Stochastic Rank Aggregation for the Identification of Functional Neuromarkers
The main challenge in analysing functional magnetic resonance imaging (fMRI) data from extended samples of subject ( N > 100) is to extract as much relevant information as possible from big amounts of noisy data. When studying neurodegenerative diseases with resting-state fMRI, one of the object...
Saved in:
Published in | Neuroinformatics (Totowa, N.J.) Vol. 17; no. 4; pp. 479 - 496 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1539-2791 1559-0089 1559-0089 |
DOI | 10.1007/s12021-018-9412-y |
Cover
Loading…
Abstract | The main challenge in analysing functional magnetic resonance imaging (fMRI) data from extended samples of subject (
N
> 100) is to extract as much relevant information as possible from big amounts of noisy data. When studying neurodegenerative diseases with resting-state fMRI, one of the objectives is to determine regions with abnormal background activity with respect to a healthy brain and this is often attained with comparative statistical models applied to single voxels or brain parcels within one or several functional networks. In this work, we propose a novel approach based on clustering and stochastic rank aggregation to identify parcels that exhibit a coherent behaviour in groups of subjects affected by the same disorder and apply it to default-mode network independent component maps from resting-state fMRI data sets. Brain voxels are partitioned into parcels through k-means clustering, then solutions are enhanced by means of consensus techniques. For each subject, clusters are ranked according to their median value and a stochastic rank aggregation method,
TopKLists
, is applied to combine the individual rankings within each class of subjects. For comparison, the same approach was tested on an anatomical parcellation. We found parcels for which the rankings were different among control subjects and subjects affected by Parkinson’s disease and amyotrophic lateral sclerosis and found evidence in literature for the relevance of top ranked regions in default-mode brain activity. The proposed framework represents a valid method for the identification of functional neuromarkers from resting-state fMRI data, and it might therefore constitute a step forward in the development of fully automated data-driven techniques to support early diagnoses of neurodegenerative diseases. |
---|---|
AbstractList | The main challenge in analysing functional magnetic resonance imaging (fMRI) data from extended samples of subject (N > 100) is to extract as much relevant information as possible from big amounts of noisy data. When studying neurodegenerative diseases with resting-state fMRI, one of the objectives is to determine regions with abnormal background activity with respect to a healthy brain and this is often attained with comparative statistical models applied to single voxels or brain parcels within one or several functional networks. In this work, we propose a novel approach based on clustering and stochastic rank aggregation to identify parcels that exhibit a coherent behaviour in groups of subjects affected by the same disorder and apply it to default-mode network independent component maps from resting-state fMRI data sets. Brain voxels are partitioned into parcels through k-means clustering, then solutions are enhanced by means of consensus techniques. For each subject, clusters are ranked according to their median value and a stochastic rank aggregation method, TopKLists, is applied to combine the individual rankings within each class of subjects. For comparison, the same approach was tested on an anatomical parcellation. We found parcels for which the rankings were different among control subjects and subjects affected by Parkinson’s disease and amyotrophic lateral sclerosis and found evidence in literature for the relevance of top ranked regions in default-mode brain activity. The proposed framework represents a valid method for the identification of functional neuromarkers from resting-state fMRI data, and it might therefore constitute a step forward in the development of fully automated data-driven techniques to support early diagnoses of neurodegenerative diseases. The main challenge in analysing functional magnetic resonance imaging (fMRI) data from extended samples of subject (N > 100) is to extract as much relevant information as possible from big amounts of noisy data. When studying neurodegenerative diseases with resting-state fMRI, one of the objectives is to determine regions with abnormal background activity with respect to a healthy brain and this is often attained with comparative statistical models applied to single voxels or brain parcels within one or several functional networks. In this work, we propose a novel approach based on clustering and stochastic rank aggregation to identify parcels that exhibit a coherent behaviour in groups of subjects affected by the same disorder and apply it to default-mode network independent component maps from resting-state fMRI data sets. Brain voxels are partitioned into parcels through k-means clustering, then solutions are enhanced by means of consensus techniques. For each subject, clusters are ranked according to their median value and a stochastic rank aggregation method, TopKLists, is applied to combine the individual rankings within each class of subjects. For comparison, the same approach was tested on an anatomical parcellation. We found parcels for which the rankings were different among control subjects and subjects affected by Parkinson's disease and amyotrophic lateral sclerosis and found evidence in literature for the relevance of top ranked regions in default-mode brain activity. The proposed framework represents a valid method for the identification of functional neuromarkers from resting-state fMRI data, and it might therefore constitute a step forward in the development of fully automated data-driven techniques to support early diagnoses of neurodegenerative diseases.The main challenge in analysing functional magnetic resonance imaging (fMRI) data from extended samples of subject (N > 100) is to extract as much relevant information as possible from big amounts of noisy data. When studying neurodegenerative diseases with resting-state fMRI, one of the objectives is to determine regions with abnormal background activity with respect to a healthy brain and this is often attained with comparative statistical models applied to single voxels or brain parcels within one or several functional networks. In this work, we propose a novel approach based on clustering and stochastic rank aggregation to identify parcels that exhibit a coherent behaviour in groups of subjects affected by the same disorder and apply it to default-mode network independent component maps from resting-state fMRI data sets. Brain voxels are partitioned into parcels through k-means clustering, then solutions are enhanced by means of consensus techniques. For each subject, clusters are ranked according to their median value and a stochastic rank aggregation method, TopKLists, is applied to combine the individual rankings within each class of subjects. For comparison, the same approach was tested on an anatomical parcellation. We found parcels for which the rankings were different among control subjects and subjects affected by Parkinson's disease and amyotrophic lateral sclerosis and found evidence in literature for the relevance of top ranked regions in default-mode brain activity. The proposed framework represents a valid method for the identification of functional neuromarkers from resting-state fMRI data, and it might therefore constitute a step forward in the development of fully automated data-driven techniques to support early diagnoses of neurodegenerative diseases. The main challenge in analysing functional magnetic resonance imaging (fMRI) data from extended samples of subject ( N > 100) is to extract as much relevant information as possible from big amounts of noisy data. When studying neurodegenerative diseases with resting-state fMRI, one of the objectives is to determine regions with abnormal background activity with respect to a healthy brain and this is often attained with comparative statistical models applied to single voxels or brain parcels within one or several functional networks. In this work, we propose a novel approach based on clustering and stochastic rank aggregation to identify parcels that exhibit a coherent behaviour in groups of subjects affected by the same disorder and apply it to default-mode network independent component maps from resting-state fMRI data sets. Brain voxels are partitioned into parcels through k-means clustering, then solutions are enhanced by means of consensus techniques. For each subject, clusters are ranked according to their median value and a stochastic rank aggregation method, TopKLists , is applied to combine the individual rankings within each class of subjects. For comparison, the same approach was tested on an anatomical parcellation. We found parcels for which the rankings were different among control subjects and subjects affected by Parkinson’s disease and amyotrophic lateral sclerosis and found evidence in literature for the relevance of top ranked regions in default-mode brain activity. The proposed framework represents a valid method for the identification of functional neuromarkers from resting-state fMRI data, and it might therefore constitute a step forward in the development of fully automated data-driven techniques to support early diagnoses of neurodegenerative diseases. |
Author | Tedeschi, Gioacchino Trojsi, Francesca Galdi, Paola Fratello, Michele Russo, Antonio Tagliaferri, Roberto Esposito, Fabrizio |
Author_xml | – sequence: 1 givenname: Paola orcidid: 0000-0003-4556-6799 surname: Galdi fullname: Galdi, Paola organization: NeuRoNe Lab, Department of Management and Innovation Systems, University of Salerno – sequence: 2 givenname: Michele surname: Fratello fullname: Fratello, Michele organization: Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli” – sequence: 3 givenname: Francesca surname: Trojsi fullname: Trojsi, Francesca organization: Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli” – sequence: 4 givenname: Antonio surname: Russo fullname: Russo, Antonio organization: Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli” – sequence: 5 givenname: Gioacchino surname: Tedeschi fullname: Tedeschi, Gioacchino organization: Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli” – sequence: 6 givenname: Roberto surname: Tagliaferri fullname: Tagliaferri, Roberto organization: NeuRoNe Lab, Department of Management and Innovation Systems, University of Salerno – sequence: 7 givenname: Fabrizio surname: Esposito fullname: Esposito, Fabrizio email: faesposito@unisa.it organization: Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30604083$$D View this record in MEDLINE/PubMed |
BookMark | eNp10U1PwyAYB3BiNO5FP4AX08SLl-oDlLYcl8XpkqmJL2fCKO26dWVCe9i3l9qpiYknnpDfAw_8R-i4NrVG6ALDDQZIbh0mQHAIOA15hEm4P0JDzBgPAVJ-3NWUhyTheIBGzq0BSJwAnKIBhRgiSOkQPb42Rq2ka0oVvMh6E0yKwupCNqWpg9zYoFnpYJ7puinzUvXbJg9mba26WlbBk26t2Uq70dadoZNcVk6fH9Yxep_dvU0fwsXz_Xw6WYSKkqgJkywiVMs0JRwDjWMaxUr6MbOUUpl5E0eMJXnCE8a1BpapmGdsGcklIYx7NUbX_bk7az5a7RqxLZ3SVSVrbVonCI4pAMcp8fTqD12b1vrBv5T_EJrwyKvLg2qXW52JnS39k_bi-6M8wD1Q1jhndf5DMIguDNGHIXwYogtD7H0P6Xuct3Wh7e_V_zd9AtE8ikA |
Cites_doi | 10.1016/j.neuroimage.2018.03.011 10.1093/brain/120.6.963 10.1148/radiol.2017162929 10.1002/1531-8249(199903)45:3<329::AID-ANA8>3.0.CO;2-S 10.1016/S0140-6736(10)61156-7 10.1371/JOURNAL.PONE.0002001 10.3389/fneur.2014.00180 10.1111/jnp.12028 10.1371/journal.pcbi.1002707 10.1006/nimg.2000.0675 10.1212/01.WNL.0000055861.95202.8D 10.1016/j.neurobiolaging.2014.06.025 10.1007/s00415-014-7591-5 10.1002/hbm.22258 10.1196/annals.1440.011 10.1073/pnas.0601417103 10.1037/a0012613 10.1073/pnas.0905267106 10.1017/S1355617709991299 10.1515/sagmb-2014-0093 10.1371/journal.pone.0045470 10.1016/j.parkreldis.2012.03.018 10.1002/wics.111 10.1561/2200000008 10.1146/annurev-neuro-071013-014030 10.1002/mds.26049 10.1002/hbm.20210 10.1016/J.MRI.2008.01.045 10.1089/brain.2013.0146 10.1073/pnas.0135058100 10.1016/S1474-4422(14)70167-X 10.1016/j.neuroimage.2010.06.061 10.1073/pnas.0711791105 10.3233/JPD-130181 10.1109/72.761722 10.1016/j.biopsych.2006.09.020 10.1038/nmeth.1635 10.1016/j.expneurol.2009.01.025 10.1001/archneurol.2009.97 10.1093/brain/awt007 10.1038/nature18933 10.1148/radiol.247172401 10.1212/WNL.0b013e31827689d6 10.1080/03610918.2012.625843 10.1016/j.neurobiolaging.2012.04.015 10.1080/17482960701737716 10.1590/S0004-282X2008000200001 10.1080/13825585.2016.1202188 10.1073/pnas.0308627101 10.3233/JAD-2011-101260 10.1146/annurev-clinpsy-032511-143049 10.1093/brain/awt316 10.1080/01621459.2012.682539 10.1097/WCO.0b013e32834897a5 10.1002/hbm.1031 10.1002/mds.22560 10.1007/s00500-017-2596-5 10.1111/ncn3.12046 10.1007/s13311-015-0347-9 10.1002/hbm.22831 10.3389/fnins.2014.00167 10.1016/j.neuroimage.2004.10.042 10.1016/S0197-4580(99)00107-4 10.1006/nimg.1998.0391 10.1148/radiol.2017170438 10.1016/j.neurobiolaging.2010.07.011 10.1073/pnas.1602413113 10.1371/journal.pone.0128682 10.1016/S0893-6080(00)00026-5 10.3174/ajnr.A1556 10.1016/J.JMVA.2006.11.013 10.1093/brain/awl326 10.1007/s13311-016-0484-9 10.1006/nimg.2001.0978 10.1145/1553374.1553511 10.1109/BIBE.2009.19 10.5772/23290 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Neuroinformatics is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Neuroinformatics is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
