Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses

In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, w...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 11; pp. 15624 - 15637
Main Authors Alves, Rodrigo, Ledent, Antoine, Kloft, Marius
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted.
AbstractList In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted.In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted.
In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted.
Author Alves, Rodrigo
Kloft, Marius
Ledent, Antoine
Author_xml – sequence: 1
  givenname: Rodrigo
  orcidid: 0000-0001-7458-5281
  surname: Alves
  fullname: Alves, Rodrigo
  email: rodrigo.alves@fit.cvut.cz
  organization: Department of Applied Mathematics, Czech Technical University in Prague (CTU), Prague, Czech Republic Prague
– sequence: 2
  givenname: Antoine
  orcidid: 0000-0001-8440-2784
  surname: Ledent
  fullname: Ledent, Antoine
  organization: School of Computing and Information Sciences (SCIS), Singapore Management University (SMU), Bras Basah, Singapore
– sequence: 3
  givenname: Marius
  orcidid: 0000-0001-6829-3725
  surname: Kloft
  fullname: Kloft, Marius
  organization: Department of Computer Science, University of Kaiserslautern-Landau (RPTU), Kaiserslautern, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37432811$$D View this record in MEDLINE/PubMed
BookMark eNp9kF1PwjAUhhuDEUT-gDFml94M15Z17SUhoiaIUSF4t3TdQUrYhm0x4q-3fEiMFzZpzkn6Pu3pc4pqZVUCQuc4amMcievRcDh4aZOI0DYlnCdMHKEGwYyEhHJeO_TJax21rJ1HfrEoZh1xguo06XgI4wZ6GpcKjJO6dOuwm89X1kEePIOqigLKXDpdlcGHlsGDdEZ_Bn2pXGX01-5got0smIB-m22oQWUt2DN0PJULC619baJx_2bUuwsHj7f3ve4gVJR0XBjnOI6BAQgho8wPpFQshZSCkYyILKGSS0mJ8HUa-005VVnWyfKM44RNKW2iq929S1O9r8C6tNBWwWIhS6hWNiWcMiJYhLmPXu6jq6yAPF0aXUizTn80-ADZBZTxfzAwPURwlG50p1vd6UZ3utftIf4HUtptvTgj9eJ_9GKHagD49RZOEi4w_QZXMo43
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3342138
crossref_primary_10_1109_TSMC_2024_3512879
Cites_doi 10.1109/TNNLS.2022.3215633
10.1145/3437963.3441800
10.1609/aaai.v35i4.16473
10.1007/978-3-642-20212-4
10.1109/MC.2009.263
10.1145/642611.642713
10.1109/TII.2014.2308433
10.1109/TNNLS.2018.2890117
10.1007/978-3-319-16354-3_35
10.1109/ACCESS.2019.2928130
10.1109/TNNLS.2021.3071392
10.1109/tnnls.2022.3204775
10.1109/TNNLS.2021.3106155
10.1016/j.dss.2019.01.001
10.1007/978-3-642-34630-9_4
10.1007/s10208-011-9099-z
10.18653/v1/p191248
10.1007/978-3-319-29659-3
10.1007/978-981-19-8934-6_2
10.1007/978-3-319-49001-4_1
10.1145/1111449.1111477
10.1137/19M1290000
10.1109/TNNLS.2020.2990990
10.5555/2999792.2999869
10.1137/130919210
10.1007/s10462-012-9364-9
10.1007/978-1-4899-7637-6_18
10.1109/JPROC.2009.2035722
10.1007/978-3-319-26404-2_4
10.1145/3447780
10.1109/TNNLS.2020.3041360
10.1007/s10107-012-0629-5
10.1017/9781108231596
10.1007/978-981-19-8934-6_4
10.1016/j.ins.2022.03.068
10.1145/1553374.1553434
10.1145/3357384.3357992
10.1016/j.knosys.2014.12.011
10.1007/s11042-012-1119-8
10.1109/TIT.2010.2044061
10.1109/TNNLS.2017.2766160
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3288769
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 15637
ExternalDocumentID 37432811
10_1109_TNNLS_2023_3288769
10177891
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Recombee
– fundername: German Federal Ministry of Science and Education (BMBF)
  grantid: 03; B0770E; 01; S21010C
  funderid: 10.13039/501100002347
