Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses
In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, w...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 11; pp. 15624 - 15637 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted. |
---|---|
AbstractList | In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted.In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted. In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted. |
Author | Alves, Rodrigo Kloft, Marius Ledent, Antoine |
Author_xml | – sequence: 1 givenname: Rodrigo orcidid: 0000-0001-7458-5281 surname: Alves fullname: Alves, Rodrigo email: rodrigo.alves@fit.cvut.cz organization: Department of Applied Mathematics, Czech Technical University in Prague (CTU), Prague, Czech Republic Prague – sequence: 2 givenname: Antoine orcidid: 0000-0001-8440-2784 surname: Ledent fullname: Ledent, Antoine organization: School of Computing and Information Sciences (SCIS), Singapore Management University (SMU), Bras Basah, Singapore – sequence: 3 givenname: Marius orcidid: 0000-0001-6829-3725 surname: Kloft fullname: Kloft, Marius organization: Department of Computer Science, University of Kaiserslautern-Landau (RPTU), Kaiserslautern, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37432811$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kF1PwjAUhhuDEUT-gDFml94M15Z17SUhoiaIUSF4t3TdQUrYhm0x4q-3fEiMFzZpzkn6Pu3pc4pqZVUCQuc4amMcievRcDh4aZOI0DYlnCdMHKEGwYyEhHJeO_TJax21rJ1HfrEoZh1xguo06XgI4wZ6GpcKjJO6dOuwm89X1kEePIOqigLKXDpdlcGHlsGDdEZ_Bn2pXGX01-5got0smIB-m22oQWUt2DN0PJULC619baJx_2bUuwsHj7f3ve4gVJR0XBjnOI6BAQgho8wPpFQshZSCkYyILKGSS0mJ8HUa-005VVnWyfKM44RNKW2iq929S1O9r8C6tNBWwWIhS6hWNiWcMiJYhLmPXu6jq6yAPF0aXUizTn80-ADZBZTxfzAwPURwlG50p1vd6UZ3utftIf4HUtptvTgj9eJ_9GKHagD49RZOEi4w_QZXMo43 |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3342138 crossref_primary_10_1109_TSMC_2024_3512879 |
Cites_doi | 10.1109/TNNLS.2022.3215633 10.1145/3437963.3441800 10.1609/aaai.v35i4.16473 10.1007/978-3-642-20212-4 10.1109/MC.2009.263 10.1145/642611.642713 10.1109/TII.2014.2308433 10.1109/TNNLS.2018.2890117 10.1007/978-3-319-16354-3_35 10.1109/ACCESS.2019.2928130 10.1109/TNNLS.2021.3071392 10.1109/tnnls.2022.3204775 10.1109/TNNLS.2021.3106155 10.1016/j.dss.2019.01.001 10.1007/978-3-642-34630-9_4 10.1007/s10208-011-9099-z 10.18653/v1/p191248 10.1007/978-3-319-29659-3 10.1007/978-981-19-8934-6_2 10.1007/978-3-319-49001-4_1 10.1145/1111449.1111477 10.1137/19M1290000 10.1109/TNNLS.2020.2990990 10.5555/2999792.2999869 10.1137/130919210 10.1007/s10462-012-9364-9 10.1007/978-1-4899-7637-6_18 10.1109/JPROC.2009.2035722 10.1007/978-3-319-26404-2_4 10.1145/3447780 10.1109/TNNLS.2020.3041360 10.1007/s10107-012-0629-5 10.1017/9781108231596 10.1007/978-981-19-8934-6_4 10.1016/j.ins.2022.03.068 10.1145/1553374.1553434 10.1145/3357384.3357992 10.1016/j.knosys.2014.12.011 10.1007/s11042-012-1119-8 10.1109/TIT.2010.2044061 10.1109/TNNLS.2017.2766160 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TNNLS.2023.3288769 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 15637 |
ExternalDocumentID | 37432811 10_1109_TNNLS_2023_3288769 10177891 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Recombee – fundername: German Federal Ministry of Science and Education (BMBF) grantid: 03; B0770E; 01; S21010C funderid: 10.13039/501100002347 – fundername: Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 Grant – fundername: Carl-Zeiss Foundation, the German Research Foundation (DFG) grantid: KL 2698/2-1; KL 2698/5-1; KL 2698/6-1; KL 2698/7-1 funderid: 10.13039/501100001659 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c324t-5d155e6ee99a0b374cc5a9aa962b29b73a8aa3293a8f5a8f383cbb4bdb8176f33 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 06:05:49 EDT 2025 Mon Jul 21 05:59:27 EDT 2025 Tue Jul 01 00:27:52 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Wed Aug 27 03:01:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-5d155e6ee99a0b374cc5a9aa962b29b73a8aa3293a8f5a8f383cbb4bdb8176f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6829-3725 0000-0001-7458-5281 0000-0001-8440-2784 |
PMID | 37432811 |
PQID | 2836296018 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_37432811 ieee_primary_10177891 crossref_primary_10_1109_TNNLS_2023_3288769 proquest_miscellaneous_2836296018 crossref_citationtrail_10_1109_TNNLS_2023_3288769 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref59 Mazumder (ref2) 2010; 11 ref14 ref53 ref52 ref11 ref10 Foygel (ref15) 2011 Zhang (ref35) Zhang (ref54); 80 Wang (ref18) ref51 Ledent (ref17) 2021; 34 ref50 ref46 ref48 ref47 ref42 Keshavan (ref19) 2009 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 Recht (ref58) 2011; 12 ref6 ref5 ref40 ref31 Wang (ref34) 2011; 24 ref33 Zhang (ref37) 2020 ref32 Shamir (ref61) 2014; 15 Srebro (ref16) 2010 Shamir (ref21); 19 ref1 ref39 Lu (ref30); 29 Chiang (ref20) 2018; 19 Zhang (ref36) 2019 Wu (ref38) Foygel (ref22) 2012; 25 ref24 ref23 ref26 ref25 ref63 Liu (ref41) 2023 Kendall (ref45); 30 ref28 ref27 Meir (ref60) 2003; 4 ref29 ref62 Hastie (ref55) 2015; 16 |
References_xml | – ident: ref43 doi: 10.1109/TNNLS.2022.3215633 – volume: 19 start-page: 1 issue: 76 year: 2018 ident: ref20 article-title: Using side information to reliably learn low-rank matrices from missing and corrupted observations publication-title: J. Mach. Learn. Res. – ident: ref50 doi: 10.1145/3437963.3441800 – ident: ref44 doi: 10.1609/aaai.v35i4.16473 – ident: ref59 doi: 10.1007/978-3-642-20212-4 – ident: ref1 doi: 10.1109/MC.2009.263 – ident: ref47 doi: 10.1145/642611.642713 – ident: ref4 doi: 10.1109/TII.2014.2308433 – ident: ref25 doi: 10.1109/TNNLS.2018.2890117 – ident: ref27 doi: 10.1007/978-3-319-16354-3_35 – ident: ref7 doi: 10.1109/ACCESS.2019.2928130 – start-page: 952 volume-title: Advances in Neural Information Processing Systems year: 2009 ident: ref19 article-title: Matrix completion from noisy entries – ident: ref31 doi: 10.1109/TNNLS.2021.3071392 – ident: ref32 doi: 10.1109/tnnls.2022.3204775 – ident: ref3 doi: 10.1109/TNNLS.2021.3106155 – ident: ref11 doi: 10.1016/j.dss.2019.01.001 – ident: ref14 doi: 10.1007/978-3-642-34630-9_4 – ident: ref57 doi: 10.1007/s10208-011-9099-z – ident: ref63 doi: 10.18653/v1/p191248 – ident: ref26 doi: 10.1007/978-3-319-29659-3 – ident: ref28 doi: 10.1007/978-981-19-8934-6_2 – year: 2019 ident: ref36 article-title: Community detection and matrix completion with two-sided graph side-information publication-title: arXiv:1912.04099 – volume: 11 start-page: 2287 year: 2010 ident: ref2 article-title: Spectral regularization algorithms for learning large incomplete matrices publication-title: J. Mach. Learn. Res. – ident: ref10 doi: 10.1007/978-3-319-49001-4_1 – volume: 16 start-page: 3367 year: 2015 ident: ref55 article-title: Matrix completion and low-rank SVD via fast alternating least squares publication-title: J. Mach. Learn. Res. – ident: ref6 doi: 10.1145/1111449.1111477 – volume: 25 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: ref22 article-title: Matrix reconstruction with the local max norm – volume: 24 volume-title: Advances in Neural Information Processing Systems year: 2011 ident: ref34 article-title: A denoising view of matrix completion – ident: ref23 doi: 10.1137/19M1290000 – ident: ref39 doi: 10.1109/TNNLS.2020.2990990 – start-page: 2056 volume-title: Advances in Neural Information Processing Systems year: 2010 ident: ref16 article-title: Collaborative filtering in a non-uniform world: Learning with the weighted trace norm – ident: ref53 doi: 10.5555/2999792.2999869 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref35 article-title: Inductive matrix completion based on graph neural networks – volume: 30 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref45 article-title: What uncertainties do we need in Bayesian deep learning for computer vision? – year: 2023 ident: ref41 article-title: A constraints fusion-induced symmetric nonnegative matrix factorization approach for community detection publication-title: arXiv:2302.12114 – ident: ref42 doi: 10.1137/130919210 – ident: ref46 doi: 10.1007/s10462-012-9364-9 – ident: ref48 doi: 10.1007/978-1-4899-7637-6_18 – volume: 12 start-page: 3413 year: 2011 ident: ref58 article-title: A simpler approach to matrix completion publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 25540 volume-title: Advances in Neural Information Processing Systems year: 2021 ident: ref17 article-title: Fine-grained generalization analysis of inductive matrix completion – ident: ref24 doi: 10.1109/JPROC.2009.2035722 – ident: ref12 doi: 10.1007/978-3-319-26404-2_4 – start-page: 10927 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref18 article-title: Matrix completion with model-free weighting – ident: ref8 doi: 10.1145/3447780 – ident: ref40 doi: 10.1109/TNNLS.2020.3041360 – volume: 29 start-page: 4071 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref30 article-title: A sparse interactive model for matrix completion with side information – start-page: 2133 volume-title: Advances in Neural Information Processing Systems year: 2011 ident: ref15 article-title: Learning with the weighted trace-norm under arbitrary sampling distributions – volume: 4 start-page: 839 year: 2003 ident: ref60 article-title: Generalization error bounds for Bayesian mixture algorithms publication-title: J. Mach. Learn. Res. – ident: ref52 doi: 10.1007/s10107-012-0629-5 – ident: ref56 doi: 10.1017/9781108231596 – ident: ref29 doi: 10.1007/978-981-19-8934-6_4 – start-page: 1 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref38 article-title: Towards open-world recommendation: An inductive model-based collaborative filtering approach – volume: 15 start-page: 3401 issue: 98 year: 2014 ident: ref61 article-title: Matrix completion with the trace norm: Learning, bounding, and transducing publication-title: J. Mach. Learn. Res. – volume: 80 start-page: 5756 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref54 article-title: Fast and sample efficient inductive matrix completion via multi-phase Procrustes flow – year: 2020 ident: ref37 article-title: MC2G: An efficient algorithm for matrix completion with social and item similarity graphs publication-title: arXiv:2006.04373 – ident: ref49 doi: 10.1016/j.ins.2022.03.068 – ident: ref51 doi: 10.1145/1553374.1553434 – ident: ref62 doi: 10.1145/3357384.3357992 – ident: ref9 doi: 10.1016/j.knosys.2014.12.011 – ident: ref13 doi: 10.1007/s11042-012-1119-8 – volume: 19 start-page: 661 volume-title: Proc. 24th Annu. Conf. Learn. Theory ident: ref21 article-title: Collaborative filtering with the trace norm: Learning, bounding, and transducing – ident: ref5 doi: 10.1109/TIT.2010.2044061 – ident: ref33 doi: 10.1109/TNNLS.2017.2766160 |
SSID | ssj0000605649 |
Score | 2.475844 |
Snippet | In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15624 |
SubjectTerms | Adaptation models Behavioral sciences Complexity theory Learning systems Matrix completion Noise measurement Predictive models recommender systems (RSs) Uncertainty uncertainty estimation uncertainty-aware learning |
Title | Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses |
URI | https://ieeexplore.ieee.org/document/10177891 https://www.ncbi.nlm.nih.gov/pubmed/37432811 https://www.proquest.com/docview/2836296018 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJy5Ay6NLS-VKvVUOiRM78REhVqiClVBZsbfIj4mAtrsVJIjy6xnbyaogUfUQJQfbSTxj-ZsZfzOEfHHcQmOMYrrSihXQSGa00ywrGyEcAI9E2rOJPJkW32Zi1pPVAxcGAMLhM0j8Y4jlu4XtvKvswKtPWXmu-hu03CJZa-lQSRGYywB3eSY543k5G0gyqTq4mExOvye-VniSc1xY0qcLzXH75FWWPduTQpGV1_Fm2HfGG2QyfHE8bvIj6VqT2McXyRz_-5c2yXqPQOlhVJm3ZAXm78jGUN2B9ot9i5xP8RbOC7R_2KG76bxjlHpz9ReOGUsx0ftrTc98lv8HOg6Ve3paJ728bq_oZfC7Yq_ThY8tb5Pp-Pji6IT1BRiYRZzVMuEQbYAEUEqnBmfLWqGV1kpyw5UpcxSwzhEw6KoReKG1a40pjDNVVsomz3fI6nwxh_eEgi61aFJhy8oVEoSxlWgEgh1EHE5zPSLZIILa9tnJfZGMn3WwUlJVBwnWXoJ1L8ER-brs8zvm5vhn620__X-1jDM_Ip8HUde4tHy8RM9h0d3ViLwkRwsvq0ZkN-rAsvegOnuvjPqBrOHLi8ha_EhW29sO9hG-tOZTUNsnoULqfw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQe4AL5VFgeRqJG3KaOLETHyvEaoHdSIhddW-RHxNRaHcRJIj213dsJytAKuIQJQfbcjxjzTdjfzOEvHLcQmuMYrrSihXQSma00ywrWyEcAI9E2kUtZ6vi_VqsB7J64MIAQLh8Bon_DGf5bmt7Hyo78upTVp6rvo-GX2SRrrULqaQIzWUAvDyTnPG8XI80mVQdLet6_inx1cKTnOPWkj5haI4GlFdZ9odVCmVWrkecwfJMD0g9zjleOPma9J1J7OVf6Rz_-6fukNsDBqXHUWnukhuwuUcOxvoOdNju98nHFb7CjYHugh27L70PjVLvsJ7jmLEYE_15qunC5_n_Raehds9A7KQnp91nehIir9hrvvWny4dkNX27fDNjQwkGZhFpdUw4xBsgAZTSqcHVslZopbWS3HBlyhxFrHOEDLpqBT7o71pjCuNMlZWyzfMHZG-z3cAjQkGXWrSpsGXlCgnC2Eq0AuEOYg6nuZ6QbBRBY4f85L5MxlkT_JRUNUGCjZdgM0hwQl7v-nyL2Tn-2frQL_9vLePKT8jLUdQNbi5_YqI3sO1_NIi9JEcfL6sm5GHUgV3vUXUeXzPqC3JztlzMm_m7-sMTcgsnUkQO41Oy133v4RmCmc48Dyp8BQYK7cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty-Adjusted+Recommendation+via+Matrix+Factorization+With+Weighted+Losses&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Alves%2C+Rodrigo&rft.au=Ledent%2C+Antoine&rft.au=Kloft%2C+Marius&rft.date=2024-11-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=35&rft.issue=11&rft.spage=15624&rft_id=info:doi/10.1109%2FTNNLS.2023.3288769&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |