Randomized Algorithms for Distributed Nonlinear Optimization Under Sparsity Constraints
Distributed optimization in multi-agent systems under sparsity constraints has recently received a lot of attention. In this paper, we consider the in-network minimization of a continuously differentiable nonlinear function which is a combination of local agent objective functions subject to sparsit...
Saved in:
Published in | IEEE transactions on signal processing Vol. 64; no. 6; pp. 1420 - 1434 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Distributed optimization in multi-agent systems under sparsity constraints has recently received a lot of attention. In this paper, we consider the in-network minimization of a continuously differentiable nonlinear function which is a combination of local agent objective functions subject to sparsity constraints on the variables. A crucial issue of in-network optimization is the handling of the communications, which may be expensive. This calls for efficient algorithms, that are able to reduce the number of required communication links and transmitted messages. To this end, we focus on asynchronous and randomized distributed techniques. Based on consensus techniques and iterative hard thresholding methods, we propose three methods that attempt to minimize the given function, promoting sparsity of the solution: asynchronous hard thresholding (AHT), broadcast hard thresholding (BHT), and gossip hard thresholding (GHT). Although similar in many aspects, it is difficult to obtain a unified analysis for the proposed algorithms. Specifically, we theoretically prove the convergence and characterize the limit points of AHT in regular networks under some proper assumptions on the functions to be minimized. For BHT and GHT, instead, we characterize the fixed points of the maps that rule their dynamics in terms of stationary points of original problem. Finally, we illustrate the implementation of our techniques in compressed sensing and present several numerical results on performance and number of transmissions required for convergence. |
---|---|
AbstractList | Distributed optimization in multi-agent systems under sparsity constraints has recently received a lot of attention. In this paper, we consider the in-network minimization of a continuously differentiable nonlinear function which is a combination of local agent objective functions subject to sparsity constraints on the variables. A crucial issue of in-network optimization is the handling of the communications, which may be expensive. This calls for efficient algorithms, that are able to reduce the number of required communication links and transmitted messages. To this end, we focus on asynchronous and randomized distributed techniques. Based on consensus techniques and iterative hard thresholding methods, we propose three methods that attempt to minimize the given function, promoting sparsity of the solution: asynchronous hard thresholding (AHT), broadcast hard thresholding (BHT), and gossip hard thresholding (GHT). Although similar in many aspects, it is difficult to obtain a unified analysis for the proposed algorithms. Specifically, we theoretically prove the convergence and characterize the limit points of AHT in regular networks under some proper assumptions on the functions to be minimized. For BHT and GHT, instead, we characterize the fixed points of the maps that rule their dynamics in terms of stationary points of original problem. Finally, we illustrate the implementation of our techniques in compressed sensing and present several numerical results on performance and number of transmissions required for convergence. |
Author | Ravazzi, Chiara Fosson, Sophie M. Magli, Enrico |
Author_xml | – sequence: 1 givenname: Chiara surname: Ravazzi fullname: Ravazzi, Chiara email: chiara.ravazzi@polito.it organization: Dept. of Electron. & Telecommun., Politec. di Torino, Turin, Italy – sequence: 2 givenname: Sophie M. surname: Fosson fullname: Fosson, Sophie M. email: sophie.fosson@polito.it organization: Dept. of Electron. & Telecommun., Politec. di Torino, Turin, Italy – sequence: 3 givenname: Enrico surname: Magli fullname: Magli, Enrico email: enrico.magli@polito.it organization: Dept. of Electron. & Telecommun., Politec. di Torino, Turin, Italy |
BookMark | eNp9kL9PAyEYQInRRK3uJi6XuLhc5TuOgxub-jNprLEa3QjHcUpzhQp0qH-91BoHBydIeO_7yDtEu9ZZjdAJ4CEAri-eZg_DAgMdFhRjztkOOoC6hByXrNpNd0xJTjl73UeHIcwxhrKsqwP08iht6xbmU7fZqH9z3sT3Rcg657NLE6I3zSqmp3tne2O19Nl0GU3CZTTOZs-21T6bLaUPJq6zsbNJkcbGcIT2OtkHffxzDtDz9dXT-DafTG_uxqNJrkhRxrxqKqyIZrItGgmEQF3JDqSiuiOggGpcsRZUzcqWSlVQ1siGlIoTTuqOa0kG6Hw7d-ndx0qHKBYmKN330mq3CgI4VJjwVCKhZ3_QuVt5m34ngHFWFIxjnii8pZR3IXjdiaU3C-nXArDYlBaptNiUFj-lk1L9UZSJ34E2Mfr_xNOtaLTWv3sYKTijjHwBYLuOXg |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1007_s00500_018_3020_5 crossref_primary_10_1109_TAC_2017_2685559 crossref_primary_10_1186_s13634_018_0565_5 crossref_primary_10_1109_TSP_2016_2548990 crossref_primary_10_1016_j_sigpro_2022_108750 crossref_primary_10_1109_TSIPN_2021_3124362 crossref_primary_10_1287_ijoc_2022_0344 |
Cites_doi | 10.1109/79.985674 10.1109/TIT.2005.864420 10.1109/TSP.2014.2340812 10.1109/TAC.2010.2041686 10.1007/s00041-008-9035-z 10.1109/GLOCOM.2013.6831603 10.1016/j.optcom.2008.09.083 10.1080/10556780801995790 10.1109/TSP.2011.2182347 10.1109/TSP.2013.2254478 10.1109/TSP.2010.2055862 10.1109/ICASSP.2014.6854566 10.1093/acprof:oso/9780198506263.001.0001 10.1109/42.802758 10.1109/TAC.2008.2009515 10.1109/TAC.1986.1104412 10.1109/TIT.2013.2245716 10.1109/ACSSC.2010.5757507 10.1109/JPROC.2010.2052531 10.1109/LSP.2009.2035667 10.1137/120869778 10.1088/0266-5611/26/3/035010 10.1137/0330046 10.1109/ICASSP.2011.5946267 10.1002/cpa.20124 10.1109/TAC.2010.2091295 10.1109/TMI.2013.2252913 10.1561/2200000016 10.1002/cpa.20042 10.1109/TSP.2013.2282463 10.1109/JPROC.2003.814918 10.1017/CBO9780511804441 10.1109/TIT.2006.874516 10.1145/984622.984626 10.1109/TCNS.2014.2367571 10.1016/j.acha.2009.04.002 10.1109/ICASSP.2009.4960418 10.1137/120876873 10.1515/9781400831470 10.1109/TIT.2015.2403263 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TSP.2015.2500887 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0476 |
EndPage | 1434 |
ExternalDocumentID | 4047516731 10_1109_TSP_2015_2500887 7328757 |
Genre | orig-research |
GrantInformation_xml | – fundername: ERC grantid: 279848 – fundername: European Community’s Seventh Framework Programme grantid: FP7/2007-2013 – fundername: European Research Council; European Research Council funderid: 10.13039/501100000781 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYOK AAYXX ABFSI ACKIV AETIX AI. AIBXA AKJIK ALLEH CITATION E.L H~9 ICLAB IFJZH RIG VH1 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c324t-6b60c3e7ad2ba133196af1ac5ef31c15e067d1c974d5ac257bab34c83839f8ea3 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Thu Jul 10 17:23:24 EDT 2025 Mon Jun 30 10:18:39 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Tue Jul 01 02:53:10 EDT 2025 Tue Aug 26 16:43:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-6b60c3e7ad2ba133196af1ac5ef31c15e067d1c974d5ac257bab34c83839f8ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2316-7404 |
PQID | 1787227808 |
PQPubID | 85478 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1816038941 crossref_citationtrail_10_1109_TSP_2015_2500887 proquest_journals_1787227808 crossref_primary_10_1109_TSP_2015_2500887 ieee_primary_7328757 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-15 |
PublicationDateYYYYMMDD | 2016-03-15 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 bahmani (ref28) 2013; 14 ref32 ref10 cui (ref9) 2013; 32 ref1 ref17 ref38 ref16 ref19 ref18 blumensath (ref26) 2004; 14 ref24 ref23 ref25 ref20 ref42 ref41 ram (ref29) 2010 nedi? (ref2) 2010; 55 ref22 ref21 bullo (ref44) 2009 ref27 ref8 ref7 apostol (ref43) 1967 ref4 ref3 ref6 ref5 berg (ref39) 2007 ref40 |
References_xml | – volume: 14 start-page: 807 year: 2013 ident: ref28 article-title: Greedy sparsity-constrained optimization publication-title: J Mach Learn Res – ident: ref10 doi: 10.1109/79.985674 – ident: ref14 doi: 10.1109/TIT.2005.864420 – ident: ref8 doi: 10.1109/TSP.2014.2340812 – volume: 55 start-page: 922 year: 2010 ident: ref2 article-title: Constrained consensus and optimization in multi-agent networks publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2010.2041686 – volume: 14 start-page: 629 year: 2004 ident: ref26 article-title: Iterative thresholding for sparse approximations publication-title: J Fourier Anal Appl doi: 10.1007/s00041-008-9035-z – ident: ref18 doi: 10.1109/GLOCOM.2013.6831603 – ident: ref12 doi: 10.1016/j.optcom.2008.09.083 – ident: ref35 doi: 10.1080/10556780801995790 – ident: ref16 doi: 10.1109/TSP.2011.2182347 – ident: ref17 doi: 10.1109/TSP.2013.2254478 – ident: ref15 doi: 10.1109/TSP.2010.2055862 – ident: ref41 doi: 10.1109/ICASSP.2014.6854566 – ident: ref38 doi: 10.1093/acprof:oso/9780198506263.001.0001 – ident: ref32 doi: 10.1109/42.802758 – ident: ref4 doi: 10.1109/TAC.2008.2009515 – ident: ref5 doi: 10.1109/TAC.1986.1104412 – ident: ref23 doi: 10.1109/TIT.2013.2245716 – ident: ref13 doi: 10.1109/ACSSC.2010.5757507 – ident: ref42 doi: 10.1109/JPROC.2010.2052531 – ident: ref20 doi: 10.1109/LSP.2009.2035667 – ident: ref21 doi: 10.1137/120869778 – ident: ref22 doi: 10.1088/0266-5611/26/3/035010 – ident: ref40 doi: 10.1137/0330046 – ident: ref33 doi: 10.1109/ICASSP.2011.5946267 – ident: ref31 doi: 10.1002/cpa.20124 – year: 2007 ident: ref39 publication-title: Sparco A Testing Framework for Sparse Reconstruction – ident: ref30 doi: 10.1109/TAC.2010.2091295 – volume: 32 start-page: 957 year: 2013 ident: ref9 article-title: Distributed MLEM: An iterative tomographic image reconstruction algorithm for distributed memory architectures publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2013.2252913 – start-page: 516 year: 2010 ident: ref29 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J Optim Theory Appl – ident: ref1 doi: 10.1561/2200000016 – ident: ref36 doi: 10.1002/cpa.20042 – year: 1967 ident: ref43 publication-title: Calculus One-Variable Calculus With an Introduction to Linear Algebra – ident: ref24 doi: 10.1109/TSP.2013.2282463 – ident: ref11 doi: 10.1109/JPROC.2003.814918 – ident: ref34 doi: 10.1017/CBO9780511804441 – ident: ref25 doi: 10.1109/TIT.2006.874516 – ident: ref7 doi: 10.1145/984622.984626 – ident: ref37 doi: 10.1109/TCNS.2014.2367571 – ident: ref27 doi: 10.1016/j.acha.2009.04.002 – ident: ref3 doi: 10.1109/ICASSP.2009.4960418 – ident: ref6 doi: 10.1137/120876873 – year: 2009 ident: ref44 publication-title: Distributed Control of Robotic Networks doi: 10.1515/9781400831470 – ident: ref19 doi: 10.1109/TIT.2015.2403263 |
SSID | ssj0014496 |
Score | 2.2519014 |
Snippet | Distributed optimization in multi-agent systems under sparsity constraints has recently received a lot of attention. In this paper, we consider the in-network... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1420 |
SubjectTerms | Algorithms Compressed sensing Convergence Distributed optimization Heuristic algorithms Links Mathematical analysis Mathematical models Monitoring Multi-agent systems Networks nonlinear optimization Nonlinearity Optimization randomized algorithms Signal processing algorithms sparse signal recovery Sparsity |
Title | Randomized Algorithms for Distributed Nonlinear Optimization Under Sparsity Constraints |
URI | https://ieeexplore.ieee.org/document/7328757 https://www.proquest.com/docview/1787227808 https://www.proquest.com/docview/1816038941 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH7YnvTgVsW6MYIXwbSJmclyLGopggsu2FuYzExVtIm06cVf73uTNIiKeAuZSfKYN_OWvOUDOORoZSiF0s9zR4HDfW2cWAbCiXWoOD_RpLMp2-IqGDzwi6EYLsBxXQtjjLHJZ6ZDlzaWr3M1o19lXWosE4qwAQ103MparTpiwLnF4kJzwXdEFA7nIUk37t7f3VAOl-igundt8twXFWQxVX4IYqtd-itwOaerTCp57cyKtKM-vrVs_C_hq7BcmZmsV-6LNVgw2TosfWk-2ILHW5npfPzyYTTrvT3lk5fieTxlaMSyM-qmS0BYOHRV9tKQE3aN0mVclW0yi5fE7t6lTepghPtp0SaK6QY89M_vTwdOBbPgKLSmCidIA1f5JpT6JJXosuKZlCNPKmFGvqc8YVChaU-h46GFVHjEU5n6XEXo28ajyEh_E5pZnpktYEHIuZScYK1QGMg4jdBC0wZvh76IddSG7nzlE1X1ICfi3hLri7hxgrxKiFdJxas2HNVPvJf9N_6Y26Klr-dVq96G3Tlzk-qAThMPBRVVAbtI00E9jEeL4iUyM_kM50SEwR3F3Nv-_c07sIjfDyglzRO70CwmM7OHNkqR7tvN-QnCl-MM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9tAFH6icGg5sJQiwtZB4lKpTjx4xssRsShlCVUJam7WeGYCCGKjxLnw63lv7FiooIqbZY-tp3nzNr_lA9gX6GVojdqP-8PQE4GxXqJC6SUm0kIcGLLZVG3RC7s34mwgB3Pws-mFsda64jPbpkuXyzeFntKvsg4Nlolk9AkW0O5LXnVrNTkDIRwaFzoMgSfjaDBLSvpJp3_9m6q4ZBsNvu_K514ZIYeq8kYVO_tyugyXM8qqspKH9rTM2vr5n6GNHyV9BZZqR5MdVidjFeZs_hUWX40fXIO_f1RuitH9szXs8PG2GN-Xd6MJQzeWHdM8XYLCwke9apqGGrMr1C-junGTOcQkdv2kXFkHI-RPhzdRTr7BzelJ_6jr1UALnkZ_qvTCLPR1YCNlDjKFQStKpRpypaUdBlxzadGkGa4x9DBSaRTyTGWB0DFGt8kwtipYh_m8yO0GsDASQilBwFaoDlSSxeijGYu3o0AmJm5BZ7bzqa6nkBNxj6mLRvwkRV6lxKu05lULfjRvPFUTOP6zdo22vllX73oLtmfMTWsRnaQcVRX1AftI017zGIWLMiYqt8UU18SEwh0ngm--_-Xv8Lnbv7xIL371zrfgC9ISUoEal9swX46ndgc9ljLbdQf1BcA05lU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+Algorithms+for+Distributed+Nonlinear+Optimization+Under+Sparsity+Constraints&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Ravazzi%2C+Chiara&rft.au=Fosson%2C+Sophie+M&rft.au=Magli%2C+Enrico&rft.date=2016-03-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=64&rft.issue=6&rft.spage=1420&rft.epage=1434&rft_id=info:doi/10.1109%2FTSP.2015.2500887&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |