Randomized Algorithms for Distributed Nonlinear Optimization Under Sparsity Constraints

Distributed optimization in multi-agent systems under sparsity constraints has recently received a lot of attention. In this paper, we consider the in-network minimization of a continuously differentiable nonlinear function which is a combination of local agent objective functions subject to sparsit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 64; no. 6; pp. 1420 - 1434
Main Authors Ravazzi, Chiara, Fosson, Sophie M., Magli, Enrico
Format Journal Article
LanguageEnglish
Published New York IEEE 15.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Distributed optimization in multi-agent systems under sparsity constraints has recently received a lot of attention. In this paper, we consider the in-network minimization of a continuously differentiable nonlinear function which is a combination of local agent objective functions subject to sparsity constraints on the variables. A crucial issue of in-network optimization is the handling of the communications, which may be expensive. This calls for efficient algorithms, that are able to reduce the number of required communication links and transmitted messages. To this end, we focus on asynchronous and randomized distributed techniques. Based on consensus techniques and iterative hard thresholding methods, we propose three methods that attempt to minimize the given function, promoting sparsity of the solution: asynchronous hard thresholding (AHT), broadcast hard thresholding (BHT), and gossip hard thresholding (GHT). Although similar in many aspects, it is difficult to obtain a unified analysis for the proposed algorithms. Specifically, we theoretically prove the convergence and characterize the limit points of AHT in regular networks under some proper assumptions on the functions to be minimized. For BHT and GHT, instead, we characterize the fixed points of the maps that rule their dynamics in terms of stationary points of original problem. Finally, we illustrate the implementation of our techniques in compressed sensing and present several numerical results on performance and number of transmissions required for convergence.
AbstractList Distributed optimization in multi-agent systems under sparsity constraints has recently received a lot of attention. In this paper, we consider the in-network minimization of a continuously differentiable nonlinear function which is a combination of local agent objective functions subject to sparsity constraints on the variables. A crucial issue of in-network optimization is the handling of the communications, which may be expensive. This calls for efficient algorithms, that are able to reduce the number of required communication links and transmitted messages. To this end, we focus on asynchronous and randomized distributed techniques. Based on consensus techniques and iterative hard thresholding methods, we propose three methods that attempt to minimize the given function, promoting sparsity of the solution: asynchronous hard thresholding (AHT), broadcast hard thresholding (BHT), and gossip hard thresholding (GHT). Although similar in many aspects, it is difficult to obtain a unified analysis for the proposed algorithms. Specifically, we theoretically prove the convergence and characterize the limit points of AHT in regular networks under some proper assumptions on the functions to be minimized. For BHT and GHT, instead, we characterize the fixed points of the maps that rule their dynamics in terms of stationary points of original problem. Finally, we illustrate the implementation of our techniques in compressed sensing and present several numerical results on performance and number of transmissions required for convergence.
Author Ravazzi, Chiara
Fosson, Sophie M.
Magli, Enrico
Author_xml – sequence: 1
  givenname: Chiara
  surname: Ravazzi
  fullname: Ravazzi, Chiara
  email: chiara.ravazzi@polito.it
  organization: Dept. of Electron. & Telecommun., Politec. di Torino, Turin, Italy
– sequence: 2
  givenname: Sophie M.
  surname: Fosson
  fullname: Fosson, Sophie M.
  email: sophie.fosson@polito.it
  organization: Dept. of Electron. & Telecommun., Politec. di Torino, Turin, Italy
– sequence: 3
  givenname: Enrico
  surname: Magli
  fullname: Magli, Enrico
  email: enrico.magli@polito.it
  organization: Dept. of Electron. & Telecommun., Politec. di Torino, Turin, Italy
BookMark eNp9kL9PAyEYQInRRK3uJi6XuLhc5TuOgxub-jNprLEa3QjHcUpzhQp0qH-91BoHBydIeO_7yDtEu9ZZjdAJ4CEAri-eZg_DAgMdFhRjztkOOoC6hByXrNpNd0xJTjl73UeHIcwxhrKsqwP08iht6xbmU7fZqH9z3sT3Rcg657NLE6I3zSqmp3tne2O19Nl0GU3CZTTOZs-21T6bLaUPJq6zsbNJkcbGcIT2OtkHffxzDtDz9dXT-DafTG_uxqNJrkhRxrxqKqyIZrItGgmEQF3JDqSiuiOggGpcsRZUzcqWSlVQ1siGlIoTTuqOa0kG6Hw7d-ndx0qHKBYmKN330mq3CgI4VJjwVCKhZ3_QuVt5m34ngHFWFIxjnii8pZR3IXjdiaU3C-nXArDYlBaptNiUFj-lk1L9UZSJ34E2Mfr_xNOtaLTWv3sYKTijjHwBYLuOXg
CODEN ITPRED
CitedBy_id crossref_primary_10_1007_s00500_018_3020_5
crossref_primary_10_1109_TAC_2017_2685559
crossref_primary_10_1186_s13634_018_0565_5
crossref_primary_10_1109_TSP_2016_2548990
crossref_primary_10_1016_j_sigpro_2022_108750
crossref_primary_10_1109_TSIPN_2021_3124362
crossref_primary_10_1287_ijoc_2022_0344
Cites_doi 10.1109/79.985674
10.1109/TIT.2005.864420
10.1109/TSP.2014.2340812
10.1109/TAC.2010.2041686
10.1007/s00041-008-9035-z
10.1109/GLOCOM.2013.6831603
10.1016/j.optcom.2008.09.083
10.1080/10556780801995790
10.1109/TSP.2011.2182347
10.1109/TSP.2013.2254478
10.1109/TSP.2010.2055862
10.1109/ICASSP.2014.6854566
10.1093/acprof:oso/9780198506263.001.0001
10.1109/42.802758
10.1109/TAC.2008.2009515
10.1109/TAC.1986.1104412
10.1109/TIT.2013.2245716
10.1109/ACSSC.2010.5757507
10.1109/JPROC.2010.2052531
10.1109/LSP.2009.2035667
10.1137/120869778
10.1088/0266-5611/26/3/035010
10.1137/0330046
10.1109/ICASSP.2011.5946267
10.1002/cpa.20124
10.1109/TAC.2010.2091295
10.1109/TMI.2013.2252913
10.1561/2200000016
10.1002/cpa.20042
10.1109/TSP.2013.2282463
10.1109/JPROC.2003.814918
10.1017/CBO9780511804441
10.1109/TIT.2006.874516
10.1145/984622.984626
10.1109/TCNS.2014.2367571
10.1016/j.acha.2009.04.002
10.1109/ICASSP.2009.4960418
10.1137/120876873
10.1515/9781400831470
10.1109/TIT.2015.2403263
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2015.2500887
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1434
ExternalDocumentID 4047516731
10_1109_TSP_2015_2500887
7328757
Genre orig-research
GrantInformation_xml – fundername: ERC
  grantid: 279848
– fundername: European Community’s Seventh Framework Programme
  grantid: FP7/2007-2013
– fundername: European Research Council; European Research Council
  funderid: 10.13039/501100000781
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYOK
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c324t-6b60c3e7ad2ba133196af1ac5ef31c15e067d1c974d5ac257bab34c83839f8ea3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Thu Jul 10 17:23:24 EDT 2025
Mon Jun 30 10:18:39 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Tue Jul 01 02:53:10 EDT 2025
Tue Aug 26 16:43:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-6b60c3e7ad2ba133196af1ac5ef31c15e067d1c974d5ac257bab34c83839f8ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2316-7404
PQID 1787227808
PQPubID 85478
PageCount 15
ParticipantIDs proquest_miscellaneous_1816038941
crossref_citationtrail_10_1109_TSP_2015_2500887
proquest_journals_1787227808
crossref_primary_10_1109_TSP_2015_2500887
ieee_primary_7328757
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-15
PublicationDateYYYYMMDD 2016-03-15
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
bahmani (ref28) 2013; 14
ref32
ref10
cui (ref9) 2013; 32
ref1
ref17
ref38
ref16
ref19
ref18
blumensath (ref26) 2004; 14
ref24
ref23
ref25
ref20
ref42
ref41
ram (ref29) 2010
nedi? (ref2) 2010; 55
ref22
ref21
bullo (ref44) 2009
ref27
ref8
ref7
apostol (ref43) 1967
ref4
ref3
ref6
ref5
berg (ref39) 2007
ref40
References_xml – volume: 14
  start-page: 807
  year: 2013
  ident: ref28
  article-title: Greedy sparsity-constrained optimization
  publication-title: J Mach Learn Res
– ident: ref10
  doi: 10.1109/79.985674
– ident: ref14
  doi: 10.1109/TIT.2005.864420
– ident: ref8
  doi: 10.1109/TSP.2014.2340812
– volume: 55
  start-page: 922
  year: 2010
  ident: ref2
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2010.2041686
– volume: 14
  start-page: 629
  year: 2004
  ident: ref26
  article-title: Iterative thresholding for sparse approximations
  publication-title: J Fourier Anal Appl
  doi: 10.1007/s00041-008-9035-z
– ident: ref18
  doi: 10.1109/GLOCOM.2013.6831603
– ident: ref12
  doi: 10.1016/j.optcom.2008.09.083
– ident: ref35
  doi: 10.1080/10556780801995790
– ident: ref16
  doi: 10.1109/TSP.2011.2182347
– ident: ref17
  doi: 10.1109/TSP.2013.2254478
– ident: ref15
  doi: 10.1109/TSP.2010.2055862
– ident: ref41
  doi: 10.1109/ICASSP.2014.6854566
– ident: ref38
  doi: 10.1093/acprof:oso/9780198506263.001.0001
– ident: ref32
  doi: 10.1109/42.802758
– ident: ref4
  doi: 10.1109/TAC.2008.2009515
– ident: ref5
  doi: 10.1109/TAC.1986.1104412
– ident: ref23
  doi: 10.1109/TIT.2013.2245716
– ident: ref13
  doi: 10.1109/ACSSC.2010.5757507
– ident: ref42
  doi: 10.1109/JPROC.2010.2052531
– ident: ref20
  doi: 10.1109/LSP.2009.2035667
– ident: ref21
  doi: 10.1137/120869778
– ident: ref22
  doi: 10.1088/0266-5611/26/3/035010
– ident: ref40
  doi: 10.1137/0330046
– ident: ref33
  doi: 10.1109/ICASSP.2011.5946267
– ident: ref31
  doi: 10.1002/cpa.20124
– year: 2007
  ident: ref39
  publication-title: Sparco A Testing Framework for Sparse Reconstruction
– ident: ref30
  doi: 10.1109/TAC.2010.2091295
– volume: 32
  start-page: 957
  year: 2013
  ident: ref9
  article-title: Distributed MLEM: An iterative tomographic image reconstruction algorithm for distributed memory architectures
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2013.2252913
– start-page: 516
  year: 2010
  ident: ref29
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J Optim Theory Appl
– ident: ref1
  doi: 10.1561/2200000016
– ident: ref36
  doi: 10.1002/cpa.20042
– year: 1967
  ident: ref43
  publication-title: Calculus One-Variable Calculus With an Introduction to Linear Algebra
– ident: ref24
  doi: 10.1109/TSP.2013.2282463
– ident: ref11
  doi: 10.1109/JPROC.2003.814918
– ident: ref34
  doi: 10.1017/CBO9780511804441
– ident: ref25
  doi: 10.1109/TIT.2006.874516
– ident: ref7
  doi: 10.1145/984622.984626
– ident: ref37
  doi: 10.1109/TCNS.2014.2367571
– ident: ref27
  doi: 10.1016/j.acha.2009.04.002
– ident: ref3
  doi: 10.1109/ICASSP.2009.4960418
– ident: ref6
  doi: 10.1137/120876873
– year: 2009
  ident: ref44
  publication-title: Distributed Control of Robotic Networks
  doi: 10.1515/9781400831470
– ident: ref19
  doi: 10.1109/TIT.2015.2403263
SSID ssj0014496
Score 2.2519014
Snippet Distributed optimization in multi-agent systems under sparsity constraints has recently received a lot of attention. In this paper, we consider the in-network...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1420
SubjectTerms Algorithms
Compressed sensing
Convergence
Distributed optimization
Heuristic algorithms
Links
Mathematical analysis
Mathematical models
Monitoring
Multi-agent systems
Networks
nonlinear optimization
Nonlinearity
Optimization
randomized algorithms
Signal processing algorithms
sparse signal recovery
Sparsity
Title Randomized Algorithms for Distributed Nonlinear Optimization Under Sparsity Constraints
URI https://ieeexplore.ieee.org/document/7328757
https://www.proquest.com/docview/1787227808
https://www.proquest.com/docview/1816038941
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH7YnvTgVsW6MYIXwbSJmclyLGopggsu2FuYzExVtIm06cVf73uTNIiKeAuZSfKYN_OWvOUDOORoZSiF0s9zR4HDfW2cWAbCiXWoOD_RpLMp2-IqGDzwi6EYLsBxXQtjjLHJZ6ZDlzaWr3M1o19lXWosE4qwAQ103MparTpiwLnF4kJzwXdEFA7nIUk37t7f3VAOl-igundt8twXFWQxVX4IYqtd-itwOaerTCp57cyKtKM-vrVs_C_hq7BcmZmsV-6LNVgw2TosfWk-2ILHW5npfPzyYTTrvT3lk5fieTxlaMSyM-qmS0BYOHRV9tKQE3aN0mVclW0yi5fE7t6lTepghPtp0SaK6QY89M_vTwdOBbPgKLSmCidIA1f5JpT6JJXosuKZlCNPKmFGvqc8YVChaU-h46GFVHjEU5n6XEXo28ajyEh_E5pZnpktYEHIuZScYK1QGMg4jdBC0wZvh76IddSG7nzlE1X1ICfi3hLri7hxgrxKiFdJxas2HNVPvJf9N_6Y26Klr-dVq96G3Tlzk-qAThMPBRVVAbtI00E9jEeL4iUyM_kM50SEwR3F3Nv-_c07sIjfDyglzRO70CwmM7OHNkqR7tvN-QnCl-MM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9tAFH6icGg5sJQiwtZB4lKpTjx4xssRsShlCVUJam7WeGYCCGKjxLnw63lv7FiooIqbZY-tp3nzNr_lA9gX6GVojdqP-8PQE4GxXqJC6SUm0kIcGLLZVG3RC7s34mwgB3Pws-mFsda64jPbpkuXyzeFntKvsg4Nlolk9AkW0O5LXnVrNTkDIRwaFzoMgSfjaDBLSvpJp3_9m6q4ZBsNvu_K514ZIYeq8kYVO_tyugyXM8qqspKH9rTM2vr5n6GNHyV9BZZqR5MdVidjFeZs_hUWX40fXIO_f1RuitH9szXs8PG2GN-Xd6MJQzeWHdM8XYLCwke9apqGGrMr1C-junGTOcQkdv2kXFkHI-RPhzdRTr7BzelJ_6jr1UALnkZ_qvTCLPR1YCNlDjKFQStKpRpypaUdBlxzadGkGa4x9DBSaRTyTGWB0DFGt8kwtipYh_m8yO0GsDASQilBwFaoDlSSxeijGYu3o0AmJm5BZ7bzqa6nkBNxj6mLRvwkRV6lxKu05lULfjRvPFUTOP6zdo22vllX73oLtmfMTWsRnaQcVRX1AftI017zGIWLMiYqt8UU18SEwh0ngm--_-Xv8Lnbv7xIL371zrfgC9ISUoEal9swX46ndgc9ljLbdQf1BcA05lU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+Algorithms+for+Distributed+Nonlinear+Optimization+Under+Sparsity+Constraints&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Ravazzi%2C+Chiara&rft.au=Fosson%2C+Sophie+M&rft.au=Magli%2C+Enrico&rft.date=2016-03-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=64&rft.issue=6&rft.spage=1420&rft.epage=1434&rft_id=info:doi/10.1109%2FTSP.2015.2500887&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon