Evaluating the Strength of Structural Connectivity Underlying Brain Functional Networks
In recent years, there has been strong interest in neuroscience studies to investigate brain organization through networks of brain regions that demonstrate strong functional connectivity (FC). Several well-known functional networks have been consistently identified in both task-related and resting-...
Saved in:
Published in | Brain connectivity Vol. 8; no. 10; pp. 579 - 594 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New Rochelle
Mary Ann Liebert, Inc
01.12.2018
Mary Ann Liebert, Inc., publishers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, there has been strong interest in neuroscience studies to investigate brain organization through networks of brain regions that demonstrate strong functional connectivity (FC). Several well-known functional networks have been consistently identified in both task-related and resting-state functional magnetic resonance imaging (rs-fMRI) across different study populations. These networks are extracted from observed fMRI using data-driven analytic methods such as independent component analysis. A notable limitation of these FC methods is that they do not include or provide any information on the underlying structural connectivity (SC), which is believed to serve as the basis for interregional interactions in brain activity. We propose a new statistical measure of the strength of SC (sSC) underlying FC networks obtained from data-driven methods. The sSC is developed using information from diffusion tensor imaging (DTI) data. A key advantage of sSC is that it is a standardized coefficient that adjusts for the different number of voxels and baseline SC of various functional networks. Hence, sSC can be applied to compare the strength of structural connections across different FC networks. Furthermore, we propose a reliability index for data-driven FC networks to measure the reproducibility of the networks through resampling the observed data. By evaluating the association between the sSC and reliability index, we can investigate whether underlying SC informs the reliability of identified FC networks. To perform statistical inference such as hypothesis testing on the sSC, we develop a formal variance estimator of sSC based on a spatial semivariogram model with a novel distance metric. We demonstrate the performance of the sSC measure and its estimation and inference methods with simulation studies. For real data analysis, we apply our methods to a multimodal imaging study with rs-fMRI and DTI data from 20 healthy controls and 20 subjects with major depressive disorder. Results show that well-known resting-state networks all demonstrate higher SC within the network compared with the average structural connections across the brain. We also found that sSC is positively associated with the reliability index, indicating that FC networks that have stronger underlying SC are more reproducible across samples. These results provide evidence that structural connections do serve as structural basis for the FC networks and that the structural information from DTI data can be leveraged to inform the reliability of functional networks derived through data-driven methods. |
---|---|
AbstractList | In recent years, there has been strong interest in neuroscience studies to investigate brain organization through networks of brain regions that demonstrate strong functional connectivity (FC). Several well-known functional networks have been consistently identified in both task-related and resting-state functional magnetic resonance imaging (rs-fMRI) across different study populations. These networks are extracted from observed fMRI using data-driven analytic methods such as independent component analysis. A notable limitation of these FC methods is that they do not include or provide any information on the underlying structural connectivity (SC), which is believed to serve as the basis for interregional interactions in brain activity. We propose a new statistical measure of the strength of SC (sSC) underlying FC networks obtained from data-driven methods. The sSC is developed using information from diffusion tensor imaging (DTI) data. A key advantage of sSC is that it is a standardized coefficient that adjusts for the different number of voxels and baseline SC of various functional networks. Hence, sSC can be applied to compare the strength of structural connections across different FC networks. Furthermore, we propose a reliability index for data-driven FC networks to measure the reproducibility of the networks through resampling the observed data. By evaluating the association between the sSC and reliability index, we can investigate whether underlying SC informs the reliability of identified FC networks. To perform statistical inference such as hypothesis testing on the sSC, we develop a formal variance estimator of sSC based on a spatial semivariogram model with a novel distance metric. We demonstrate the performance of the sSC measure and its estimation and inference methods with simulation studies. For real data analysis, we apply our methods to a multimodal imaging study with rs-fMRI and DTI data from 20 healthy controls and 20 subjects with major depressive disorder. Results show that well-known resting-state networks all demonstrate higher SC within the network compared with the average structural connections across the brain. We also found that sSC is positively associated with the reliability index, indicating that FC networks that have stronger underlying SC are more reproducible across samples. These results provide evidence that structural connections do serve as structural basis for the FC networks and that the structural information from DTI data can be leveraged to inform the reliability of functional networks derived through data-driven methods. |
Author | Bowman, F. DuBois Mayberg, Helen Kemmer, Phebe Brenne Guo, Ying Wang, Yikai |
Author_xml | – sequence: 1 givenname: Phebe Brenne surname: Kemmer fullname: Kemmer, Phebe Brenne organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia – sequence: 2 givenname: Yikai surname: Wang fullname: Wang, Yikai organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia – sequence: 3 givenname: F. DuBois surname: Bowman fullname: Bowman, F. DuBois organization: University of Michigan School of Public Health, Ann Arbor, Michigan – sequence: 4 givenname: Helen surname: Mayberg fullname: Mayberg, Helen organization: Departments of Psychiatry and Neurology, Emory University School of Medicine, Atlanta, Georgia – sequence: 5 givenname: Ying surname: Guo fullname: Guo, Ying organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia |
BookMark | eNp1UU1PAjEQbQwmInL2uolnoF-7bC8mSkBNiB6UeGy6bReKS4vdLoZ_b1cIiSbOZaaZ995M512CjnVWA3CN4BDBnI0KL4wdYojyIcxQega6GKX5AEKMO6ca0QvQr-s1jJHSHELaBe_TnagaEYxdJmGlk9fgtV2GVeLKtm5kaLyokomzVstgdibsk4VV2lf7lnLfzk1mjY09ZyPwWYcv5z_qK3BeiqrW_WPugcVs-jZ5HMxfHp4md_OBJJiGwVjJUgpKoS6xQExlSkmlSK4oQaLIJdU6Q0TigrFSxnc5VhmREuVCMsKQID1we9DdNsVGK6ltiPvyrTcb4ffcCcN_d6xZ8aXb8YwgiGEaBW6OAt59NroOfO0aH79S83i2MUsxYiyiRgeU9K6uvS5PExDkrQP8xwHeOsBbByIj_cOQJoj2SnENU_3L-wZb1pHT |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2020_108726 crossref_primary_10_3389_fnins_2022_969510 crossref_primary_10_1007_s12021_024_09676_4 crossref_primary_10_1016_j_jad_2023_08_020 crossref_primary_10_1080_01621459_2022_2055559 crossref_primary_10_1186_s12915_022_01446_5 crossref_primary_10_1016_j_tics_2022_11_015 crossref_primary_10_1093_biomtc_ujaf027 crossref_primary_10_1162_imag_a_00220 crossref_primary_10_1214_22_AOAS1670 crossref_primary_10_1038_s41598_019_50106_2 |
Cites_doi | 10.1002/hbm.1048 10.1016/j.neuroimage.2013.09.071 10.1371/journal.pcbi.1000196 10.1016/j.neuroimage.2006.09.018 10.1002/hbm.22234 10.3389/fnana.2015.00152 10.1016/j.neuroimage.2005.08.044 10.1016/S0730-725X(02)00503-9 10.1016/j.neuron.2012.12.028 10.1111/j.1365-3121.1992.tb00605.x 10.1371/journal.pone.0014801 10.1198/016214506000001347 10.1073/pnas.0811168106 10.1073/pnas.0905267106 10.1093/cercor/bhu246 10.1093/cercor/bhr388 10.1109/TMI.2003.822821 10.1016/j.neuroimage.2012.05.032 10.1006/nimg.2001.1052 10.1016/j.neuroimage.2018.07.015 10.1016/j.neuroimage.2009.10.080 10.1073/pnas.0601417103 10.1523/JNEUROSCI.4004-09.2009 10.3389/fnins.2016.00123 10.1523/JNEUROSCI.2295-07.2008 10.1002/mrm.10609 10.1186/1745-6215-13-106 10.1136/jnnp.23.1.56 10.1371/journal.pcbi.1000395 10.1016/j.neuroimage.2004.10.043 10.1196/annals.1440.011 10.3389/fncom.2015.00022 10.1023/B:VLSI.0000027491.81326.7a 10.1037/h0026256 10.1093/cercor/bhi016 10.1109/TBME.2002.805480 10.1016/j.neuroimage.2013.09.075 10.1016/j.neuroimage.2004.03.027 10.1016/j.neuroimage.2004.04.022 10.1016/j.biopsych.2006.09.020 10.3389/fnsys.2010.00041 10.1073/pnas.0701519104 10.1007/s00357-018-9268-8 10.1016/j.neubiorev.2010.12.007 10.1002/hbm.10022 10.1016/j.neuroimage.2008.05.008 10.3389/fpsyg.2015.00603 10.1214/16-AOAS946 10.1371/journal.pcbi.0030017 10.1146/annurev.neuro.051508.135735 10.1162/jocn_a_00077 10.1073/pnas.1315529111 10.1038/jcbfm.1993.4 10.1371/journal.pbio.0060159 10.1089/brain.2017.0539 |
ContentType | Journal Article |
Copyright | Copyright 2018, Mary Ann Liebert, Inc., publishers Copyright 2018, Mary Ann Liebert, Inc., publishers 2018 |
Copyright_xml | – notice: Copyright 2018, Mary Ann Liebert, Inc., publishers – notice: Copyright 2018, Mary Ann Liebert, Inc., publishers 2018 |
DBID | AAYXX CITATION 3V. 7QG 7RV 7TK 7X7 7XB 88E 88G 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U RC3 5PM |
DOI | 10.1089/brain.2018.0615 |
DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Nursing & Allied Health Database Neurosciences Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Psychology Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Animal Behavior Abstracts ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Statistics Public Health |
EISSN | 2158-0022 |
EndPage | 594 |
ExternalDocumentID | PMC6310205 10_1089_brain_2018_0615 |
GeographicLocations | Atlanta Georgia United States--US Georgia |
GeographicLocations_xml | – name: Atlanta Georgia – name: United States--US – name: Georgia |
GroupedDBID | --- 0R~ 4.4 53G 7RV 7X7 88E 8FI 8FJ AAYXX ABBKN ABJNI ABUWG ACGFS ACPRK ADBBV AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BKEYQ BNQNF BPHCQ BVXVI CCPQU CITATION DWQXO EBS EJD FYUFA GNUQQ HMCUK IM4 M1P M2M NAPCQ O9- PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ RML UKHRP 3V. 7QG 7TK 7XB 8FD 8FK FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U RC3 5PM SCNPE |
ID | FETCH-LOGICAL-c324t-7dcfca440ef2a19d6ddcdd38d431ab8c4ee613c2b99fcb8cf7d63cc18ac9391a3 |
IEDL.DBID | 7X7 |
ISSN | 2158-0014 |
IngestDate | Thu Aug 21 18:19:10 EDT 2025 Fri Jul 25 05:08:54 EDT 2025 Tue Jul 01 03:51:50 EDT 2025 Thu Apr 24 22:49:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-7dcfca440ef2a19d6ddcdd38d431ab8c4ee613c2b99fcb8cf7d63cc18ac9391a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2157952199 |
PQPubID | 2029230 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6310205 proquest_journals_2157952199 crossref_primary_10_1089_brain_2018_0615 crossref_citationtrail_10_1089_brain_2018_0615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New Rochelle |
PublicationPlace_xml | – name: New Rochelle – name: 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA |
PublicationTitle | Brain connectivity |
PublicationYear | 2018 |
Publisher | Mary Ann Liebert, Inc Mary Ann Liebert, Inc., publishers |
Publisher_xml | – name: Mary Ann Liebert, Inc – name: Mary Ann Liebert, Inc., publishers |
References | B20 B22 B23 B24 B25 B26 B27 B28 B29 Duann J-R (B21) 2006; 5 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B44 B45 B47 B48 Quigley M (B49) 2003; 24 Ng B (B46) 2012; 15 Casella G (B14) 1990 B50 B51 B52 B53 B10 B54 B11 B55 B12 B13 B57 B58 B15 B59 B16 B17 B18 B19 B60 B61 |
References_xml | – volume: 15 start-page: 707 issue: 1 year: 2012 ident: B46 publication-title: Med Image Comput Comput Assist Interv – ident: B13 doi: 10.1002/hbm.1048 – ident: B60 doi: 10.1016/j.neuroimage.2013.09.071 – ident: B25 doi: 10.1371/journal.pcbi.1000196 – start-page: 241 year: 1990 ident: B14 publication-title: Number – ident: B5 doi: 10.1016/j.neuroimage.2006.09.018 – ident: B58 doi: 10.1002/hbm.22234 – ident: B53 doi: 10.3389/fnana.2015.00152 – ident: B7 doi: 10.1016/j.neuroimage.2005.08.044 – ident: B17 doi: 10.1016/S0730-725X(02)00503-9 – ident: B45 doi: 10.1016/j.neuron.2012.12.028 – ident: B18 doi: 10.1111/j.1365-3121.1992.tb00605.x – ident: B54 doi: 10.1371/journal.pone.0014801 – ident: B8 doi: 10.1198/016214506000001347 – ident: B36 doi: 10.1073/pnas.0811168106 – ident: B52 doi: 10.1073/pnas.0905267106 – ident: B19 doi: 10.1093/cercor/bhu246 – ident: B2 doi: 10.1093/cercor/bhr388 – ident: B3 doi: 10.1109/TMI.2003.822821 – ident: B10 doi: 10.1016/j.neuroimage.2012.05.032 – ident: B39 doi: 10.1006/nimg.2001.1052 – ident: B32 doi: 10.1016/j.neuroimage.2018.07.015 – ident: B61 doi: 10.1016/j.neuroimage.2009.10.080 – ident: B20 doi: 10.1073/pnas.0601417103 – ident: B40 doi: 10.1523/JNEUROSCI.4004-09.2009 – ident: B57 doi: 10.3389/fnins.2016.00123 – ident: B48 doi: 10.1523/JNEUROSCI.2295-07.2008 – ident: B6 doi: 10.1002/mrm.10609 – ident: B22 doi: 10.1186/1745-6215-13-106 – volume: 5 start-page: 5324 year: 2006 ident: B21 publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: B30 doi: 10.1136/jnnp.23.1.56 – ident: B42 doi: 10.1371/journal.pcbi.1000395 – ident: B4 doi: 10.1016/j.neuroimage.2004.10.043 – ident: B11 doi: 10.1196/annals.1440.011 – ident: B59 doi: 10.3389/fncom.2015.00022 – ident: B12 doi: 10.1023/B:VLSI.0000027491.81326.7a – ident: B16 doi: 10.1037/h0026256 – ident: B50 doi: 10.1093/cercor/bhi016 – ident: B44 doi: 10.1109/TBME.2002.805480 – ident: B34 doi: 10.1016/j.neuroimage.2013.09.075 – ident: B33 doi: 10.1016/j.neuroimage.2004.03.027 – ident: B9 doi: 10.1016/j.neuroimage.2004.04.022 – ident: B27 doi: 10.1016/j.biopsych.2006.09.020 – ident: B55 doi: 10.3389/fnsys.2010.00041 – volume: 24 start-page: 208 year: 2003 ident: B49 publication-title: Am J Neuroradiol – ident: B35 doi: 10.1073/pnas.0701519104 – ident: B24 doi: 10.1007/s00357-018-9268-8 – ident: B47 doi: 10.1016/j.neubiorev.2010.12.007 – ident: B31 doi: 10.1002/hbm.10022 – ident: B28 doi: 10.1016/j.neuroimage.2008.05.008 – ident: B38 doi: 10.3389/fpsyg.2015.00603 – ident: B51 doi: 10.1214/16-AOAS946 – ident: B1 doi: 10.1371/journal.pcbi.0030017 – ident: B37 doi: 10.1146/annurev.neuro.051508.135735 – ident: B41 doi: 10.1162/jocn_a_00077 – ident: B26 doi: 10.1073/pnas.1315529111 – ident: B23 doi: 10.1038/jcbfm.1993.4 – ident: B29 doi: 10.1371/journal.pbio.0060159 – ident: B15 doi: 10.1089/brain.2017.0539 |
SSID | ssj0000548004 |
Score | 2.1792164 |
Snippet | In recent years, there has been strong interest in neuroscience studies to investigate brain organization through networks of brain regions that demonstrate... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 579 |
SubjectTerms | Bioinformatics Brain architecture Brain mapping Brain research Data processing Datasets Functional magnetic resonance imaging Medical imaging Mental depression Nervous system Neural networks Neuroimaging NMR Nuclear magnetic resonance Original Population studies Public health Statistics |
Title | Evaluating the Strength of Structural Connectivity Underlying Brain Functional Networks |
URI | https://www.proquest.com/docview/2157952199 https://pubmed.ncbi.nlm.nih.gov/PMC6310205 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED3xsVRCCAqI8lF5QIglkA83tifUolYVQ4UQiG5RfE4ACVJQy8C_x2enpR1gS5TESnKO7_n88h7AWco7kREoAqNMSRZmSaCTPAyUzHNFkDYxjuU7SoeP_HbcGdcFt2lNq5yPiW6gNhOkGvmVTU1C2Vyj1PXHZ0CuUbS6WltorMMmSZdRrxZjsaixhCRm5hwE7dUyoOnAXN1HqitNHgxE7iIFT7LFXU5Mv2hzlSu5lHwGO7Bdo0bW9WHehbWiasJet7Iz5vdvds4cj9MVyJuw5StxzP9g1IQG4Ukvx7wHT_1a3bt6Zhb6MVqUrp5nL2xS0vYXOhkO5ugv6I0lmLNGeqPfoViPHoYNbC70JUQ28izy6T48DvoPN8Og9lYI0EKoWSAMlphzHhZlnEfKpMagMYk0FlDkWiIvCpvoMdZKlWj3S2HSBDGSOapERXlyABvVpCoOgdkJYRwaC0tiLTgqrqUodccknKtIauQtuJy_2Axr4XHyv3jL3AK4VJmLREaRyCgSLbhYXPDhNTf-PvVkHqms_vim2W9XaYFYid6iORLVXj1Svb44ce3U4t047Bz93_AxNOgePK_lBDZsgIpTi05muu26YBs2e_3R3f0PvknoqA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9kAlhOgWxEKhPhTEJTQPb2wfECq0qy0te2rF3kI8Tlqkki3aRah_qr-xM3ay7R7orbdEcSzHM_E8PP4-gJ1cDhKnUEXOuJopzLLIZmUcGV2Whl3azPkq33E-OpXfJoPJClx3Z2G4rLJbE_1C7abIOfJdMk3KkK0x5vPln4hZo3h3taPQCGpxVF39o5Bt9ulwn-T7Lk2HBydfR1HLKhAhOQ_zSDmssZQyruq0TIzLnUPnMu3IlJZWo6wqMnGYWmNqpPtauTxDTHSJJjNJmVG_j2CNWscc7KmJWuR0YgZP84yFNFodcfjRoQlps2uZ84GLyRgxlGl47xrCW-92uTbzjrEbPoOnrZcq9oJabcBK1fRgc6-hCP33lXgvfN2oT8j34EnI_IlwoKkH6-y_BvjnTfhx0KKJN2eCXE3Bm-DN2fxcTGu-_ose9kP4chsMRBbCUzFd8PEr8YU_RgzJ9oaUpRiHqvXZczh9kFl_AavNtKlegqAANI0duUGpVRKNtFrVduAyKU2iLco-fOwmtsAW6Jz5Ni4Kv-GuTeElUbAkCpZEHz4sXrgMGB__b7rVSapof_ZZcauafVBL0lt0xyDey0-aX-cezDsnPUrjwav7O96Gx6OT78fF8eH46DWs83hCTc0WrJKwqjfkGc3tW6-OAn4-tP7fAPfAJxY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVEKVEIIU1JQCewDExcQfG-_uAaGWJmopiipERW_GO2u3SK1TlCDUv8avY2bXTpsD3HqzZXtle8aej337HsCrXI4Sp1BFzriaJcyyyGZlHBldloZT2sx5lO80PziRn05Hp2vwp1sLw7DK7p_of9RuhtwjH1JoUoZijTHDuoVFHO9PPlz9jFhBimdaOzmN4CJH1fVvKt_m7w_3ydav03Qy_vrxIGoVBiKkRGIRKYc1llLGVZ2WiXG5c-hcph2F1dJqlFVF4Q5Ta0yNtF8rl2eIiS7RZCYpMxr3Hqwrrop6sL43nh5_WXZ4YqZS8_qFdO864mKk4xbSZmhZAYKhZcwfyqK8t8PiTa67itS8Ffomj-Bhm7OK3eBkj2GtavqwudtQvX55Ld4IjyL17fk-PAh9QBGWN_Vhg7PZQAa9Cd_GLbd4cyYo8RQ8Jd6cLc7FrObtX-hJQIQH32CQtRBemOmCF2OJPX4YMaFIHBqYYhow7PMncHIn7_0p9JpZU22BoHI0jR0lRalVEo20WtV25DIpTaItygG8615sgS3tOatvXBR--l2bwluiYEsUbIkBvF1ecBUYP_596k5nqaL99OfFjaMOQK1YbzkcU3qvHml-nHtq75yy7TQebf9_4Jdwn3y_-Hw4PXoGG3w7AWCzAz2yVfWc0qSFfdH6o4Dvd_0J_AU9byyx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+Strength+of+Structural+Connectivity+Underlying+Brain+Functional+Networks&rft.jtitle=Brain+connectivity&rft.au=Kemmer%2C+Phebe+Brenne&rft.au=Wang%2C+Yikai&rft.au=Bowman%2C+F.+DuBois&rft.au=Mayberg%2C+Helen&rft.date=2018-12-01&rft.issn=2158-0014&rft.eissn=2158-0022&rft.volume=8&rft.issue=10&rft.spage=579&rft.epage=594&rft_id=info:doi/10.1089%2Fbrain.2018.0615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1089_brain_2018_0615 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-0014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-0014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-0014&client=summon |