SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS
Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if aiRbj = 0 for each i, j whenever polynomials [수식]. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew p...
Saved in:
Published in | Journal of the Korean Mathematical Society Vol. 47; no. 5; pp. 879 - 897 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
대한수학회
01.09.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-9914 2234-3008 |
DOI | 10.4134/JKMS.2010.47.5.879 |
Cover
Abstract | Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if aiRbj = 0 for each i, j whenever polynomials [수식]. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism δ, then [수식] for any integer k ≥ 0 and i, j, where [수식]Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define δ-skew quasi-Armendariz rings for an endomorphism δ of a ring R. Then we study several extensions of δ-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and δ-skew Armendariz rings. KCI Citation Count: 7 |
---|---|
AbstractList | Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if aiRbj = 0 for each i, j whenever polynomials [수식]. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism δ, then [수식] for any integer k ≥ 0 and i, j, where [수식]Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define δ-skew quasi-Armendariz rings for an endomorphism δ of a ring R. Then we study several extensions of δ-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and δ-skew Armendariz rings. KCI Citation Count: 7 |
Author | Hong, Chan-Yong Kim, Nam-Kyun Lee, Yang |
Author_xml | – sequence: 1 givenname: Chan-Yong surname: Hong fullname: Hong, Chan-Yong – sequence: 2 givenname: Nam-Kyun surname: Kim fullname: Kim, Nam-Kyun – sequence: 3 givenname: Yang surname: Lee fullname: Lee, Yang |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001475156$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kD1PwzAURS1UJErhDzBlREgJ_qztsapCCU2aKqlATE-uG6PQkiAnC_-ehjIxMF3dp3vecC7RqGmbCqEbgiNOGL9_WmZlRPFQZSQiJfUZGlPKeMgwViM0xgzzUGvCL9Bl171jzAXVeozuymX8Eqzz9HWVZ8ksDYpktSiD_DkugjLOknWRZPHpeIXOnTl01fVvTlDxEG_mj2GaL5L5LA0to7wPJVaVolIIp8zOGrVl2FK3VWqLlXbKyorvtJDGcTzlnAhiqXAVs2RqiWETdHt62ngHe1tDa-qffGth72FWbBKQjFKhj1N1mlrfdp2vHNi6N33dNr039QEIhsENDG5gcANcgoCjmyNK_6Cfvv4w_us_6BuzBWSA |
CitedBy_id | crossref_primary_10_1142_S0219498816500869 crossref_primary_10_1080_00927872_2014_937536 crossref_primary_10_4236_apm_2016_67037 crossref_primary_10_1142_S0219498817502127 crossref_primary_10_1080_00927872_2021_1912064 crossref_primary_10_4134_CKMS_2011_26_4_557 crossref_primary_10_1017_S001708951500021X crossref_primary_10_4134_JKMS_2015_52_6_1161 |
Cites_doi | 10.1007/s10468-005-0707-y 10.1080/00927879408825048 10.1081/AGB-120016752 10.1081/AGB-120037221 10.3792/pjaa.73.14 10.1017/S1446788700029190 10.1016/j.jpaa.2007.01.018 10.1081/AGB-200053826 10.1017/S0017089509990243 10.1080/00927879808826274 10.1006/jabr.1999.8017 10.1016/S0022-4049(01)00053-6 10.1081/AGB-200034148 10.1081/AGB-120013179 10.1080/00927877708822194 |
ContentType | Journal Article |
DBID | AAYXX CITATION ACYCR |
DOI | 10.4134/JKMS.2010.47.5.879 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2234-3008 |
EndPage | 897 |
ExternalDocumentID | oai_kci_go_kr_ARTI_732259 10_4134_JKMS_2010_47_5_879 |
GroupedDBID | 2WC 5GY 9ZL AAYXX ACIPV ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION DIK JDI KHM KVFHK OK1 TR2 YYP ACYCR |
ID | FETCH-LOGICAL-c324t-708e82755f8adca8b30c2fb88b089f8c7e4d957af40644151c25fe3c16c1a3 |
ISSN | 0304-9914 |
IngestDate | Sun Mar 09 07:52:09 EDT 2025 Tue Jul 01 03:42:13 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c324t-708e82755f8adca8b30c2fb88b089f8c7e4d957af40644151c25fe3c16c1a3 |
Notes | G704-000208.2010.47.5.001 |
OpenAccessLink | http://koreascience.or.kr:80/article/JAKO201025240674848.pdf |
PageCount | 19 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_732259 crossref_citationtrail_10_4134_JKMS_2010_47_5_879 crossref_primary_10_4134_JKMS_2010_47_5_879 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of the Korean Mathematical Society |
PublicationYear | 2010 |
Publisher | 대한수학회 |
Publisher_xml | – name: 대한수학회 |
References | key-10.4134/JKMS.2010.47.5.879-9 key-10.4134/JKMS.2010.47.5.879-7 key-10.4134/JKMS.2010.47.5.879-8 key-10.4134/JKMS.2010.47.5.879-5 key-10.4134/JKMS.2010.47.5.879-6 key-10.4134/JKMS.2010.47.5.879-3 key-10.4134/JKMS.2010.47.5.879-4 key-10.4134/JKMS.2010.47.5.879-1 key-10.4134/JKMS.2010.47.5.879-2 key-10.4134/JKMS.2010.47.5.879-18 key-10.4134/JKMS.2010.47.5.879-17 key-10.4134/JKMS.2010.47.5.879-14 key-10.4134/JKMS.2010.47.5.879-13 key-10.4134/JKMS.2010.47.5.879-12 key-10.4134/JKMS.2010.47.5.879-10 |
References_xml | – ident: key-10.4134/JKMS.2010.47.5.879-13 doi: 10.1007/s10468-005-0707-y – ident: key-10.4134/JKMS.2010.47.5.879-9 doi: 10.1080/00927879408825048 – ident: key-10.4134/JKMS.2010.47.5.879-6 doi: 10.1081/AGB-120016752 – ident: key-10.4134/JKMS.2010.47.5.879-12 doi: 10.1081/AGB-120037221 – ident: key-10.4134/JKMS.2010.47.5.879-18 doi: 10.3792/pjaa.73.14 – ident: key-10.4134/JKMS.2010.47.5.879-2 doi: 10.1017/S1446788700029190 – ident: key-10.4134/JKMS.2010.47.5.879-4 doi: 10.1016/j.jpaa.2007.01.018 – ident: key-10.4134/JKMS.2010.47.5.879-3 doi: 10.1081/AGB-200053826 – ident: key-10.4134/JKMS.2010.47.5.879-7 doi: 10.1017/S0017089509990243 – ident: key-10.4134/JKMS.2010.47.5.879-1 doi: 10.1080/00927879808826274 – ident: key-10.4134/JKMS.2010.47.5.879-10 doi: 10.1006/jabr.1999.8017 – ident: key-10.4134/JKMS.2010.47.5.879-5 doi: 10.1016/S0022-4049(01)00053-6 – ident: key-10.4134/JKMS.2010.47.5.879-14 doi: 10.1081/AGB-200034148 – ident: key-10.4134/JKMS.2010.47.5.879-8 doi: 10.1081/AGB-120013179 – ident: key-10.4134/JKMS.2010.47.5.879-17 doi: 10.1080/00927877708822194 |
SSID | ssj0045299 |
Score | 1.8751873 |
Snippet | Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if... |
SourceID | nrf crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 879 |
SubjectTerms | 수학 |
Title | SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS |
URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001475156 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 대한수학회지, 2010, 47(5), , pp.879-897 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbScoED4inKS4uEL0Qb9hmPj5tkoSGkrZoC7cnadbxVVZSgkF74DfxoZtbZRwtFhcvKGtne3flG9uexPcPYa6lNmCMRd40WoYvzdeECzIUb9XXumXng65guCk_3-rufog_H8XGn87N1aulinff0jz_eK_kfVFGGuNIt2X9Atu4UBVhGfPGJCOPzRhjPJumX7sH-xxPKRUhHHcZ772fd_c_kPEL9HhyOp6kVXsNBiXVOlivyxk_r-K0UH2RZBwghNHg64lJyGPF0yAceT4ZUkAlPZFMl4QNJ5ybSAYeAJ1BKBE-8pgq2GfFBVBb63ObPqlwOtFsu2y6HsqNh2SO-PeayfCkAl1BJZFlIsFprPAu9yEU6av0HppQhOaGNGQ9aYyjY7DLVdGyP714d6XHujSiJ9WQ6s-fzItGLe3XTdljtK9PdpcDa5_pMnS7V-Urh8mGsBA1vcovdCoSwm_7jSTWv0w61tHtS9jfsFSz6kLe_f8YlmrO1WBUt1nJ0j93dQO0k1nbus45ZPGB3Gqy_P2RvyIqcxoqc0mAcsiKntiIrfMQO36VHw113k0HD1UiU167wwEAg4riAbK4zyENPB0UOkHsgC9DCRHMZi6xAWkcLa18HcWFC7fe1n4WP2fZiuTBPmAMyCDJcCMRZpiMNMp9raZDI9j0ootwLdphf_a3Sm9jylOLkq8I1JmlIkYYUaUhFQsUKNbTDunWbbzayyl9rv0Illnhdi9vTG9R5xm43Fv2cba9XF-YF0sp1_rJE-xcEqV26 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SKEW+POLYNOMIAL+RINGS+OVER+SEMIPRIME+RINGS&rft.jtitle=Journal+of+the+Korean+Mathematical+Society&rft.au=%ED%99%8D%EC%B0%AC%EC%9A%A9&rft.au=%EA%B9%80%EB%82%A8%EA%B7%A0&rft.au=%EC%9D%B4%EC%96%91&rft.date=2010-09-01&rft.pub=%EB%8C%80%ED%95%9C%EC%88%98%ED%95%99%ED%9A%8C&rft.issn=0304-9914&rft.eissn=2234-3008&rft.spage=879&rft.epage=897&rft_id=info:doi/10.4134%2FJKMS.2010.47.5.879&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_732259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-9914&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-9914&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-9914&client=summon |