The crack behavior and delamination mechanisms of air plasma sprayed thermal barrier coatings under ultrasonic plasma jet at 1600 °C
In this contribution, the performance and delamination mechanisms of air plasma sprayed (APS) yttria stabilized zirconia thermal barrier coatings (YSZ TBCs) under high intensity heat flux at 1600 °C was investigated. The plasma jet was adopted as the heat source with a combination of high temperatur...
Saved in:
Published in | Journal of the European Ceramic Society Vol. 43; no. 9; pp. 4136 - 4145 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0955-2219 1873-619X |
DOI | 10.1016/j.jeurceramsoc.2023.03.005 |
Cover
Loading…
Abstract | In this contribution, the performance and delamination mechanisms of air plasma sprayed (APS) yttria stabilized zirconia thermal barrier coatings (YSZ TBCs) under high intensity heat flux at 1600 °C was investigated. The plasma jet was adopted as the heat source with a combination of high temperature and high-speed jet-stream erosion. It was found that the YSZ topcoat would exfoliate when the vertical crack connected to the interior (interfacial/shear) cracks to form a free edge, which turned the mixed-mode buckle delamination into a mode I cracking. The thermo-mechanical analysis indicated that energy release rate associated with the transient cooling was the driving force for the interfacial cracks, while the vertical cracks were developed by the tensile stress during cooldown. The findings obtained in this study implied that the YSZ TBCs can be used for the thermal protection of combustor in ramjet engines. |
---|---|
AbstractList | In this contribution, the performance and delamination mechanisms of air plasma sprayed (APS) yttria stabilized zirconia thermal barrier coatings (YSZ TBCs) under high intensity heat flux at 1600 °C was investigated. The plasma jet was adopted as the heat source with a combination of high temperature and high-speed jet-stream erosion. It was found that the YSZ topcoat would exfoliate when the vertical crack connected to the interior (interfacial/shear) cracks to form a free edge, which turned the mixed-mode buckle delamination into a mode I cracking. The thermo-mechanical analysis indicated that energy release rate associated with the transient cooling was the driving force for the interfacial cracks, while the vertical cracks were developed by the tensile stress during cooldown. The findings obtained in this study implied that the YSZ TBCs can be used for the thermal protection of combustor in ramjet engines. |
Author | Lu, Jie Zhang, Xiancheng Zhao, Xiaofeng Luo, Lirong Shan, Xiao Wang, Weize Cai, Huangyue Cai, Zhenwei |
Author_xml | – sequence: 1 givenname: Huangyue surname: Cai fullname: Cai, Huangyue organization: School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 2 givenname: Xiao orcidid: 0000-0003-2661-6834 surname: Shan fullname: Shan, Xiao email: scientist@sjtu.edu.cn organization: School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 givenname: Jie surname: Lu fullname: Lu, Jie organization: School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 4 givenname: Lirong surname: Luo fullname: Luo, Lirong organization: Engineering Research center of Nano-Geo Materials of Ministry Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China – sequence: 5 givenname: Zhenwei surname: Cai fullname: Cai, Zhenwei organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 6 givenname: Weize surname: Wang fullname: Wang, Weize organization: Key Laboratory of Pressure Systems and Safety, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 7 givenname: Xiancheng surname: Zhang fullname: Zhang, Xiancheng organization: Key Laboratory of Pressure Systems and Safety, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 8 givenname: Xiaofeng surname: Zhao fullname: Zhao, Xiaofeng email: xiaofengzhao@sjtu.edu.cn organization: School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
BookMark | eNqNkEtqHDEQhkVwIGMndxDe96TU0-pHVgmTODYYsnEgO1GqLmXU6ZYGqcfgA_g-PoNPlvYLQlaGH4pafD9V37E4CjGwEKcK1gpU_XFYD3xIxAmnHGldQrlZwxLQb8RKtc2mqFX360isoNO6KEvVvRPHOQ8AqoGuW4nbqx1LSkh_pOUdXvuYJIZe9jzi5APOPgY5Me0w-DxlGZ1En-R-xDyhzPuEN9zLecdpwlFaTMlzkhQXMPzO8hD6ZT2Mc8Icg6cXcOBZ4ixVDSDv77bvxVuHY-YPz_NE_Dz7drU9Ly5_fL_YfrksaFNWc9FobSvQ0FLLtWq0a1HXrVNkG6uqptK1ItdpqmtoWDW2QmetJYSOXe9cvzkRn596KcWcEztDfn78cTnQj0aBedBqBvOvVvOg1cAS0EvFp_8q9slPmG5eB399gnl58noxZTJ5DsS9T0yz6aN_Tc1fYX-h1g |
