Evaluating the Strength of Structural Connectivity Underlying Brain Functional Networks

In recent years, there has been strong interest in neuroscience studies to investigate brain organization through networks of brain regions that demonstrate strong functional connectivity (FC). Several well-known functional networks have been consistently identified in both task-related and resting-...

Full description

Saved in:
Bibliographic Details
Published inBrain connectivity Vol. 8; no. 10; pp. 579 - 594
Main Authors Kemmer, Phebe Brenne, Wang, Yikai, Bowman, F. DuBois, Mayberg, Helen, Guo, Ying
Format Journal Article
LanguageEnglish
Published New Rochelle Mary Ann Liebert, Inc 01.12.2018
Mary Ann Liebert, Inc., publishers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, there has been strong interest in neuroscience studies to investigate brain organization through networks of brain regions that demonstrate strong functional connectivity (FC). Several well-known functional networks have been consistently identified in both task-related and resting-state functional magnetic resonance imaging (rs-fMRI) across different study populations. These networks are extracted from observed fMRI using data-driven analytic methods such as independent component analysis. A notable limitation of these FC methods is that they do not include or provide any information on the underlying structural connectivity (SC), which is believed to serve as the basis for interregional interactions in brain activity. We propose a new statistical measure of the strength of SC (sSC) underlying FC networks obtained from data-driven methods. The sSC is developed using information from diffusion tensor imaging (DTI) data. A key advantage of sSC is that it is a standardized coefficient that adjusts for the different number of voxels and baseline SC of various functional networks. Hence, sSC can be applied to compare the strength of structural connections across different FC networks. Furthermore, we propose a reliability index for data-driven FC networks to measure the reproducibility of the networks through resampling the observed data. By evaluating the association between the sSC and reliability index, we can investigate whether underlying SC informs the reliability of identified FC networks. To perform statistical inference such as hypothesis testing on the sSC, we develop a formal variance estimator of sSC based on a spatial semivariogram model with a novel distance metric. We demonstrate the performance of the sSC measure and its estimation and inference methods with simulation studies. For real data analysis, we apply our methods to a multimodal imaging study with rs-fMRI and DTI data from 20 healthy controls and 20 subjects with major depressive disorder. Results show that well-known resting-state networks all demonstrate higher SC within the network compared with the average structural connections across the brain. We also found that sSC is positively associated with the reliability index, indicating that FC networks that have stronger underlying SC are more reproducible across samples. These results provide evidence that structural connections do serve as structural basis for the FC networks and that the structural information from DTI data can be leveraged to inform the reliability of functional networks derived through data-driven methods.
AbstractList In recent years, there has been strong interest in neuroscience studies to investigate brain organization through networks of brain regions that demonstrate strong functional connectivity (FC). Several well-known functional networks have been consistently identified in both task-related and resting-state functional magnetic resonance imaging (rs-fMRI) across different study populations. These networks are extracted from observed fMRI using data-driven analytic methods such as independent component analysis. A notable limitation of these FC methods is that they do not include or provide any information on the underlying structural connectivity (SC), which is believed to serve as the basis for interregional interactions in brain activity. We propose a new statistical measure of the strength of SC (sSC) underlying FC networks obtained from data-driven methods. The sSC is developed using information from diffusion tensor imaging (DTI) data. A key advantage of sSC is that it is a standardized coefficient that adjusts for the different number of voxels and baseline SC of various functional networks. Hence, sSC can be applied to compare the strength of structural connections across different FC networks. Furthermore, we propose a reliability index for data-driven FC networks to measure the reproducibility of the networks through resampling the observed data. By evaluating the association between the sSC and reliability index, we can investigate whether underlying SC informs the reliability of identified FC networks. To perform statistical inference such as hypothesis testing on the sSC, we develop a formal variance estimator of sSC based on a spatial semivariogram model with a novel distance metric. We demonstrate the performance of the sSC measure and its estimation and inference methods with simulation studies. For real data analysis, we apply our methods to a multimodal imaging study with rs-fMRI and DTI data from 20 healthy controls and 20 subjects with major depressive disorder. Results show that well-known resting-state networks all demonstrate higher SC within the network compared with the average structural connections across the brain. We also found that sSC is positively associated with the reliability index, indicating that FC networks that have stronger underlying SC are more reproducible across samples. These results provide evidence that structural connections do serve as structural basis for the FC networks and that the structural information from DTI data can be leveraged to inform the reliability of functional networks derived through data-driven methods.
Author Bowman, F. DuBois
Mayberg, Helen
Kemmer, Phebe Brenne
Guo, Ying
Wang, Yikai
Author_xml – sequence: 1
  givenname: Phebe Brenne
  surname: Kemmer
  fullname: Kemmer, Phebe Brenne
  organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
– sequence: 2
  givenname: Yikai
  surname: Wang
  fullname: Wang, Yikai
  organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
– sequence: 3
  givenname: F. DuBois
  surname: Bowman
  fullname: Bowman, F. DuBois
  organization: University of Michigan School of Public Health, Ann Arbor, Michigan
– sequence: 4
  givenname: Helen
  surname: Mayberg
  fullname: Mayberg, Helen
  organization: Departments of Psychiatry and Neurology, Emory University School of Medicine, Atlanta, Georgia
– sequence: 5
  givenname: Ying
  surname: Guo
  fullname: Guo, Ying
  organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
BookMark eNp1UU1PAjEQbQwmInL2uolnoF-7bC8mSkBNiB6UeGy6bReKS4vdLoZ_b1cIiSbOZaaZ995M512CjnVWA3CN4BDBnI0KL4wdYojyIcxQega6GKX5AEKMO6ca0QvQr-s1jJHSHELaBe_TnagaEYxdJmGlk9fgtV2GVeLKtm5kaLyokomzVstgdibsk4VV2lf7lnLfzk1mjY09ZyPwWYcv5z_qK3BeiqrW_WPugcVs-jZ5HMxfHp4md_OBJJiGwVjJUgpKoS6xQExlSkmlSK4oQaLIJdU6Q0TigrFSxnc5VhmREuVCMsKQID1we9DdNsVGK6ltiPvyrTcb4ffcCcN_d6xZ8aXb8YwgiGEaBW6OAt59NroOfO0aH79S83i2MUsxYiyiRgeU9K6uvS5PExDkrQP8xwHeOsBbByIj_cOQJoj2SnENU_3L-wZb1pHT
CitedBy_id crossref_primary_10_1016_j_jneumeth_2020_108726
crossref_primary_10_3389_fnins_2022_969510
crossref_primary_10_1007_s12021_024_09676_4
crossref_primary_10_1016_j_jad_2023_08_020
crossref_primary_10_1080_01621459_2022_2055559
crossref_primary_10_1186_s12915_022_01446_5
crossref_primary_10_1016_j_tics_2022_11_015
crossref_primary_10_1093_biomtc_ujaf027
crossref_primary_10_1162_imag_a_00220
crossref_primary_10_1214_22_AOAS1670
crossref_primary_10_1038_s41598_019_50106_2
Cites_doi 10.1002/hbm.1048
10.1016/j.neuroimage.2013.09.071
10.1371/journal.pcbi.1000196
10.1016/j.neuroimage.2006.09.018
10.1002/hbm.22234
10.3389/fnana.2015.00152
10.1016/j.neuroimage.2005.08.044
10.1016/S0730-725X(02)00503-9
10.1016/j.neuron.2012.12.028
10.1111/j.1365-3121.1992.tb00605.x
10.1371/journal.pone.0014801
10.1198/016214506000001347
10.1073/pnas.0811168106
10.1073/pnas.0905267106
10.1093/cercor/bhu246
10.1093/cercor/bhr388
10.1109/TMI.2003.822821
10.1016/j.neuroimage.2012.05.032
10.1006/nimg.2001.1052
10.1016/j.neuroimage.2018.07.015
10.1016/j.neuroimage.2009.10.080
10.1073/pnas.0601417103
10.1523/JNEUROSCI.4004-09.2009
10.3389/fnins.2016.00123
10.1523/JNEUROSCI.2295-07.2008
10.1002/mrm.10609
10.1186/1745-6215-13-106
10.1136/jnnp.23.1.56
10.1371/journal.pcbi.1000395
10.1016/j.neuroimage.2004.10.043
10.1196/annals.1440.011
10.3389/fncom.2015.00022
10.1023/B:VLSI.0000027491.81326.7a
10.1037/h0026256
10.1093/cercor/bhi016
10.1109/TBME.2002.805480
10.1016/j.neuroimage.2013.09.075
10.1016/j.neuroimage.2004.03.027
10.1016/j.neuroimage.2004.04.022
10.1016/j.biopsych.2006.09.020
10.3389/fnsys.2010.00041
10.1073/pnas.0701519104
10.1007/s00357-018-9268-8
10.1016/j.neubiorev.2010.12.007
10.1002/hbm.10022
10.1016/j.neuroimage.2008.05.008
10.3389/fpsyg.2015.00603
10.1214/16-AOAS946
10.1371/journal.pcbi.0030017
10.1146/annurev.neuro.051508.135735
10.1162/jocn_a_00077
10.1073/pnas.1315529111
10.1038/jcbfm.1993.4
10.1371/journal.pbio.0060159
10.1089/brain.2017.0539
ContentType Journal Article
Copyright Copyright 2018, Mary Ann Liebert, Inc., publishers
Copyright 2018, Mary Ann Liebert, Inc., publishers 2018
Copyright_xml – notice: Copyright 2018, Mary Ann Liebert, Inc., publishers
– notice: Copyright 2018, Mary Ann Liebert, Inc., publishers 2018
DBID AAYXX
CITATION
3V.
7QG
7RV
7TK
7X7
7XB
88E
88G
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
5PM
DOI 10.1089/brain.2018.0615
DatabaseName CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList ProQuest One Psychology

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Statistics
Public Health
EISSN 2158-0022
EndPage 594
ExternalDocumentID PMC6310205
10_1089_brain_2018_0615
GeographicLocations Atlanta Georgia
United States--US
Georgia
GeographicLocations_xml – name: Atlanta Georgia
– name: United States--US
– name: Georgia
GroupedDBID ---
0R~
4.4
53G
7RV
7X7
88E
8FI
8FJ
AAYXX
ABBKN
ABJNI
ABUWG
ACGFS
ACPRK
ADBBV
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BKEYQ
BNQNF
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
EBS
EJD
FYUFA
GNUQQ
HMCUK
IM4
M1P
M2M
NAPCQ
O9-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
RML
UKHRP
3V.
7QG
7TK
7XB
8FD
8FK
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
RC3
5PM
SCNPE
ID FETCH-LOGICAL-c324t-7dcfca440ef2a19d6ddcdd38d431ab8c4ee613c2b99fcb8cf7d63cc18ac9391a3
IEDL.DBID 7X7
ISSN 2158-0014
IngestDate Thu Aug 21 18:19:10 EDT 2025
Fri Jul 25 05:08:54 EDT 2025
Tue Jul 01 03:51:50 EDT 2025
Thu Apr 24 22:49:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-7dcfca440ef2a19d6ddcdd38d431ab8c4ee613c2b99fcb8cf7d63cc18ac9391a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2157952199
PQPubID 2029230
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6310205
proquest_journals_2157952199
crossref_primary_10_1089_brain_2018_0615
crossref_citationtrail_10_1089_brain_2018_0615
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New Rochelle
PublicationPlace_xml – name: New Rochelle
– name: 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA
PublicationTitle Brain connectivity
PublicationYear 2018
Publisher Mary Ann Liebert, Inc
Mary Ann Liebert, Inc., publishers
Publisher_xml – name: Mary Ann Liebert, Inc
– name: Mary Ann Liebert, Inc., publishers
References B20
B22
B23
B24
B25
B26
B27
B28
B29
Duann J-R (B21) 2006; 5
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B44
B45
B47
B48
Quigley M (B49) 2003; 24
Ng B (B46) 2012; 15
Casella G (B14) 1990
B50
B51
B52
B53
B10
B54
B11
B55
B12
B13
B57
B58
B15
B59
B16
B17
B18
B19
B60
B61
References_xml – volume: 15
  start-page: 707
  issue: 1
  year: 2012
  ident: B46
  publication-title: Med Image Comput Comput Assist Interv
– ident: B13
  doi: 10.1002/hbm.1048
– ident: B60
  doi: 10.1016/j.neuroimage.2013.09.071
– ident: B25
  doi: 10.1371/journal.pcbi.1000196
– start-page: 241
  year: 1990
  ident: B14
  publication-title: Number
– ident: B5
  doi: 10.1016/j.neuroimage.2006.09.018
– ident: B58
  doi: 10.1002/hbm.22234
– ident: B53
  doi: 10.3389/fnana.2015.00152
– ident: B7
  doi: 10.1016/j.neuroimage.2005.08.044
– ident: B17
  doi: 10.1016/S0730-725X(02)00503-9
– ident: B45
  doi: 10.1016/j.neuron.2012.12.028
– ident: B18
  doi: 10.1111/j.1365-3121.1992.tb00605.x
– ident: B54
  doi: 10.1371/journal.pone.0014801
– ident: B8
  doi: 10.1198/016214506000001347
– ident: B36
  doi: 10.1073/pnas.0811168106
– ident: B52
  doi: 10.1073/pnas.0905267106
– ident: B19
  doi: 10.1093/cercor/bhu246
– ident: B2
  doi: 10.1093/cercor/bhr388
– ident: B3
  doi: 10.1109/TMI.2003.822821
– ident: B10
  doi: 10.1016/j.neuroimage.2012.05.032
– ident: B39
  doi: 10.1006/nimg.2001.1052
– ident: B32
  doi: 10.1016/j.neuroimage.2018.07.015
– ident: B61
  doi: 10.1016/j.neuroimage.2009.10.080
– ident: B20
  doi: 10.1073/pnas.0601417103
– ident: B40
  doi: 10.1523/JNEUROSCI.4004-09.2009
– ident: B57
  doi: 10.3389/fnins.2016.00123
– ident: B48
  doi: 10.1523/JNEUROSCI.2295-07.2008
– ident: B6
  doi: 10.1002/mrm.10609
– ident: B22
  doi: 10.1186/1745-6215-13-106
– volume: 5
  start-page: 5324
  year: 2006
  ident: B21
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: B30
  doi: 10.1136/jnnp.23.1.56
– ident: B42
  doi: 10.1371/journal.pcbi.1000395
– ident: B4
  doi: 10.1016/j.neuroimage.2004.10.043
– ident: B11
  doi: 10.1196/annals.1440.011
– ident: B59
  doi: 10.3389/fncom.2015.00022
– ident: B12
  doi: 10.1023/B:VLSI.0000027491.81326.7a
– ident: B16
  doi: 10.1037/h0026256
– ident: B50
  doi: 10.1093/cercor/bhi016
– ident: B44
  doi: 10.1109/TBME.2002.805480
– ident: B34
  doi: 10.1016/j.neuroimage.2013.09.075
– ident: B33
  doi: 10.1016/j.neuroimage.2004.03.027
– ident: B9
  doi: 10.1016/j.neuroimage.2004.04.022
– ident: B27
  doi: 10.1016/j.biopsych.2006.09.020
– ident: B55
  doi: 10.3389/fnsys.2010.00041
– volume: 24
  start-page: 208
  year: 2003
  ident: B49
  publication-title: Am J Neuroradiol
– ident: B35
  doi: 10.1073/pnas.0701519104
– ident: B24
  doi: 10.1007/s00357-018-9268-8
– ident: B47
  doi: 10.1016/j.neubiorev.2010.12.007
– ident: B31
  doi: 10.1002/hbm.10022
– ident: B28
  doi: 10.1016/j.neuroimage.2008.05.008
– ident: B38
  doi: 10.3389/fpsyg.2015.00603
– ident: B51
  doi: 10.1214/16-AOAS946
– ident: B1
  doi: 10.1371/journal.pcbi.0030017
– ident: B37
  doi: 10.1146/annurev.neuro.051508.135735
– ident: B41
  doi: 10.1162/jocn_a_00077
– ident: B26
  doi: 10.1073/pnas.1315529111
– ident: B23
  doi: 10.1038/jcbfm.1993.4
– ident: B29
  doi: 10.1371/journal.pbio.0060159
– ident: B15
  doi: 10.1089/brain.2017.0539
SSID ssj0000548004
Score 2.1792164
Snippet In recent years, there has been strong interest in neuroscience studies to investigate brain organization through networks of brain regions that demonstrate...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 579
SubjectTerms Bioinformatics
Brain architecture
Brain mapping
Brain research
Data processing
Datasets
Functional magnetic resonance imaging
Medical imaging
Mental depression
Nervous system
Neural networks
Neuroimaging
NMR
Nuclear magnetic resonance
Original
Population studies
Public health
Statistics
Title Evaluating the Strength of Structural Connectivity Underlying Brain Functional Networks
URI https://www.proquest.com/docview/2157952199
https://pubmed.ncbi.nlm.nih.gov/PMC6310205
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED3xsVRCCAqI8lF5QIglkA83tifUolYVQ4UQiG5RfE4ACVJQy8C_x2enpR1gS5TESnKO7_n88h7AWco7kREoAqNMSRZmSaCTPAyUzHNFkDYxjuU7SoeP_HbcGdcFt2lNq5yPiW6gNhOkGvmVTU1C2Vyj1PXHZ0CuUbS6WltorMMmSZdRrxZjsaixhCRm5hwE7dUyoOnAXN1HqitNHgxE7iIFT7LFXU5Mv2hzlSu5lHwGO7Bdo0bW9WHehbWiasJet7Iz5vdvds4cj9MVyJuw5StxzP9g1IQG4Ukvx7wHT_1a3bt6Zhb6MVqUrp5nL2xS0vYXOhkO5ugv6I0lmLNGeqPfoViPHoYNbC70JUQ28izy6T48DvoPN8Og9lYI0EKoWSAMlphzHhZlnEfKpMagMYk0FlDkWiIvCpvoMdZKlWj3S2HSBDGSOapERXlyABvVpCoOgdkJYRwaC0tiLTgqrqUodccknKtIauQtuJy_2Axr4XHyv3jL3AK4VJmLREaRyCgSLbhYXPDhNTf-PvVkHqms_vim2W9XaYFYid6iORLVXj1Svb44ce3U4t047Bz93_AxNOgePK_lBDZsgIpTi05muu26YBs2e_3R3f0PvknoqA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9kAlhOgWxEKhPhTEJTQPb2wfECq0qy0te2rF3kI8Tlqkki3aRah_qr-xM3ay7R7orbdEcSzHM_E8PP4-gJ1cDhKnUEXOuJopzLLIZmUcGV2Whl3azPkq33E-OpXfJoPJClx3Z2G4rLJbE_1C7abIOfJdMk3KkK0x5vPln4hZo3h3taPQCGpxVF39o5Bt9ulwn-T7Lk2HBydfR1HLKhAhOQ_zSDmssZQyruq0TIzLnUPnMu3IlJZWo6wqMnGYWmNqpPtauTxDTHSJJjNJmVG_j2CNWscc7KmJWuR0YgZP84yFNFodcfjRoQlps2uZ84GLyRgxlGl47xrCW-92uTbzjrEbPoOnrZcq9oJabcBK1fRgc6-hCP33lXgvfN2oT8j34EnI_IlwoKkH6-y_BvjnTfhx0KKJN2eCXE3Bm-DN2fxcTGu-_ose9kP4chsMRBbCUzFd8PEr8YU_RgzJ9oaUpRiHqvXZczh9kFl_AavNtKlegqAANI0duUGpVRKNtFrVduAyKU2iLco-fOwmtsAW6Jz5Ni4Kv-GuTeElUbAkCpZEHz4sXrgMGB__b7rVSapof_ZZcauafVBL0lt0xyDey0-aX-cezDsnPUrjwav7O96Gx6OT78fF8eH46DWs83hCTc0WrJKwqjfkGc3tW6-OAn4-tP7fAPfAJxY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVEKVEIIU1JQCewDExcQfG-_uAaGWJmopiipERW_GO2u3SK1TlCDUv8avY2bXTpsD3HqzZXtle8aej337HsCrXI4Sp1BFzriaJcyyyGZlHBldloZT2sx5lO80PziRn05Hp2vwp1sLw7DK7p_of9RuhtwjH1JoUoZijTHDuoVFHO9PPlz9jFhBimdaOzmN4CJH1fVvKt_m7w_3ydav03Qy_vrxIGoVBiKkRGIRKYc1llLGVZ2WiXG5c-hcph2F1dJqlFVF4Q5Ta0yNtF8rl2eIiS7RZCYpMxr3Hqwrrop6sL43nh5_WXZ4YqZS8_qFdO864mKk4xbSZmhZAYKhZcwfyqK8t8PiTa67itS8Ffomj-Bhm7OK3eBkj2GtavqwudtQvX55Ld4IjyL17fk-PAh9QBGWN_Vhg7PZQAa9Cd_GLbd4cyYo8RQ8Jd6cLc7FrObtX-hJQIQH32CQtRBemOmCF2OJPX4YMaFIHBqYYhow7PMncHIn7_0p9JpZU22BoHI0jR0lRalVEo20WtV25DIpTaItygG8615sgS3tOatvXBR--l2bwluiYEsUbIkBvF1ecBUYP_596k5nqaL99OfFjaMOQK1YbzkcU3qvHml-nHtq75yy7TQebf9_4Jdwn3y_-Hw4PXoGG3w7AWCzAz2yVfWc0qSFfdH6o4Dvd_0J_AU9byyx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+Strength+of+Structural+Connectivity+Underlying+Brain+Functional+Networks&rft.jtitle=Brain+connectivity&rft.au=Kemmer%2C+Phebe+Brenne&rft.au=Wang%2C+Yikai&rft.au=Bowman%2C+F.+DuBois&rft.au=Mayberg%2C+Helen&rft.date=2018-12-01&rft.issn=2158-0014&rft.eissn=2158-0022&rft.volume=8&rft.issue=10&rft.spage=579&rft.epage=594&rft_id=info:doi/10.1089%2Fbrain.2018.0615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1089_brain_2018_0615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-0014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-0014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-0014&client=summon