A novel tomographic sensing system for high electrically conductive multiphase flow measurement
Electrical resistance tomography (ERT) has been widely applied in order to extract flow information from various multiphase flows, e.g. the concentration and velocity distributions of the gas phase in gas–water two phase flows. However, the quality of measurement may become very poor from a multipha...
Saved in:
Published in | Flow measurement and instrumentation Vol. 21; no. 3; pp. 184 - 190 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrical resistance tomography (ERT) has been widely applied in order to extract flow information from various multiphase flows, e.g. the concentration and velocity distributions of the gas phase in gas–water two phase flows. However, the quality of measurement may become very poor from a multiphase flow whose continuous phase has a considerably high electrical conductivity, e.g. seawater (5.0 S/m), using a conventional current-injected ERT system. It is known that a large current excitation is necessary in order to enhance the measurement sensitivity. In practice, it will be very challenging to build a current source with a large amplitude (more than 75 mA) and a high output impedance at a high excitation frequency. This paper presents an implementation of an ERT system with a voltage source and current sensing to overcome the limits of the current source. The amplitude of the current output can reach more than 300 mA. A logarithmic amplifier is used to compress the signal’s dynamic ranges from 18.32 dB to 1.66 dB. The structure and features of this system are presented in this paper and the performances of key circuits are reported. Finally the experimental results from a highly conductive flow (1.06 S/m) are analysed and compared with the measurements obtained from a low conductive flow. |
---|---|
AbstractList | Electrical resistance tomography (ERT) has been widely applied in order to extract flow information from various multiphase flows, e.g. the concentration and velocity distributions of the gas phase in gas–water two phase flows. However, the quality of measurement may become very poor from a multiphase flow whose continuous phase has a considerably high electrical conductivity, e.g. seawater (5.0 S/m), using a conventional current-injected ERT system. It is known that a large current excitation is necessary in order to enhance the measurement sensitivity. In practice, it will be very challenging to build a current source with a large amplitude (more than 75 mA) and a high output impedance at a high excitation frequency. This paper presents an implementation of an ERT system with a voltage source and current sensing to overcome the limits of the current source. The amplitude of the current output can reach more than 300 mA. A logarithmic amplifier is used to compress the signal’s dynamic ranges from 18.32 dB to 1.66 dB. The structure and features of this system are presented in this paper and the performances of key circuits are reported. Finally the experimental results from a highly conductive flow (1.06 S/m) are analysed and compared with the measurements obtained from a low conductive flow. |
Author | Li, Hua Schlaberg, H. Inaki Jia, Jiabin Wang, Mi |
Author_xml | – sequence: 1 givenname: Jiabin surname: Jia fullname: Jia, Jiabin email: prejj@leeds.ac.uk – sequence: 2 givenname: Mi surname: Wang fullname: Wang, Mi – sequence: 3 givenname: H. Inaki surname: Schlaberg fullname: Schlaberg, H. Inaki – sequence: 4 givenname: Hua surname: Li fullname: Li, Hua |
BookMark | eNqNkMtOwzAQRS1UJNrCP1jsE_xI4oRdVZ5SJTawtlxn0rhy7Mp2i_r3JCoLlmxmZnOP7pwFmjnvAKF7SnJKaPWwzzvrvwdQ0biYckZIk1OWE8Ku0JzWgmdV09QzNCdNWWZlU1c3aBHjnhBSEy7mSK6w8yewOPnB74I69EbjCG7k7XA8xwQD7nzAvdn1GCzoFIxW1p6x9q496mROgIejTebQqwh4qoOnPscAA7h0i647ZSPc_e4l-np5_ly_ZZuP1_f1apNpzoqUibrhla4aXpeEdLSlbdmKtijGi-kKSi4IbLed4B2jglV1AVyNgxVaKMEF40v0eOHq4GMM0MlDMIMKZ0mJnFTJvfyrSk6qJGVyVDWGny5hGBueDAQZtQGnoTVh_Fi23vwH8wM80X2M |
CitedBy_id | crossref_primary_10_1109_TRO_2022_3186806 crossref_primary_10_1109_JSEN_2022_3144038 crossref_primary_10_1088_0957_0233_25_8_085401 crossref_primary_10_1088_0957_0233_26_1_015305 crossref_primary_10_1109_JSEN_2020_3042206 crossref_primary_10_1016_j_flowmeasinst_2019_101590 crossref_primary_10_4028_www_scientific_net_AMR_1006_1007_783 crossref_primary_10_3390_pr10030597 crossref_primary_10_1016_S1004_9541_12_60400_5 crossref_primary_10_1016_j_measurement_2018_12_104 crossref_primary_10_1098_rsta_2015_0329 crossref_primary_10_3390_s22062309 crossref_primary_10_1063_5_0169288 crossref_primary_10_1109_JSEN_2022_3222125 crossref_primary_10_1016_j_powtec_2014_02_001 crossref_primary_10_1088_1361_6501_ac1e39 crossref_primary_10_1080_02726351_2011_575444 crossref_primary_10_1109_JSEN_2018_2868463 crossref_primary_10_1063_5_0135777 crossref_primary_10_1016_j_flowmeasinst_2012_09_005 crossref_primary_10_1016_j_flowmeasinst_2016_11_003 crossref_primary_10_1109_TMI_2018_2816739 crossref_primary_10_1109_JBHI_2019_2945593 crossref_primary_10_1109_ACCESS_2020_3047191 crossref_primary_10_1016_j_flowmeasinst_2022_102137 crossref_primary_10_1007_s12652_017_0674_2 crossref_primary_10_1016_j_sciaf_2020_e00550 crossref_primary_10_1109_JSEN_2017_2705063 crossref_primary_10_1088_0957_0233_27_12_124001 crossref_primary_10_1109_JSEN_2017_2714686 crossref_primary_10_1088_1361_6501_ab06a9 crossref_primary_10_1109_JSEN_2019_2899210 crossref_primary_10_3390_app10072355 crossref_primary_10_1109_TMECH_2021_3063414 crossref_primary_10_1016_j_measurement_2015_01_032 crossref_primary_10_1063_5_0088296 crossref_primary_10_1016_j_flowmeasinst_2012_02_002 crossref_primary_10_1016_j_measurement_2021_109401 crossref_primary_10_1016_j_measurement_2021_110510 crossref_primary_10_1016_j_flowmeasinst_2015_06_022 crossref_primary_10_1177_0142331216665689 crossref_primary_10_1109_JSEN_2017_2682929 crossref_primary_10_1016_j_flowmeasinst_2012_10_004 crossref_primary_10_1088_0957_0233_24_7_074002 crossref_primary_10_1088_0957_0233_24_7_074007 crossref_primary_10_1155_2019_1368010 crossref_primary_10_1088_1361_6501_ab5092 crossref_primary_10_1016_j_flowmeasinst_2015_07_002 crossref_primary_10_1016_j_flowmeasinst_2018_02_007 crossref_primary_10_3390_s19143043 crossref_primary_10_1109_ACCESS_2017_2670549 crossref_primary_10_1109_TIM_2010_2084770 crossref_primary_10_1088_1361_6501_ab16b0 crossref_primary_10_1016_j_flowmeasinst_2015_12_002 crossref_primary_10_1109_JSEN_2017_2710146 crossref_primary_10_1016_j_jngse_2022_104465 crossref_primary_10_1016_j_flowmeasinst_2020_101788 |
Cites_doi | 10.1088/0967-3334/27/5/S19 10.1016/j.cej.2006.06.019 10.1080/10020070512330001 10.1088/0967-3334/29/6/S15 10.1088/0967-3334/24/2/361 10.1088/0957-0233/13/9/307 10.3109/03091909709070013 10.1109/JSEN.2005.843904 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd |
Copyright_xml | – notice: 2010 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.flowmeasinst.2009.12.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-6998 |
EndPage | 190 |
ExternalDocumentID | 10_1016_j_flowmeasinst_2009_12_002 S0955598610000026 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SST SSZ T5K UHS WH7 WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c324t-78936c6938500f1d1d5d7d441d12c6e5370ebbf73f2172684e3a84e24c7a73723 |
IEDL.DBID | .~1 |
ISSN | 0955-5986 |
IngestDate | Thu Sep 26 16:31:46 EDT 2024 Fri Feb 23 02:28:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Electrical resistance tomography Voltage-applied system High-conductivity multiphase flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-78936c6938500f1d1d5d7d441d12c6e5370ebbf73f2172684e3a84e24c7a73723 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_flowmeasinst_2009_12_002 elsevier_sciencedirect_doi_10_1016_j_flowmeasinst_2009_12_002 |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Flow measurement and instrumentation |
PublicationYear | 2010 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hartov (b9) 2002; 13 Rafiei-Naeini, McCann (b8) 2008; 29 Saulnier, Ross, Liu (b3) 2006; 27 Wang (b7) 2005; 5 Seagar, Barber, Brown (b11) 1987; 134 Fast, voltage-out DC-440 MHz, 95 dB Logarithmic Amplifier, AD8310. Texas instruments Schlaberg HI, Jia J, Qiu C, Wang M, Li H. Development and application of the Fast Impedance Camera —A high performance dual-plane electrical impedance tomography system. In: 5th international symposium on process tomography in Poland, 2008 Boone, Barber, Brown (b4) 1997; 21 Bolton (b6) 2007; 130 Wang (b1) 2005; 15 A S (b5) 2003; 24 Datasheet. Hig-voltage, high-current operational amplifier (Rev. E). Burr-Brown Products from Texas Instruments, 07 Oct 2005 Wang (10.1016/j.flowmeasinst.2009.12.002_b1) 2005; 15 Boone (10.1016/j.flowmeasinst.2009.12.002_b4) 1997; 21 A S (10.1016/j.flowmeasinst.2009.12.002_b5) 2003; 24 Rafiei-Naeini (10.1016/j.flowmeasinst.2009.12.002_b8) 2008; 29 10.1016/j.flowmeasinst.2009.12.002_b12 Bolton (10.1016/j.flowmeasinst.2009.12.002_b6) 2007; 130 Hartov (10.1016/j.flowmeasinst.2009.12.002_b9) 2002; 13 Saulnier (10.1016/j.flowmeasinst.2009.12.002_b3) 2006; 27 Wang (10.1016/j.flowmeasinst.2009.12.002_b7) 2005; 5 10.1016/j.flowmeasinst.2009.12.002_b10 10.1016/j.flowmeasinst.2009.12.002_b2 Seagar (10.1016/j.flowmeasinst.2009.12.002_b11) 1987; 134 |
References_xml | – volume: 29 start-page: S173 year: 2008 end-page: S184 ident: b8 article-title: Low-noise current excitation sub-system for medical EIT publication-title: Physiological Measurement contributor: fullname: McCann – volume: 15 start-page: 1 year: 2005 end-page: 13 ident: b1 article-title: Seeing a new dimension—The past decade’s developments on electrical impedance tomography publication-title: Progress in Natural Science contributor: fullname: Wang – volume: 24 start-page: 509 year: 2003 end-page: 516 ident: b5 article-title: Current source design for electrical impedance tomography publication-title: Physiological Measurement contributor: fullname: A S – volume: 134 start-page: 201 year: 1987 end-page: 210 ident: b11 article-title: Electrical-impedance imaging publication-title: IEE proceedings A contributor: fullname: Brown – volume: 21 start-page: 201 year: 1997 end-page: 232 ident: b4 article-title: Imaging with electricity: Report of the European concerted action on impedance tomography publication-title: Journal of Medical Engineering & Technology contributor: fullname: Brown – volume: 13 start-page: 1425 year: 2002 end-page: 1430 ident: b9 article-title: Using voltage sources as current drivers for electrical impedance tomography publication-title: Measurement Science & Technology contributor: fullname: Hartov – volume: 130 start-page: 165 year: 2007 end-page: 169 ident: b6 article-title: Development of an electrical tomographic system for operation in a remote, acidic and radioactive environment publication-title: Chemical Engineering Journal contributor: fullname: Bolton – volume: 27 start-page: S221 year: 2006 end-page: S236 ident: b3 article-title: A high-precision voltage source for EIT publication-title: Physiological Measurement contributor: fullname: Liu – volume: 5 start-page: 289 year: 2005 end-page: 299 ident: b7 article-title: A high-performance EIT system publication-title: IEEE Sensors Journal contributor: fullname: Wang – volume: 27 start-page: S221 issue: 5 year: 2006 ident: 10.1016/j.flowmeasinst.2009.12.002_b3 article-title: A high-precision voltage source for EIT publication-title: Physiological Measurement doi: 10.1088/0967-3334/27/5/S19 contributor: fullname: Saulnier – volume: 130 start-page: 165 issue: 2–3 year: 2007 ident: 10.1016/j.flowmeasinst.2009.12.002_b6 article-title: Development of an electrical tomographic system for operation in a remote, acidic and radioactive environment publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2006.06.019 contributor: fullname: Bolton – volume: 15 start-page: 1 year: 2005 ident: 10.1016/j.flowmeasinst.2009.12.002_b1 article-title: Seeing a new dimension—The past decade’s developments on electrical impedance tomography publication-title: Progress in Natural Science doi: 10.1080/10020070512330001 contributor: fullname: Wang – volume: 29 start-page: S173 issue: 6 year: 2008 ident: 10.1016/j.flowmeasinst.2009.12.002_b8 article-title: Low-noise current excitation sub-system for medical EIT publication-title: Physiological Measurement doi: 10.1088/0967-3334/29/6/S15 contributor: fullname: Rafiei-Naeini – ident: 10.1016/j.flowmeasinst.2009.12.002_b2 – volume: 24 start-page: 509 issue: 2 year: 2003 ident: 10.1016/j.flowmeasinst.2009.12.002_b5 article-title: Current source design for electrical impedance tomography publication-title: Physiological Measurement doi: 10.1088/0967-3334/24/2/361 contributor: fullname: A S – volume: 13 start-page: 1425 issue: 9 year: 2002 ident: 10.1016/j.flowmeasinst.2009.12.002_b9 article-title: Using voltage sources as current drivers for electrical impedance tomography publication-title: Measurement Science & Technology doi: 10.1088/0957-0233/13/9/307 contributor: fullname: Hartov – volume: 134 start-page: 201 issue: 2 year: 1987 ident: 10.1016/j.flowmeasinst.2009.12.002_b11 article-title: Electrical-impedance imaging publication-title: IEE proceedings A contributor: fullname: Seagar – ident: 10.1016/j.flowmeasinst.2009.12.002_b12 – ident: 10.1016/j.flowmeasinst.2009.12.002_b10 – volume: 21 start-page: 201 issue: 6 year: 1997 ident: 10.1016/j.flowmeasinst.2009.12.002_b4 article-title: Imaging with electricity: Report of the European concerted action on impedance tomography publication-title: Journal of Medical Engineering & Technology doi: 10.3109/03091909709070013 contributor: fullname: Boone – volume: 5 start-page: 289 issue: 2 year: 2005 ident: 10.1016/j.flowmeasinst.2009.12.002_b7 article-title: A high-performance EIT system publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2005.843904 contributor: fullname: Wang |
SSID | ssj0008037 |
Score | 2.1946676 |
Snippet | Electrical resistance tomography (ERT) has been widely applied in order to extract flow information from various multiphase flows, e.g. the concentration and... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 184 |
SubjectTerms | Electrical resistance tomography High-conductivity multiphase flow Voltage-applied system |
Title | A novel tomographic sensing system for high electrically conductive multiphase flow measurement |
URI | https://dx.doi.org/10.1016/j.flowmeasinst.2009.12.002 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6KIuhBtCrWR9mD19ikm83j4KEUS1XsRQu9hWSzq5U2KTYqXvztzmQTWvEieMkhzMIyszsvvv0G4CLBMCNcJS1F_JcYb-lKJdwKuo6SOuY6jKmhfz_yhmP3diImDejXb2EIVln5fuPTS29d_elU2uwsptPOA5GnEbt42aHGUoJesIvycl5-rWAegW14M1HYIumaeLTEeOlZ_jFXMVbly8JwV1JrsGqx_ApSa4FnsAe7VcbIemZT-9BQWRN21ngEm7BV4jjl8gCiHsvydzVjRT43ZNRTyZYEUs-emGFtZpimMmIpZmYEDllp9smwLibqV3R-zIAMnzG-Mdo6m6_6iIcwHlw_9odWNUPBkpgqFZaP-YgnvZAHwra1kzqpSP0UbZI6XekpwX1bJYn2uaZJVV7gKh7jp-tKP6YJNvwINrI8U8fA_DDUgeNgwYQSQsnA5b7Wgktua1d6vAW8Vlq0MFQZUY0he4nWVU2zL8PI6Uao6hZc1fqNfhg-Qp_-h_Un_1x_CtsGEECwsTPYKF7f1DnmGUXSLg9SGzZ7N3fD0Te3TdUn |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ09T8MwEIZPpQgBA4IC4hsPrKFJnc-BoaqoCrQstBKblTg2FLUpogHEwm_nLk5EEQsSS4bIlqyzc3c-vXkO4CzBMOO5SlqK-JcYb-mTSrgVthwldcx1FFNBf3Dr90bu9b13X4NO9S8MySpL3298euGtyzfN0prN5_G4eUfwNKKLFxVqvEoswbJL_Cw81Oef3zqP0DbgTBxt0fCKPFqIvPRk9j5VMV7L57mBV1JtsKyx_IpSC5GnuwkbZcrI2mZVW1BTWQPWF0CCDVgphJxyvg2izbLZm5qwfDY1NOqxZHNSqWcPzGCbGeapjDDFzPTAoW2afDC8GBP7Fb0fMyrDRwxwjJbOpt-FxB0YdS-HnZ5VNlGwJOZKuRVgQuJLP-KhZ9vaSZ3US4MUNyV1WtJXHg9slSQ64JpaVfmhq3iMj5Yrg5ha2PBdqGezTO0BC6JIh46DNyYc4SkZujzQ2uOS29qVPt8HXhlNPBtWhqhEZE9i0dTU_DISTkugqffhorKv-LHzAp36H-Yf_HP-Kaz2hoO-6F_d3hzCmlEHkIbsCOr5y6s6xqQjT06KQ_UF6p_WyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+tomographic+sensing+system+for+high+electrically+conductive+multiphase+flow+measurement&rft.jtitle=Flow+measurement+and+instrumentation&rft.au=Jia%2C+Jiabin&rft.au=Wang%2C+Mi&rft.au=Schlaberg%2C+H.+Inaki&rft.au=Li%2C+Hua&rft.date=2010-09-01&rft.issn=0955-5986&rft.volume=21&rft.issue=3&rft.spage=184&rft.epage=190&rft_id=info:doi/10.1016%2Fj.flowmeasinst.2009.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_flowmeasinst_2009_12_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-5986&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-5986&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-5986&client=summon |