DOI | 10.1007/s12021-018-9412-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1559-0089 |
EndPage | 496 |
ExternalDocumentID | 30604083 10_1007_s12021_018_9412_y |
Genre | Journal Article |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 53G 5VS 67N 6NX 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LK8 LLZTM M0L M1P M2M M4Y M7P MA- NPVJJ NQJWS NU0 O9- O9J OVD P2P PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z83 Z88 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c324t-7d423ea882910366346ca791d833adc3264557f79759ee05dc69d5b4ab2259d83 |
IEDL.DBID | BENPR |
ISSN | 1539-2791 1559-0089 |
IngestDate | Thu Sep 04 16:43:15 EDT 2025 Fri Jul 25 19:03:41 EDT 2025 Mon Jul 21 06:06:43 EDT 2025 Tue Jul 01 04:24:53 EDT 2025 Fri Feb 21 02:26:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Default mode network Clustering Stochastic rank aggregation fMRI data analysis Independent component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-7d423ea882910366346ca791d833adc3264557f79759ee05dc69d5b4ab2259d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4556-6799 |
PMID | 30604083 |
PQID | 2162673794 |
PQPubID | 54206 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2163009182 proquest_journals_2162673794 pubmed_primary_30604083 crossref_primary_10_1007_s12021_018_9412_y springer_journals_10_1007_s12021_018_9412_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191000 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Totowa |
PublicationTitle | Neuroinformatics (Totowa, N.J.) |
PublicationTitleAbbrev | Neuroinform |
PublicationTitleAlternate | Neuroinformatics |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Olde Dubbelink, Hillebrand, Stoffers (CR51) 2014; 137 Galdi, Fratello, Trojsi, Russo, Tedeschi, Tagliaferri, Esposito (CR20) 2017; 22 Disbrow, Sigvardt, Franz (CR13) 2013; 3 Esposito, Scarabino, Hyvarinen, Himberg, Formisano, Comani, Tedeschi, Goebel, Seifritz, di Salle (CR16) 2005; 25 Esposito, Tessitore, Giordano, de Micco, Paccone, Conforti, Pignataro, Annunziato, Tedeschi (CR19) 2013; 136 Tessitore, Esposito, Vitale, Santangelo, Amboni, Russo, Corbo, Cirillo, Barone, Tedeschi (CR65) 2012; 79 Agosta, Canu, Valsasina, Riva, Prelle, Comi, Filippi (CR1) 2013; 34 Goutte, Toft, Rostrup, Nielsen, Hansen (CR24) 1999; 9 Verstraete, Foerster (CR73) 2015; 12 van den Heuvel, Mandl, Pol (CR71) 2008; 3 Menke, Agosta, Grosskreutz, Filippi, Turner (CR48) 2017; 14 Tessitore, Amboni, Esposito, Russo, Picillo, Marcuccio, Pellecchia, Vitale, Cirillo, Tedeschi, Barone (CR64) 2012; 18 CR76 CR75 Dirnberger, Jahanshahi (CR12) 2013; 7 Poldrack, Mumford, Schonberg, Kalar, Barman, Yarkoni (CR53) 2012; 8 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (CR59) 2009; 106 Tessitore, Giordano, De Micco (CR66) 2014; 5 Esposito, Pignataro, Di Renzo (CR18) 2010; 53 Huettel, Singerman, McCarthy (CR35) 2001; 13 Suo, Lei, Li, Cheng, Chen, Wang, Kemp, Peng, Gong (CR60) 2017; 285 CR70 Gattellaro, Minati, Grisoli, Mariani, Carella, Osio, Ciceri, Albanese, Bruzzone (CR21) 2009; 30 Schimek, Myšičková, Budinská (CR57) 2012; 41 Hall, Schimek (CR29) 2012; 107 Lomen-Hoerth, Murphy, Langmore, Kramer, Olney, Miller (CR43) 2003; 60 Meilă (CR47) 2007; 98 CR3 Beato, Levy, Pillon, Vidal, du Montcel, Deweer, Bonnet, Houeto, Dubois, Cardoso (CR4) 2008; 66 Kiernan, Vucic, Cheah, Turner, Eisen, Hardiman, Burrell, Zoing (CR40) 2011; 377 Monchi, Petrides, Mejia-Constain, Strafella (CR50) 2007; 130 Luo, Chen, Huang, Chen, Chen, Huang, Tang, Gong, Shang (CR44) 2012; 7 CR42 Di Rosa, Pischedda, Cherubini (CR11) 2017; 24 Thirion, Flandin, Pinel, Roche, Ciuciu, Poline (CR67) 2006; 27 Gorges, Müller, Lulé, Ludolph, Pinkhardt, Kassubek (CR23) 2013; 3 Esposito, Goebel (CR15) 2011; 24 Amboni, Tessitore, Esposito, Santangelo, Picillo, Vitale, Giordano, Erro, de Micco, Corbo, Tedeschi, Barone (CR2) 2015; 262 Whitfield-Gabrieli, Ford (CR78) 2012; 8 Verstraete, Veldink, van den Berg, van den Heuvel (CR74) 2014; 35 Tedeschi, Trojsi, Tessitore, Corbo, Sagnelli, Paccone, D'Ambrosio, Piccirillo, Cirillo, Cirillo, Monsurrò, Esposito (CR62) 2012; 33 Wicks, Turner, Abrahams, Hammers, Brooks, Leigh, Goldstein (CR79) 2008; 9 Hyvärinen, Oja (CR37) 2000; 13 Possin, Filoteo, Song, Salmon (CR54) 2008; 22 Pereira, Junqué, Martí (CR52) 2009; 24 Trojsi, Esposito, de Stefano, Buonanno, Conforti, Corbo, Piccirillo, Cirillo, Monsurrò, Montella, Tedeschi (CR69) 2015; 36 Schimek, Budinská, Kugler, Švendová, Ding, Lin (CR58) 2015; 14 Luo, Guo, Song, Chen, Yang, Gong, Shang (CR45) 2015; 36 Convit, De Asis, De Leon (CR8) 2000; 21 De Micco, Tessitore, Paccone (CR10) 2013; 28 Terada, Obi, Miyata, Kubota, Yoshizumi, Murai, Yamazaki, Mizoguchi (CR63) 2016; 4 Eklund, Nichols, Knutsson (CR14) 2016; 113 Greicius, Flores, Menon, Glover, Solvason, Kenna, Reiss, Schatzberg (CR28) 2007; 62 Herrington, Briscoe, Eskandar (CR34) 2017; 285 von Luxburg (CR77) 2010; 2 Yarkoni, Poldrack, Nichols, van Essen, Wager (CR80) 2011; 8 Van Eimeren, Monchi, Ballanger, Strafella (CR72) 2009; 66 Mohammadi, Kollewe, Samii, Krampfl, Dengler, Münte (CR49) 2009; 217 Thirion, Varoquaux, Dohmatob, Poline (CR68) 2014; 8 Hanakawa, Fukuyama, Katsumi, Honda, Shibasaki (CR30) 1999; 45 Iyer, Egan, Pinto-Grau, Burke, Elamin, Nasseroleslami, Pender, Lalor, Hardiman (CR38) 2015; 10 Lin (CR41) 2010; 2 Greicius, Krasnow, Reiss, Menon (CR26) 2003; 100 Bosch, Esposito, Dornbierer, Havranek, von Rotz, Kometer, Staempfli, Quednow, Seifritz (CR5) 2018; 173 Harrison, Pujol, Lopez-Sola, Hernandez-Ribas, Deus, Ortiz, Soriano-Mas, Yucel, Pantelis, Cardoner (CR32) 2008; 105 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, van Essen (CR22) 2016; 536 Jahanshahi, Obeso, Baunez, Alegre, Krack (CR39) 2015; 30 Buckner, Andrews-Hanna, Schacter (CR6) 2008; 1124 Goutte, Hansen, Liptrot, Rostrup (CR25) 2001; 13 Greicius, Srivastava, Reiss, Menon (CR27) 2004; 101 Hyvarinen (CR36) 1999; 10 Chiò, Pagani, Agosta, Calvo, Cistaro, Filippi (CR7) 2014; 13 Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (CR9) 2006; 103 Hepp, Foncke, Olde Dubbelink, van de Berg, Berendse, Schoonheim (CR33) 2017; 285 McKinlay, Grace, Dalrymple-Alford, Roger (CR46) 2010; 16 Esposito, Aragri, Pesaresi, Cirillo, Tedeschi, Marciano, Goebel, di Salle (CR17) 2008; 26 Samuel, Ceballos-Baumann, Blin (CR56) 1997; 120 Tedeschi, Esposito (CR61) 2012 Hänggi, Streffer, Jäncke, Hock (CR31) 2011; 26 Raichle (CR55) 2015; 38 S Whitfield-Gabrieli (9412_CR78) 2012; 8 E Rosa Di (9412_CR11) 2017; 24 J Hänggi (9412_CR31) 2011; 26 ME Raichle (9412_CR55) 2015; 38 M Jahanshahi (9412_CR39) 2015; 30 SM Smith (9412_CR59) 2009; 106 A Tessitore (9412_CR64) 2012; 18 M Amboni (9412_CR2) 2015; 262 MC Kiernan (9412_CR40) 2011; 377 A Tessitore (9412_CR65) 2012; 79 9412_CR3 E Verstraete (9412_CR74) 2014; 35 TM Herrington (9412_CR34) 2017; 285 SA Huettel (9412_CR35) 2001; 13 M Meilă (9412_CR47) 2007; 98 F Trojsi (9412_CR69) 2015; 36 A Hyvärinen (9412_CR37) 2000; 13 S Lin (9412_CR41) 2010; 2 R Beato (9412_CR4) 2008; 66 P Wicks (9412_CR79) 2008; 9 P Galdi (9412_CR20) 2017; 22 R Micco De (9412_CR10) 2013; 28 MD Greicius (9412_CR27) 2004; 101 T Hanakawa (9412_CR30) 1999; 45 9412_CR42 JS Damoiseaux (9412_CR9) 2006; 103 C Lomen-Hoerth (9412_CR43) 2003; 60 M Gorges (9412_CR23) 2013; 3 T Terada (9412_CR63) 2016; 4 B Mohammadi (9412_CR49) 2009; 217 T Yarkoni (9412_CR80) 2011; 8 C Luo (9412_CR45) 2015; 36 RAL Menke (9412_CR48) 2017; 14 Cyril Goutte (9412_CR24) 1999; 9 T Eimeren Van (9412_CR72) 2009; 66 A Chiò (9412_CR7) 2014; 13 RL Buckner (9412_CR6) 2008; 1124 C Goutte (9412_CR25) 2001; 13 A Convit (9412_CR8) 2000; 21 F Esposito (9412_CR18) 2010; 53 O Monchi (9412_CR50) 2007; 130 B Thirion (9412_CR68) 2014; 8 KL Possin (9412_CR54) 2008; 22 A Tessitore (9412_CR66) 2014; 5 MD Greicius (9412_CR26) 2003; 100 MG Schimek (9412_CR58) 2015; 14 G Tedeschi (9412_CR62) 2012; 33 B Thirion (9412_CR67) 2006; 27 F Esposito (9412_CR19) 2013; 136 E Verstraete (9412_CR73) 2015; 12 Parameswaran Mahadeva Iyer (9412_CR38) 2015; 10 9412_CR76 G Gattellaro (9412_CR21) 2009; 30 9412_CR75 A Eklund (9412_CR14) 2016; 113 OG Bosch (9412_CR5) 2018; 173 EA Disbrow (9412_CR13) 2013; 3 MF Glasser (9412_CR22) 2016; 536 A McKinlay (9412_CR46) 2010; 16 A Hyvarinen (9412_CR36) 1999; 10 F Esposito (9412_CR17) 2008; 26 C Luo (9412_CR44) 2012; 7 RA Poldrack (9412_CR53) 2012; 8 9412_CR70 G Dirnberger (9412_CR12) 2013; 7 F Esposito (9412_CR16) 2005; 25 M Samuel (9412_CR56) 1997; 120 KTEE Olde Dubbelink (9412_CR51) 2014; 137 U Luxburg von (9412_CR77) 2010; 2 MG Schimek (9412_CR57) 2012; 41 JB Pereira (9412_CR52) 2009; 24 MD Greicius (9412_CR28) 2007; 62 P Hall (9412_CR29) 2012; 107 BJ Harrison (9412_CR32) 2008; 105 M Heuvel van den (9412_CR71) 2008; 3 Gioacchino Tedeschi (9412_CR61) 2012 DH Hepp (9412_CR33) 2017; 285 F Esposito (9412_CR15) 2011; 24 F Agosta (9412_CR1) 2013; 34 X Suo (9412_CR60) 2017; 285 |
References_xml | – ident: CR70 – volume: 173 start-page: 448 year: 2018 end-page: 459 ident: CR5 article-title: Gamma-hydroxybutyrate increases brain resting-state functional connectivity of the salience network and dorsal nexus in humans publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.011 – volume: 120 start-page: 963 year: 1997 end-page: 976 ident: CR56 article-title: Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study publication-title: Brain doi: 10.1093/brain/120.6.963 – volume: 285 start-page: 904 year: 2017 end-page: 913 ident: CR60 article-title: Functional brain connectome and its relation to Hoehn and Yahr stage in Parkinson disease publication-title: Radiology doi: 10.1148/radiol.2017162929 – volume: 45 start-page: 329 year: 1999 end-page: 336 ident: CR30 article-title: Enhanced lateral premotor activity during paradoxical gait in parkinson’s disease publication-title: Annals of Neurology doi: 10.1002/1531-8249(199903)45:3<329::AID-ANA8>3.0.CO;2-S – volume: 377 start-page: 942 year: 2011 end-page: 955 ident: CR40 article-title: Amyotrophic lateral sclerosis publication-title: Lancet doi: 10.1016/S0140-6736(10)61156-7 – volume: 3 year: 2008 ident: CR71 article-title: Normalized cut group clustering of resting-state fMRI data publication-title: PLoS One doi: 10.1371/JOURNAL.PONE.0002001 – volume: 5 start-page: 180 year: 2014 ident: CR66 article-title: Sensorimotor connectivity in Parkinson’s disease: The role of functional neuroimaging publication-title: Frontiers in Neurology doi: 10.3389/fneur.2014.00180 – volume: 7 start-page: 193 year: 2013 end-page: 224 ident: CR12 article-title: Executive dysfunction in Parkinson’s disease: A review publication-title: Journal of Neuropsychology doi: 10.1111/jnp.12028 – volume: 8 year: 2012 ident: CR53 article-title: Discovering relations between mind, brain, and mental disorders using topic mapping publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1002707 – volume: 13 start-page: 161 year: 2001 end-page: 175 ident: CR35 article-title: The effects of aging upon the hemodynamic response measured by functional MRI publication-title: Neuroimage doi: 10.1006/nimg.2000.0675 – volume: 60 start-page: 1094 year: 2003 end-page: 1097 ident: CR43 article-title: Are amyotrophic lateral sclerosis patients cognitively normal? publication-title: Neurology doi: 10.1212/01.WNL.0000055861.95202.8D – volume: 36 start-page: 413 year: 2015 end-page: 423 ident: CR69 article-title: Functional overlap and divergence between ALS and bvFTD publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2014.06.025 – volume: 262 start-page: 425 year: 2015 end-page: 434 ident: CR2 article-title: Resting-state functional connectivity associated with mild cognitive impairment in Parkinson’s disease publication-title: Journal of Neurology doi: 10.1007/s00415-014-7591-5 – ident: CR42 – volume: 35 start-page: 1351 year: 2014 end-page: 1361 ident: CR74 article-title: Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis publication-title: Human Brain Mapping doi: 10.1002/hbm.22258 – volume: 1124 start-page: 1 year: 2008 end-page: 38 ident: CR6 article-title: The Brain’s default network publication-title: Annals of the New York Academy of Sciences doi: 10.1196/annals.1440.011 – volume: 103 start-page: 13848 year: 2006 end-page: 13853 ident: CR9 article-title: Consistent resting-state networks across healthy subjects publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0601417103 – volume: 22 start-page: 585 year: 2008 end-page: 595 ident: CR54 article-title: Spatial and object working memory deficits in Parkinson’s disease are due to impairment in different underlying processes publication-title: Neuropsychology doi: 10.1037/a0012613 – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: CR59 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0905267106 – volume: 16 start-page: 268 year: 2010 end-page: 277 ident: CR46 article-title: Characteristics of executive function impairment in Parkinsons disease patients without dementia publication-title: Journal of the International Neuropsychological Society doi: 10.1017/S1355617709991299 – volume: 14 start-page: 311 year: 2015 end-page: 316 ident: CR58 article-title: TopKLists: A comprehensive R package for statistical inference, stochastic aggregation, and visualization of multiple omics ranked lists publication-title: Statistical Applications in Genetics and Molecular Biology doi: 10.1515/sagmb-2014-0093 – ident: CR75 – volume: 7 year: 2012 ident: CR44 article-title: Patterns of spontaneous brain activity in amyotrophic lateral sclerosis: A resting-state fMRI study publication-title: PLoS One doi: 10.1371/journal.pone.0045470 – volume: 18 start-page: 781 year: 2012 end-page: 787 ident: CR64 article-title: Resting-state brain connectivity in patients with Parkinson’s disease and freezing of gait publication-title: Parkinsonism & Related Disorders doi: 10.1016/j.parkreldis.2012.03.018 – volume: 2 start-page: 555 year: 2010 end-page: 570 ident: CR41 article-title: Rank aggregation methods publication-title: Wiley Interdisciplinary Reviews: Computational Statistics doi: 10.1002/wics.111 – volume: 2 start-page: 235 year: 2010 end-page: 274 ident: CR77 article-title: Clustering stability: an overview publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000008 – volume: 38 start-page: 433 year: 2015 end-page: 447 ident: CR55 article-title: The Brain’s default mode network publication-title: Annual Review of Neuroscience doi: 10.1146/annurev-neuro-071013-014030 – volume: 30 start-page: 128 year: 2015 end-page: 140 ident: CR39 article-title: Parkinson’s disease, the subthalamic nucleus, inhibition, and Impulsivity publication-title: Movement Disorders doi: 10.1002/mds.26049 – volume: 27 start-page: 678 year: 2006 end-page: 693 ident: CR67 article-title: Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets publication-title: Human Brain Mapping doi: 10.1002/hbm.20210 – volume: 26 start-page: 905 year: 2008 end-page: 913 ident: CR17 article-title: Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI publication-title: Magnetic Resonance Imaging doi: 10.1016/J.MRI.2008.01.045 – volume: 3 start-page: 265 year: 2013 end-page: 272 ident: CR23 article-title: Functional connectivity within the default mode network is associated with saccadic accuracy in Parkinson’s disease: a resting-state FMRI and videooculographic study publication-title: Brain Connectivity doi: 10.1089/brain.2013.0146 – volume: 100 start-page: 253 year: 2003 end-page: 258 ident: CR26 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: PNAS doi: 10.1073/pnas.0135058100 – volume: 13 start-page: 1228 year: 2014 end-page: 1240 ident: CR7 article-title: Neuroimaging in amyotrophic lateral sclerosis: Insights into structural and functional changes publication-title: Lancet Neurology doi: 10.1016/S1474-4422(14)70167-X – volume: 53 start-page: 534 year: 2010 end-page: 543 ident: CR18 article-title: Alcohol increases spontaneous BOLD signal fluctuations in the visual network publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.061 – volume: 105 start-page: 9781 year: 2008 end-page: 9786 ident: CR32 article-title: Consistency and functional specialization in the default mode brain network publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0711791105 – volume: 3 start-page: 181 year: 2013 end-page: 192 ident: CR13 article-title: Movement activation and inhibition in Parkinson’s disease: A functional imaging study publication-title: Journal of Parkinson's Disease doi: 10.3233/JPD-130181 – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: CR36 article-title: Fast and robust fixed-point algorithm for independent component analysis publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.761722 – volume: 62 start-page: 429 year: 2007 end-page: 437 ident: CR28 article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from Subgenual cingulate cortex and thalamus publication-title: Biological Psychiatry doi: 10.1016/j.biopsych.2006.09.020 – volume: 8 start-page: 665 year: 2011 end-page: 670 ident: CR80 article-title: Large-scale automated synthesis of human functional neuroimaging data publication-title: Nature Methods doi: 10.1038/nmeth.1635 – volume: 217 start-page: 147 year: 2009 end-page: 153 ident: CR49 article-title: Changes of resting state brain networks in amyotrophic lateral sclerosis publication-title: Experimental Neurology doi: 10.1016/j.expneurol.2009.01.025 – volume: 66 start-page: 877 year: 2009 end-page: 883 ident: CR72 article-title: Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study publication-title: Archives of Neurology doi: 10.1001/archneurol.2009.97 – volume: 136 start-page: 710 year: 2013 end-page: 725 ident: CR19 article-title: Rhythm-specific modulation of the sensorimotor network in drug-naïve patients with Parkinson’s disease by levodopa publication-title: Brain doi: 10.1093/brain/awt007 – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: CR22 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 285 start-page: 725 year: 2017 end-page: 727 ident: CR34 article-title: Structural and functional network dysfunction in Parkinson disease publication-title: Radiology doi: 10.1148/radiol.247172401 – volume: 79 start-page: 2226 year: 2012 end-page: 2232 ident: CR65 article-title: Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0b013e31827689d6 – volume: 41 start-page: 1152 year: 2012 end-page: 1166 ident: CR57 article-title: An inference and integration approach for the consolidation of ranked lists publication-title: Communications in Statistics: Simulation and Computation doi: 10.1080/03610918.2012.625843 – volume: 34 start-page: 419 year: 2013 end-page: 427 ident: CR1 article-title: Divergent brain network connectivity in amyotrophic lateral sclerosis publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2012.04.015 – volume: 9 start-page: 43 year: 2008 end-page: 49 ident: CR79 article-title: Neuronal loss associated with cognitive performance in amyotrophic lateral sclerosis: An ( C)-flumazenil PET study publication-title: Amyotrophic Lateral Sclerosis doi: 10.1080/17482960701737716 – volume: 66 start-page: 147 year: 2008 end-page: 151 ident: CR4 article-title: Working memory in Parkinson’s disease patients: Clinical features and response to levodopa publication-title: Arquivos de Neuro-Psiquiatria doi: 10.1590/S0004-282X2008000200001 – volume: 24 start-page: 281 year: 2017 end-page: 298 ident: CR11 article-title: Working memory in healthy aging and in Parkinson’s disease: evidence of interference effects publication-title: Aging Neuropsychology and Cognition doi: 10.1080/13825585.2016.1202188 – volume: 101 start-page: 4637 year: 2004 end-page: 4642 ident: CR27 article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0308627101 – volume: 26 start-page: 719 year: 2011 end-page: 734 ident: CR31 article-title: Volumes of lateral temporal and parietal structures distinguish between healthy aging, mild cognitive impairment, and Alzheimer’s disease publication-title: Journal of Alzheimer's Disease doi: 10.3233/JAD-2011-101260 – volume: 8 start-page: 49 year: 2012 end-page: 76 ident: CR78 article-title: Default mode network activity and connectivity in psychopathology publication-title: Annual Review of Clinical Psychology doi: 10.1146/annurev-clinpsy-032511-143049 – volume: 137 start-page: 197 year: 2014 end-page: 207 ident: CR51 article-title: Disrupted brain network topology in Parkinson’s disease: A longitudinal magnetoencephalography study publication-title: Brain doi: 10.1093/brain/awt316 – volume: 107 start-page: 661 year: 2012 end-page: 672 ident: CR29 article-title: Moderate-deviation-based inference for random degeneration in paired rank lists publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2012.682539 – volume: 24 start-page: 378 year: 2011 end-page: 385 ident: CR15 article-title: Extracting functional networks with spatial independent component analysis: the role of dimensionality, reliability and aggregation scheme publication-title: Current Opinion in Neurology doi: 10.1097/WCO.0b013e32834897a5 – ident: CR3 – volume: 13 start-page: 165 year: 2001 end-page: 183 ident: CR25 article-title: Feature-space clustering for fMRI meta-analysis publication-title: Human Brain Mapping doi: 10.1002/hbm.1031 – volume: 24 start-page: 1193 year: 2009 end-page: 1199 ident: CR52 article-title: Neuroanatomical substrate of visuospatial and visuoperceptual impairment in Parkinson’s disease publication-title: Movement Disorders doi: 10.1002/mds.22560 – volume: 22 start-page: 1 year: 2017 end-page: 11 ident: CR20 article-title: Consensus-based feature extraction in rs-fMRI data analysis publication-title: Soft Computing doi: 10.1007/s00500-017-2596-5 – volume: 4 start-page: 85 year: 2016 end-page: 92 ident: CR63 article-title: Correlation of frontal atrophy with behavioral changes in amyotrophic lateral sclerosis publication-title: Neurol Clin Neurosci doi: 10.1111/ncn3.12046 – volume: 12 start-page: 403 year: 2015 end-page: 416 ident: CR73 article-title: Neuroimaging as a new diagnostic modality in amyotrophic lateral sclerosis publication-title: Neurotherapeutics doi: 10.1007/s13311-015-0347-9 – volume: 36 start-page: 3104 year: 2015 end-page: 3116 ident: CR45 article-title: The trajectory of disturbed resting-state cerebral function in Parkinson’s disease at different Hoehn and Yahr stages publication-title: Human Brain Mapping doi: 10.1002/hbm.22831 – volume: 8 start-page: 167 year: 2014 ident: CR68 article-title: Which fMRI clustering gives good brain parcellations? publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2014.00167 – volume: 25 start-page: 193 year: 2005 end-page: 205 ident: CR16 article-title: Independent component analysis of fMRI group studies by self-organizing clustering publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.042 – volume: 21 start-page: 19 year: 2000 end-page: 26 ident: CR8 article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease publication-title: Neurobiology of Aging doi: 10.1016/S0197-4580(99)00107-4 – volume: 9 start-page: 298 issue: 3 year: 1999 end-page: 310 ident: CR24 article-title: On Clustering fMRI Time Series publication-title: NeuroImage doi: 10.1006/nimg.1998.0391 – volume: 285 start-page: 896 year: 2017 end-page: 903 ident: CR33 article-title: Loss of functional connectivity in patients with Parkinson disease and visual hallucinations publication-title: Radiology doi: 10.1148/radiol.2017170438 – volume: 28 start-page: S66 year: 2013 end-page: S66 ident: CR10 article-title: Dopaminergic modulation of the resting-state sensori-motor network in drug-naive patients with Parkinson’s disease publication-title: Movement Disorders – year: 2012 ident: CR61 article-title: Neuronal Networks Observed with Resting State Functional Magnetic Resonance Imaging in Clinical Populations publication-title: Neuroimaging - Cognitive and Clinical Neuroscience – volume: 33 start-page: 886 year: 2012 end-page: 898 ident: CR62 article-title: Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2010.07.011 – ident: CR76 – volume: 113 start-page: 7900 year: 2016 end-page: 7905 ident: CR14 article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1602413113 – volume: 10 start-page: e0128682 issue: 6 year: 2015 ident: CR38 article-title: Functional Connectivity Changes in Resting-State EEG as Potential Biomarker for Amyotrophic Lateral Sclerosis publication-title: PLOS ONE doi: 10.1371/journal.pone.0128682 – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: CR37 article-title: Independent component analysis: algorithms and applications publication-title: Neural Networks doi: 10.1016/S0893-6080(00)00026-5 – volume: 30 start-page: 1222 year: 2009 end-page: 1226 ident: CR21 article-title: White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study publication-title: AJNR. American Journal of Neuroradiology doi: 10.3174/ajnr.A1556 – volume: 98 start-page: 873 year: 2007 end-page: 895 ident: CR47 article-title: Comparing clusterings—An information based distance publication-title: Journal of Multivariate Analysis doi: 10.1016/J.JMVA.2006.11.013 – volume: 130 start-page: 233 year: 2007 end-page: 244 ident: CR50 article-title: Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement publication-title: Brain doi: 10.1093/brain/awl326 – volume: 14 start-page: 11 year: 2017 end-page: 23 ident: CR48 article-title: Neuroimaging endpoints in amyotrophic lateral sclerosis publication-title: Neurotherapeutics doi: 10.1007/s13311-016-0484-9 – volume: 8 start-page: 167 year: 2014 ident: 9412_CR68 publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2014.00167 – volume: 3 start-page: 265 year: 2013 ident: 9412_CR23 publication-title: Brain Connectivity doi: 10.1089/brain.2013.0146 – volume: 13 start-page: 165 year: 2001 ident: 9412_CR25 publication-title: Human Brain Mapping doi: 10.1002/hbm.1031 – volume: 130 start-page: 233 year: 2007 ident: 9412_CR50 publication-title: Brain doi: 10.1093/brain/awl326 – volume: 101 start-page: 4637 year: 2004 ident: 9412_CR27 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0308627101 – volume: 3 year: 2008 ident: 9412_CR71 publication-title: PLoS One doi: 10.1371/JOURNAL.PONE.0002001 – volume: 8 start-page: 665 year: 2011 ident: 9412_CR80 publication-title: Nature Methods doi: 10.1038/nmeth.1635 – volume: 173 start-page: 448 year: 2018 ident: 9412_CR5 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.011 – volume: 33 start-page: 886 year: 2012 ident: 9412_CR62 publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2010.07.011 – volume: 113 start-page: 7900 year: 2016 ident: 9412_CR14 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1602413113 – volume: 5 start-page: 180 year: 2014 ident: 9412_CR66 publication-title: Frontiers in Neurology doi: 10.3389/fneur.2014.00180 – volume: 12 start-page: 403 year: 2015 ident: 9412_CR73 publication-title: Neurotherapeutics doi: 10.1007/s13311-015-0347-9 – volume: 16 start-page: 268 year: 2010 ident: 9412_CR46 publication-title: Journal of the International Neuropsychological Society doi: 10.1017/S1355617709991299 – volume: 22 start-page: 585 year: 2008 ident: 9412_CR54 publication-title: Neuropsychology doi: 10.1037/a0012613 – volume: 262 start-page: 425 year: 2015 ident: 9412_CR2 publication-title: Journal of Neurology doi: 10.1007/s00415-014-7591-5 – volume: 13 start-page: 411 year: 2000 ident: 9412_CR37 publication-title: Neural Networks doi: 10.1016/S0893-6080(00)00026-5 – ident: 9412_CR70 doi: 10.1006/nimg.2001.0978 – volume: 30 start-page: 128 year: 2015 ident: 9412_CR39 publication-title: Movement Disorders doi: 10.1002/mds.26049 – volume: 536 start-page: 171 year: 2016 ident: 9412_CR22 publication-title: Nature doi: 10.1038/nature18933 – volume: 28 start-page: S66 year: 2013 ident: 9412_CR10 publication-title: Movement Disorders – volume: 79 start-page: 2226 year: 2012 ident: 9412_CR65 publication-title: Neurology doi: 10.1212/WNL.0b013e31827689d6 – volume: 136 start-page: 710 year: 2013 ident: 9412_CR19 publication-title: Brain doi: 10.1093/brain/awt007 – volume: 14 start-page: 11 year: 2017 ident: 9412_CR48 publication-title: Neurotherapeutics doi: 10.1007/s13311-016-0484-9 – volume: 9 start-page: 43 year: 2008 ident: 9412_CR79 publication-title: Amyotrophic Lateral Sclerosis doi: 10.1080/17482960701737716 – volume: 120 start-page: 963 year: 1997 ident: 9412_CR56 publication-title: Brain doi: 10.1093/brain/120.6.963 – volume: 18 start-page: 781 year: 2012 ident: 9412_CR64 publication-title: Parkinsonism & Related Disorders doi: 10.1016/j.parkreldis.2012.03.018 – ident: 9412_CR3 – volume: 30 start-page: 1222 year: 2009 ident: 9412_CR21 publication-title: AJNR. American Journal of Neuroradiology doi: 10.3174/ajnr.A1556 – volume: 66 start-page: 147 year: 2008 ident: 9412_CR4 publication-title: Arquivos de Neuro-Psiquiatria doi: 10.1590/S0004-282X2008000200001 – volume: 53 start-page: 534 year: 2010 ident: 9412_CR18 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.061 – volume: 9 start-page: 298 issue: 3 year: 1999 ident: 9412_CR24 publication-title: NeuroImage doi: 10.1006/nimg.1998.0391 – volume: 8 year: 2012 ident: 9412_CR53 publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1002707 – volume: 4 start-page: 85 year: 2016 ident: 9412_CR63 publication-title: Neurol Clin Neurosci doi: 10.1111/ncn3.12046 – volume: 35 start-page: 1351 year: 2014 ident: 9412_CR74 publication-title: Human Brain Mapping doi: 10.1002/hbm.22258 – ident: 9412_CR76 doi: 10.1145/1553374.1553511 – volume: 26 start-page: 905 year: 2008 ident: 9412_CR17 publication-title: Magnetic Resonance Imaging doi: 10.1016/J.MRI.2008.01.045 – volume: 62 start-page: 429 year: 2007 ident: 9412_CR28 publication-title: Biological Psychiatry doi: 10.1016/j.biopsych.2006.09.020 – ident: 9412_CR42 – volume: 377 start-page: 942 year: 2011 ident: 9412_CR40 publication-title: Lancet doi: 10.1016/S0140-6736(10)61156-7 – volume: 2 start-page: 555 year: 2010 ident: 9412_CR41 publication-title: Wiley Interdisciplinary Reviews: Computational Statistics doi: 10.1002/wics.111 – volume: 60 start-page: 1094 year: 2003 ident: 9412_CR43 publication-title: Neurology doi: 10.1212/01.WNL.0000055861.95202.8D – volume: 103 start-page: 13848 year: 2006 ident: 9412_CR9 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0601417103 – volume: 22 start-page: 1 year: 2017 ident: 9412_CR20 publication-title: Soft Computing doi: 10.1007/s00500-017-2596-5 – volume: 107 start-page: 661 year: 2012 ident: 9412_CR29 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2012.682539 – volume: 38 start-page: 433 year: 2015 ident: 9412_CR55 publication-title: Annual Review of Neuroscience doi: 10.1146/annurev-neuro-071013-014030 – volume: 2 start-page: 235 year: 2010 ident: 9412_CR77 publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000008 – volume: 1124 start-page: 1 year: 2008 ident: 9412_CR6 publication-title: Annals of the New York Academy of Sciences doi: 10.1196/annals.1440.011 – volume: 13 start-page: 161 year: 2001 ident: 9412_CR35 publication-title: Neuroimage doi: 10.1006/nimg.2000.0675 – volume: 36 start-page: 3104 year: 2015 ident: 9412_CR45 publication-title: Human Brain Mapping doi: 10.1002/hbm.22831 – volume: 285 start-page: 904 year: 2017 ident: 9412_CR60 publication-title: Radiology doi: 10.1148/radiol.2017162929 – volume: 27 start-page: 678 year: 2006 ident: 9412_CR67 publication-title: Human Brain Mapping doi: 10.1002/hbm.20210 – volume: 14 start-page: 311 year: 2015 ident: 9412_CR58 publication-title: Statistical Applications in Genetics and Molecular Biology doi: 10.1515/sagmb-2014-0093 – volume: 41 start-page: 1152 year: 2012 ident: 9412_CR57 publication-title: Communications in Statistics: Simulation and Computation doi: 10.1080/03610918.2012.625843 – volume: 285 start-page: 725 year: 2017 ident: 9412_CR34 publication-title: Radiology doi: 10.1148/radiol.247172401 – volume: 24 start-page: 281 year: 2017 ident: 9412_CR11 publication-title: Aging Neuropsychology and Cognition doi: 10.1080/13825585.2016.1202188 – volume: 13 start-page: 1228 year: 2014 ident: 9412_CR7 publication-title: Lancet Neurology doi: 10.1016/S1474-4422(14)70167-X – volume: 10 start-page: 626 year: 1999 ident: 9412_CR36 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.761722 – volume: 8 start-page: 49 year: 2012 ident: 9412_CR78 publication-title: Annual Review of Clinical Psychology doi: 10.1146/annurev-clinpsy-032511-143049 – volume: 217 start-page: 147 year: 2009 ident: 9412_CR49 publication-title: Experimental Neurology doi: 10.1016/j.expneurol.2009.01.025 – volume: 36 start-page: 413 year: 2015 ident: 9412_CR69 publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2014.06.025 – volume: 7 year: 2012 ident: 9412_CR44 publication-title: PLoS One doi: 10.1371/journal.pone.0045470 – volume: 24 start-page: 1193 year: 2009 ident: 9412_CR52 publication-title: Movement Disorders doi: 10.1002/mds.22560 – volume: 45 start-page: 329 year: 1999 ident: 9412_CR30 publication-title: Annals of Neurology doi: 10.1002/1531-8249(199903)45:3<329::AID-ANA8>3.0.CO;2-S – volume: 100 start-page: 253 year: 2003 ident: 9412_CR26 publication-title: PNAS doi: 10.1073/pnas.0135058100 – volume: 66 start-page: 877 year: 2009 ident: 9412_CR72 publication-title: Archives of Neurology doi: 10.1001/archneurol.2009.97 – volume: 21 start-page: 19 year: 2000 ident: 9412_CR8 publication-title: Neurobiology of Aging doi: 10.1016/S0197-4580(99)00107-4 – volume: 3 start-page: 181 year: 2013 ident: 9412_CR13 publication-title: Journal of Parkinson's Disease doi: 10.3233/JPD-130181 – volume: 106 start-page: 13040 year: 2009 ident: 9412_CR59 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0905267106 – ident: 9412_CR75 doi: 10.1109/BIBE.2009.19 – volume: 7 start-page: 193 year: 2013 ident: 9412_CR12 publication-title: Journal of Neuropsychology doi: 10.1111/jnp.12028 – volume: 25 start-page: 193 year: 2005 ident: 9412_CR16 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.042 – volume: 105 start-page: 9781 year: 2008 ident: 9412_CR32 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0711791105 – volume: 285 start-page: 896 year: 2017 ident: 9412_CR33 publication-title: Radiology doi: 10.1148/radiol.2017170438 – volume: 34 start-page: 419 year: 2013 ident: 9412_CR1 publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2012.04.015 – volume: 26 start-page: 719 year: 2011 ident: 9412_CR31 publication-title: Journal of Alzheimer's Disease doi: 10.3233/JAD-2011-101260 – volume-title: Neuroimaging - Cognitive and Clinical Neuroscience year: 2012 ident: 9412_CR61 doi: 10.5772/23290 – volume: 24 start-page: 378 year: 2011 ident: 9412_CR15 publication-title: Current Opinion in Neurology doi: 10.1097/WCO.0b013e32834897a5 – volume: 10 start-page: e0128682 issue: 6 year: 2015 ident: 9412_CR38 publication-title: PLOS ONE doi: 10.1371/journal.pone.0128682 – volume: 137 start-page: 197 year: 2014 ident: 9412_CR51 publication-title: Brain doi: 10.1093/brain/awt316 – volume: 98 start-page: 873 year: 2007 ident: 9412_CR47 publication-title: Journal of Multivariate Analysis doi: 10.1016/J.JMVA.2006.11.013 |
SSID | ssj0026700 |
Score | 2.1974692 |
Snippet | The main challenge in analysing functional magnetic resonance imaging (fMRI) data from extended samples of subject (
N
> 100) is to extract as much relevant... The main challenge in analysing functional magnetic resonance imaging (fMRI) data from extended samples of subject (N > 100) is to extract as much relevant... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 479 |
SubjectTerms | Adult Aged Aged, 80 and over Amyotrophic lateral sclerosis Bioinformatics Biomedical and Life Sciences Biomedicine Brain - diagnostic imaging Brain mapping Brain Mapping - methods Cluster Analysis Cohort Studies Computational Biology/Bioinformatics Computer Appl. in Life Sciences Female Functional magnetic resonance imaging Humans Information processing Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - statistics & numerical data Male Mathematical models Middle Aged Neurodegenerative diseases Neurodegenerative Diseases - diagnostic imaging Neuroimaging Neurology Neurosciences Original Article Rest Statistical analysis Stochastic Processes |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovHgRdX5Up0QQD0qhH0nbHIc4hjAP6mC3kjbJBFkrW3fYf-9L2m7I9OC1faTtS17y-72vAtzKgEo_TpCWSCVcKmjoJloyVwgvk1TzUNvaqtFLNBzT5wmbNHXcizbbvQ1J2p16U-wWmHQCz0cDpX7grnZhj-Elk8c3DvprltXUnaAlczeIud-GMn8b4udhtIUwt6Kj9tAZHMJBgxZJv57eI9hRxTF0-wUy5dmK3BGbv2kd410YvVVl_iFM32XyKopP0p8il55azROEpgShHqnrcnXjqCOlJgM82Gp_ILGNOmYmX2e-OIHx4On9ceg2P0twc8RElRtLBEZKIGBGABAijqBRLvDzZRKGQqJMRBmLdcxjxpXymMwjLllGRYYWzVHqFDpFWahzIJxnCllSjtSEUTT5TGpfxhkOlHjMk9qB-1Zr6VfdEyPddD82Kk5RxalRcbpyoNfqNW3MY5EGPvKoOMS9wIGb9W1c2CZaIQpVLq1MiAAQ-Y8DZ_V8rJ8WmpY_CB4deGgnaDP4n69y8S_pS9hHcMTrxL0edKr5Ul0hAKmya7vgvgG42dEZ priority: 102 providerName: Springer Nature |
Title | Stochastic Rank Aggregation for the Identification of Functional Neuromarkers |
URI | https://link.springer.com/article/10.1007/s12021-018-9412-y https://www.ncbi.nlm.nih.gov/pubmed/30604083 https://www.proquest.com/docview/2162673794 https://www.proquest.com/docview/2163009182 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LT9swGP802guXiddYeFRGmjgwWeRh1_EJBdSCNoEQW6VyipzYYdJEArQc-t_z2XFaIbRdE8txvof9-54G-KZjpiORolmijaJMsYSmleZUqbDQrJJJ5Wqrrm-GVxP2Y8qn3uE282mV3Z7oNmrdlNZHfhpHCL1FguJz9vRM7a1RNrrqr9BYgz5uwSnvQf98dHN7tzS5fBEKqrWksZBRF9d0xXOxTU8II1R4FsV08f5k-gA3P4RK3Qk03oDPHjqSrOX1Jnwy9RZsZzWazY8LckxcMqfzkm_D9a95U_5RtgkzuVP1X5I9oGH94NhAEKcSxH2kLdKtvNeONBUZ4ynXOgeJ69rxaJN3XmY7MBmPfl9cUX9zAi0RIM2p0IiSjEL0jGggQVDBhqXC39dpkiiNY4aMc1EJKbg0JuS6HErNC6YKVG-Jo75Ar25q8xWIlIVBk6lEO4Uz1P9CV5EWBU6UhjzUVQAnHdXyp7ZBRr5qhWxJnCOJc0vifBHAQUfX3OvKLF9xNoCj5WuUchu6ULVpXt2YBNEgGkMB7Lb8WH4tsf1_EEkG8L1j0Gryfy5l7_9L2Yd1hEayTds7gN785dUcIvyYFwNYE1MxgH52ef9zNPASh08ncfYGJp7Y7g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXBJRH2gJGAg4gizzszfqA0AJdbWl3hUor9ZY6sVOkqknb3Qrtn-pv7Gcn2RWq4NZzLMeaGc988zTRWxMLE6V9uCXGai60SHi_NJJrHeZGlCopfW_VeNIbHYofR_Joha67XhhXVtnpRK-oTV24GPmnOAL0ThOIz5fzC-5ejXLZ1e4JjUYsdu38D1y26eed7-Dvuzgebh98G_H2VQFeADzMeGqAIKwGsoSlTGBwRa_QqYpMP0m0wZqekDItU5VKZW0oTdFTRuZC5xB9hVXY9x6tAWYo3KK1r9uTn_sLF69teoEaUTzGpl0e1Tfrxa4cIoygYEQU8_nflvAWvL2VmvUWb_iIHrZQlQ0a2XpMK7Z6QuuDCm762Zy9Z7541Efl12n8a1YXv7Ub-sz2dXXKBidw5E882xlwMQPOZE1TcNlGCVldsiGsahOMZH5KyJkrFrqcPqXDO6HpM1qt6sq-IKZUbuGiFfCLpIC-yU0ZmTTHRv1QhqYM6ENHtey8GciRLUcvOxJnIHHmSJzNA9rq6Jq1d3OaLSUpoDeLz7hVLlWiK1tf-TUJ0Cecr4CeN_xY_C1x84aAXAP62DFoufk_j7Lx_6O8pvujg_Fetrcz2d2kB4BlqikZ3KLV2eWVfQnoM8tftfLG6PiuRfwGxtAQoA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IEp5BEoxEnAAWc3D3sQHVG1pVy2lq6pQqbfgxE6RUJPS3QrtX-PX8dlJdoUquPUca2KNxzPfPE302sTCRGkGt8RYzYUWCc8qI7nWYWFEpZLK91YdTYb7p-LTmTxbod99L4wrq-x1olfUpildjHwrjgC90wTis1V1ZRHHu-Pty5_cvSDlMq39cxqtiBza-S-4b9MPB7s46zdxPN77-nGfdy8M8BJAYsZTAzRhNVAmrGYC4yuGpU5VZLIk0QZrhkLKtEpVKpW1oTTlUBlZCF3gGiisAt07tJrCKmYDWt3ZmxyfLNy9rgEGKkXxGET7nKpv3ItdaUQYQdmIKObzv63iDah7I03rrd_4Ad3vYCsbtXK2Riu2fkjroxou-8WcvWW-kNRH6Nfp6MusKb9rNwCanej6Bxudw6k_9yLAgJEZMCdrG4SrLmLImoqNYWHbwCTzE0MuXOHQ1fQRnd4KTx_ToG5q-5SYUoWFu1bCR5ICuqcwVWTSAoSyUIamCuhdz7X8sh3OkS_HMDsW52Bx7liczwPa6Pmad_d0mi-lKqBXi8-4YS5tomvbXPs1CZAoHLGAnrTnsfhb4mYPAcUG9L4_oCXxf27l2f-38pLuQrTzzweTw-d0DwhNtdWDGzSYXV3bF0BBs2KzEzdG325bwv8AfeMUzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Rank+Aggregation+for+the+Identification+of+Functional+Neuromarkers&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Galdi%2C+Paola&rft.au=Fratello%2C+Michele&rft.au=Trojsi%2C+Francesca&rft.au=Russo%2C+Antonio&rft.date=2019-10-01&rft.issn=1559-0089&rft.eissn=1559-0089&rft.volume=17&rft.issue=4&rft.spage=479&rft_id=info:doi/10.1007%2Fs12021-018-9412-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon |