SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS

Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if aiRbj = 0 for each i, j whenever polynomials [수식]. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew p...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Mathematical Society Vol. 47; no. 5; pp. 879 - 897
Main Authors Hong, Chan-Yong, Kim, Nam-Kyun, Lee, Yang
Format Journal Article
LanguageEnglish
Published 대한수학회 01.09.2010
Subjects
Online AccessGet full text
ISSN0304-9914
2234-3008
DOI10.4134/JKMS.2010.47.5.879

Cover

Abstract Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if aiRbj = 0 for each i, j whenever polynomials [수식]. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism δ, then [수식] for any integer k ≥ 0 and i, j, where [수식]Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define δ-skew quasi-Armendariz rings for an endomorphism δ of a ring R. Then we study several extensions of δ-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and δ-skew Armendariz rings. KCI Citation Count: 7
AbstractList Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if aiRbj = 0 for each i, j whenever polynomials [수식]. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism δ, then [수식] for any integer k ≥ 0 and i, j, where [수식]Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define δ-skew quasi-Armendariz rings for an endomorphism δ of a ring R. Then we study several extensions of δ-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and δ-skew Armendariz rings. KCI Citation Count: 7
Author Hong, Chan-Yong
Kim, Nam-Kyun
Lee, Yang
Author_xml – sequence: 1
  givenname: Chan-Yong
  surname: Hong
  fullname: Hong, Chan-Yong
– sequence: 2
  givenname: Nam-Kyun
  surname: Kim
  fullname: Kim, Nam-Kyun
– sequence: 3
  givenname: Yang
  surname: Lee
  fullname: Lee, Yang
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001475156$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kD1PwzAURS1UJErhDzBlREgJ_qztsapCCU2aKqlATE-uG6PQkiAnC_-ehjIxMF3dp3vecC7RqGmbCqEbgiNOGL9_WmZlRPFQZSQiJfUZGlPKeMgwViM0xgzzUGvCL9Bl171jzAXVeozuymX8Eqzz9HWVZ8ksDYpktSiD_DkugjLOknWRZPHpeIXOnTl01fVvTlDxEG_mj2GaL5L5LA0to7wPJVaVolIIp8zOGrVl2FK3VWqLlXbKyorvtJDGcTzlnAhiqXAVs2RqiWETdHt62ngHe1tDa-qffGth72FWbBKQjFKhj1N1mlrfdp2vHNi6N33dNr039QEIhsENDG5gcANcgoCjmyNK_6Cfvv4w_us_6BuzBWSA
CitedBy_id crossref_primary_10_1142_S0219498816500869
crossref_primary_10_1080_00927872_2014_937536
crossref_primary_10_4236_apm_2016_67037
crossref_primary_10_1142_S0219498817502127
crossref_primary_10_1080_00927872_2021_1912064
crossref_primary_10_4134_CKMS_2011_26_4_557
crossref_primary_10_1017_S001708951500021X
crossref_primary_10_4134_JKMS_2015_52_6_1161
Cites_doi 10.1007/s10468-005-0707-y
10.1080/00927879408825048
10.1081/AGB-120016752
10.1081/AGB-120037221
10.3792/pjaa.73.14
10.1017/S1446788700029190
10.1016/j.jpaa.2007.01.018
10.1081/AGB-200053826
10.1017/S0017089509990243
10.1080/00927879808826274
10.1006/jabr.1999.8017
10.1016/S0022-4049(01)00053-6
10.1081/AGB-200034148
10.1081/AGB-120013179
10.1080/00927877708822194
ContentType Journal Article
DBID AAYXX
CITATION
ACYCR
DOI 10.4134/JKMS.2010.47.5.879
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2234-3008
EndPage 897
ExternalDocumentID oai_kci_go_kr_ARTI_732259
10_4134_JKMS_2010_47_5_879
GroupedDBID 2WC
5GY
9ZL
AAYXX
ACIPV
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
DIK
JDI
KHM
KVFHK
OK1
TR2
YYP
ACYCR
ID FETCH-LOGICAL-c324t-708e82755f8adca8b30c2fb88b089f8c7e4d957af40644151c25fe3c16c1a3
ISSN 0304-9914
IngestDate Sun Mar 09 07:52:09 EDT 2025
Tue Jul 01 03:42:13 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c324t-708e82755f8adca8b30c2fb88b089f8c7e4d957af40644151c25fe3c16c1a3
Notes G704-000208.2010.47.5.001
OpenAccessLink http://koreascience.or.kr:80/article/JAKO201025240674848.pdf
PageCount 19
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_732259
crossref_citationtrail_10_4134_JKMS_2010_47_5_879
crossref_primary_10_4134_JKMS_2010_47_5_879
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of the Korean Mathematical Society
PublicationYear 2010
Publisher 대한수학회
Publisher_xml – name: 대한수학회
References key-10.4134/JKMS.2010.47.5.879-9
key-10.4134/JKMS.2010.47.5.879-7
key-10.4134/JKMS.2010.47.5.879-8
key-10.4134/JKMS.2010.47.5.879-5
key-10.4134/JKMS.2010.47.5.879-6
key-10.4134/JKMS.2010.47.5.879-3
key-10.4134/JKMS.2010.47.5.879-4
key-10.4134/JKMS.2010.47.5.879-1
key-10.4134/JKMS.2010.47.5.879-2
key-10.4134/JKMS.2010.47.5.879-18
key-10.4134/JKMS.2010.47.5.879-17
key-10.4134/JKMS.2010.47.5.879-14
key-10.4134/JKMS.2010.47.5.879-13
key-10.4134/JKMS.2010.47.5.879-12
key-10.4134/JKMS.2010.47.5.879-10
References_xml – ident: key-10.4134/JKMS.2010.47.5.879-13
  doi: 10.1007/s10468-005-0707-y
– ident: key-10.4134/JKMS.2010.47.5.879-9
  doi: 10.1080/00927879408825048
– ident: key-10.4134/JKMS.2010.47.5.879-6
  doi: 10.1081/AGB-120016752
– ident: key-10.4134/JKMS.2010.47.5.879-12
  doi: 10.1081/AGB-120037221
– ident: key-10.4134/JKMS.2010.47.5.879-18
  doi: 10.3792/pjaa.73.14
– ident: key-10.4134/JKMS.2010.47.5.879-2
  doi: 10.1017/S1446788700029190
– ident: key-10.4134/JKMS.2010.47.5.879-4
  doi: 10.1016/j.jpaa.2007.01.018
– ident: key-10.4134/JKMS.2010.47.5.879-3
  doi: 10.1081/AGB-200053826
– ident: key-10.4134/JKMS.2010.47.5.879-7
  doi: 10.1017/S0017089509990243
– ident: key-10.4134/JKMS.2010.47.5.879-1
  doi: 10.1080/00927879808826274
– ident: key-10.4134/JKMS.2010.47.5.879-10
  doi: 10.1006/jabr.1999.8017
– ident: key-10.4134/JKMS.2010.47.5.879-5
  doi: 10.1016/S0022-4049(01)00053-6
– ident: key-10.4134/JKMS.2010.47.5.879-14
  doi: 10.1081/AGB-200034148
– ident: key-10.4134/JKMS.2010.47.5.879-8
  doi: 10.1081/AGB-120013179
– ident: key-10.4134/JKMS.2010.47.5.879-17
  doi: 10.1080/00927877708822194
SSID ssj0045299
Score 1.8751873
Snippet Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if...
SourceID nrf
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 879
SubjectTerms 수학
Title SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001475156
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 대한수학회지, 2010, 47(5), , pp.879-897
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbScoED4inKS4uEL0Qb9hmPj5tkoSGkrZoC7cnadbxVVZSgkF74DfxoZtbZRwtFhcvKGtne3flG9uexPcPYa6lNmCMRd40WoYvzdeECzIUb9XXumXng65guCk_3-rufog_H8XGn87N1aulinff0jz_eK_kfVFGGuNIt2X9Atu4UBVhGfPGJCOPzRhjPJumX7sH-xxPKRUhHHcZ772fd_c_kPEL9HhyOp6kVXsNBiXVOlivyxk_r-K0UH2RZBwghNHg64lJyGPF0yAceT4ZUkAlPZFMl4QNJ5ybSAYeAJ1BKBE-8pgq2GfFBVBb63ObPqlwOtFsu2y6HsqNh2SO-PeayfCkAl1BJZFlIsFprPAu9yEU6av0HppQhOaGNGQ9aYyjY7DLVdGyP714d6XHujSiJ9WQ6s-fzItGLe3XTdljtK9PdpcDa5_pMnS7V-Urh8mGsBA1vcovdCoSwm_7jSTWv0w61tHtS9jfsFSz6kLe_f8YlmrO1WBUt1nJ0j93dQO0k1nbus45ZPGB3Gqy_P2RvyIqcxoqc0mAcsiKntiIrfMQO36VHw113k0HD1UiU167wwEAg4riAbK4zyENPB0UOkHsgC9DCRHMZi6xAWkcLa18HcWFC7fe1n4WP2fZiuTBPmAMyCDJcCMRZpiMNMp9raZDI9j0ootwLdphf_a3Sm9jylOLkq8I1JmlIkYYUaUhFQsUKNbTDunWbbzayyl9rv0Illnhdi9vTG9R5xm43Fv2cba9XF-YF0sp1_rJE-xcEqV26
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SKEW+POLYNOMIAL+RINGS+OVER+SEMIPRIME+RINGS&rft.jtitle=Journal+of+the+Korean+Mathematical+Society&rft.au=%ED%99%8D%EC%B0%AC%EC%9A%A9&rft.au=%EA%B9%80%EB%82%A8%EA%B7%A0&rft.au=%EC%9D%B4%EC%96%91&rft.date=2010-09-01&rft.pub=%EB%8C%80%ED%95%9C%EC%88%98%ED%95%99%ED%9A%8C&rft.issn=0304-9914&rft.eissn=2234-3008&rft.spage=879&rft.epage=897&rft_id=info:doi/10.4134%2FJKMS.2010.47.5.879&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_732259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-9914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-9914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-9914&client=summon