CitedBy_id | crossref_primary_10_1016_j_jeurceramsoc_2024_117089 crossref_primary_10_1016_j_surfcoat_2024_131679 crossref_primary_10_1016_j_surfcoat_2023_129613 crossref_primary_10_1007_s11668_023_01788_4 crossref_primary_10_1016_j_ceramint_2024_09_417 crossref_primary_10_26599_JAC_2024_9221002 crossref_primary_10_1016_j_ceramint_2024_05_166 crossref_primary_10_1016_j_surfcoat_2024_130758 crossref_primary_10_3390_coatings15010098 |
Cites_doi | 10.2514/1.9178 10.1111/j.1551-2916.2010.03635.x 10.1107/S1600576719016327 10.1126/science.1068609 10.1016/j.msea.2005.06.071 10.1111/jace.14940 10.1016/j.surfcoat.2004.02.004 10.1016/j.ceramint.2020.04.158 10.1016/j.actamat.2005.04.029 10.1016/S0921-5093(02)00251-4 10.1111/jace.18101 10.1016/j.surfcoat.2020.125678 10.1016/j.surfcoat.2015.12.012 10.1016/j.applthermaleng.2016.03.039 10.1111/jace.12868 10.1016/j.surfcoat.2004.01.002 10.1016/j.actamat.2017.01.061 10.1111/jace.17452 10.1016/j.corsci.2020.108478 10.1016/j.msea.2012.07.095 10.1016/j.jeurceramsoc.2013.06.012 10.1111/jace.14713 10.1111/jace.14784 10.1016/j.jeurceramsoc.2014.01.002 10.1016/j.pmatsci.2016.08.003 10.1007/s11665-017-2562-5 10.1016/j.jmps.2009.01.001 10.1016/j.actamat.2010.04.015 10.1016/j.msea.2008.01.006 10.1007/s11666-021-01163-5 10.1038/nmat4687 10.1016/j.actamat.2007.08.052 10.1016/j.jmps.2013.08.016 10.1016/j.actamat.2004.11.028 10.1111/jace.17825 10.3938/jkps.65.1252 10.1016/j.surfcoat.2007.03.029 10.1007/s11666-017-0590-1 10.1016/S0257-8972(01)01451-7 10.1016/j.ijsolstr.2013.12.029 10.1016/j.jeurceramsoc.2019.10.021 10.1016/j.surfcoat.2019.04.053 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jeurceramsoc.2023.03.005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-619X |
EndPage | 4145 |
ExternalDocumentID | 10_1016_j_jeurceramsoc_2023_03_005 S0955221923001851 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c324t-755b40508c8e6175f8a568f1cb7b1474561cf95c6607e17b4afbbbca09efdffd3 |
IEDL.DBID | .~1 |
ISSN | 0955-2219 |
IngestDate | Tue Jul 01 02:25:50 EDT 2025 Thu Apr 24 23:02:33 EDT 2025 Fri Feb 23 02:35:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Plasma jet erosion Thermal barrier coatings Delamination mechanism Thermal transient |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-755b40508c8e6175f8a568f1cb7b1474561cf95c6607e17b4afbbbca09efdffd3 |
ORCID | 0000-0003-2661-6834 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jeurceramsoc_2023_03_005 crossref_primary_10_1016_j_jeurceramsoc_2023_03_005 elsevier_sciencedirect_doi_10_1016_j_jeurceramsoc_2023_03_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the European Ceramic Society |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Abubakar, Fazal, Khaled, Akhtar (bib17) 2017; 26 Balasubramanian, Langdon (bib34) 2005; 409 Li, Xie, Yang, Liu, Li, Li (bib25) 2017; 100 Birks, Meier, Pettit (bib22) 2006 Mercer, Faulhaber, Evans, Darolia (bib46) 2005; 53 Bumgardner, Croom, Li (bib27) 2017; 128 Fry (bib2) 2004; 20 Vaßen, Bakan, Mack, Schwartz-lückge, Sebold, Sohn, Zhou, Guillon (bib9) 2020; 40 Wen, Liu, Liu, Zhou, Long, Deng, Mao, Yan, Liao (bib11) 2019; 371 Muñoz Tabares, Anglada (bib13) 2010; 93 Zhu, Wu, Yang, Zhou (bib47) 2020; 46 Dong, Yang, Li, Luo, Li (bib23) 2014; 97 Watanabe, Xu, Levi, Gandhi, Evans (bib19) 2005; 53 Bumgardner, Croom, Li (bib44) 2017; 128 Frommherz, Scholz, Oechsner, Bakan, Vaßen (bib21) 2016; 286 Luo, Zou, Shan, Cai, Yang, Jin, Zhao (bib14) 2022; 105 Sundaram, Lipkin, Johnson, Hutchinson (bib39) 2013; 80 Padture (bib1) 2016; 15 Fleck, Cocks, Lampenscherf (bib40) 2014; 34 Vaßen, Giesen, Stöver (bib20) 2009 R.A. Miller, History of Thermal Barrier Coatings for Gas Turbine Engines, Cleveland, 2009. Loganathan, Gandhi (bib28) 2012; 556 Cheng, Zhang, Yang, Zhang, Chen, Yang, Li, Li (bib29) 2017; 100 . Shan, Chen, Yang, Guo, Zhao, Xiao (bib12) 2020; 167 Zhang, Cocks, Okajima, Takeno, Torigoe (bib15) 2021; 104 Fleck, Cocks (bib30) 2009; 57 Hutchinson, Evans (bib36) 2002; 149 Lima, Marple (bib10) 2017; 26 R.-R. Plc, The Jet Engine, Fifth, The Techincal Publications Depar, 1986. Natali, Kenny, Torre (bib4) 2016; 84 Pabst, Gregorová, Černý (bib48) 2013; 33 H.B. Guo, R. Vaßen, D. Stöver, Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings, (n.d.). Li, Xiao, Cernik (bib31) 2020; 53 Jackson, Begley (bib38) 2014; 51 Padture, Gell, Jordan (bib5) 2002 Rudolphi, Galetz, Schütze (bib18) 2021; 30 Schlichting, Padture, Jordan, Gell (bib41) 2003; 342 H.B. Guo, R. Vaßen, D. Stöver, Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density, (n.d.). Li, Xie, Yang, Liu, Li, Li (bib26) 2017; 100 Krämer, Faulhaber, Chambers, Clarke, Levi, Hutchinson, Evans (bib45) 2008; 490 Chen, Li, Zhao, Xiao (bib24) 2020; 394 Cocks, Fleck, Lampenscherf (bib32) 2014; 63 Liu, Kagawa, Evans (bib16) 2008; 56 Evans, Hutchinson (bib37) 2007; 201 Kumagawa, Kozue, Fujino, Matsuoka, Endo, Namba, Tamura, Ezumi (bib35) 2014; 2014 Vaßen, Mack, Sebold, Guillon (bib8) 2020; 104 Shen, Wang, Dong, Pu, Peng, Qu, Chen (bib7) 2016; 105 Cocks, Fleck (bib33) 2010; 58 Chen (10.1016/j.jeurceramsoc.2023.03.005_bib24) 2020; 394 Fleck (10.1016/j.jeurceramsoc.2023.03.005_bib30) 2009; 57 Sundaram (10.1016/j.jeurceramsoc.2023.03.005_bib39) 2013; 80 Frommherz (10.1016/j.jeurceramsoc.2023.03.005_bib21) 2016; 286 10.1016/j.jeurceramsoc.2023.03.005_bib6 Padture (10.1016/j.jeurceramsoc.2023.03.005_bib5) 2002 10.1016/j.jeurceramsoc.2023.03.005_bib3 Lima (10.1016/j.jeurceramsoc.2023.03.005_bib10) 2017; 26 Birks (10.1016/j.jeurceramsoc.2023.03.005_bib22) 2006 Rudolphi (10.1016/j.jeurceramsoc.2023.03.005_bib18) 2021; 30 Li (10.1016/j.jeurceramsoc.2023.03.005_bib26) 2017; 100 Bumgardner (10.1016/j.jeurceramsoc.2023.03.005_bib27) 2017; 128 Li (10.1016/j.jeurceramsoc.2023.03.005_bib31) 2020; 53 Pabst (10.1016/j.jeurceramsoc.2023.03.005_bib48) 2013; 33 Loganathan (10.1016/j.jeurceramsoc.2023.03.005_bib28) 2012; 556 Shen (10.1016/j.jeurceramsoc.2023.03.005_bib7) 2016; 105 Shan (10.1016/j.jeurceramsoc.2023.03.005_bib12) 2020; 167 Abubakar (10.1016/j.jeurceramsoc.2023.03.005_bib17) 2017; 26 Zhu (10.1016/j.jeurceramsoc.2023.03.005_bib47) 2020; 46 Hutchinson (10.1016/j.jeurceramsoc.2023.03.005_bib36) 2002; 149 Watanabe (10.1016/j.jeurceramsoc.2023.03.005_bib19) 2005; 53 Wen (10.1016/j.jeurceramsoc.2023.03.005_bib11) 2019; 371 Cheng (10.1016/j.jeurceramsoc.2023.03.005_bib29) 2017; 100 Li (10.1016/j.jeurceramsoc.2023.03.005_bib25) 2017; 100 Padture (10.1016/j.jeurceramsoc.2023.03.005_bib1) 2016; 15 Liu (10.1016/j.jeurceramsoc.2023.03.005_bib16) 2008; 56 Schlichting (10.1016/j.jeurceramsoc.2023.03.005_bib41) 2003; 342 Zhang (10.1016/j.jeurceramsoc.2023.03.005_bib15) 2021; 104 Balasubramanian (10.1016/j.jeurceramsoc.2023.03.005_bib34) 2005; 409 Luo (10.1016/j.jeurceramsoc.2023.03.005_bib14) 2022; 105 Krämer (10.1016/j.jeurceramsoc.2023.03.005_bib45) 2008; 490 Fleck (10.1016/j.jeurceramsoc.2023.03.005_bib40) 2014; 34 Vaßen (10.1016/j.jeurceramsoc.2023.03.005_bib20) 2009 Cocks (10.1016/j.jeurceramsoc.2023.03.005_bib32) 2014; 63 Dong (10.1016/j.jeurceramsoc.2023.03.005_bib23) 2014; 97 Natali (10.1016/j.jeurceramsoc.2023.03.005_bib4) 2016; 84 Mercer (10.1016/j.jeurceramsoc.2023.03.005_bib46) 2005; 53 Vaßen (10.1016/j.jeurceramsoc.2023.03.005_bib8) 2020; 104 Jackson (10.1016/j.jeurceramsoc.2023.03.005_bib38) 2014; 51 Fry (10.1016/j.jeurceramsoc.2023.03.005_bib2) 2004; 20 Evans (10.1016/j.jeurceramsoc.2023.03.005_bib37) 2007; 201 Bumgardner (10.1016/j.jeurceramsoc.2023.03.005_bib44) 2017; 128 Kumagawa (10.1016/j.jeurceramsoc.2023.03.005_bib35) 2014; 2014 10.1016/j.jeurceramsoc.2023.03.005_bib42 Vaßen (10.1016/j.jeurceramsoc.2023.03.005_bib9) 2020; 40 Muñoz Tabares (10.1016/j.jeurceramsoc.2023.03.005_bib13) 2010; 93 Cocks (10.1016/j.jeurceramsoc.2023.03.005_bib33) 2010; 58 10.1016/j.jeurceramsoc.2023.03.005_bib43 |
References_xml | – volume: 128 start-page: 54 year: 2017 end-page: 63 ident: bib27 article-title: High-temperature delamination mechanisms of thermal barrier coatings: In-situ digital image correlation and finite element analyses publication-title: Acta Mater. – start-page: 280 year: 2002 end-page: 284 ident: bib5 article-title: Thermal barrier coatings for gas-turbine engine applications publication-title: Sci. (80-. ). 296 ( – volume: 20 start-page: 27 year: 2004 end-page: 58 ident: bib2 article-title: A century of ramjet propulsion technology evolution publication-title: J. Propuls. Power – volume: 51 start-page: 1364 year: 2014 end-page: 1374 ident: bib38 article-title: Critical cooling rates to avoid transient-driven cracking in thermal barrier coating (TBC) systems publication-title: Int. J. Solids Struct. – volume: 149 start-page: 179 year: 2002 end-page: 184 ident: bib36 article-title: On the delamination of thermal barrier coatings in a thermal gradient publication-title: Surf. Coat. Technol. – reference: H.B. Guo, R. Vaßen, D. Stöver, Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings, (n.d.). – volume: 105 start-page: 549 year: 2016 end-page: 556 ident: bib7 article-title: An experimental investigation on transpiration cooling with phase change under supersonic condition publication-title: Appl. Therm. Eng. – volume: 2014 start-page: 1252 year: 2014 end-page: 1256 ident: bib35 article-title: Investigation of a shock wave in an arcjet He plasma by using an electric probe and emission spectroscope publication-title: J. Korean Phys. Soc. – volume: 394 year: 2020 ident: bib24 article-title: Measurements and understanding of the stiffness of an air plasma sprayed thermal barrier coating publication-title: Surf. Coat. Technol. – year: 2006 ident: bib22 article-title: Introduction to the High Temperature publication-title: Oxidation of Metals – volume: 46 start-page: 18526 year: 2020 end-page: 18533 ident: bib47 article-title: In situ characterization of high temperature elastic modulus and fracture toughness in air plasma sprayed thermal barrier coatings under bending by using digital image correlation publication-title: Ceram. Int. – volume: 53 start-page: 3765 year: 2005 end-page: 3773 ident: bib19 article-title: Shear band formation in columnar thermal barrier oxides publication-title: Acta Mater. – volume: 63 start-page: 412 year: 2014 end-page: 431 ident: bib32 article-title: A brick model for asperity sintering and creep of APS TBCs publication-title: J. Mech. Phys. Solids – volume: 26 start-page: 1272 year: 2017 end-page: 1282 ident: bib10 article-title: Insights on the high-temperature operational limits of ZrO2-Y2O3 TBCs manufactured via air plasma spray publication-title: J. Mater. Eng. Perform. – volume: 34 start-page: 2687 year: 2014 end-page: 2694 ident: bib40 article-title: Thermal shock resistance of air plasma sprayed thermal barrier coatings publication-title: J. Eur. Ceram. Soc. – volume: 57 start-page: 689 year: 2009 end-page: 705 ident: bib30 article-title: A multi-scale constitutive model for the sintering of an air-plasma-sprayed thermal barrier coating, and its response under hot isostatic pressing publication-title: J. Mech. Phys. Solids – volume: 15 start-page: 804 year: 2016 end-page: 809 ident: bib1 article-title: Advanced structural ceramics in aerospace propulsion publication-title: Nat. Mater. – volume: 80 start-page: 1 year: 2013 end-page: 13 ident: bib39 article-title: The influence of transient thermal gradients and substrate constraint on delamination of thermal barrier coatings publication-title: J. Appl. Mech. Trans – volume: 100 start-page: 1820 year: 2017 end-page: 1830 ident: bib29 article-title: Sintering-induced delamination of thermal barrier coatings by gradient thermal cyclic test publication-title: J. Am. Ceram. Soc. – volume: 58 start-page: 4233 year: 2010 end-page: 4244 ident: bib33 article-title: Constrained sintering of an air-plasma-sprayed thermal barrier coating publication-title: Acta Mater. – reference: H.B. Guo, R. Vaßen, D. Stöver, Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density, (n.d.). – volume: 53 start-page: 1029 year: 2005 end-page: 1039 ident: bib46 article-title: A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration publication-title: Acta Mater. – volume: 409 start-page: 46 year: 2005 end-page: 51 ident: bib34 article-title: Flow processes in superplastic yttria-stabilized zirconia: A Deformation Limit Diagram publication-title: Mater. Sci. Eng. A. – volume: 53 start-page: 69 year: 2020 end-page: 75 ident: bib31 article-title: The nondestructive measurement of strain distributions in air plasma sprayed thermal barrier coatings as a function of depth from entire Debye-Scherrer rings Strain mapping in APS TBCs from Debye-Scherrer rings publication-title: J. Appl. Crystallogr – volume: 56 start-page: 43 year: 2008 end-page: 49 ident: bib16 article-title: Analysis of a “barb test” for measuring the mixed-mode delamination toughness of coatings publication-title: Acta Mater. – volume: 33 start-page: 3085 year: 2013 end-page: 3093 ident: bib48 article-title: Isothermal and adiabatic Young’s moduli of alumina and zirconia ceramics at elevated temperatures publication-title: J. Eur. Ceram. Soc. – volume: 201 start-page: 7905 year: 2007 end-page: 7916 ident: bib37 article-title: The mechanics of coating delamination in thermal gradients publication-title: Surf. Coat. Technol. – volume: 40 start-page: 480 year: 2020 end-page: 490 ident: bib9 article-title: Performance of YSZ and Gd2Zr2O7/YSZ double layer thermal barrier coatings in burner rig tests publication-title: J. Eur. Ceram. Soc. – volume: 93 start-page: 1790 year: 2010 end-page: 1795 ident: bib13 article-title: Quantitative analysis of monoclinic phase in 3Y-TZP by raman spectroscopy publication-title: J. Am. Ceram. Soc. – volume: 286 start-page: 119 year: 2016 end-page: 128 ident: bib21 article-title: Gadolinium zirconate/YSZ thermal barrier coatings: Mixed-mode interfacial fracture toughness and sintering behavior publication-title: Surf. Coat. Technol. – volume: 30 start-page: 694 year: 2021 end-page: 707 ident: bib18 article-title: Shear crack - mechanical stability diagrams for thermal barrier coating systems publication-title: J. Therm. Spray. Technol. – volume: 342 start-page: 120 year: 2003 end-page: 130 ident: bib41 article-title: Failure modes in plasma-sprayed thermal barrier coatings publication-title: Mater. Sci. Eng. A. – reference: R.A. Miller, History of Thermal Barrier Coatings for Gas Turbine Engines, Cleveland, 2009. – volume: 104 start-page: 463 year: 2020 end-page: 471 ident: bib8 article-title: Unique performance of thermal barrier coatings made of yttria-stabilized zirconia at extreme temperatures ( > 1500 ° C publication-title: ), J. Am. Ceram. Soc. – volume: 371 start-page: 312 year: 2019 end-page: 321 ident: bib11 article-title: Numerical simulation and experimental study of Ar-H2 DC atmospheric plasma spraying publication-title: Surf. Coat. Technol. – start-page: 839 year: 2009 ident: bib20 article-title: Lifetime of plase-sprayed thermal barrier coatings: comparison of numerical and experimental results publication-title: J. Therm. Spray. Technol. 18(5–6) – reference: R.-R. Plc, The Jet Engine, Fifth, The Techincal Publications Depar, 1986. – volume: 84 start-page: 192 year: 2016 end-page: 275 ident: bib4 article-title: Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review publication-title: Prog. Mater. Sci. – volume: 128 start-page: 54 year: 2017 end-page: 63 ident: bib44 article-title: High-temperature delamination mechanisms of thermal barrier coatings: In-situ digital image correlation and finite element analyses publication-title: Acta Mater. – reference: . – volume: 100 start-page: 2176 year: 2017 end-page: 2189 ident: bib25 article-title: A comprehensive sintering mechanism for TBCs-Part I: An overall evolution with two-stage kinetics publication-title: J. Am. Ceram. Soc. – volume: 26 start-page: 1115 year: 2017 end-page: 1145 ident: bib17 article-title: Modeling residual stress development in thermal spray coatings: current status and way forward publication-title: J. Therm. Spray. Technol. – volume: 490 start-page: 26 year: 2008 end-page: 35 ident: bib45 article-title: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration publication-title: Mater. Sci. Eng. A. – volume: 104 start-page: 4759 year: 2021 end-page: 4772 ident: bib15 article-title: Constrained sintering and cracking of air plasma sprayed thermal barrier coatings: Experimental observation and modeling publication-title: J. Am. Ceram. Soc. – volume: 97 start-page: 1226 year: 2014 end-page: 1232 ident: bib23 article-title: Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs publication-title: J. Am. Ceram. Soc. – volume: 556 start-page: 927 year: 2012 end-page: 935 ident: bib28 article-title: Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia publication-title: Mater. Sci. Eng. A. – volume: 167 year: 2020 ident: bib12 article-title: Pore filling behavior of air plasma spray thermal barrier coatings under CMAS attack publication-title: Corros. Sci. – volume: 100 start-page: 4240 year: 2017 end-page: 4251 ident: bib26 article-title: A comprehensive sintering mechanism for TBCs-Part II: Multiscale multipoint interconnection-enhanced initial kinetics publication-title: J. Am. Ceram. Soc. – volume: 105 start-page: 1286 year: 2022 end-page: 1299 ident: bib14 article-title: Introducing segmentation cracks in air plasma-sprayed thermal barrier coatings by controlling residual stress publication-title: J. Am. Ceram. Soc. – volume: 20 start-page: 27 year: 2004 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib2 article-title: A century of ramjet propulsion technology evolution publication-title: J. Propuls. Power doi: 10.2514/1.9178 – volume: 93 start-page: 1790 year: 2010 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib13 article-title: Quantitative analysis of monoclinic phase in 3Y-TZP by raman spectroscopy publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2010.03635.x – volume: 53 start-page: 69 year: 2020 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib31 article-title: The nondestructive measurement of strain distributions in air plasma sprayed thermal barrier coatings as a function of depth from entire Debye-Scherrer rings Strain mapping in APS TBCs from Debye-Scherrer rings publication-title: J. Appl. Crystallogr doi: 10.1107/S1600576719016327 – start-page: 280 year: 2002 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib5 article-title: Thermal barrier coatings for gas-turbine engine applications publication-title: Sci. (80-. ). 296 ( doi: 10.1126/science.1068609 – year: 2006 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib22 article-title: Introduction to the High Temperature – volume: 409 start-page: 46 year: 2005 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib34 article-title: Flow processes in superplastic yttria-stabilized zirconia: A Deformation Limit Diagram publication-title: Mater. Sci. Eng. A. doi: 10.1016/j.msea.2005.06.071 – volume: 100 start-page: 4240 year: 2017 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib26 article-title: A comprehensive sintering mechanism for TBCs-Part II: Multiscale multipoint interconnection-enhanced initial kinetics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14940 – ident: 10.1016/j.jeurceramsoc.2023.03.005_bib43 doi: 10.1016/j.surfcoat.2004.02.004 – volume: 46 start-page: 18526 year: 2020 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib47 article-title: In situ characterization of high temperature elastic modulus and fracture toughness in air plasma sprayed thermal barrier coatings under bending by using digital image correlation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.04.158 – volume: 53 start-page: 3765 year: 2005 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib19 article-title: Shear band formation in columnar thermal barrier oxides publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.04.029 – volume: 342 start-page: 120 year: 2003 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib41 article-title: Failure modes in plasma-sprayed thermal barrier coatings publication-title: Mater. Sci. Eng. A. doi: 10.1016/S0921-5093(02)00251-4 – ident: 10.1016/j.jeurceramsoc.2023.03.005_bib6 – volume: 105 start-page: 1286 year: 2022 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib14 article-title: Introducing segmentation cracks in air plasma-sprayed thermal barrier coatings by controlling residual stress publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.18101 – volume: 394 year: 2020 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib24 article-title: Measurements and understanding of the stiffness of an air plasma sprayed thermal barrier coating publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125678 – volume: 286 start-page: 119 year: 2016 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib21 article-title: Gadolinium zirconate/YSZ thermal barrier coatings: Mixed-mode interfacial fracture toughness and sintering behavior publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.12.012 – volume: 105 start-page: 549 year: 2016 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib7 article-title: An experimental investigation on transpiration cooling with phase change under supersonic condition publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.039 – volume: 97 start-page: 1226 year: 2014 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib23 article-title: Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12868 – ident: 10.1016/j.jeurceramsoc.2023.03.005_bib42 doi: 10.1016/j.surfcoat.2004.01.002 – volume: 128 start-page: 54 year: 2017 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib44 article-title: High-temperature delamination mechanisms of thermal barrier coatings: In-situ digital image correlation and finite element analyses publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.01.061 – volume: 104 start-page: 463 year: 2020 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib8 article-title: Unique performance of thermal barrier coatings made of yttria-stabilized zirconia at extreme temperatures ( > 1500 ° C publication-title: ), J. Am. Ceram. Soc. doi: 10.1111/jace.17452 – volume: 167 year: 2020 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib12 article-title: Pore filling behavior of air plasma spray thermal barrier coatings under CMAS attack publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108478 – volume: 556 start-page: 927 year: 2012 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib28 article-title: Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia publication-title: Mater. Sci. Eng. A. doi: 10.1016/j.msea.2012.07.095 – volume: 128 start-page: 54 year: 2017 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib27 article-title: High-temperature delamination mechanisms of thermal barrier coatings: In-situ digital image correlation and finite element analyses publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.01.061 – volume: 33 start-page: 3085 year: 2013 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib48 article-title: Isothermal and adiabatic Young’s moduli of alumina and zirconia ceramics at elevated temperatures publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2013.06.012 – volume: 100 start-page: 1820 year: 2017 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib29 article-title: Sintering-induced delamination of thermal barrier coatings by gradient thermal cyclic test publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14713 – volume: 100 start-page: 2176 year: 2017 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib25 article-title: A comprehensive sintering mechanism for TBCs-Part I: An overall evolution with two-stage kinetics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14784 – start-page: 839 year: 2009 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib20 article-title: Lifetime of plase-sprayed thermal barrier coatings: comparison of numerical and experimental results publication-title: J. Therm. Spray. Technol. 18(5–6) – volume: 34 start-page: 2687 year: 2014 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib40 article-title: Thermal shock resistance of air plasma sprayed thermal barrier coatings publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.01.002 – volume: 84 start-page: 192 year: 2016 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib4 article-title: Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2016.08.003 – volume: 26 start-page: 1272 year: 2017 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib10 article-title: Insights on the high-temperature operational limits of ZrO2-Y2O3 TBCs manufactured via air plasma spray publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-017-2562-5 – volume: 57 start-page: 689 year: 2009 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib30 article-title: A multi-scale constitutive model for the sintering of an air-plasma-sprayed thermal barrier coating, and its response under hot isostatic pressing publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2009.01.001 – volume: 58 start-page: 4233 year: 2010 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib33 article-title: Constrained sintering of an air-plasma-sprayed thermal barrier coating publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.04.015 – volume: 490 start-page: 26 year: 2008 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib45 article-title: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration publication-title: Mater. Sci. Eng. A. doi: 10.1016/j.msea.2008.01.006 – volume: 30 start-page: 694 year: 2021 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib18 article-title: Shear crack - mechanical stability diagrams for thermal barrier coating systems publication-title: J. Therm. Spray. Technol. doi: 10.1007/s11666-021-01163-5 – volume: 15 start-page: 804 year: 2016 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib1 article-title: Advanced structural ceramics in aerospace propulsion publication-title: Nat. Mater. doi: 10.1038/nmat4687 – ident: 10.1016/j.jeurceramsoc.2023.03.005_bib3 – volume: 56 start-page: 43 year: 2008 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib16 article-title: Analysis of a “barb test” for measuring the mixed-mode delamination toughness of coatings publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.08.052 – volume: 63 start-page: 412 year: 2014 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib32 article-title: A brick model for asperity sintering and creep of APS TBCs publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2013.08.016 – volume: 53 start-page: 1029 year: 2005 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib46 article-title: A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.11.028 – volume: 104 start-page: 4759 year: 2021 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib15 article-title: Constrained sintering and cracking of air plasma sprayed thermal barrier coatings: Experimental observation and modeling publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.17825 – volume: 2014 start-page: 1252 issue: 658 year: 2014 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib35 article-title: Investigation of a shock wave in an arcjet He plasma by using an electric probe and emission spectroscope publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.65.1252 – volume: 201 start-page: 7905 year: 2007 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib37 article-title: The mechanics of coating delamination in thermal gradients publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.03.029 – volume: 26 start-page: 1115 year: 2017 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib17 article-title: Modeling residual stress development in thermal spray coatings: current status and way forward publication-title: J. Therm. Spray. Technol. doi: 10.1007/s11666-017-0590-1 – volume: 149 start-page: 179 year: 2002 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib36 article-title: On the delamination of thermal barrier coatings in a thermal gradient publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(01)01451-7 – volume: 51 start-page: 1364 year: 2014 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib38 article-title: Critical cooling rates to avoid transient-driven cracking in thermal barrier coating (TBC) systems publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.12.029 – volume: 40 start-page: 480 year: 2020 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib9 article-title: Performance of YSZ and Gd2Zr2O7/YSZ double layer thermal barrier coatings in burner rig tests publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.10.021 – volume: 80 start-page: 1 year: 2013 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib39 article-title: The influence of transient thermal gradients and substrate constraint on delamination of thermal barrier coatings – volume: 371 start-page: 312 year: 2019 ident: 10.1016/j.jeurceramsoc.2023.03.005_bib11 article-title: Numerical simulation and experimental study of Ar-H2 DC atmospheric plasma spraying publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.04.053 |
SSID | ssj0017099 |
Score | 2.472963 |
Snippet | In this contribution, the performance and delamination mechanisms of air plasma sprayed (APS) yttria stabilized zirconia thermal barrier coatings (YSZ TBCs)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 4136 |
SubjectTerms | Delamination mechanism Plasma jet erosion Thermal barrier coatings Thermal transient |
Title | The crack behavior and delamination mechanisms of air plasma sprayed thermal barrier coatings under ultrasonic plasma jet at 1600 °C |
URI | https://dx.doi.org/10.1016/j.jeurceramsoc.2023.03.005 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1KvehB_MT6UebgNW3SZjfZgwcplqrYixa8hd3NLrSaNiTx4MWb_8ff4C9zp0lKBQ8FIZeEDAkzw-xL9s0bQi6Nz5XF5cxRxteOz73QkfY7w4m9MBScGi0V7ug-jNlo4t890-cGGdS9MEirrGp_WdOX1bq60q282U2n0-4jiqf1eohQcLLcso0a1etsTnc-VjQPL3B5pbdHHby7Fh5dcrxmGn-QZyKxnujgIPFS8JT-vUitLTzDPbJbIUa4Ll9qnzT0_IDsrOkIHpJPG2xQmVAvULfdg5jHgAqQSHVB50Oiscl3mic5LAyIaQapRc6JgDzNxLuOAaFgYp8kRYZj7EAtBHKic8A-swzeXotM5KikWxvOdAGiAM-iGfj-GhyRyfDmaTByqvkKjrIwqnACSqXFa26oQm2BDDWhoCw0npKB9PwAoZUynCrG3EB7gfSFkVIq4XJtYmPi_jFpzhdzfUJAM2Zxg5JUceabXl9a5GM0ZQE3PjOm1yK8dmikKvFxnIHxGtUss1m0HowIgxG59nBpi_RXtmkpwbGR1VUdt-hXQkV2rdjA_vSf9mdkG89KruA5aRbZm76w-KWQ7WWCtsnW9e39aPwDBqn1Mw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ29TsMwEMctVAZgQHyKb25gDU3a2IkHBlSBylcXQGKLbMeWWpq2SsLAA_A-PANPxh1JUJEYkJAyJTo5urPsX-K7_zF24kJpkMuFZ1xovVAGsafxO8NLgzhWkjurDZ3o3g1E_zG8fuJPC6zX1MJQWmW99ldr-tdqXd9p195sz4bD9j2Jp3U6RCjUWY7KqBdJnSpsscXzq5v-4PswIfJlLbnHPTJotEe_0rxGlv6R5ypDZ5xSL_FK85T_vk_N7T2Xa2y1hkY4r95rnS3YyQZbmZMS3GRvGG8wuTLP0FTeg5qkQCKQlO1C_ofMUp3vsMgKmDpQwxxmCM-ZgmKWq1ebAtFghiNplVMnOzBTRWnRBVCpWQ4v4zJXBYnpNoYjW4IqIUCggY_33hZ7vLx46PW9usWCZ5CkSi_iXCOy-bGJLbIMd7HiInaB0ZEO0JdIV8ZJboTwIxtEOlROa22UL61LnUu726w1mU7sDgMrBKKD0dxIEbpOVyP8OMtFJF0onOvsMtk4NDG1_ji1wRgnTaLZKJkPRkLBSHy8fL7Lut-2s0qF409WZ03ckh9zKsHt4g_2e_-0P2ZL_Ye72-T2anCzz5bpSZU6eMBaZf5iDxFnSn1UT9dPYGr35A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+crack+behavior+and+delamination+mechanisms+of+air+plasma+sprayed+thermal+barrier+coatings+under+ultrasonic+plasma+jet+at+1600+%C2%B0C&rft.jtitle=Journal+of+the+European+Ceramic+Society&rft.au=Cai%2C+Huangyue&rft.au=Shan%2C+Xiao&rft.au=Lu%2C+Jie&rft.au=Luo%2C+Lirong&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0955-2219&rft.eissn=1873-619X&rft.volume=43&rft.issue=9&rft.spage=4136&rft.epage=4145&rft_id=info:doi/10.1016%2Fj.jeurceramsoc.2023.03.005&rft.externalDocID=S0955221923001851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-2219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-2219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-2219&client=summon |