Ultrafast high-temperature sintering and densification of ZrC-based ceramics
Zirconium carbide (ZrC) ceramics are promising candidates for high-temperature structural components and nuclear reactors. However, their poor sinterability has limited widespread application. This study explored the sintering and densification of ZrC-based ceramics with graphite or B4C additive usi...
Saved in:
Published in | Journal of the European Ceramic Society Vol. 44; no. 10; pp. 5569 - 5578 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0955-2219 1873-619X |
DOI | 10.1016/j.jeurceramsoc.2024.03.037 |
Cover
Abstract | Zirconium carbide (ZrC) ceramics are promising candidates for high-temperature structural components and nuclear reactors. However, their poor sinterability has limited widespread application. This study explored the sintering and densification of ZrC-based ceramics with graphite or B4C additive using ultrafast high-temperature sintering (UHS). A nearly fully dense ZrC ceramic (> 98%) could be obtained by adding 2.5 wt% B4C additive via ultrafast high-temperature sintering at 2300 °C within 3 min. Additionally, the results revealed that adding graphite into ZrC was beneficial to reduce the grain size but detrimental to densification. Compared to ZrC ceramics sintered using conventional pressureless sintering (PLS) at 2400 °C for 60 min, ZrC-based ceramics with 2.5 wt% B4C sintered via UHS at 2400 °C for 30 s exhibited higher relative densities, smaller grain sizes, and greater Vickers hardness due to faster heating rates and shorter sintering processes. |
---|---|
AbstractList | Zirconium carbide (ZrC) ceramics are promising candidates for high-temperature structural components and nuclear reactors. However, their poor sinterability has limited widespread application. This study explored the sintering and densification of ZrC-based ceramics with graphite or B4C additive using ultrafast high-temperature sintering (UHS). A nearly fully dense ZrC ceramic (> 98%) could be obtained by adding 2.5 wt% B4C additive via ultrafast high-temperature sintering at 2300 °C within 3 min. Additionally, the results revealed that adding graphite into ZrC was beneficial to reduce the grain size but detrimental to densification. Compared to ZrC ceramics sintered using conventional pressureless sintering (PLS) at 2400 °C for 60 min, ZrC-based ceramics with 2.5 wt% B4C sintered via UHS at 2400 °C for 30 s exhibited higher relative densities, smaller grain sizes, and greater Vickers hardness due to faster heating rates and shorter sintering processes. |
Author | Zhu, Benpeng Zhang, Yue Yang, Xiaofei Qiu, Xinchao Xu, Jianbo Zhang, Bowen Zhang, Shengping Hu, Mengchen Zhong, Fugang Chen, Shi Yang, Zewei Ou-Yang, Jun |
Author_xml | – sequence: 1 givenname: Bowen surname: Zhang fullname: Zhang, Bowen organization: School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 2 givenname: Mengchen surname: Hu fullname: Hu, Mengchen organization: School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 3 givenname: Fugang surname: Zhong fullname: Zhong, Fugang organization: School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 4 givenname: Shengping surname: Zhang fullname: Zhang, Shengping organization: School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 5 givenname: Zewei surname: Yang fullname: Yang, Zewei organization: School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 6 givenname: Xinchao surname: Qiu fullname: Qiu, Xinchao organization: Beijing Research Institute of Telemetry, Beijing 100076, PR China – sequence: 7 givenname: Jianbo surname: Xu fullname: Xu, Jianbo organization: School of Physics, Liaoning University, Shenyang 110036, PR China – sequence: 8 givenname: Jun surname: Ou-Yang fullname: Ou-Yang, Jun organization: School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 9 givenname: Yue surname: Zhang fullname: Zhang, Yue organization: School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 10 givenname: Benpeng surname: Zhu fullname: Zhu, Benpeng organization: School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 11 givenname: Xiaofei surname: Yang fullname: Yang, Xiaofei organization: School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 12 givenname: Shi surname: Chen fullname: Chen, Shi email: s_chen@mail.hust.edu.cn organization: School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China |
BookMark | eNqNkEtLAzEUhYNUsK3-h8H9jElmOg9XSn3CgBsL4iZkbm7aDG2mJKngvzdtXYirwoGzut_lfBMysoNFQq4ZzRhl5U2f9bhzgE5u_AAZp7zIaB5TnZExq6s8LVnzMSJj2sxmKeesuSAT73tKWUWbZkzaxTo4qaUPycosV2nAzTbSws5h4o0N6IxdJtKqRKH1RhuQwQw2GXTy6eZpJz2q5PDfgL8k51quPV799pQsnh7f5y9p-_b8Or9vU8h5EdKqqxnwmcKOSkU7VahcV10lJYutmC6YzmlTqhqhqEuOHIB2BWCHCMg45lNye-SCG7x3qMXWmY1034JRsfcievHXi9h7ETSPqeLx3b9jMOEwKoow69MQD0cExpFfBp3wYNACKuMQglCDOQXzAwgvjjE |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2024_05_382 crossref_primary_10_1016_j_jeurceramsoc_2024_117132 crossref_primary_10_1016_j_ceramint_2025_03_135 crossref_primary_10_1016_j_ceramint_2024_11_394 crossref_primary_10_1016_j_scriptamat_2025_116654 crossref_primary_10_1016_j_exm_2025_01_001 crossref_primary_10_1016_j_vacuum_2024_113684 crossref_primary_10_1016_j_jeurceramsoc_2024_117025 |
Cites_doi | 10.1016/j.ceramint.2020.11.212 10.1111/j.1551-2916.2007.01642.x 10.3390/ma15217866 10.1016/j.jeurceramsoc.2011.01.005 10.1007/s40145-017-0229-1 10.1111/jace.16320 10.1016/j.ijrmhm.2011.03.001 10.1016/j.ceramint.2022.11.091 10.1557/JMR.2008.0234 10.1111/jace.17442 10.1111/jace.13117 10.1016/j.scriptamat.2013.02.017 10.1016/j.ceramint.2022.05.346 10.1016/j.ceramint.2012.12.058 10.1016/j.jallcom.2011.08.041 10.1016/j.jeurceramsoc.2023.02.038 10.1016/j.jeurceramsoc.2023.09.007 10.1016/j.scriptamat.2021.114476 10.1016/j.ceramint.2019.03.112 10.1179/1743676115Y.0000000001 10.1016/j.jeurceramsoc.2016.08.035 10.1016/j.solmat.2011.03.028 10.3390/ma15227961 10.1016/j.jeurceramsoc.2019.09.052 10.1016/j.jeurceramsoc.2017.09.013 10.1016/j.jeurceramsoc.2019.02.042 10.1007/s41403-020-00176-w 10.1111/jace.16505 10.1111/jace.12090 10.1243/09544100JAERO483 10.1126/science.aaz7681 10.1111/j.1551-2916.2007.02231.x 10.1002/adem.201300409 10.1002/adem.202201870 10.1016/j.ceramint.2023.07.104 10.1016/j.jeurceramsoc.2022.12.025 10.1016/j.scriptamat.2008.05.026 10.1111/j.1744-7402.2004.tb00167.x 10.1557/JMR.2000.0349 10.1080/09276440.2021.2012409 10.1016/j.jeurceramsoc.2022.04.044 10.1016/j.jeurceramsoc.2011.10.045 10.1016/j.jeurceramsoc.2016.02.009 10.1016/j.jeurceramsoc.2023.05.042 10.1111/ijac.13918 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jeurceramsoc.2024.03.037 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-619X |
EndPage | 5578 |
ExternalDocumentID | 10_1016_j_jeurceramsoc_2024_03_037 S0955221924002553 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c324t-7b81c25deb0ad0bd4d3f7b7aa13f7d1f41f3096d8ec4862e2cc0b4cebeece12e3 |
IEDL.DBID | AIKHN |
ISSN | 0955-2219 |
IngestDate | Thu Apr 24 23:13:25 EDT 2025 Tue Jul 01 02:25:55 EDT 2025 Sat Apr 27 15:44:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Ultrafast high-temperature sintering Boron carbide ZrC-based ceramics Graphite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-7b81c25deb0ad0bd4d3f7b7aa13f7d1f41f3096d8ec4862e2cc0b4cebeece12e3 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_jeurceramsoc_2024_03_037 crossref_citationtrail_10_1016_j_jeurceramsoc_2024_03_037 elsevier_sciencedirect_doi_10_1016_j_jeurceramsoc_2024_03_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the European Ceramic Society |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Feng, Fahrenholtz, Hilmas (bib39) 2020; 40 Guo, Mao, Shen (bib22) 2023; 43 Kim, Koh, Kim (bib36) 2000; 15 Che, Mao, Guo, Shen (bib23) 2023; 49 Yao, Yan, Li, Chen, Zhu, Zhu (bib34) 2022; 15 Wang, Liu, Liu, Jia, Zhang (bib5) 2022; 42 Guillon, GonzalezJulian, Dargatz, Kessel, Schierning, Räthel, Herrmann (bib14) 2014; 16 Schönfeld, Martin, Michaelis (bib41) 2017; 6 Shen, Wang, Zhang, Xue, Li, Jiang (bib6) 2019; 102 Landwehr, Hilmas, Fahrenholtz, Talmy (bib25) 2008; 91 Feng, Fahrenholtz, Hilmas, Watts, Zhou (bib10) 2019; 102 Mandal, Pramanick, Chakraborty, Dey (bib33) 2020; 33 Chakrabarti, Rangaraj, Jayaram (bib28) 2014; 97 Tian, Sun (bib35) 2022; 48 Korklan, Hilmas, Fahrenholtz (bib32) 2021; 104 Wei, Song, Liu, Qin, Li, Liang, Zhang (bib7) 2021; 47 Chang, Doremus, Schadler, Siegel (bib40) 2004; 1 Zhao, Jia, Duan, Yang, Zhou (bib38) 2011; 29 Ma, Zhang, Han, Han (bib3) 2009; 223 Li, Zhao, Chen, Li, Wei, Fu, Zhou (bib21) 2023; 43 Pierrat, Balat-Pichelin, Silvestroni, SCITI (bib8) 2011; 95 Wu, Kermani, Zhu, Li, Lin, Hu, Grasso (bib20) 2022; 210 Cui, Mao, Zhang, Wang, Wang, Tan, Fu (bib4) 2022; 29 Wang, Guo, Kan, Zhang, Wang (bib11) 2011; 31 Wang, Liu, Kan, Zhang (bib26) 2012; 32 Cedillos-Barraza, Grasso, Nasiri, Jayaseelan, Reece, Lee (bib37) 2016; 36 Sun, Zhang, Wu, Liu, Suzuki, Sakka (bib29) 2013; 69 Kermani, Hu, Grasso (bib18) 2023; 49 Gu, Liu, Xu, Zhang (bib30) 2017; 37 Chen, Zeng, Li, Liu, Gu, Zhang (bib31) 2019; 45 D’Angio, Zou, Binner, Ma, Hilmas, Fahrenholtz (bib15) 2018; 38 Wang, Zhang, Xue, Tang, Huang, Xu, Wang (bib13) 2013; 96 Zhao, Zou, Man, Wang, Xue, Zhang (bib44) 2015; 114 Zhang, Hilmas, Fahrenholtz (bib43) 2007; 90 Silvestroni, Sciti (bib42) 2008; 23 Kljajević, Nenadović, Nenadović, Gautam, Volkov-Husović, Devečerski, Matović (bib12) 2013; 39 Ke, Ji, Zou, Wang, Fu (bib2) 2023; 43 Wu, Gao, Zhao, Li, Hao, Ran (bib9) 2022; 15 SCITI, GUICCIARDI, NYGREN (bib24) 2008; 59 Zhao, Jia, Duan, Yang, Zhou (bib45) 2011; 509 khodaei, yaghobizadeh, Naghavi Alhosseini, esmaeeli, Mousavi (bib27) 2019; 39 Chandran, Devapal, Payadakkam Veedu (bib1) 2021; 6 de Bona, Manière, Sglavo, Biesuz (bib16) 2023; 44 Ke, Ji, Zou, Zhang, Wang, Fu (bib46) 2022; 19 Guillon, Rheinheimer, Bram (bib17) 2023; 25 Wang, Ping, Bai, Cui, Hensleigh, Wang, Brozena, Xu, Dai, Pei (bib19) 2020; 368 Ke (10.1016/j.jeurceramsoc.2024.03.037_bib2) 2023; 43 Gu (10.1016/j.jeurceramsoc.2024.03.037_bib30) 2017; 37 Chang (10.1016/j.jeurceramsoc.2024.03.037_bib40) 2004; 1 Chandran (10.1016/j.jeurceramsoc.2024.03.037_bib1) 2021; 6 Kermani (10.1016/j.jeurceramsoc.2024.03.037_bib18) 2023; 49 Zhao (10.1016/j.jeurceramsoc.2024.03.037_bib38) 2011; 29 Zhang (10.1016/j.jeurceramsoc.2024.03.037_bib43) 2007; 90 Kljajević (10.1016/j.jeurceramsoc.2024.03.037_bib12) 2013; 39 Feng (10.1016/j.jeurceramsoc.2024.03.037_bib10) 2019; 102 Shen (10.1016/j.jeurceramsoc.2024.03.037_bib6) 2019; 102 Kim (10.1016/j.jeurceramsoc.2024.03.037_bib36) 2000; 15 Zhao (10.1016/j.jeurceramsoc.2024.03.037_bib44) 2015; 114 Schönfeld (10.1016/j.jeurceramsoc.2024.03.037_bib41) 2017; 6 Ke (10.1016/j.jeurceramsoc.2024.03.037_bib46) 2022; 19 Wu (10.1016/j.jeurceramsoc.2024.03.037_bib20) 2022; 210 Wu (10.1016/j.jeurceramsoc.2024.03.037_bib9) 2022; 15 Wang (10.1016/j.jeurceramsoc.2024.03.037_bib5) 2022; 42 Silvestroni (10.1016/j.jeurceramsoc.2024.03.037_bib42) 2008; 23 Ma (10.1016/j.jeurceramsoc.2024.03.037_bib3) 2009; 223 Wang (10.1016/j.jeurceramsoc.2024.03.037_bib11) 2011; 31 Guillon (10.1016/j.jeurceramsoc.2024.03.037_bib14) 2014; 16 Li (10.1016/j.jeurceramsoc.2024.03.037_bib21) 2023; 43 Guo (10.1016/j.jeurceramsoc.2024.03.037_bib22) 2023; 43 Wei (10.1016/j.jeurceramsoc.2024.03.037_bib7) 2021; 47 Guillon (10.1016/j.jeurceramsoc.2024.03.037_bib17) 2023; 25 Landwehr (10.1016/j.jeurceramsoc.2024.03.037_bib25) 2008; 91 Chen (10.1016/j.jeurceramsoc.2024.03.037_bib31) 2019; 45 Wang (10.1016/j.jeurceramsoc.2024.03.037_bib19) 2020; 368 SCITI (10.1016/j.jeurceramsoc.2024.03.037_bib24) 2008; 59 Yao (10.1016/j.jeurceramsoc.2024.03.037_bib34) 2022; 15 Pierrat (10.1016/j.jeurceramsoc.2024.03.037_bib8) 2011; 95 Sun (10.1016/j.jeurceramsoc.2024.03.037_bib29) 2013; 69 Tian (10.1016/j.jeurceramsoc.2024.03.037_bib35) 2022; 48 Zhao (10.1016/j.jeurceramsoc.2024.03.037_bib45) 2011; 509 Feng (10.1016/j.jeurceramsoc.2024.03.037_bib39) 2020; 40 Chakrabarti (10.1016/j.jeurceramsoc.2024.03.037_bib28) 2014; 97 Mandal (10.1016/j.jeurceramsoc.2024.03.037_bib33) 2020; 33 Wang (10.1016/j.jeurceramsoc.2024.03.037_bib26) 2012; 32 Wang (10.1016/j.jeurceramsoc.2024.03.037_bib13) 2013; 96 Che (10.1016/j.jeurceramsoc.2024.03.037_bib23) 2023; 49 Korklan (10.1016/j.jeurceramsoc.2024.03.037_bib32) 2021; 104 Cui (10.1016/j.jeurceramsoc.2024.03.037_bib4) 2022; 29 de Bona (10.1016/j.jeurceramsoc.2024.03.037_bib16) 2023; 44 khodaei (10.1016/j.jeurceramsoc.2024.03.037_bib27) 2019; 39 D’Angio (10.1016/j.jeurceramsoc.2024.03.037_bib15) 2018; 38 Cedillos-Barraza (10.1016/j.jeurceramsoc.2024.03.037_bib37) 2016; 36 |
References_xml | – volume: 69 start-page: 139 year: 2013 end-page: 142 ident: bib29 article-title: Reactive spark plasma sintering of ZrC and HfC ceramics with fine microstructures publication-title: Scr. Mater. – volume: 31 start-page: 1103 year: 2011 end-page: 1111 ident: bib11 article-title: Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives publication-title: J. Eur. Ceram. Soc. – volume: 1 start-page: 172 year: 2004 end-page: 179 ident: bib40 article-title: Hot-pressing of nano-size alumina powder and the resulting mechanical properties publication-title: Int. J. Appl. Ceram. Technol. – volume: 102 start-page: 3090 year: 2019 end-page: 3096 ident: bib6 article-title: Strong ZrC ceramics at high temperatures with the addition of W publication-title: J. Am. Ceram. Soc. – volume: 32 start-page: 1795 year: 2012 end-page: 1802 ident: bib26 article-title: Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M=V, Nb, and Ta) additions publication-title: J. Eur. Ceram. Soc. – volume: 33 start-page: 5664 year: 2020 end-page: 5666 ident: bib33 article-title: Phase determination of ZrB publication-title: Mater. Today.: Proc. – volume: 38 start-page: 391 year: 2018 end-page: 402 ident: bib15 article-title: Mechanical properties and grain orientation evolution of zirconium diboride-zirconium carbide ceramics publication-title: J. Eur. Ceram. Soc. – volume: 39 start-page: 5467 year: 2013 end-page: 5476 ident: bib12 article-title: Spark plasma sintering of ZrC–SiC ceramics with LiYO2 additive publication-title: Ceram. Int. – volume: 15 start-page: 7866 year: 2022 ident: bib9 article-title: Enhanced mechanical properties of yellow ZrN ceramic with addition of solid solution of TiN publication-title: Materials – volume: 59 start-page: 638 year: 2008 end-page: 641 ident: bib24 article-title: Spark plasma sintering and mechanical behaviour of ZrC-based composites publication-title: Scr. Mater. – volume: 19 start-page: 739 year: 2022 end-page: 745 ident: bib46 article-title: Full densification of zirconium carbide ceramics sintered under high pressure at low temperature publication-title: Int. J. Appl. Ceram. Technol. – volume: 36 start-page: 1539 year: 2016 end-page: 1548 ident: bib37 article-title: Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC–HfC fabricated by spark plasma sintering publication-title: J. Eur. Ceram. Soc. – volume: 43 start-page: 5763 year: 2023 end-page: 5773 ident: bib22 article-title: Ultra-fast high-temperature synthesis and densification of high-entropy diborides and diboride-carbide ceramics publication-title: J. Eur. Ceram. Soc. – volume: 368 start-page: 521 year: 2020 end-page: 526 ident: bib19 article-title: A general method to synthesize and sinter bulk ceramics in seconds publication-title: Science – volume: 48 start-page: 26499 year: 2022 end-page: 26507 ident: bib35 article-title: Synthesis of ZrB publication-title: Ceram. Int. – volume: 223 start-page: 1153 year: 2009 end-page: 1157 ident: bib3 article-title: Fabrication of hot-pressed ZrC-based composites publication-title: Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. – volume: 114 start-page: 338 year: 2015 end-page: 343 ident: bib44 article-title: Dopant effects on high temperature mechanical properties of zirconium carbide ceramics publication-title: Adv. Appl. Ceram. – volume: 96 start-page: 32 year: 2013 end-page: 36 ident: bib13 article-title: Reactive hot pressing of ZrC-SiC ceramics at low temperature publication-title: J. Am. Ceram. Soc. – volume: 49 start-page: 4017 year: 2023 end-page: 4029 ident: bib18 article-title: From pit fire to ultrafast high-temperature sintering (UHS): a review on ultrarapid consolidation publication-title: Ceram. Int. – volume: 15 start-page: 7961 year: 2022 ident: bib34 article-title: In situ ZrB publication-title: Materials – volume: 43 start-page: 3053 year: 2023 end-page: 3061 ident: bib2 article-title: Densification mechanism, microstructure and mechanical properties of ZrC ceramics prepared by high-pressure spark plasma sintering publication-title: J. Eur. Ceram. Soc. – volume: 40 start-page: 220 year: 2020 end-page: 225 ident: bib39 article-title: Effect of ZrB publication-title: J. Eur. Ceram. Soc. – volume: 15 start-page: 2431 year: 2000 end-page: 2436 ident: bib36 article-title: Reaction sintering and mechanical properties of B publication-title: J. Mater. Res. – volume: 29 start-page: 516 year: 2011 end-page: 521 ident: bib38 article-title: Pressureless sintering of ZrC-based ceramics by enhancing powder sinterability publication-title: Int. J. Refract. Met. Hard Mater. – volume: 47 start-page: 8461 year: 2021 end-page: 8467 ident: bib7 article-title: Graphite nanoplatelets toughened zirconium carbide ceramics prepared by spark plasma sintering publication-title: Ceram. Int. – volume: 97 start-page: 3092 year: 2014 end-page: 3102 ident: bib28 article-title: Effect of zirconium on the densification of reactively hot-pressed zirconium carbide publication-title: J. Am. Ceram. Soc. – volume: 6 start-page: 57 year: 2021 end-page: 64 ident: bib1 article-title: Synthesis of ultra high temperature ceramic zirconium carbide for space applications publication-title: Trans. Indian Natl. Acad. Eng. – volume: 210 year: 2022 ident: bib20 article-title: Carbon free ultra-fast high temperature sintering of translucent zirconia publication-title: Scr. Mater. – volume: 102 start-page: 5786 year: 2019 end-page: 5795 ident: bib10 article-title: Densification, microstructure, and mechanical properties of ZrC–SiC ceramics publication-title: J. Am. Ceram. Soc. – volume: 39 start-page: 2215 year: 2019 end-page: 2231 ident: bib27 article-title: The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: a review publication-title: J. Eur. Ceram. Soc. – volume: 509 start-page: 9816 year: 2011 end-page: 9820 ident: bib45 article-title: Low temperature sintering of ZrC–SiC composite publication-title: J. Alloy. Compd. – volume: 29 start-page: 729 year: 2022 end-page: 748 ident: bib4 article-title: Microstructure, mechanical properties, and reinforcement mechanism of carbide toughened ZrC-based ultra-high temperature ceramics: a review publication-title: Compos. Interfaces – volume: 42 start-page: 4465 year: 2022 end-page: 4471 ident: bib5 article-title: Carbothermal reduction synthesis of high porosity and low thermal conductivity ZrC-SiC ceramics via an one-step sintering technique publication-title: J. Eur. Ceram. Soc. – volume: 16 start-page: 830 year: 2014 end-page: 849 ident: bib14 article-title: Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments publication-title: Adv. Eng. Mater. – volume: 95 start-page: 2228 year: 2011 end-page: 2237 ident: bib8 article-title: High temperature oxidation of ZrC–20% MoSi publication-title: Sol. Energy Mater. Sol. Cells – volume: 44 start-page: 567 year: 2023 end-page: 573 ident: bib16 article-title: Ultrafast high-temperature sintering (UHS) of ZrB publication-title: J. Eur. Ceram. Soc. – volume: 91 start-page: 873 year: 2008 end-page: 878 ident: bib25 article-title: Processing of ZrC–Mo cermets for high temperature applications, part II: pressureless sintering and mechanical properties publication-title: J. Am. Ceram. Soc. – volume: 43 start-page: 2269 year: 2023 end-page: 2274 ident: bib21 article-title: SiC-based ceramics with remarkable electrical conductivity prepared by ultrafast high-temperature sintering publication-title: J. Eur. Ceram. Soc. – volume: 6 start-page: 165 year: 2017 end-page: 175 ident: bib41 article-title: Pressureless sintering of ZrC with variable stoichiometry publication-title: J. Adv. Ceram. – volume: 23 start-page: 1882 year: 2008 end-page: 1889 ident: bib42 article-title: Microstructure and properties of pressureless sintered ZrC-based materials publication-title: J. Mater. Res. – volume: 37 start-page: 539 year: 2017 end-page: 547 ident: bib30 article-title: Pressureless sintering of titanium carbide doped with boron or boron carbide publication-title: J. Eur. Ceram. Soc. – volume: 90 start-page: 1930 year: 2007 end-page: 1933 ident: bib43 article-title: Zirconium carbide?Tungsten cermets prepared by in situ reaction sintering publication-title: J. Am. Ceram. Soc. – volume: 104 start-page: 413 year: 2021 end-page: 418 ident: bib32 article-title: Processing and room temperature mechanical properties of a zirconium carbide ceramic publication-title: J. Am. Ceram. Soc. – volume: 25 year: 2023 ident: bib17 article-title: A Perspective on Emerging and Future Sintering Technologies of Ceramic Materials publication-title: Adv. Eng. Mater. – volume: 45 start-page: 12122 year: 2019 end-page: 12129 ident: bib31 article-title: Densification behavior and mechanical properties of spark plasma reaction sintered ZrB publication-title: Ceram. Int. – volume: 49 start-page: 31530 year: 2023 end-page: 31538 ident: bib23 article-title: Ultrafast synthesis and pressureless densification of multicomponent nitride and carbonitride ceramics publication-title: Ceram. Int. – volume: 47 start-page: 8461 year: 2021 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib7 article-title: Graphite nanoplatelets toughened zirconium carbide ceramics prepared by spark plasma sintering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.11.212 – volume: 90 start-page: 1930 year: 2007 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib43 article-title: Zirconium carbide?Tungsten cermets prepared by in situ reaction sintering publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2007.01642.x – volume: 15 start-page: 7866 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib9 article-title: Enhanced mechanical properties of yellow ZrN ceramic with addition of solid solution of TiN publication-title: Materials doi: 10.3390/ma15217866 – volume: 31 start-page: 1103 year: 2011 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib11 article-title: Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.01.005 – volume: 6 start-page: 165 year: 2017 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib41 article-title: Pressureless sintering of ZrC with variable stoichiometry publication-title: J. Adv. Ceram. doi: 10.1007/s40145-017-0229-1 – volume: 102 start-page: 3090 year: 2019 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib6 article-title: Strong ZrC ceramics at high temperatures with the addition of W publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16320 – volume: 29 start-page: 516 year: 2011 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib38 article-title: Pressureless sintering of ZrC-based ceramics by enhancing powder sinterability publication-title: Int. J. Refract. Met. Hard Mater. doi: 10.1016/j.ijrmhm.2011.03.001 – volume: 49 start-page: 4017 year: 2023 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib18 article-title: From pit fire to ultrafast high-temperature sintering (UHS): a review on ultrarapid consolidation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.11.091 – volume: 23 start-page: 1882 year: 2008 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib42 article-title: Microstructure and properties of pressureless sintered ZrC-based materials publication-title: J. Mater. Res. doi: 10.1557/JMR.2008.0234 – volume: 104 start-page: 413 year: 2021 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib32 article-title: Processing and room temperature mechanical properties of a zirconium carbide ceramic publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.17442 – volume: 97 start-page: 3092 year: 2014 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib28 article-title: Effect of zirconium on the densification of reactively hot-pressed zirconium carbide publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13117 – volume: 69 start-page: 139 year: 2013 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib29 article-title: Reactive spark plasma sintering of ZrC and HfC ceramics with fine microstructures publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2013.02.017 – volume: 48 start-page: 26499 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib35 article-title: Synthesis of ZrB2–ZrC hybrid powders via boro-carbothermal reduction of ZrO2 by B4C and carbon black publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.05.346 – volume: 39 start-page: 5467 year: 2013 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib12 article-title: Spark plasma sintering of ZrC–SiC ceramics with LiYO2 additive publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.12.058 – volume: 509 start-page: 9816 year: 2011 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib45 article-title: Low temperature sintering of ZrC–SiC composite publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2011.08.041 – volume: 43 start-page: 3053 year: 2023 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib2 article-title: Densification mechanism, microstructure and mechanical properties of ZrC ceramics prepared by high-pressure spark plasma sintering publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2023.02.038 – volume: 44 start-page: 567 year: 2023 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib16 article-title: Ultrafast high-temperature sintering (UHS) of ZrB2-based materials publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2023.09.007 – volume: 210 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib20 article-title: Carbon free ultra-fast high temperature sintering of translucent zirconia publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114476 – volume: 45 start-page: 12122 year: 2019 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib31 article-title: Densification behavior and mechanical properties of spark plasma reaction sintered ZrB2–ZrC-B4C ceramics from B4C-Zr system publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.03.112 – volume: 114 start-page: 338 year: 2015 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib44 article-title: Dopant effects on high temperature mechanical properties of zirconium carbide ceramics publication-title: Adv. Appl. Ceram. doi: 10.1179/1743676115Y.0000000001 – volume: 37 start-page: 539 year: 2017 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib30 article-title: Pressureless sintering of titanium carbide doped with boron or boron carbide publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.08.035 – volume: 95 start-page: 2228 year: 2011 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib8 article-title: High temperature oxidation of ZrC–20% MoSi2 in air for future solar receivers publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.03.028 – volume: 15 start-page: 7961 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib34 article-title: In situ ZrB2 formation in B4C ceramics and its strengthening mechanism on mechanical properties publication-title: Materials doi: 10.3390/ma15227961 – volume: 40 start-page: 220 year: 2020 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib39 article-title: Effect of ZrB2 content on the densification, microstructure, and mechanical properties of ZrC-SiC ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.09.052 – volume: 38 start-page: 391 year: 2018 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib15 article-title: Mechanical properties and grain orientation evolution of zirconium diboride-zirconium carbide ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.09.013 – volume: 39 start-page: 2215 year: 2019 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib27 article-title: The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: a review publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.02.042 – volume: 6 start-page: 57 year: 2021 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib1 article-title: Synthesis of ultra high temperature ceramic zirconium carbide for space applications publication-title: Trans. Indian Natl. Acad. Eng. doi: 10.1007/s41403-020-00176-w – volume: 102 start-page: 5786 year: 2019 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib10 article-title: Densification, microstructure, and mechanical properties of ZrC–SiC ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16505 – volume: 96 start-page: 32 year: 2013 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib13 article-title: Reactive hot pressing of ZrC-SiC ceramics at low temperature publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12090 – volume: 223 start-page: 1153 year: 2009 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib3 article-title: Fabrication of hot-pressed ZrC-based composites publication-title: Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. doi: 10.1243/09544100JAERO483 – volume: 368 start-page: 521 year: 2020 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib19 article-title: A general method to synthesize and sinter bulk ceramics in seconds publication-title: Science doi: 10.1126/science.aaz7681 – volume: 91 start-page: 873 year: 2008 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib25 article-title: Processing of ZrC–Mo cermets for high temperature applications, part II: pressureless sintering and mechanical properties publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2007.02231.x – volume: 33 start-page: 5664 year: 2020 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib33 article-title: Phase determination of ZrB2-B4C ceramic composite material using XRD and rietveld refinement analysis publication-title: Mater. Today.: Proc. – volume: 16 start-page: 830 year: 2014 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib14 article-title: Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201300409 – volume: 25 year: 2023 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib17 article-title: A Perspective on Emerging and Future Sintering Technologies of Ceramic Materials publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202201870 – volume: 49 start-page: 31530 year: 2023 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib23 article-title: Ultrafast synthesis and pressureless densification of multicomponent nitride and carbonitride ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.07.104 – volume: 43 start-page: 2269 year: 2023 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib21 article-title: SiC-based ceramics with remarkable electrical conductivity prepared by ultrafast high-temperature sintering publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2022.12.025 – volume: 59 start-page: 638 year: 2008 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib24 article-title: Spark plasma sintering and mechanical behaviour of ZrC-based composites publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2008.05.026 – volume: 1 start-page: 172 year: 2004 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib40 article-title: Hot-pressing of nano-size alumina powder and the resulting mechanical properties publication-title: Int. J. Appl. Ceram. Technol. doi: 10.1111/j.1744-7402.2004.tb00167.x – volume: 15 start-page: 2431 year: 2000 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib36 article-title: Reaction sintering and mechanical properties of B4C with addition of ZrO2 publication-title: J. Mater. Res. doi: 10.1557/JMR.2000.0349 – volume: 29 start-page: 729 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib4 article-title: Microstructure, mechanical properties, and reinforcement mechanism of carbide toughened ZrC-based ultra-high temperature ceramics: a review publication-title: Compos. Interfaces doi: 10.1080/09276440.2021.2012409 – volume: 42 start-page: 4465 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib5 article-title: Carbothermal reduction synthesis of high porosity and low thermal conductivity ZrC-SiC ceramics via an one-step sintering technique publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2022.04.044 – volume: 32 start-page: 1795 year: 2012 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib26 article-title: Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M=V, Nb, and Ta) additions publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.10.045 – volume: 36 start-page: 1539 year: 2016 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib37 article-title: Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC–HfC fabricated by spark plasma sintering publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.02.009 – volume: 43 start-page: 5763 year: 2023 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib22 article-title: Ultra-fast high-temperature synthesis and densification of high-entropy diborides and diboride-carbide ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2023.05.042 – volume: 19 start-page: 739 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.03.037_bib46 article-title: Full densification of zirconium carbide ceramics sintered under high pressure at low temperature publication-title: Int. J. Appl. Ceram. Technol. doi: 10.1111/ijac.13918 |
SSID | ssj0017099 |
Score | 2.5186672 |
Snippet | Zirconium carbide (ZrC) ceramics are promising candidates for high-temperature structural components and nuclear reactors. However, their poor sinterability... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 5569 |
SubjectTerms | Boron carbide Graphite Ultrafast high-temperature sintering ZrC-based ceramics |
Title | Ultrafast high-temperature sintering and densification of ZrC-based ceramics |
URI | https://dx.doi.org/10.1016/j.jeurceramsoc.2024.03.037 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60vehBfGJ9sQeva7O7iWkOHqRY6qsXLRQvYZ_QUtvSxqu_3Z10Uyp4KAiBkJCB5csyM9_uzLcA1zZSjGnFaKZbhvoIraliWlBhnEyM5kKWvVWvvdtuP34aJIMtaFe9MFhWGXz_0qeX3jq8aQY0m7PhsPmG4mmcI4EoE2OxDXUustukBvX7x-dub7WZkEZZkNxLKBpU2qNlmdfI4hr5XH56MDxd5HGpeYrHov8Vp9ZiT2cf9kLSSO6X4zqALTs5hN01KcEjeOmPi7l0clEQVCCmKDkV9JLJAjUh8DMiJ4YYLFl3YamOTB35mLcpBjNDyhEO9eIY-p2H93aXhpMSqPYJUUFT1WKaJ8aqSJpImdgIl6pUSubvhrmYOeG5imlZHXsKY7nWkYq1_4FWW8atOIHaZDqxp0CccsYan3fIFNtQORIiK1PLrKdawkUNyCpcch1kxPE0i3Fe1YuN8nVMc8Q0j4S_0gaIle1sKaaxkdVdBX_-a2rk3utvYH_2T_tz2MGnZdXfBdSK-Ze99JlIoa5g--abXYX59gOV2-Lv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA5zHtSD-InzMwevcU3Tmu3gQYYyddvFDYaXkk_YmN3o6tXfbt42HRM8DIRCoc0L4Ul4P8LzPkHo1gSSUiUpaauWJi5CKyKpYoRpK2KtQiaK3qr-4L47il7H8biGOlUvDNAqve8vfXrhrf2XpkezuZhMmu8gnhaGUEAUiTHbQttRzDjw-u6-VzwPyoO2F9yLCQyvlEcLktfUwAl5Jj4dFK5YDKNC8RQuRf8rSq1FnucDtO9TRvxYzuoQ1Ux6hPbWhASPUW80yzNhxTLHoD9MQHDKqyXjJShCwDAsUo01ENatP6jDc4s_sg6BUKZxMcOJWp6g0fPTsNMl_p4Eolw6lBMuW1SFsTYyEDqQOtLMcsmFoO6tqY2oZa5S0S2jIlfAmFCpQEbKLZ9RhoaGnaJ6Ok_NGcJWWm20yzoEhybUEMohI7ihxhVazAYN1K5wSZQXEYe7LGZJxRabJuuYJoBpEjD38AZiK9tFKaWxkdVDBX_ya2MkzudvYH_-T_sbtNMd9ntJ72XwdoF24U_J_7tE9Tz7MlcuJ8nldbHnfgCHauO6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+high-temperature+sintering+and+densification+of+ZrC-based+ceramics&rft.jtitle=Journal+of+the+European+Ceramic+Society&rft.au=Zhang%2C+Bowen&rft.au=Hu%2C+Mengchen&rft.au=Zhong%2C+Fugang&rft.au=Zhang%2C+Shengping&rft.date=2024-08-01&rft.issn=0955-2219&rft.volume=44&rft.issue=10&rft.spage=5569&rft.epage=5578&rft_id=info:doi/10.1016%2Fj.jeurceramsoc.2024.03.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jeurceramsoc_2024_03_037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-2219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-2219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-2219&client=summon |