– fundername: Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 Grant
– fundername: Carl-Zeiss Foundation, the German Research Foundation (DFG)
  grantid: KL 2698/2-1; KL 2698/5-1; KL 2698/6-1; KL 2698/7-1
  funderid: 10.13039/501100001659
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c324t-5d155e6ee99a0b374cc5a9aa962b29b73a8aa3293a8f5a8f383cbb4bdb8176f33
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 06:05:49 EDT 2025
Mon Jul 21 05:59:27 EDT 2025
Tue Jul 01 00:27:52 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Wed Aug 27 03:01:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-5d155e6ee99a0b374cc5a9aa962b29b73a8aa3293a8f5a8f383cbb4bdb8176f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6829-3725
0000-0001-7458-5281
0000-0001-8440-2784
PMID 37432811
PQID 2836296018
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_37432811
ieee_primary_10177891
crossref_primary_10_1109_TNNLS_2023_3288769
proquest_miscellaneous_2836296018
crossref_citationtrail_10_1109_TNNLS_2023_3288769
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref59
Mazumder (ref2) 2010; 11
ref14
ref53
ref52
ref11
ref10
Foygel (ref15) 2011
Zhang (ref35)
Zhang (ref54); 80
Wang (ref18)
ref51
Ledent (ref17) 2021; 34
ref50
ref46
ref48
ref47
ref42
Keshavan (ref19) 2009
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
Recht (ref58) 2011; 12
ref6
ref5
ref40
ref31
Wang (ref34) 2011; 24
ref33
Zhang (ref37) 2020
ref32
Shamir (ref61) 2014; 15
Srebro (ref16) 2010
Shamir (ref21); 19
ref1
ref39
Lu (ref30); 29
Chiang (ref20) 2018; 19
Zhang (ref36) 2019
Wu (ref38)
Foygel (ref22) 2012; 25
ref24
ref23
ref26
ref25
ref63
Liu (ref41) 2023
Kendall (ref45); 30
ref28
ref27
Meir (ref60) 2003; 4
ref29
ref62
Hastie (ref55) 2015; 16
References_xml – ident: ref43
  doi: 10.1109/TNNLS.2022.3215633
– volume: 19
  start-page: 1
  issue: 76
  year: 2018
  ident: ref20
  article-title: Using side information to reliably learn low-rank matrices from missing and corrupted observations
  publication-title: J. Mach. Learn. Res.
– ident: ref50
  doi: 10.1145/3437963.3441800
– ident: ref44
  doi: 10.1609/aaai.v35i4.16473
– ident: ref59
  doi: 10.1007/978-3-642-20212-4
– ident: ref1
  doi: 10.1109/MC.2009.263
– ident: ref47
  doi: 10.1145/642611.642713
– ident: ref4
  doi: 10.1109/TII.2014.2308433
– ident: ref25
  doi: 10.1109/TNNLS.2018.2890117
– ident: ref27
  doi: 10.1007/978-3-319-16354-3_35
– ident: ref7
  doi: 10.1109/ACCESS.2019.2928130
– start-page: 952
  volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: ref19
  article-title: Matrix completion from noisy entries
– ident: ref31
  doi: 10.1109/TNNLS.2021.3071392
– ident: ref32
  doi: 10.1109/tnnls.2022.3204775
– ident: ref3
  doi: 10.1109/TNNLS.2021.3106155
– ident: ref11
  doi: 10.1016/j.dss.2019.01.001
– ident: ref14
  doi: 10.1007/978-3-642-34630-9_4
– ident: ref57
  doi: 10.1007/s10208-011-9099-z
– ident: ref63
  doi: 10.18653/v1/p191248
– ident: ref26
  doi: 10.1007/978-3-319-29659-3
– ident: ref28
  doi: 10.1007/978-981-19-8934-6_2
– year: 2019
  ident: ref36
  article-title: Community detection and matrix completion with two-sided graph side-information
  publication-title: arXiv:1912.04099
– volume: 11
  start-page: 2287
  year: 2010
  ident: ref2
  article-title: Spectral regularization algorithms for learning large incomplete matrices
  publication-title: J. Mach. Learn. Res.
