A novel tomographic sensing system for high electrically conductive multiphase flow measurement

Electrical resistance tomography (ERT) has been widely applied in order to extract flow information from various multiphase flows, e.g. the concentration and velocity distributions of the gas phase in gas–water two phase flows. However, the quality of measurement may become very poor from a multipha...

Full description

Saved in:
Bibliographic Details
Published inFlow measurement and instrumentation Vol. 21; no. 3; pp. 184 - 190
Main Authors Jia, Jiabin, Wang, Mi, Schlaberg, H. Inaki, Li, Hua
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrical resistance tomography (ERT) has been widely applied in order to extract flow information from various multiphase flows, e.g. the concentration and velocity distributions of the gas phase in gas–water two phase flows. However, the quality of measurement may become very poor from a multiphase flow whose continuous phase has a considerably high electrical conductivity, e.g. seawater (5.0 S/m), using a conventional current-injected ERT system. It is known that a large current excitation is necessary in order to enhance the measurement sensitivity. In practice, it will be very challenging to build a current source with a large amplitude (more than 75 mA) and a high output impedance at a high excitation frequency. This paper presents an implementation of an ERT system with a voltage source and current sensing to overcome the limits of the current source. The amplitude of the current output can reach more than 300 mA. A logarithmic amplifier is used to compress the signal’s dynamic ranges from 18.32 dB to 1.66 dB. The structure and features of this system are presented in this paper and the performances of key circuits are reported. Finally the experimental results from a highly conductive flow (1.06 S/m) are analysed and compared with the measurements obtained from a low conductive flow.
AbstractList Electrical resistance tomography (ERT) has been widely applied in order to extract flow information from various multiphase flows, e.g. the concentration and velocity distributions of the gas phase in gas–water two phase flows. However, the quality of measurement may become very poor from a multiphase flow whose continuous phase has a considerably high electrical conductivity, e.g. seawater (5.0 S/m), using a conventional current-injected ERT system. It is known that a large current excitation is necessary in order to enhance the measurement sensitivity. In practice, it will be very challenging to build a current source with a large amplitude (more than 75 mA) and a high output impedance at a high excitation frequency. This paper presents an implementation of an ERT system with a voltage source and current sensing to overcome the limits of the current source. The amplitude of the current output can reach more than 300 mA. A logarithmic amplifier is used to compress the signal’s dynamic ranges from 18.32 dB to 1.66 dB. The structure and features of this system are presented in this paper and the performances of key circuits are reported. Finally the experimental results from a highly conductive flow (1.06 S/m) are analysed and compared with the measurements obtained from a low conductive flow.
Author Li, Hua
Schlaberg, H. Inaki
Jia, Jiabin
Wang, Mi
Author_xml – sequence: 1
  givenname: Jiabin
  surname: Jia
  fullname: Jia, Jiabin
  email: prejj@leeds.ac.uk
– sequence: 2
  givenname: Mi
  surname: Wang
  fullname: Wang, Mi
– sequence: 3
  givenname: H. Inaki
  surname: Schlaberg
  fullname: Schlaberg, H. Inaki
– sequence: 4
  givenname: Hua
  surname: Li
  fullname: Li, Hua
BookMark eNqNkMtOwzAQRS1UJNrCP1jsE_xI4oRdVZ5SJTawtlxn0rhy7Mp2i_r3JCoLlmxmZnOP7pwFmjnvAKF7SnJKaPWwzzvrvwdQ0biYckZIk1OWE8Ku0JzWgmdV09QzNCdNWWZlU1c3aBHjnhBSEy7mSK6w8yewOPnB74I69EbjCG7k7XA8xwQD7nzAvdn1GCzoFIxW1p6x9q496mROgIejTebQqwh4qoOnPscAA7h0i647ZSPc_e4l-np5_ly_ZZuP1_f1apNpzoqUibrhla4aXpeEdLSlbdmKtijGi-kKSi4IbLed4B2jglV1AVyNgxVaKMEF40v0eOHq4GMM0MlDMIMKZ0mJnFTJvfyrSk6qJGVyVDWGny5hGBueDAQZtQGnoTVh_Fi23vwH8wM80X2M
CitedBy_id crossref_primary_10_1109_TRO_2022_3186806
crossref_primary_10_1109_JSEN_2022_3144038
crossref_primary_10_1088_0957_0233_25_8_085401
crossref_primary_10_1088_0957_0233_26_1_015305
crossref_primary_10_1109_JSEN_2020_3042206
crossref_primary_10_1016_j_flowmeasinst_2019_101590
crossref_primary_10_4028_www_scientific_net_AMR_1006_1007_783
crossref_primary_10_3390_pr10030597
crossref_primary_10_1016_S1004_9541_12_60400_5
crossref_primary_10_1016_j_measurement_2018_12_104
crossref_primary_10_1098_rsta_2015_0329
crossref_primary_10_3390_s22062309
crossref_primary_10_1063_5_0169288
crossref_primary_10_1109_JSEN_2022_3222125
crossref_primary_10_1016_j_powtec_2014_02_001
crossref_primary_10_1088_1361_6501_ac1e39
crossref_primary_10_1080_02726351_2011_575444
crossref_primary_10_1109_JSEN_2018_2868463
crossref_primary_10_1063_5_0135777
crossref_primary_10_1016_j_flowmeasinst_2012_09_005
crossref_primary_10_1016_j_flowmeasinst_2016_11_003
crossref_primary_10_1109_TMI_2018_2816739
crossref_primary_10_1109_JBHI_2019_2945593
crossref_primary_10_1109_ACCESS_2020_3047191
crossref_primary_10_1016_j_flowmeasinst_2022_102137
crossref_primary_10_1007_s12652_017_0674_2
crossref_primary_10_1016_j_sciaf_2020_e00550
crossref_primary_10_1109_JSEN_2017_2705063
crossref_primary_10_1088_0957_0233_27_12_124001
crossref_primary_10_1109_JSEN_2017_2714686
crossref_primary_10_1088_1361_6501_ab06a9
crossref_primary_10_1109_JSEN_2019_2899210
crossref_primary_10_3390_app10072355
crossref_primary_10_1109_TMECH_2021_3063414
crossref_primary_10_1016_j_measurement_2015_01_032
crossref_primary_10_1063_5_0088296
crossref_primary_10_1016_j_flowmeasinst_2012_02_002
crossref_primary_10_1016_j_measurement_2021_109401
crossref_primary_10_1016_j_measurement_2021_110510
crossref_primary_10_1016_j_flowmeasinst_2015_06_022
crossref_primary_10_1177_0142331216665689
crossref_primary_10_1109_JSEN_2017_2682929
crossref_primary_10_1016_j_flowmeasinst_2012_10_004
crossref_primary_10_1088_0957_0233_24_7_074002
crossref_primary_10_1088_0957_0233_24_7_074007
crossref_primary_10_1155_2019_1368010
crossref_primary_10_1088_1361_6501_ab5092
crossref_primary_10_1016_j_flowmeasinst_2015_07_002
crossref_primary_10_1016_j_flowmeasinst_2018_02_007
crossref_primary_10_3390_s19143043
crossref_primary_10_1109_ACCESS_2017_2670549
crossref_primary_10_1109_TIM_2010_2084770
crossref_primary_10_1088_1361_6501_ab16b0
crossref_primary_10_1016_j_flowmeasinst_2015_12_002
crossref_primary_10_1109_JSEN_2017_2710146
crossref_primary_10_1016_j_jngse_2022_104465
crossref_primary_10_1016_j_flowmeasinst_2020_101788
Cites_doi 10.1088/0967-3334/27/5/S19
10.1016/j.cej.2006.06.019
10.1080/10020070512330001
10.1088/0967-3334/29/6/S15
10.1088/0967-3334/24/2/361
10.1088/0957-0233/13/9/307
10.3109/03091909709070013
10.1109/JSEN.2005.843904
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Copyright_xml – notice: 2010 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.flowmeasinst.2009.12.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-6998
EndPage 190
ExternalDocumentID 10_1016_j_flowmeasinst_2009_12_002
S0955598610000026
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c324t-78936c6938500f1d1d5d7d441d12c6e5370ebbf73f2172684e3a84e24c7a73723
IEDL.DBID .~1
ISSN 0955-5986
IngestDate Thu Sep 26 16:31:46 EDT 2024
Fri Feb 23 02:28:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Electrical resistance tomography
Voltage-applied system
High-conductivity multiphase flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-78936c6938500f1d1d5d7d441d12c6e5370ebbf73f2172684e3a84e24c7a73723
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_flowmeasinst_2009_12_002
elsevier_sciencedirect_doi_10_1016_j_flowmeasinst_2009_12_002
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Flow measurement and instrumentation
PublicationYear 2010
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hartov (b9) 2002; 13
Rafiei-Naeini, McCann (b8) 2008; 29
Saulnier, Ross, Liu (b3) 2006; 27
Wang (b7) 2005; 5
Seagar, Barber, Brown (b11) 1987; 134
Fast, voltage-out DC-440 MHz, 95 dB Logarithmic Amplifier, AD8310. Texas instruments
Schlaberg HI, Jia J, Qiu C, Wang M, Li H. Development and application of the Fast Impedance Camera —A high performance dual-plane electrical impedance tomography system. In: 5th international symposium on process tomography in Poland, 2008
Boone, Barber, Brown (b4) 1997; 21
Bolton (b6) 2007; 130
Wang (b1) 2005; 15
A S (b5) 2003; 24
Datasheet. Hig-voltage, high-current operational amplifier (Rev. E). Burr-Brown Products from Texas Instruments, 07 Oct 2005
Wang (10.1016/j.flowmeasinst.2009.12.002_b1) 2005; 15
Boone (10.1016/j.flowmeasinst.2009.12.002_b4) 1997; 21
A S (10.1016/j.flowmeasinst.2009.12.002_b5) 2003; 24
Rafiei-Naeini (10.1016/j.flowmeasinst.2009.12.002_b8) 2008; 29
10.1016/j.flowmeasinst.2009.12.002_b12
Bolton (10.1016/j.flowmeasinst.2009.12.002_b6) 2007; 130
Hartov (10.1016/j.flowmeasinst.2009.12.002_b9) 2002; 13
Saulnier (10.1016/j.flowmeasinst.2009.12.002_b3) 2006; 27
Wang (10.1016/j.flowmeasinst.2009.12.002_b7) 2005; 5
10.1016/j.flowmeasinst.2009.12.002_b10
10.1016/j.flowmeasinst.2009.12.002_b2
Seagar (10.1016/j.flowmeasinst.2009.12.002_b11) 1987; 134
References_xml – volume: 29
  start-page: S173
  year: 2008
  end-page: S184
  ident: b8
  article-title: Low-noise current excitation sub-system for medical EIT
  publication-title: Physiological Measurement
  contributor:
    fullname: McCann
– volume: 15
  start-page: 1
  year: 2005
  end-page: 13
  ident: b1
  article-title: Seeing a new dimension—The past decade’s developments on electrical impedance tomography
  publication-title: Progress in Natural Science
  contributor:
    fullname: Wang
– volume: 24
  start-page: 509
  year: 2003
  end-page: 516
  ident: b5
  article-title: Current source design for electrical impedance tomography
  publication-title: Physiological Measurement
  contributor:
    fullname: A S
– volume: 134
  start-page: 201
  year: 1987
  end-page: 210
  ident: b11
  article-title: Electrical-impedance imaging
  publication-title: IEE proceedings A
  contributor:
    fullname: Brown
– volume: 21
  start-page: 201
  year: 1997
  end-page: 232
  ident: b4
  article-title: Imaging with electricity: Report of the European concerted action on impedance tomography
  publication-title: Journal of Medical Engineering & Technology
  contributor:
    fullname: Brown
– volume: 13
  start-page: 1425
  year: 2002
  end-page: 1430
  ident: b9
  article-title: Using voltage sources as current drivers for electrical impedance tomography
  publication-title: Measurement Science & Technology
  contributor:
    fullname: Hartov
– volume: 130
  start-page: 165
  year: 2007
  end-page: 169
  ident: b6
  article-title: Development of an electrical tomographic system for operation in a remote, acidic and radioactive environment
  publication-title: Chemical Engineering Journal
  contributor:
    fullname: Bolton
– volume: 27
  start-page: S221
  year: 2006
  end-page: S236
  ident: b3
  article-title: A high-precision voltage source for EIT
  publication-title: Physiological Measurement
  contributor:
    fullname: Liu
– volume: 5
  start-page: 289
  year: 2005
  end-page: 299
  ident: b7
  article-title: A high-performance EIT system
  publication-title: IEEE Sensors Journal
  contributor:
    fullname: Wang
– volume: 27
  start-page: S221
  issue: 5
  year: 2006
  ident: 10.1016/j.flowmeasinst.2009.12.002_b3
  article-title: A high-precision voltage source for EIT
  publication-title: Physiological Measurement
  doi: 10.1088/0967-3334/27/5/S19
  contributor:
    fullname: Saulnier
– volume: 130
  start-page: 165
  issue: 2–3
  year: 2007
  ident: 10.1016/j.flowmeasinst.2009.12.002_b6
  article-title: Development of an electrical tomographic system for operation in a remote, acidic and radioactive environment
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2006.06.019
  contributor:
    fullname: Bolton
– volume: 15
  start-page: 1
  year: 2005
  ident: 10.1016/j.flowmeasinst.2009.12.002_b1
  article-title: Seeing a new dimension—The past decade’s developments on electrical impedance tomography
  publication-title: Progress in Natural Science
  doi: 10.1080/10020070512330001
  contributor:
    fullname: Wang
– volume: 29
  start-page: S173
  issue: 6
  year: 2008
  ident: 10.1016/j.flowmeasinst.2009.12.002_b8
  article-title: Low-noise current excitation sub-system for medical EIT
  publication-title: Physiological Measurement
  doi: 10.1088/0967-3334/29/6/S15
  contributor:
    fullname: Rafiei-Naeini
– ident: 10.1016/j.flowmeasinst.2009.12.002_b2
– volume: 24
  start-page: 509
  issue: 2
  year: 2003
  ident: 10.1016/j.flowmeasinst.2009.12.002_b5
  article-title: Current source design for electrical impedance tomography
  publication-title: Physiological Measurement
  doi: 10.1088/0967-3334/24/2/361
  contributor:
    fullname: A S
– volume: 13
  start-page: 1425
  issue: 9
  year: 2002
  ident: 10.1016/j.flowmeasinst.2009.12.002_b9
  article-title: Using voltage sources as current drivers for electrical impedance tomography
  publication-title: Measurement Science & Technology
  doi: 10.1088/0957-0233/13/9/307
  contributor:
    fullname: Hartov
– volume: 134
  start-page: 201
  issue: 2
  year: 1987
  ident: 10.1016/j.flowmeasinst.2009.12.002_b11
  article-title: Electrical-impedance imaging
  publication-title: IEE proceedings A
  contributor:
    fullname: Seagar
– ident: 10.1016/j.flowmeasinst.2009.12.002_b12
– ident: 10.1016/j.flowmeasinst.2009.12.002_b10
– volume: 21
  start-page: 201
  issue: 6
  year: 1997
  ident: 10.1016/j.flowmeasinst.2009.12.002_b4
  article-title: Imaging with electricity: Report of the European concerted action on impedance tomography
  publication-title: Journal of Medical Engineering & Technology
  doi: 10.3109/03091909709070013
  contributor:
    fullname: Boone
– volume: 5
  start-page: 289
  issue: 2
  year: 2005
  ident: 10.1016/j.flowmeasinst.2009.12.002_b7
  article-title: A high-performance EIT system
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2005.843904
  contributor:
    fullname: Wang
SSID ssj0008037
Score 2.1946676
Snippet Electrical resistance tomography (ERT) has been widely applied in order to extract flow information from various multiphase flows, e.g. the concentration and...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 184
SubjectTerms Electrical resistance tomography
High-conductivity multiphase flow
Voltage-applied system
Title A novel tomographic sensing system for high electrically conductive multiphase flow measurement
URI https://dx.doi.org/10.1016/j.flowmeasinst.2009.12.002
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6KIuhBtCrWR9mD19ikm83j4KEUS1XsRQu9hWSzq5U2KTYqXvztzmQTWvEieMkhzMIyszsvvv0G4CLBMCNcJS1F_JcYb-lKJdwKuo6SOuY6jKmhfz_yhmP3diImDejXb2EIVln5fuPTS29d_elU2uwsptPOA5GnEbt42aHGUoJesIvycl5-rWAegW14M1HYIumaeLTEeOlZ_jFXMVbly8JwV1JrsGqx_ApSa4FnsAe7VcbIemZT-9BQWRN21ngEm7BV4jjl8gCiHsvydzVjRT43ZNRTyZYEUs-emGFtZpimMmIpZmYEDllp9smwLibqV3R-zIAMnzG-Mdo6m6_6iIcwHlw_9odWNUPBkpgqFZaP-YgnvZAHwra1kzqpSP0UbZI6XekpwX1bJYn2uaZJVV7gKh7jp-tKP6YJNvwINrI8U8fA_DDUgeNgwYQSQsnA5b7Wgktua1d6vAW8Vlq0MFQZUY0he4nWVU2zL8PI6Uao6hZc1fqNfhg-Qp_-h_Un_1x_CtsGEECwsTPYKF7f1DnmGUXSLg9SGzZ7N3fD0Te3TdUn
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ09T8MwEIZPpQgBA4IC4hsPrKFJnc-BoaqoCrQstBKblTg2FLUpogHEwm_nLk5EEQsSS4bIlqyzc3c-vXkO4CzBMOO5SlqK-JcYb-mTSrgVthwldcx1FFNBf3Dr90bu9b13X4NO9S8MySpL3298euGtyzfN0prN5_G4eUfwNKKLFxVqvEoswbJL_Cw81Oef3zqP0DbgTBxt0fCKPFqIvPRk9j5VMV7L57mBV1JtsKyx_IpSC5GnuwkbZcrI2mZVW1BTWQPWF0CCDVgphJxyvg2izbLZm5qwfDY1NOqxZHNSqWcPzGCbGeapjDDFzPTAoW2afDC8GBP7Fb0fMyrDRwxwjJbOpt-FxB0YdS-HnZ5VNlGwJOZKuRVgQuJLP-KhZ9vaSZ3US4MUNyV1WtJXHg9slSQ64JpaVfmhq3iMj5Yrg5ha2PBdqGezTO0BC6JIh46DNyYc4SkZujzQ2uOS29qVPt8HXhlNPBtWhqhEZE9i0dTU_DISTkugqffhorKv-LHzAp36H-Yf_HP-Kaz2hoO-6F_d3hzCmlEHkIbsCOr5y6s6xqQjT06KQ_UF6p_WyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+tomographic+sensing+system+for+high+electrically+conductive+multiphase+flow+measurement&rft.jtitle=Flow+measurement+and+instrumentation&rft.au=Jia%2C+Jiabin&rft.au=Wang%2C+Mi&rft.au=Schlaberg%2C+H.+Inaki&rft.au=Li%2C+Hua&rft.date=2010-09-01&rft.issn=0955-5986&rft.volume=21&rft.issue=3&rft.spage=184&rft.epage=190&rft_id=info:doi/10.1016%2Fj.flowmeasinst.2009.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_flowmeasinst_2009_12_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-5986&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-5986&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-5986&client=summon