; 111
Lu (10.1016/j.flowmeasinst.2024.102725_bib27) 2022; 189
Han (10.1016/j.flowmeasinst.2024.102725_bib26) 2020; 113
Yuan (10.1016/j.flowmeasinst.2024.102725_bib31) 2019; 129
Zhang (10.1016/j.flowmeasinst.2024.102725_bib13) 2023; 285
Zhao (10.1016/j.flowmeasinst.2024.102725_bib24) 2022; 88
Pinho (10.1016/j.flowmeasinst.2024.102725_bib38) 2019; 93
Wang (10.1016/j.flowmeasinst.2024.102725_bib20) 2022; 134
Jin (10.1016/j.flowmeasinst.2024.102725_bib34) 2024; 1
Sun (10.1016/j.flowmeasinst.2024.102725_bib37) 2017; 31
Xu (10.1016/j.flowmeasinst.2024.102725_bib29) 2020; 67
Ren (10.1016/j.flowmeasinst.2024.102725_bib35) 2023; 90
Yu (10.1016/j.flowmeasinst.2024.102725_bib9) 2022; 121
Liu (10.1016/j.flowmeasinst.2024.102725_bib12) 2017; 80
Jin (10.1016/j.flowmeasinst.2024.102725_bib4) 2016; 41
Jiang (10.1016/j.flowmeasinst.2024.102725_bib8) 2021; 81
Wang (10.1016/j.flowmeasinst.2024.102725_bib28) 2019; 106
Hammer (10.1016/j.flowmeasinst.2024.102725_bib30) 2022; 156
Fang (10.1016/j.flowmeasinst.2024.102725_bib32) 2021; 423
Jin (10.1016/j.flowmeasinst.2024.102725_bib5) 2018; 43
Romagnuolo (10.1016/j.flowmeasinst.2024.102725_bib10) 2024; 209
Mu (10.1016/j.flowmeasinst.2024.102725_bib6) 2019; 70
Xu (10.1016/j.flowmeasinst.2024.102725_bib22) 2021; 174
Li (10.1016/j.flowmeasinst.2024.102725_bib25) 2021; 32
Su (10.1016/j.flowmeasinst.2024.102725_bib14) 2024; 156
Yang (10.1016/j.flowmeasinst.2024.102725_bib19) 2019; 133
An (10.1016/j.flowmeasinst.2024.102725_bib23) 2024; 96
References_xml – volume: 121
  year: 2022
  ident: bib9
  article-title: Theoretical and numerical study of choking mechanism of fluid flow in hyperloop system
  publication-title: Aerosp. Sci. Technol.
– volume: 189
  year: 2022
  ident: bib27
  article-title: Experimental and numerical analysis on vortex cavitation morphological characteristics in u-shape notch spool valve and the vortex cavitation coupled choked flow conditions
  publication-title: Int. J. Heat Mass Tran.
– volume: 87
  year: 2022
  ident: bib2
  article-title: Study on the influence of structural parameters on the flow and cavitation characteristics of tandem multi-stage pressure-reducing valves
  publication-title: Flow Meas. Instrum.
– volume: 30
  start-page: 767
  year: 2018
  end-page: 779
  ident: bib39
  article-title: A selected review of vortex identification methods with applications
  publication-title: J. Hydrodyn.
– volume: 80
  start-page: 312
  year: 2017
  end-page: 324
  ident: bib12
  article-title: Numerical analysis of cavitation erosion and particle erosion in butterfly valve
  publication-title: Eng. Fail. Anal.
– volume: 134
  year: 2022
  ident: bib20
  article-title: Effects of throttling structures on cavitation flow and circumferential uniformity in a control valve
  publication-title: Eng. Fail. Anal.
– volume: 31
  start-page: 2839
  year: 2017
  end-page: 2848
  ident: bib37
  article-title: Numerical investigation of the effect of surface roughness on the flow coefficient of an eccentric butterfly valve
  publication-title: J. Mech. Sci. Technol.
– volume: 88
  year: 2022
  ident: bib24
  article-title: Cavitation effect on flow resistance of sleeve regulating valve
  publication-title: Flow Meas. Instrum.
– volume: 67
  year: 2020
  ident: bib29
  article-title: Experimental study of the cavitation noise and vibration induced by the choked flow in a venturi reactor
  publication-title: Ultrason. Sonochem.
– volume: 1
  year: 2024
  ident: bib34
  article-title: Multiscale modeling and simulation of turbulent flows in porous media
  publication-title: Int. J. Fluid Eng.
– volume: 174
  year: 2021
  ident: bib22
  article-title: Numerical analysis of the energy loss mechanism in cavitation flow of a control valve
  publication-title: Int. J. Heat Mass Tran.
– volume: 135
  start-page: 650
  year: 2017
  end-page: 658
  ident: bib3
  article-title: Flow rate analysis of compressible superheated steam through pressure-reducing valves
  publication-title: Energy
– volume: 96
  year: 2024
  ident: bib23
  article-title: Numerical simulation of the temperature rise and cavitation flow in a hydraulic slide valve
  publication-title: Flow Meas. Instrum.
– volume: 70
  year: 2019
  ident: bib6
  article-title: Research on the measuring characteristics of a new design butterfly valve flowmeter
  publication-title: Flow Meas. Instrum.
– volume: 189
  year: 2023
  ident: bib21
  article-title: Effects of throttling windows on cavitation flow of sleeve control valve
  publication-title: Ann. Nucl. Energy
– volume: 41
  start-page: 5559
  year: 2016
  end-page: 5570
  ident: bib4
  article-title: Numerical analysis of flow and temperature characteristics in a high multi-stage pressure reducing valve for hydrogen refueling station
  publication-title: Int. J. Hydrogen. Energ.
– volume: 111
  start-page: 1
  year: 2017
  end-page: 16
  ident: bib18
  article-title: A numerical investigation in characteristics of flow force under cavitation state inside the water hydraulic poppet valves
  publication-title: Int. J. Heat Mass Tran.
– volume: 117
  start-page: 725
  year: 2017
  end-page: 739
  ident: bib33
  article-title: Unsteady flow behavior of a steam turbine control valve in the choked condition: field measurement, detached eddy simulation and acoustic modal analysis
  publication-title: Appl. Therm. Eng.
– volume: 43
  start-page: 8888
  year: 2018
  end-page: 8896
  ident: bib5
  article-title: Parametric study on Tesla valve with reverse flow for hydrogen decompression
  publication-title: Int. J. Hydrogen. Energ.
– volume: 95
  year: 2024
  ident: bib1
  article-title: Study on the design of single-seat control with stable flow regulation and its fluid flow characteristics and thermal stress
  publication-title: Flow Meas. Instrum.
– volume: 133
  start-page: 1099
  year: 2019
  end-page: 1109
  ident: bib19
  article-title: Cavitation reduction of a flapper-nozzle pilot valve using continuous microjets
  publication-title: Int. J. Heat Mass Tran.
– volume: 15
  year: 2023
  ident: bib17
  article-title: Experimental study on pressure characteristics and flow coefficient of butterfly valve
  publication-title: Int. J. Nav. Arch. Ocean.
– volume: 113
  start-page: 296
  year: 2020
  end-page: 307
  ident: bib26
  article-title: Characterization of choking flow behaviors inside steam ejectors based on the ejector refrigeration system
  publication-title: Int. J. Refrig.
– volume: 90
  year: 2023
  ident: bib35
  article-title: Influence of the flow area around the ball valve on the flow characteristics of the injector control valve
  publication-title: Flow Meas. Instrum.
– volume: 32
  start-page: 17
  year: 2021
  end-page: 26
  ident: bib25
  article-title: An experimental study on the choked flow characteristics of CO
  publication-title: J. Chem. Eng.
– volume: 209
  year: 2024
  ident: bib10
  article-title: Study of a proportional spool valve noise by means of functional data analysis: cavitation and intensity detection
  publication-title: Mech. Syst. Signal. Pr.
– volume: 156
  year: 2022
  ident: bib30
  article-title: Experiments and modelling of choked flow of CO
  publication-title: Int. J. Multiphas. Flow
– volume: 93
  year: 2019
  ident: bib38
  article-title: Experimental and numerical study of a cryogenic valve using liquid nitrogen and water
  publication-title: Aerosp. Sci. Technol.
– volume: 81
  year: 2021
  ident: bib8
  article-title: Prediction of gas-liquid two-phase choke flow using Gaussian process regression
  publication-title: Flow Meas. Instrum.
– volume: 36
  year: 2024
  ident: bib16
  article-title: Experimental study on cavitation inhibition in a butterfly valve with different plate shapes
  publication-title: Phys. Fluids
– volume: 35
  year: 2023
  ident: bib11
  article-title: Characteristics of cavitation evolution through a butterfly valve under transient regulation
  publication-title: Phys. Fluids
– volume: 65
  start-page: 4
  year: 2024
  ident: bib15
  article-title: Experimental studies of cavitation evolution through a butterfly valve at different regulation conditions
  publication-title: Exp. Fluids.
– volume: 103
  year: 2023
  ident: bib7
  article-title: Effect of wall roughness on secondary flow choking in supersonic air ejector with adjustable motive nozzle
  publication-title: Int. J. Heat. Fluid. Fl.
– volume: 129
  start-page: 113
  year: 2019
  end-page: 131
  ident: bib31
  article-title: Investigation of flow dynamics and governing mechanism of choked flow for cavitating jet in a poppet valve
  publication-title: Int. J. Heat Mass Tran.
– volume: 423
  year: 2021
  ident: bib32
  article-title: Numerical investigation on the flow characteristics and choking mechanism of cavitation-induced choked flow in a venturi reactor
  publication-title: Chem. Eng. J.
– volume: 106
  start-page: 215
  year: 2019
  end-page: 225
  ident: bib28
  article-title: Experimental investigation on the cavitation performance in a venturi reactor with special emphasis on the choking flow
  publication-title: Exp. Therm. Fluid Sci.
– volume: 36
  start-page: 3457
  year: 2022
  end-page: 3467
  ident: bib36
  article-title: Effect of the opening of a butterfly valve on the dynamic evolution of cavitation
  publication-title: J. Mech. Sci. Technol.
– volume: 285
  year: 2023
  ident: bib13
  article-title: Effect of the opening degree on evolution of cryogenic cavitation through a butterfly valve
  publication-title: Energy
– volume: 156
  year: 2024
  ident: bib14
  article-title: Flow accelerated corrosion and thinning mechanism of the pipeline after the butterfly valve based on CFD
  publication-title: Eng. Fail. Anal.
– volume: 95
  year: 2024
  ident: 10.1016/j.flowmeasinst.2024.102725_bib1
  article-title: Study on the design of single-seat control with stable flow regulation and its fluid flow characteristics and thermal stress
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2023.102486
– volume: 106
  start-page: 215
  year: 2019
  ident: 10.1016/j.flowmeasinst.2024.102725_bib28
  article-title: Experimental investigation on the cavitation performance in a venturi reactor with special emphasis on the choking flow
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2019.05.003
– volume: 88
  year: 2022
  ident: 10.1016/j.flowmeasinst.2024.102725_bib24
  article-title: Cavitation effect on flow resistance of sleeve regulating valve
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2022.102259
– volume: 129
  start-page: 113
  year: 2019
  ident: 10.1016/j.flowmeasinst.2024.102725_bib31
  article-title: Investigation of flow dynamics and governing mechanism of choked flow for cavitating jet in a poppet valve
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.09.065
– volume: 135
  start-page: 650
  year: 2017
  ident: 10.1016/j.flowmeasinst.2024.102725_bib3
  article-title: Flow rate analysis of compressible superheated steam through pressure-reducing valves
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.170
– volume: 36
  issue: 2
  year: 2024
  ident: 10.1016/j.flowmeasinst.2024.102725_bib16
  article-title: Experimental study on cavitation inhibition in a butterfly valve with different plate shapes
  publication-title: Phys. Fluids
  doi: 10.1063/5.0187768
– volume: 189
  year: 2023
  ident: 10.1016/j.flowmeasinst.2024.102725_bib21
  article-title: Effects of throttling windows on cavitation flow of sleeve control valve
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2023.109841
– volume: 156
  year: 2022
  ident: 10.1016/j.flowmeasinst.2024.102725_bib30
  article-title: Experiments and modelling of choked flow of CO2 in orifices and nozzles
  publication-title: Int. J. Multiphas. Flow
  doi: 10.1016/j.ijmultiphaseflow.2022.104201
– volume: 81
  year: 2021
  ident: 10.1016/j.flowmeasinst.2024.102725_bib8
  article-title: Prediction of gas-liquid two-phase choke flow using Gaussian process regression
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2021.102044
– volume: 15
  year: 2023
  ident: 10.1016/j.flowmeasinst.2024.102725_bib17
  article-title: Experimental study on pressure characteristics and flow coefficient of butterfly valve
  publication-title: Int. J. Nav. Arch. Ocean.
– volume: 209
  year: 2024
  ident: 10.1016/j.flowmeasinst.2024.102725_bib10
  article-title: Study of a proportional spool valve noise by means of functional data analysis: cavitation and intensity detection
  publication-title: Mech. Syst. Signal. Pr.
  doi: 10.1016/j.ymssp.2023.111100
– volume: 423
  year: 2021
  ident: 10.1016/j.flowmeasinst.2024.102725_bib32
  article-title: Numerical investigation on the flow characteristics and choking mechanism of cavitation-induced choked flow in a venturi reactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130234
– volume: 70
  year: 2019
  ident: 10.1016/j.flowmeasinst.2024.102725_bib6
  article-title: Research on the measuring characteristics of a new design butterfly valve flowmeter
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2019.101651
– volume: 32
  start-page: 17
  year: 2021
  ident: 10.1016/j.flowmeasinst.2024.102725_bib25
  article-title: An experimental study on the choked flow characteristics of CO2 pipelines in various phases, Chinese
  publication-title: J. Chem. Eng.
– volume: 80
  start-page: 312
  year: 2017
  ident: 10.1016/j.flowmeasinst.2024.102725_bib12
  article-title: Numerical analysis of cavitation erosion and particle erosion in butterfly valve
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2017.06.045
– volume: 189
  year: 2022
  ident: 10.1016/j.flowmeasinst.2024.102725_bib27
  article-title: Experimental and numerical analysis on vortex cavitation morphological characteristics in u-shape notch spool valve and the vortex cavitation coupled choked flow conditions
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2022.122707
– volume: 285
  year: 2023
  ident: 10.1016/j.flowmeasinst.2024.102725_bib13
  article-title: Effect of the opening degree on evolution of cryogenic cavitation through a butterfly valve
  publication-title: Energy
– volume: 30
  start-page: 767
  issue: 5
  year: 2018
  ident: 10.1016/j.flowmeasinst.2024.102725_bib39
  article-title: A selected review of vortex identification methods with applications
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-018-0112-8
– volume: 43
  start-page: 8888
  issue: 18
  year: 2018
  ident: 10.1016/j.flowmeasinst.2024.102725_bib5
  article-title: Parametric study on Tesla valve with reverse flow for hydrogen decompression
  publication-title: Int. J. Hydrogen. Energ.
  doi: 10.1016/j.ijhydene.2018.03.014
– volume: 90
  year: 2023
  ident: 10.1016/j.flowmeasinst.2024.102725_bib35
  article-title: Influence of the flow area around the ball valve on the flow characteristics of the injector control valve
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2023.102333
– volume: 156
  year: 2024
  ident: 10.1016/j.flowmeasinst.2024.102725_bib14
  article-title: Flow accelerated corrosion and thinning mechanism of the pipeline after the butterfly valve based on CFD
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2023.107844
– volume: 36
  start-page: 3457
  issue: 7
  year: 2022
  ident: 10.1016/j.flowmeasinst.2024.102725_bib36
  article-title: Effect of the opening of a butterfly valve on the dynamic evolution of cavitation
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-022-0623-7
– volume: 31
  start-page: 2839
  issue: 6
  year: 2017
  ident: 10.1016/j.flowmeasinst.2024.102725_bib37
  article-title: Numerical investigation of the effect of surface roughness on the flow coefficient of an eccentric butterfly valve
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-017-0527-0
– volume: 93
  year: 2019
  ident: 10.1016/j.flowmeasinst.2024.102725_bib38
  article-title: Experimental and numerical study of a cryogenic valve using liquid nitrogen and water
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105331
– volume: 65
  start-page: 4
  issue: 1
  year: 2024
  ident: 10.1016/j.flowmeasinst.2024.102725_bib15
  article-title: Experimental studies of cavitation evolution through a butterfly valve at different regulation conditions
  publication-title: Exp. Fluids.
  doi: 10.1007/s00348-023-03743-3
– volume: 117
  start-page: 725
  year: 2017
  ident: 10.1016/j.flowmeasinst.2024.102725_bib33
  article-title: Unsteady flow behavior of a steam turbine control valve in the choked condition: field measurement, detached eddy simulation and acoustic modal analysis
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.02.087
– volume: 67
  year: 2020
  ident: 10.1016/j.flowmeasinst.2024.102725_bib29
  article-title: Experimental study of the cavitation noise and vibration induced by the choked flow in a venturi reactor
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2020.105183
– volume: 103
  year: 2023
  ident: 10.1016/j.flowmeasinst.2024.102725_bib7
  article-title: Effect of wall roughness on secondary flow choking in supersonic air ejector with adjustable motive nozzle
  publication-title: Int. J. Heat. Fluid. Fl.
  doi: 10.1016/j.ijheatfluidflow.2023.109168
– volume: 41
  start-page: 5559
  issue: 12
  year: 2016
  ident: 10.1016/j.flowmeasinst.2024.102725_bib4
  article-title: Numerical analysis of flow and temperature characteristics in a high multi-stage pressure reducing valve for hydrogen refueling station
  publication-title: Int. J. Hydrogen. Energ.
  doi: 10.1016/j.ijhydene.2016.02.013
– volume: 87
  year: 2022
  ident: 10.1016/j.flowmeasinst.2024.102725_bib2
  article-title: Study on the influence of structural parameters on the flow and cavitation characteristics of tandem multi-stage pressure-reducing valves
  publication-title: Flow Meas. Instrum.
– volume: 133
  start-page: 1099
  year: 2019
  ident: 10.1016/j.flowmeasinst.2024.102725_bib19
  article-title: Cavitation reduction of a flapper-nozzle pilot valve using continuous microjets
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.01.008
– volume: 121
  year: 2022
  ident: 10.1016/j.flowmeasinst.2024.102725_bib9
  article-title: Theoretical and numerical study of choking mechanism of fluid flow in hyperloop system
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107367
– volume: 174
  year: 2021
  ident: 10.1016/j.flowmeasinst.2024.102725_bib22
  article-title: Numerical analysis of the energy loss mechanism in cavitation flow of a control valve
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2021.121331
– volume: 35
  issue: 2
  year: 2023
  ident: 10.1016/j.flowmeasinst.2024.102725_bib11
  article-title: Characteristics of cavitation evolution through a butterfly valve under transient regulation
  publication-title: Phys. Fluids
  doi: 10.1063/5.0137019
– volume: 96
  year: 2024
  ident: 10.1016/j.flowmeasinst.2024.102725_bib23
  article-title: Numerical simulation of the temperature rise and cavitation flow in a hydraulic slide valve
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2024.102553
– volume: 111
  start-page: 1
  year: 2017
  ident: 10.1016/j.flowmeasinst.2024.102725_bib18
  article-title: A numerical investigation in characteristics of flow force under cavitation state inside the water hydraulic poppet valves
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.03.100
– volume: 113
  start-page: 296
  year: 2020
  ident: 10.1016/j.flowmeasinst.2024.102725_bib26
  article-title: Characterization of choking flow behaviors inside steam ejectors based on the ejector refrigeration system
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2020.02.003
– volume: 1
  year: 2024
  ident: 10.1016/j.flowmeasinst.2024.102725_bib34
  article-title: Multiscale modeling and simulation of turbulent flows in porous media
  publication-title: Int. J. Fluid Eng.
  doi: 10.1063/5.0190279
– volume: 134
  year: 2022
  ident: 10.1016/j.flowmeasinst.2024.102725_bib20
  article-title: Effects of throttling structures on cavitation flow and circumferential uniformity in a control valve
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.106025
SSID ssj0008037
Score 2.3895047
Snippet The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102725
SubjectTerms Cavitation erosion
Choked flow
Computational fluid dynamics
Liquid pressure recovery factor
Tri-eccentric butterfly valve
Title Numerical investigation on cavitation erosion and evolution of choked flow in a tri-eccentric butterfly valve
URI https://dx.doi.org/10.1016/j.flowmeasinst.2024.102725
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kIuhBfOKbPXhdW5PdPA4eRJSq2IsWegv7mIVoTUVrxYu_3Zk8bAUPBSEQkuwkm8lkZjf55hvGjjsao6YOnPBeJ0KGEoTWkIpIpwbtI5JKU77zXS_q9uXNQA0W2EWTC0Owytr3Vz699Nb1nnatzfZLnrfviTyN2MUJBRl01IAy2GVMVn7yNYV5JJ2KNxMbC2rdEI-WGC8_HH08g8ZZ-RvhKgNJTAYxlc3-K0jNBJ6rNbZajxj5edWpdbYAxQZbmeER3GBLJY7Tvm2y59579QtmyPMpg8ao4LhYPakJuTngZWmtC8dhUlsfH3mOzvAJHKce4wm45uPXXKD-6RtwbrmpyloPPzka6AS2WP_q8uGiK-qKCsLiwGkskkRZfOEcJInzPohT1E7gI--NCmNnAOdixiXpKdGaQagS05EOjwcAyqjI-nCbtYpRATuMW6KOt1FsPZiSJU3G1sjAGKVjJcHtsrRRYWbru6OqF8OswZU9ZrPqz0j9WaX-XRb-yL5UpBtzSZ01Tyr7ZUIZRoc55Pf-Kb_PlmmrwrocsNb49R0OccQyNkelSR6xxfPr227vG-9G8Ho
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BFaIcqvKoCrTFB65ml8TO49BDhUDbFvYCSHuL_BhLoUsWwbKIC7-dmTzKInFAQooUKfYkzng8YyefvwHY6xuKmibyMgSTSRUrlMZgLhOTW7KPRGnD-51Ph8ngQv0Z6dECHHZ7YRhW2fr-xqfX3rq90mu12bsuy94Zk6cxuzijIKO-Hi3CB0XDl9MY7D8-4zyyfkOcSbUlV--YR2uQVxhP7q_Q0LL8loGVkWIqg5TzZr8WpeYiz_Fn-NROGcWvplVrsIDVOqzOEQmuw3IN5HS3G3A1vGv-wYxF-UyhMakEHc7MWkZugfRYPpvKC5y15icmQZA3_IdecIvpBsKI6U0pqQP4I3DphG3yWo8fBFnoDDfh4vjo_HAg25QK0tHMaSqzTDsacR6zzIcQpTlpJwpJCFbHqbdIizHrs_yAec0w1pntK0_lEaK2OnEh_gJL1aTCryAcc8e7JHUBbU2TplJnVWStNqlW6Lcg71RYuPbtOO3FuOiAZZfFvPoLVn_RqH8L4v-y1w3rxpukfnY9VbywoYLCwxvkt98pvwsrg_PTk-Lk9_DvDnzkkgb48g2Wpjd3-J2mL1P7ozbPJ2_58gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+on+cavitation+erosion+and+evolution+of+choked+flow+in+a+tri-eccentric+butterfly+valve&rft.jtitle=Flow+measurement+and+instrumentation&rft.au=Yang%2C+Xinliang&rft.au=L%C3%BC%2C+Yanjun&rft.au=Xu%2C+Le&rft.au=Ma%2C+Yushan&rft.date=2024-12-01&rft.issn=0955-5986&rft.volume=100&rft.spage=102725&rft_id=info:doi/10.1016%2Fj.flowmeasinst.2024.102725&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_flowmeasinst_2024_102725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-5986&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-5986&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-5986&client=summon