– ident: ref10
  doi: 10.1007/978-3-319-49001-4_1
– volume: 16
  start-page: 3367
  year: 2015
  ident: ref55
  article-title: Matrix completion and low-rank SVD via fast alternating least squares
  publication-title: J. Mach. Learn. Res.
– ident: ref6
  doi: 10.1145/1111449.1111477
– volume: 25
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: ref22
  article-title: Matrix reconstruction with the local max norm
– volume: 24
  volume-title: Advances in Neural Information Processing Systems
  year: 2011
  ident: ref34
  article-title: A denoising view of matrix completion
– ident: ref23
  doi: 10.1137/19M1290000
– ident: ref39
  doi: 10.1109/TNNLS.2020.2990990
– start-page: 2056
  volume-title: Advances in Neural Information Processing Systems
  year: 2010
  ident: ref16
  article-title: Collaborative filtering in a non-uniform world: Learning with the weighted trace norm
– ident: ref53
  doi: 10.5555/2999792.2999869
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref35
  article-title: Inductive matrix completion based on graph neural networks
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref45
  article-title: What uncertainties do we need in Bayesian deep learning for computer vision?
– year: 2023
  ident: ref41
  article-title: A constraints fusion-induced symmetric nonnegative matrix factorization approach for community detection
  publication-title: arXiv:2302.12114
– ident: ref42
  doi: 10.1137/130919210
– ident: ref46
  doi: 10.1007/s10462-012-9364-9
– ident: ref48
  doi: 10.1007/978-1-4899-7637-6_18
– volume: 12
  start-page: 3413
  year: 2011
  ident: ref58
  article-title: A simpler approach to matrix completion
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 25540
  volume-title: Advances in Neural Information Processing Systems
  year: 2021
  ident: ref17
  article-title: Fine-grained generalization analysis of inductive matrix completion
– ident: ref24
  doi: 10.1109/JPROC.2009.2035722
– ident: ref12
  doi: 10.1007/978-3-319-26404-2_4
– start-page: 10927
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref18
  article-title: Matrix completion with model-free weighting
– ident: ref8
  doi: 10.1145/3447780
– ident: ref40
  doi: 10.1109/TNNLS.2020.3041360
– volume: 29
  start-page: 4071
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: A sparse interactive model for matrix completion with side information
– start-page: 2133
  volume-title: Advances in Neural Information Processing Systems
  year: 2011
  ident: ref15
  article-title: Learning with the weighted trace-norm under arbitrary sampling distributions
– volume: 4
  start-page: 839
  year: 2003
  ident: ref60
  article-title: Generalization error bounds for Bayesian mixture algorithms
  publication-title: J. Mach. Learn. Res.
– ident: ref52
  doi: 10.1007/s10107-012-0629-5
– ident: ref56
  doi: 10.1017/9781108231596
– ident: ref29
  doi: 10.1007/978-981-19-8934-6_4
– start-page: 1
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref38
  article-title: Towards open-world recommendation: An inductive model-based collaborative filtering approach
– volume: 15
  start-page: 3401
  issue: 98
  year: 2014
  ident: ref61
  article-title: Matrix completion with the trace norm: Learning, bounding, and transducing
  publication-title: J. Mach. Learn. Res.
– volume: 80
  start-page: 5756
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  ident: ref54
  article-title: Fast and sample efficient inductive matrix completion via multi-phase Procrustes flow
– year: 2020
  ident: ref37
  article-title: MC2G: An efficient algorithm for matrix completion with social and item similarity graphs
  publication-title: arXiv:2006.04373
– ident: ref49
  doi: 10.1016/j.ins.2022.03.068
– ident: ref51
  doi: 10.1145/1553374.1553434
– ident: ref62
  doi: 10.1145/3357384.3357992
– ident: ref9
  doi: 10.1016/j.knosys.2014.12.011
– ident: ref13
  doi: 10.1007/s11042-012-1119-8
– volume: 19
  start-page: 661
  volume-title: Proc. 24th Annu. Conf. Learn. Theory
  ident: ref21
  article-title: Collaborative filtering with the trace norm: Learning, bounding, and transducing
– ident: ref5
  doi: 10.1109/TIT.2010.2044061
– ident: ref33
  doi: 10.1109/TNNLS.2017.2766160
SSID ssj0000605649
Score 2.475844
Snippet In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15624
SubjectTerms Adaptation models
Behavioral sciences
Complexity theory
Learning systems
Matrix completion
Noise measurement
Predictive models
recommender systems (RSs)
Uncertainty
uncertainty estimation
uncertainty-aware learning
Title Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses
URI https://ieeexplore.ieee.org/document/10177891
https://www.ncbi.nlm.nih.gov/pubmed/37432811
https://www.proquest.com/docview/2836296018
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJy5Ay6NLS-VKvVUOiRM78REhVqiClVBZsbfIj4mAtrsVJIjy6xnbyaogUfUQJQfbSTxj-ZsZfzOEfHHcQmOMYrrSihXQSGa00ywrGyEcAI9E2rOJPJkW32Zi1pPVAxcGAMLhM0j8Y4jlu4XtvKvswKtPWXmu-hu03CJZa-lQSRGYywB3eSY543k5G0gyqTq4mExOvye-VniSc1xY0qcLzXH75FWWPduTQpGV1_Fm2HfGG2QyfHE8bvIj6VqT2McXyRz_-5c2yXqPQOlhVJm3ZAXm78jGUN2B9ot9i5xP8RbOC7R_2KG76bxjlHpz9ReOGUsx0ftrTc98lv8HOg6Ve3paJ728bq_oZfC7Yq_ThY8tb5Pp-Pji6IT1BRiYRZzVMuEQbYAEUEqnBmfLWqGV1kpyw5UpcxSwzhEw6KoReKG1a40pjDNVVsomz3fI6nwxh_eEgi61aFJhy8oVEoSxlWgEgh1EHE5zPSLZIILa9tnJfZGMn3WwUlJVBwnWXoJ1L8ER-brs8zvm5vhn620__X-1jDM_Ip8HUde4tHy8RM9h0d3ViLwkRwsvq0ZkN-rAsvegOnuvjPqBrOHLi8ha_EhW29sO9hG-tOZTUNsnoULqfw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQe4AL5VFgeRqJG3KaOLETHyvEaoHdSIhddW-RHxNRaHcRJIj213dsJytAKuIQJQfbcjxjzTdjfzOEvHLcQmuMYrrSihXQSma00ywrWyEcAI9E2kUtZ6vi_VqsB7J64MIAQLh8Bon_DGf5bmt7Hyo78upTVp6rvo-GX2SRrrULqaQIzWUAvDyTnPG8XI80mVQdLet6_inx1cKTnOPWkj5haI4GlFdZ9odVCmVWrkecwfJMD0g9zjleOPma9J1J7OVf6Rz_-6fukNsDBqXHUWnukhuwuUcOxvoOdNju98nHFb7CjYHugh27L70PjVLvsJ7jmLEYE_15qunC5_n_Raehds9A7KQnp91nehIir9hrvvWny4dkNX27fDNjQwkGZhFpdUw4xBsgAZTSqcHVslZopbWS3HBlyhxFrHOEDLpqBT7o71pjCuNMlZWyzfMHZG-z3cAjQkGXWrSpsGXlCgnC2Eq0AuEOYg6nuZ6QbBRBY4f85L5MxlkT_JRUNUGCjZdgM0hwQl7v-nyL2Tn-2frQL_9vLePKT8jLUdQNbi5_YqI3sO1_NIi9JEcfL6sm5GHUgV3vUXUeXzPqC3JztlzMm_m7-sMTcgsnUkQO41Oy133v4RmCmc48Dyp8BQYK7cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty-Adjusted+Recommendation+via+Matrix+Factorization+With+Weighted+Losses&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Alves%2C+Rodrigo&rft.au=Ledent%2C+Antoine&rft.au=Kloft%2C+Marius&rft.date=2024-11-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=35&rft.issue=11&rft.spage=15624&rft_id=info:doi/10.1109%2FTNNLS.2023.3288769&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon