Minimum Principles for Sturm–Liouville Inequalities and Applications

A minimum principle for a Sturm–Liouville (S-L) inequality is obtained, which shows that the minimum value of a nonconstant solution of a S-L inequality never occurs in the interior of the domain (a closed interval) of the solution. The minimum principle is then applied to prove that any nonconstant...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 12; no. 13; p. 2088
Main Authors Ngo, Phuc, Lan, Kunquan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A minimum principle for a Sturm–Liouville (S-L) inequality is obtained, which shows that the minimum value of a nonconstant solution of a S-L inequality never occurs in the interior of the domain (a closed interval) of the solution. The minimum principle is then applied to prove that any nonconstant solutions of S-L inequalities subject to separated inequality boundary conditions (IBCs) must be strictly positive in the interiors of their domains and are increasing or decreasing for some of these IBCs. These positivity results are used to prove the uniqueness of the solutions of linear S-L equations with separated BCs. All of these results hold for the corresponding second-order differential inequalities (or equations), which are special cases of S-L inequalities (or equations). These results are applied to two models arising from the source distribution of the human head and chemical reactor theory. The first model is governed by a nonlinear S-L equation, while the second one is governed by a nonlinear second-order differential equation. For the first model, the explicit solutions are not available, and there are no results on the existence of solutions of the first model. Our results show that all the nonconstant solutions are increasing and are strictly positive solutions. For the second model, many results on the uniqueness of the solutions and the existence of multiple solutions have been obtained before. Our results are applied to prove that all the nonconstant solutions are decreasing and strictly positive.
AbstractList A minimum principle for a Sturm–Liouville (S-L) inequality is obtained, which shows that the minimum value of a nonconstant solution of a S-L inequality never occurs in the interior of the domain (a closed interval) of the solution. The minimum principle is then applied to prove that any nonconstant solutions of S-L inequalities subject to separated inequality boundary conditions (IBCs) must be strictly positive in the interiors of their domains and are increasing or decreasing for some of these IBCs. These positivity results are used to prove the uniqueness of the solutions of linear S-L equations with separated BCs. All of these results hold for the corresponding second-order differential inequalities (or equations), which are special cases of S-L inequalities (or equations). These results are applied to two models arising from the source distribution of the human head and chemical reactor theory. The first model is governed by a nonlinear S-L equation, while the second one is governed by a nonlinear second-order differential equation. For the first model, the explicit solutions are not available, and there are no results on the existence of solutions of the first model. Our results show that all the nonconstant solutions are increasing and are strictly positive solutions. For the second model, many results on the uniqueness of the solutions and the existence of multiple solutions have been obtained before. Our results are applied to prove that all the nonconstant solutions are decreasing and strictly positive.
Author Ngo, Phuc
Lan, Kunquan
Author_xml – sequence: 1
  givenname: Phuc
  surname: Ngo
  fullname: Ngo, Phuc
– sequence: 2
  givenname: Kunquan
  surname: Lan
  fullname: Lan, Kunquan
BookMark eNpNkN1Kw0AQhRepYK298wEC3lrdn2R_LkuxWqgoqNfLZHejW5JsukkE73wH39AnMbUinZsZZg7nG84pGtWhdgidE3zFmMLXFXRvhBJGsZRHaEwpFTMxHEYH8wmatu0GD6UIk6kao-W9r33VV8lj9LXxTenapAgxeer6WH1_fq196N99WbpkVbttD6Xv_CCB2ibzpim9gc6Huj1DxwWUrZv-9Ql6Wd48L-5m64fb1WK-nhlG027GGYes4ClRxpAso465LOcpSwVI46QFcEAsg7wgQLm1ObGFzLDhFmc2FZhN0GrvawNsdBN9BfFDB_D6dxHiq4bYeVM6LbmSyinF7ACEjEtqU5tTJQvBRMbV4HWx92pi2Pau7fQm9LEe3tcMC4WFoGpHvNyrTAxtG13xTyVY74LXh8GzH9VQeG8
Cites_doi 10.1016/S0092-8240(81)80019-5
10.1007/s10910-023-01556-7
10.1016/j.jmaa.2006.03.003
10.1090/S0002-9939-96-03256-X
10.1186/s13661-016-0571-1
10.1016/j.camwa.2009.07.059
10.1016/0022-247X(79)90187-2
10.1016/0362-546X(95)00102-2
10.1002/mma.9663
10.1016/j.jde.2021.11.006
10.1007/s10910-021-01293-9
10.1016/j.jmaa.2005.06.087
10.1038/s41598-024-53822-6
10.1137/1018114
10.1112/S0024609306018327
10.1016/S0022-5193(75)80131-7
10.1016/0022-5193(80)90250-7
10.1016/S0362-546X(96)00259-3
10.1137/0120001
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math12132088
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_86989e993df64a5682d4db298f737569
10_3390_math12132088
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c324t-636a5f6419cc1552e3e5b64347a8ce8daaea1d3abf1a26ddb1df850c6d05d4703
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Wed Aug 27 01:32:07 EDT 2025
Fri Jul 25 11:43:21 EDT 2025
Tue Jul 01 01:53:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-636a5f6419cc1552e3e5b64347a8ce8daaea1d3abf1a26ddb1df850c6d05d4703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3079077290?pq-origsite=%requestingapplication%
PQID 3079077290
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_86989e993df64a5682d4db298f737569
proquest_journals_3079077290
crossref_primary_10_3390_math12132088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Anderson (ref_11) 1981; 43
Gu (ref_9) 2024; 47
Amara (ref_8) 2019; 42
Sun (ref_22) 2007; 326
He (ref_4) 2019; 111
Amann (ref_19) 1976; 18
Celik (ref_12) 2024; 62
Williams (ref_18) 1979; 69
Walter (ref_1) 1995; 25
Hedhly (ref_10) 2022; 307
Roul (ref_16) 2022; 60
Walter (ref_2) 1997; 30
Yang (ref_6) 2016; 2016
Cohen (ref_17) 1971; 20
Flesch (ref_13) 1975; 54
Gray (ref_14) 1980; 82
Sun (ref_21) 2006; 313
Yang (ref_7) 2016; 6
Lan (ref_5) 2006; 38
Anuradha (ref_3) 1996; 124
Izadi (ref_15) 2024; 14
Li (ref_20) 2009; 58
References_xml – volume: 43
  start-page: 341
  year: 1981
  ident: ref_11
  article-title: Complementary extremum principles for a nonlinear model of heat conduction in the human head
  publication-title: Bull. Math. Biol.
  doi: 10.1016/S0092-8240(81)80019-5
– volume: 62
  start-page: 634
  year: 2024
  ident: ref_12
  article-title: An efficient multi-derivative numerical method for chemical boundary value problems
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-023-01556-7
– volume: 326
  start-page: 242
  year: 2007
  ident: ref_22
  article-title: Nontrivial solutions of singular suberlinear Sturm-Liouville problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.03.003
– volume: 42
  start-page: 4409
  year: 2019
  ident: ref_8
  article-title: Lower bound for the ratio of eigenvalues of Schrödinger with nonpositive single-barrier potentials
  publication-title: Math. Meth. Appl. Sci.
– volume: 124
  start-page: 757
  year: 1996
  ident: ref_3
  article-title: Existence results for superlinear semipositone BVP’s
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-96-03256-X
– volume: 2016
  start-page: 64
  year: 2016
  ident: ref_6
  article-title: New results of positive solutions for the Sturm-Liouville problem
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-016-0571-1
– volume: 58
  start-page: 1808
  year: 2009
  ident: ref_20
  article-title: Positive solutions of sublinear Sturm-Liouville problems with changing sign nonlinearity
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.07.059
– volume: 69
  start-page: 180
  year: 1979
  ident: ref_18
  article-title: Multiple fixed point theorems for problems in chemical reactor theory
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(79)90187-2
– volume: 25
  start-page: 1071
  year: 1995
  ident: ref_1
  article-title: A new approach to minimum and comparison principles for nonlinear ordinary differential operators of second order
  publication-title: Nolinear Anal.
  doi: 10.1016/0362-546X(95)00102-2
– volume: 47
  start-page: 409
  year: 2024
  ident: ref_9
  article-title: The eigenvalue ratio of the vibrating strings with mixed boundary condition
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.9663
– volume: 307
  start-page: 476
  year: 2022
  ident: ref_10
  article-title: Eigenvalue ratios for vibrating string equations with single-well densities
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2021.11.006
– volume: 60
  start-page: 128
  year: 2022
  ident: ref_16
  article-title: A quartic trigonometric b-spline collocation method for a general class of nonlinear singular boundary value problems
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-021-01293-9
– volume: 313
  start-page: 518
  year: 2006
  ident: ref_21
  article-title: Nontrivial solutions of singular superlinear Sturm-Liouville problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.06.087
– volume: 6
  start-page: 665
  year: 2016
  ident: ref_7
  article-title: A fixed point index theory for nowhere normal-outward compact maps and applications
  publication-title: J. Appl. Anal. Comput.
– volume: 14
  start-page: 3466
  year: 2024
  ident: ref_15
  article-title: Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-53822-6
– volume: 18
  start-page: 620
  year: 1976
  ident: ref_19
  article-title: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces
  publication-title: SIAM. Rev.
  doi: 10.1137/1018114
– volume: 38
  start-page: 283
  year: 2006
  ident: ref_5
  article-title: Multiple positive solutions of semi-positone Sturm-Liouville boundary value problems
  publication-title: Bull. London Math. Soc.
  doi: 10.1112/S0024609306018327
– volume: 111
  start-page: 1
  year: 2019
  ident: ref_4
  article-title: Existence of positive solutions for systems of nonlinear Sturm-Liouville differential equations with weight functions
  publication-title: Electr. J. Differ. Equ.
– volume: 54
  start-page: 285
  year: 1975
  ident: ref_13
  article-title: The Distribution of heat sources in the human head: A theoretical consideration
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(75)80131-7
– volume: 82
  start-page: 473
  year: 1980
  ident: ref_14
  article-title: The distribution of heat sources in the human head-theoretical consideration
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(80)90250-7
– volume: 30
  start-page: 4695
  year: 1997
  ident: ref_2
  article-title: Differential inequalities and maximum principles:theory, new methods and applications
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(96)00259-3
– volume: 20
  start-page: 1
  year: 1971
  ident: ref_17
  article-title: Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0120001
SSID ssj0000913849
Score 2.2608128
Snippet A minimum principle for a Sturm–Liouville (S-L) inequality is obtained, which shows that the minimum value of a nonconstant solution of a S-L inequality never...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2088
SubjectTerms Boundary conditions
boundary value problems
Chemical reactors
Differential equations
Inequalities
Inequality
minimum principles
second-order differential inequalities
strictly positive solutions
Sturm-Liouville theory
Sturm–Liouville inequalities
Uniqueness
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkAcYozqx4zhjQVQFUYQElbpZTs4WHZqifjDzH_iH_BLOSVoiMbAwZIkiJXkX372L794RcokJjrQ5jwKJ4S0QLoFAKccCsGnkRJhwp3w38vBRDkbifhyPG6O-fE1YJQ9cAddVfsKhxSgKTgoTSxWBgCxKlUt4EsuydQ9jXiOZKn1wGnIl0qrSnWNe30X-9-rlyyJWDln5iUGlVP8vT1yGl_4e2a15Ie1Vz7NPtmxxQHaGG1HVxSHpDyfFZLqa0qf1D_IFRcpJnzFqTL8-Ph8ms9W7b-2jd4WtmiUxDaamANprbFMfkVH_9uVmENRjEALEUCwDyaWJ8eXDNM-9YJrlNs6QSIjEqNwqMMaaELjJXGgiCZCF4FTMcgksBoEr-pi0illhTwjlWWackgo4F8KiPaQAPIx0QrHUsTa5WgOj3yq1C41ZggdQNwFsk2uP2uYar1FdnkDL6dpy-i_LtUlnjbmuF85Co8vBdB0ZPzv9j3ucke0IWUhVX9shreV8Zc-RRSyzi_KD-QYOeMWB
  priority: 102
  providerName: Directory of Open Access Journals
Title Minimum Principles for Sturm–Liouville Inequalities and Applications
URI https://www.proquest.com/docview/3079077290
https://doaj.org/article/86989e993df64a5682d4db298f737569
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAfIpCqTLAGDWJHceZUIsaCqJVBVTqFjmxDR2alKZl5j_wD_klnPPRVkJiyJJ4iM7nu_fO9juEroHgUBljx6SQ3kyiPGEypixTSN9RxPawYvo28mBI-2PyOHEnZcEtK49VVjExD9QijXWNvA2-CDwOoKB1O_8wddcovbtattDYRXUIwQzIV73bG46e11UWrXrJiF-ceMfA79uAA9-1jJlj5c1WNrkol-z_E5HzNBMcooMSHxqdYkKP0I5MjtH-YC2ump2gYDBNprPVzBhVhfLMAOhpvED2mP18fT9N09WnvuJnPCSyuDQJdNjgiTA6W9vVp2gc9F7v-mbZDsEEW5KlSTHlrqLE9uNYC6dJLN0IAAXxOIslE5xLbgvMI2VzhwoR2UIx14qpsFxBYGWfoVqSJvIcGTiKuGKUCYwJkTAvlAh4OFWEWb6yGuimMkw4L1QvQmAL2oDhtgEbqKutth6jtarzF-niLSxdP2S6R6UEHCTg57lLmSOIiByfKQ97LvUbqFnZPCwXUBZupvvi_8-XaM8BnFGcoG2i2nKxkleAE5ZRC-2y4L5VukQrZ9u_lTPBQQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFH8q5TA4TGMDrawbPrBj1MR2HOeAUNlWWtZWk9ik3YIT29BDk9E_IG58B74HH4pPwnPStJWQuPWQSxxF1vPv-f2e_f4AvEYHR5iMUU-gefO4jbQnpfU9bWJqeRAxK1028mgs-nf8w31434DfdS6MC6us98Ryo9ZF5s7IO4hF9OOQCvpvH756rmuUu12tW2hUsLg2P76jyzZ_M7jE9T2ntHd1e9H3Vl0FPJwSX3iCCRVawYM4y1z9McNMmKJd5pGSmZFaKaMCzVRqA0WF1mmgrQz9TGg_1BwVBP_7CB5zxmKnUbL3fn2m42psSh5X8fU47neQdX5xRdOoX7Z22Vi-skHAP_t_adR6B7C_YqOkW8HnGTRMfghPR-tSrvMj6I0m-WS6nJKb-lh-TpDoko9oq6Z_fv4aTorlN5dQSAa5qVI00fkmKteku3U5_hzudiKmF9DMi9wcA2FpqqwUUjPGuUEUCK7xUcJy6cfWb8F5LZjkoaqxkaBv4gSYbAuwBe-c1NbfuMrY5Yti9jlZKVoiXUdMg6xL4-RVKCTVXKc0ljZiUSjiFrRrmScrdZ0nG3C9_P_wK9jr346GyXAwvj6BJxQZThW724bmYrY0p8hQFulZCQsCn3aNw79mvvv-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB7RIFXlgAoUkZK2e4Cjhb27Xq8PFQqFiACJIlokbmbt3YUc4gBJQNx4B96mj9Mn6ax_AhISNw6-2JY1Gn-z883u_ABsYYAjTMaoJ9C9edxG2pPS-p42MbU8iJiVrhq51xeHZ_zoPDxfgL91LYxLq6zXxGKh1uPM7ZHvIBYxjkMq6O_YKi1isN_Zvb7x3AQpd9Jaj9MoIXJsHu4xfJv87O7jv96mtHPw59ehV00Y8FA8PvUEEyq0ggdxlrleZIaZMEUfzSMlMyO1UkYFmqnUBooKrdNAWxn6mdB-qDkaC373AyxGGBX5DVjcO-gPTuc7PK7jpuRxmW3PGAqOHPTKtVCjfjHo5dkPFuMCXnmDwsV1PsNyxU1JuwTTCiyYfBWWevPGrpM16PSG-XA0G5FBvUk_IUh7yW_0XKN_j08nw_HszpUXkm5uyoJNDMWJyjVpvzgq_wJn76KodWjk49xsAGFpqqwUUjPGuUFMCK7xUsJy6cfWb8J2rZjkuuy4kWCk4hSYvFRgE_ac1ubvuD7ZxY3x7WVSmV0i3XxMgxxMo_AqFJJqrlMaSxuxKBRxE1q1zpPKeCfJM9S-vv34B3xEDCYn3f7xJnyiSHfKRN4WNKa3M_MN6co0_V7hgsDFe0PxP-_1AZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+Principles+for+Sturm%E2%80%93Liouville+Inequalities+and+Applications&rft.jtitle=Mathematics+%28Basel%29&rft.au=Ngo%2C+Phuc&rft.au=Lan%2C+Kunquan&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=12&rft.issue=13&rft.spage=2088&rft_id=info:doi/10.3390%2Fmath12132088&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon