Numerical study of cooling performance and flow characteristics of film hole-broken rib composite structure with squealer tip

The gas turbine blade tip might face substantial heat loads because of leakage flow between the blades and the casing. For blade tip cooling, a composite cooling structure with film holes and broken ribs is first used on GE-E3 blade in this work. The flow and cooling characteristics of the innovativ...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of thermal sciences Vol. 204; p. 109211
Main Authors Xiang, Zhen, Han, Shaohua, Qi, Shizhen, Jia, Yibin, Guo, Tairan, An, Na, Liu, Qilong, Huo, Tianyi, Xing, Jiangjiang, Zhang, Runsheng, Zhou, Leping, Li, Li, Zhang, Hui, Du, Xiaoze
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.10.2024
Subjects
Online AccessGet full text
ISSN1290-0729
1778-4166
DOI10.1016/j.ijthermalsci.2024.109211

Cover

Loading…
Abstract The gas turbine blade tip might face substantial heat loads because of leakage flow between the blades and the casing. For blade tip cooling, a composite cooling structure with film holes and broken ribs is first used on GE-E3 blade in this work. The flow and cooling characteristics of the innovative structure are studied by numerical simulation under various blowing ratio (BR) conditions. Meanwhile, the impact of modifying both the rib angle and the rib height on the adiabatic film cooling effectiveness (AFCE) at the tip of the squealer is analyzed. According to the results, adding rib structures to the squealer tip can effectively regulate the paths of cavity vortices and kidney-shaped vortex pairs (KVP) at the tip. As a result, the averaged AFCE at the blade tip is improved. The notch pressure-side broken rib structure has good aerothermal performance, and the highest AFCE at BRs of 0.50, 1.00, and 1.50 basically occur under the “R60-100 %” condition (R60 refers to the rib structure of 60°, and 100 % is the ratio of rib height to notch depth), and the corresponding AFCE are 27.71 %, 26.00 %, and 32.47 % higher than those of the no-rib case, respectively. The corresponding AFCE increased by 27.71 %, 26.52 %, and 32.47 %, respectively, compared to the no-rib condition. The highest AFCE at a BR of 1.50 occurs at “R75-70 %“, which is a 38.20 % increase in AFCE compared to the no rib case. The improvement in AFCE is due to the difference in the flow of the cooling jets, which are subject to cavity vortices at different BRs. The analysis shows that the addition of ribs disrupts the formation of KVPs and weakens the influence of the cavity vortex, thus reducing the low AFCE region at the lower end of the tip groove and increasing the AFCE. However, due to the blocking effect of the ribs, the pressure loss at the blade tip is elevated. The proposed blade tip cooling structure is expected to provide new ideas for the next generation of advanced gas turbine cooling designs. •A composite tip cooling structure with film holes and broken ribs is proposed.•The flow and cooling characteristics under various blowing ratio conditions are studied.•Impact of modifying rib structure dimensions on effectiveness at squealer tip is analyzed.•Squealer tip ribs can regulate cavity vortices and kidney-shaped vortex pairs, thus improving cooling effectiveness.•The proposed tip cooling structure provides new ideas for next generation blade cooling designs.
AbstractList The gas turbine blade tip might face substantial heat loads because of leakage flow between the blades and the casing. For blade tip cooling, a composite cooling structure with film holes and broken ribs is first used on GE-E3 blade in this work. The flow and cooling characteristics of the innovative structure are studied by numerical simulation under various blowing ratio (BR) conditions. Meanwhile, the impact of modifying both the rib angle and the rib height on the adiabatic film cooling effectiveness (AFCE) at the tip of the squealer is analyzed. According to the results, adding rib structures to the squealer tip can effectively regulate the paths of cavity vortices and kidney-shaped vortex pairs (KVP) at the tip. As a result, the averaged AFCE at the blade tip is improved. The notch pressure-side broken rib structure has good aerothermal performance, and the highest AFCE at BRs of 0.50, 1.00, and 1.50 basically occur under the “R60-100 %” condition (R60 refers to the rib structure of 60°, and 100 % is the ratio of rib height to notch depth), and the corresponding AFCE are 27.71 %, 26.00 %, and 32.47 % higher than those of the no-rib case, respectively. The corresponding AFCE increased by 27.71 %, 26.52 %, and 32.47 %, respectively, compared to the no-rib condition. The highest AFCE at a BR of 1.50 occurs at “R75-70 %“, which is a 38.20 % increase in AFCE compared to the no rib case. The improvement in AFCE is due to the difference in the flow of the cooling jets, which are subject to cavity vortices at different BRs. The analysis shows that the addition of ribs disrupts the formation of KVPs and weakens the influence of the cavity vortex, thus reducing the low AFCE region at the lower end of the tip groove and increasing the AFCE. However, due to the blocking effect of the ribs, the pressure loss at the blade tip is elevated. The proposed blade tip cooling structure is expected to provide new ideas for the next generation of advanced gas turbine cooling designs. •A composite tip cooling structure with film holes and broken ribs is proposed.•The flow and cooling characteristics under various blowing ratio conditions are studied.•Impact of modifying rib structure dimensions on effectiveness at squealer tip is analyzed.•Squealer tip ribs can regulate cavity vortices and kidney-shaped vortex pairs, thus improving cooling effectiveness.•The proposed tip cooling structure provides new ideas for next generation blade cooling designs.
ArticleNumber 109211
Author Zhang, Hui
Zhang, Runsheng
Li, Li
Jia, Yibin
Xiang, Zhen
Xing, Jiangjiang
Du, Xiaoze
Han, Shaohua
An, Na
Liu, Qilong
Zhou, Leping
Guo, Tairan
Qi, Shizhen
Huo, Tianyi
Author_xml – sequence: 1
  givenname: Zhen
  surname: Xiang
  fullname: Xiang, Zhen
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 2
  givenname: Shaohua
  surname: Han
  fullname: Han, Shaohua
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 3
  givenname: Shizhen
  surname: Qi
  fullname: Qi, Shizhen
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 4
  givenname: Yibin
  surname: Jia
  fullname: Jia, Yibin
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 5
  givenname: Tairan
  surname: Guo
  fullname: Guo, Tairan
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 6
  givenname: Na
  surname: An
  fullname: An, Na
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 7
  givenname: Qilong
  surname: Liu
  fullname: Liu, Qilong
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 8
  givenname: Tianyi
  surname: Huo
  fullname: Huo, Tianyi
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 9
  givenname: Jiangjiang
  surname: Xing
  fullname: Xing, Jiangjiang
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 10
  givenname: Runsheng
  surname: Zhang
  fullname: Zhang, Runsheng
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 11
  givenname: Leping
  orcidid: 0000-0001-9582-4237
  surname: Zhou
  fullname: Zhou, Leping
  email: lpzhou@ncepu.edu.cn
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 12
  givenname: Li
  surname: Li
  fullname: Li, Li
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 13
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
– sequence: 14
  givenname: Xiaoze
  surname: Du
  fullname: Du, Xiaoze
  organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
BookMark eNqNkE1PwzAMhiMEEmzwHyLuHUnatSsnEN_SBBc4R6nnMI-2GUnKxIH_TqZxQJw42ZL9PrKfEdvvXY-MnUoxkUKWZ6sJreISfWfaADRRQhVpUCsp99iRrKpZVsiy3E-9qkUmKlUfslEIKyFEVYv6iH09Dh16AtPyEIfFJ3eWg3Mt9a98jd66hO4BuekX3LZuw2FpvIGYMiEShO2-pbbjS9di1nj3hj331CRIt3aBIiauHyAOHvmG4pKH9wFNi55HWh-zA5sux5OfOmYvtzfPV_fZ_Onu4epynkGuipgVs8qWQoGFspk1UqWaN5B-hQKnZVGUUEMF2JSNBDmdgs1zIws5w0bZXNQyH7PzHRe8C8Gj1WtPnfGfWgq9FalX-rdIvRWpdyJT-OJPGCiaSK6P3lD7P8T1DoHpyQ9Cr9MGJq8L8ghRLxz9B_MNm8Ke7w
CitedBy_id crossref_primary_10_1063_5_0238759
crossref_primary_10_1016_j_ijthermalsci_2024_109653
Cites_doi 10.2514/1.T4541
10.1016/j.jppr.2015.02.003
10.1115/1.1622712
10.1115/GT2006-90456
10.1016/j.ijthermalsci.2023.108636
10.1016/j.ijheatmasstransfer.2018.10.130
10.1016/j.applthermaleng.2018.10.093
10.2514/8.2010
10.1016/j.ijthermalsci.2023.108399
10.1016/j.ijthermalsci.2022.107544
10.1016/j.applthermaleng.2022.119623
10.1115/1.1400114
10.1063/5.0238759
10.1016/j.ijheatmasstransfer.2017.08.090
10.1115/1.3262266
10.1016/j.ijheatmasstransfer.2019.05.064
10.2514/3.12149
10.1115/1.1626684
10.1080/10407782.2020.1814591
10.1016/j.ijheatmasstransfer.2022.122999
10.1016/j.ijheatmasstransfer.2019.118561
10.1115/1.2929188
10.1115/1.4049920
10.1016/j.ijthermalsci.2022.108114
10.1016/j.ast.2023.108590
ContentType Journal Article
Copyright 2024 Elsevier Masson SAS
Copyright_xml – notice: 2024 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ijthermalsci.2024.109211
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1778-4166
ExternalDocumentID 10_1016_j_ijthermalsci_2024_109211
S1290072924003338
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c324t-487f602cfc6b8b12fc63bc024c4e56446c9c7ceb6b1c155cf33a1418eb2f30913
IEDL.DBID .~1
ISSN 1290-0729
IngestDate Thu Apr 24 23:11:57 EDT 2025
Tue Jul 01 02:46:41 EDT 2025
Sat Jul 20 16:36:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Rib angle
Numerical simulation
Film holes
Vortex structure
Rib height
Squealer tip
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-487f602cfc6b8b12fc63bc024c4e56446c9c7ceb6b1c155cf33a1418eb2f30913
ORCID 0000-0001-9582-4237
ParticipantIDs crossref_primary_10_1016_j_ijthermalsci_2024_109211
crossref_citationtrail_10_1016_j_ijthermalsci_2024_109211
elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2024_109211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle International journal of thermal sciences
PublicationYear 2024
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Zhou, Chen, Li, Wang (bib19) 2019; 130
(bib32) 2020
Denton (bib1) 1993; 78897
Sakaoglu, Kahveci (bib12) 2019; 143
Schabowski, Hodson (bib17) 2013; 136
Zhou, Luo, Du, Yan, Wang (bib27) 2024; 36
Jung, Kim, Joo, Lee (bib21) 2021; 143
Li (bib6) 2023; 186
Park, Lee, Lee, Chung, Kwak (bib23) 2016; 30
Li, Zhang, Jia, Liu, Feng (bib8) 2022; 194
Emmons (bib33) 1951; 18
Du, Li, Wang (bib26) 2022; 43
Liu, Li, Lin, You, Tao (bib5) 2022; 177
Zhao, Luo, Qiu, Wang, Wang, Sundén (bib24) 2021; 79
Mayle, Metzger (bib2) 1982
Yan, Huang, He (bib18) 2017; 115
Ameri (bib15) 2001; 123
Yaras, Zhu, Sjolander (bib13) 1989; 111
Menter (bib31) 1994; 32
Wang, Sundén, Zeng, Wang (bib4) 2015; 4
Yang, Tan, Shan (bib28) 2021; 36
Huang, Li, Su, Yuan (bib7) 2024; 195
Kwak, Han (bib30) 2003; 125
Heyes, Hodson, Dailey (bib14) 1992; 114
Zhang, Xia, Yang, Xi, Gao, Zhu (bib11) 2023; 142
Guo, Wang, Tao, Song, Li (bib9) 2023; 219
Zhao, Luo, Kan, Qiu, Zhou (bib25) 2019; vol. 58646
Collopy, Ligrani, Xu, Fox (bib10) 2023; 192
Kwak, Ahn, Han, Lee, Bunker, Boyle, Gaugler (bib3) 2003; 125
Kwak, Han (bib34) 2002; 36088
Harvey, Newman, Haselbach, Willer (bib16) 2006
(bib29) 1982
Du, Li, Li, Sunden (bib22) 2019; 147
Jiang, Li, Li (bib20) 2019; 139
Li (10.1016/j.ijthermalsci.2024.109211_bib6) 2023; 186
Liu (10.1016/j.ijthermalsci.2024.109211_bib5) 2022; 177
Kwak (10.1016/j.ijthermalsci.2024.109211_bib30) 2003; 125
Zhang (10.1016/j.ijthermalsci.2024.109211_bib11) 2023; 142
Jung (10.1016/j.ijthermalsci.2024.109211_bib21) 2021; 143
Heyes (10.1016/j.ijthermalsci.2024.109211_bib14) 1992; 114
Kwak (10.1016/j.ijthermalsci.2024.109211_bib34) 2002; 36088
Mayle (10.1016/j.ijthermalsci.2024.109211_bib2) 1982
Menter (10.1016/j.ijthermalsci.2024.109211_bib31) 1994; 32
Yaras (10.1016/j.ijthermalsci.2024.109211_bib13) 1989; 111
Du (10.1016/j.ijthermalsci.2024.109211_bib22) 2019; 147
Zhao (10.1016/j.ijthermalsci.2024.109211_bib24) 2021; 79
Zhou (10.1016/j.ijthermalsci.2024.109211_bib27) 2024; 36
Kwak (10.1016/j.ijthermalsci.2024.109211_bib3) 2003; 125
Yan (10.1016/j.ijthermalsci.2024.109211_bib18) 2017; 115
Li (10.1016/j.ijthermalsci.2024.109211_bib8) 2022; 194
Collopy (10.1016/j.ijthermalsci.2024.109211_bib10) 2023; 192
Zhou (10.1016/j.ijthermalsci.2024.109211_bib19) 2019; 130
Denton (10.1016/j.ijthermalsci.2024.109211_bib1) 1993; 78897
Zhao (10.1016/j.ijthermalsci.2024.109211_bib25) 2019; vol. 58646
Jiang (10.1016/j.ijthermalsci.2024.109211_bib20) 2019; 139
Du (10.1016/j.ijthermalsci.2024.109211_bib26) 2022; 43
Sakaoglu (10.1016/j.ijthermalsci.2024.109211_bib12) 2019; 143
Yang (10.1016/j.ijthermalsci.2024.109211_bib28) 2021; 36
Park (10.1016/j.ijthermalsci.2024.109211_bib23) 2016; 30
Emmons (10.1016/j.ijthermalsci.2024.109211_bib33) 1951; 18
Huang (10.1016/j.ijthermalsci.2024.109211_bib7) 2024; 195
Schabowski (10.1016/j.ijthermalsci.2024.109211_bib17) 2013; 136
(10.1016/j.ijthermalsci.2024.109211_bib29) 1982
Ameri (10.1016/j.ijthermalsci.2024.109211_bib15) 2001; 123
Wang (10.1016/j.ijthermalsci.2024.109211_bib4) 2015; 4
Guo (10.1016/j.ijthermalsci.2024.109211_bib9) 2023; 219
Harvey (10.1016/j.ijthermalsci.2024.109211_bib16) 2006
References_xml – volume: 139
  start-page: 860
  year: 2019
  end-page: 872
  ident: bib20
  article-title: Effects of the squealer winglet structures on the heat transfer characteristics and aerodynamic performance of turbine blade tip
  publication-title: Int. J. Heat Mass Tran.
– volume: 4
  start-page: 9
  year: 2015
  end-page: 22
  ident: bib4
  article-title: Film cooling effects on the tip flow characteristics of a gas turbine blade
  publication-title: Propuls. Power Res.
– volume: 136
  year: 2013
  ident: bib17
  article-title: The reduction of over tip leakage loss in unshrouded axial turbines using winglets and squealers
  publication-title: ASME J. Turbomach.
– volume: 36088
  start-page: 1073
  year: 2002
  end-page: 1082
  ident: bib34
  article-title: Heat transfer coefficient and film-cooling effectiveness on the squealer tip of a gas turbine blade
  publication-title: ASME
– volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: bib31
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
– volume: 142
  year: 2023
  ident: bib11
  article-title: Investigation of aerothermal performance of blade tip with conical holes in transonic flow
  publication-title: Aero. Sci. Technol.
– volume: 194
  year: 2022
  ident: bib8
  article-title: Experimental study about the tip phantom cooling with different cooling-hole configurations on the blade-surface
  publication-title: Int. J. Heat Mass Tran.
– volume: 130
  start-page: 585
  year: 2019
  end-page: 602
  ident: bib19
  article-title: Thermal performance of blade tip and casing coolant injection on a turbine blade with cavity and winglet-cavity tip
  publication-title: Int. J. Heat Mass Tran.
– volume: 18
  start-page: 490
  year: 1951
  end-page: 498
  ident: bib33
  article-title: The laminar-turbulent transition in a boundary layer-Part I
  publication-title: J. Aeronaut. Sci.
– volume: 219
  year: 2023
  ident: bib9
  article-title: Effects of the inclination angle of oval film holes on the aero-thermal performance of a squealer blade tip
  publication-title: Appl. Therm. Eng.
– volume: 78897
  year: 1993
  ident: bib1
  article-title: Loss mechanisms in turbomachines
  publication-title: ASME J. Turbomach.
– volume: 125
  start-page: 648
  year: 2003
  end-page: 657
  ident: bib30
  article-title: Heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade
  publication-title: ASME J. Turbomach.
– volume: 111
  start-page: 276
  year: 1989
  end-page: 283
  ident: bib13
  article-title: Flow field in the tip gap of a planar cascade of turbine blades
  publication-title: ASME J. Turbomach.
– volume: 43
  year: 2022
  ident: bib26
  article-title: Numerical investigations of multi-cavity tip effects on turbine blade tip flow and heat transfer characteristics
  publication-title: J. Propuls. Technol.
– year: 2020
  ident: bib32
  article-title: ANSYS CFX-solver modeling guide
– volume: 30
  start-page: 120
  year: 2016
  end-page: 129
  ident: bib23
  article-title: Heat transfer and secondary flow with a multicavity gas turbine blade tip
  publication-title: ASME J. Thermophys. Heat Tr.
– volume: vol. 58646
  year: 2019
  ident: bib25
  publication-title: Numerical Investigation of Rotation Effects on the Flow and Heat Transfer on the Turbine Blade Tip Underside with Bleed Hole at Different Locations
– volume: 123
  start-page: 704
  year: 2001
  end-page: 708
  ident: bib15
  article-title: Heat transfer and flow on the blade tip of a gas turbine equipped with a mean camberline strip
  publication-title: ASME J. Turbomach
– volume: 79
  start-page: 40
  year: 2021
  end-page: 67
  ident: bib24
  article-title: Vortical structures and heat transfer augmentation of a cooling channel in a gas turbine blade with various arrangements of tip bleed holes
  publication-title: Numer. Heat Tr. A-Appl.
– volume: 143
  year: 2019
  ident: bib12
  article-title: Effect of cavity depth on thermal performance of a cooled blade tip under rotation
  publication-title: Int. J. Heat Mass Tran.
– start-page: 585
  year: 2006
  end-page: 596
  ident: bib16
  article-title: An investigation into a novel turbine rotor winglet: Part 1—design and model rig test results
  publication-title: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain
– volume: 147
  start-page: 347
  year: 2019
  end-page: 360
  ident: bib22
  article-title: Influences of a multi-cavity tip on the blade tip and the over tip casing aerothermal performance in a high pressure turbine cascade
  publication-title: Appl. Therm. Eng.
– year: 1982
  ident: bib29
  publication-title: Energy Efficient Engine High Pressure Turbine Detailed Design Report
– volume: 114
  start-page: 643
  year: 1992
  end-page: 651
  ident: bib14
  article-title: The effect of blade tip geometry on the tip leakage flow in axial turbine cascades
  publication-title: ASME J. Turbomach.
– volume: 143
  year: 2021
  ident: bib21
  article-title: Experimental study on aerodynamic loss and heat transfer for various squealer tips
  publication-title: ASME J. Turbomach.
– volume: 36
  year: 2024
  ident: bib27
  article-title: Numerical study of a novel cooling protection scheme with rail crown holes for the squealer tip in a turbine blade
  publication-title: Phys. Fluids
– volume: 186
  year: 2023
  ident: bib6
  article-title: Aerothermal performance analysis and knowledge discovery of film holes on the squealer tip of a gas turbine blade
  publication-title: Int. J. Therm. Sci.
– start-page: 87
  year: 1982
  end-page: 92
  ident: bib2
  article-title: Heat transfer at the tip of an unshrouded turbine blade
  publication-title: International Heat Transfer Conference Digital Library
– volume: 177
  year: 2022
  ident: bib5
  article-title: An experimental and numerical investigation of film cooling effectiveness on a gas turbine blade tip region
  publication-title: Int. J. Therm. Sci.
– volume: 192
  year: 2023
  ident: bib10
  article-title: Effects of pressure side film cooling hole placement and condition on surface heat transfer coefficients along a transonic turbine blade tip
  publication-title: Int. J. Therm. Sci.
– volume: 125
  start-page: 778
  year: 2003
  end-page: 787
  ident: bib3
  article-title: Heat transfer coefficients on the squealer tip and near-tip regions of a gas turbine blade with single or double squealer
  publication-title: ASME J. Turbomach.
– volume: 115
  start-page: 955
  year: 2017
  end-page: 978
  ident: bib18
  article-title: Investigations into heat transfer and film cooling effect on a squealer-winglet blade tip
  publication-title: Int. J. Heat Mass Tran.
– volume: 36
  start-page: 1462
  year: 2021
  end-page: 1471
  ident: bib28
  article-title: Effects of rib structure on flow and heat transfer characteristics of film cooling rotor blade with squealer tip
  publication-title: J. Aero. Power
– volume: 195
  year: 2024
  ident: bib7
  article-title: Influence of film hole arrangement on cooling and aerodynamic performance of blade tip with squealer structure
  publication-title: Int. J. Therm. Sci.
– volume: 30
  start-page: 120
  year: 2016
  ident: 10.1016/j.ijthermalsci.2024.109211_bib23
  article-title: Heat transfer and secondary flow with a multicavity gas turbine blade tip
  publication-title: ASME J. Thermophys. Heat Tr.
  doi: 10.2514/1.T4541
– volume: 4
  start-page: 9
  year: 2015
  ident: 10.1016/j.ijthermalsci.2024.109211_bib4
  article-title: Film cooling effects on the tip flow characteristics of a gas turbine blade
  publication-title: Propuls. Power Res.
  doi: 10.1016/j.jppr.2015.02.003
– volume: 125
  start-page: 648
  year: 2003
  ident: 10.1016/j.ijthermalsci.2024.109211_bib30
  article-title: Heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.1622712
– start-page: 585
  year: 2006
  ident: 10.1016/j.ijthermalsci.2024.109211_bib16
  article-title: An investigation into a novel turbine rotor winglet: Part 1—design and model rig test results
  publication-title: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain
  doi: 10.1115/GT2006-90456
– volume: 78897
  year: 1993
  ident: 10.1016/j.ijthermalsci.2024.109211_bib1
  article-title: Loss mechanisms in turbomachines
  publication-title: ASME J. Turbomach.
– volume: 195
  year: 2024
  ident: 10.1016/j.ijthermalsci.2024.109211_bib7
  article-title: Influence of film hole arrangement on cooling and aerodynamic performance of blade tip with squealer structure
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2023.108636
– start-page: 87
  year: 1982
  ident: 10.1016/j.ijthermalsci.2024.109211_bib2
  article-title: Heat transfer at the tip of an unshrouded turbine blade
– volume: 43
  year: 2022
  ident: 10.1016/j.ijthermalsci.2024.109211_bib26
  article-title: Numerical investigations of multi-cavity tip effects on turbine blade tip flow and heat transfer characteristics
  publication-title: J. Propuls. Technol.
– volume: 130
  start-page: 585
  year: 2019
  ident: 10.1016/j.ijthermalsci.2024.109211_bib19
  article-title: Thermal performance of blade tip and casing coolant injection on a turbine blade with cavity and winglet-cavity tip
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.10.130
– volume: 147
  start-page: 347
  year: 2019
  ident: 10.1016/j.ijthermalsci.2024.109211_bib22
  article-title: Influences of a multi-cavity tip on the blade tip and the over tip casing aerothermal performance in a high pressure turbine cascade
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.10.093
– volume: 36088
  start-page: 1073
  year: 2002
  ident: 10.1016/j.ijthermalsci.2024.109211_bib34
  article-title: Heat transfer coefficient and film-cooling effectiveness on the squealer tip of a gas turbine blade
  publication-title: ASME
– volume: 18
  start-page: 490
  year: 1951
  ident: 10.1016/j.ijthermalsci.2024.109211_bib33
  article-title: The laminar-turbulent transition in a boundary layer-Part I
  publication-title: J. Aeronaut. Sci.
  doi: 10.2514/8.2010
– volume: 192
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109211_bib10
  article-title: Effects of pressure side film cooling hole placement and condition on surface heat transfer coefficients along a transonic turbine blade tip
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2023.108399
– year: 1982
  ident: 10.1016/j.ijthermalsci.2024.109211_bib29
– volume: 177
  year: 2022
  ident: 10.1016/j.ijthermalsci.2024.109211_bib5
  article-title: An experimental and numerical investigation of film cooling effectiveness on a gas turbine blade tip region
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2022.107544
– volume: 219
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109211_bib9
  article-title: Effects of the inclination angle of oval film holes on the aero-thermal performance of a squealer blade tip
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119623
– volume: 123
  start-page: 704
  year: 2001
  ident: 10.1016/j.ijthermalsci.2024.109211_bib15
  article-title: Heat transfer and flow on the blade tip of a gas turbine equipped with a mean camberline strip
  publication-title: ASME J. Turbomach
  doi: 10.1115/1.1400114
– volume: 36
  year: 2024
  ident: 10.1016/j.ijthermalsci.2024.109211_bib27
  article-title: Numerical study of a novel cooling protection scheme with rail crown holes for the squealer tip in a turbine blade
  publication-title: Phys. Fluids
  doi: 10.1063/5.0238759
– volume: 115
  start-page: 955
  year: 2017
  ident: 10.1016/j.ijthermalsci.2024.109211_bib18
  article-title: Investigations into heat transfer and film cooling effect on a squealer-winglet blade tip
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.08.090
– volume: 111
  start-page: 276
  year: 1989
  ident: 10.1016/j.ijthermalsci.2024.109211_bib13
  article-title: Flow field in the tip gap of a planar cascade of turbine blades
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.3262266
– volume: 139
  start-page: 860
  year: 2019
  ident: 10.1016/j.ijthermalsci.2024.109211_bib20
  article-title: Effects of the squealer winglet structures on the heat transfer characteristics and aerodynamic performance of turbine blade tip
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.05.064
– volume: 32
  start-page: 1598
  year: 1994
  ident: 10.1016/j.ijthermalsci.2024.109211_bib31
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
  doi: 10.2514/3.12149
– volume: 36
  start-page: 1462
  year: 2021
  ident: 10.1016/j.ijthermalsci.2024.109211_bib28
  article-title: Effects of rib structure on flow and heat transfer characteristics of film cooling rotor blade with squealer tip
  publication-title: J. Aero. Power
– volume: 125
  start-page: 778
  year: 2003
  ident: 10.1016/j.ijthermalsci.2024.109211_bib3
  article-title: Heat transfer coefficients on the squealer tip and near-tip regions of a gas turbine blade with single or double squealer
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.1626684
– volume: 79
  start-page: 40
  year: 2021
  ident: 10.1016/j.ijthermalsci.2024.109211_bib24
  article-title: Vortical structures and heat transfer augmentation of a cooling channel in a gas turbine blade with various arrangements of tip bleed holes
  publication-title: Numer. Heat Tr. A-Appl.
  doi: 10.1080/10407782.2020.1814591
– volume: 194
  year: 2022
  ident: 10.1016/j.ijthermalsci.2024.109211_bib8
  article-title: Experimental study about the tip phantom cooling with different cooling-hole configurations on the blade-surface
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2022.122999
– volume: 143
  year: 2019
  ident: 10.1016/j.ijthermalsci.2024.109211_bib12
  article-title: Effect of cavity depth on thermal performance of a cooled blade tip under rotation
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.118561
– volume: 114
  start-page: 643
  year: 1992
  ident: 10.1016/j.ijthermalsci.2024.109211_bib14
  article-title: The effect of blade tip geometry on the tip leakage flow in axial turbine cascades
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.2929188
– volume: 143
  year: 2021
  ident: 10.1016/j.ijthermalsci.2024.109211_bib21
  article-title: Experimental study on aerodynamic loss and heat transfer for various squealer tips
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4049920
– volume: vol. 58646
  year: 2019
  ident: 10.1016/j.ijthermalsci.2024.109211_bib25
– volume: 186
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109211_bib6
  article-title: Aerothermal performance analysis and knowledge discovery of film holes on the squealer tip of a gas turbine blade
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2022.108114
– volume: 136
  year: 2013
  ident: 10.1016/j.ijthermalsci.2024.109211_bib17
  article-title: The reduction of over tip leakage loss in unshrouded axial turbines using winglets and squealers
  publication-title: ASME J. Turbomach.
– volume: 142
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109211_bib11
  article-title: Investigation of aerothermal performance of blade tip with conical holes in transonic flow
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2023.108590
SSID ssj0007909
Score 2.4319813
Snippet The gas turbine blade tip might face substantial heat loads because of leakage flow between the blades and the casing. For blade tip cooling, a composite...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109211
SubjectTerms Film holes
Numerical simulation
Rib angle
Rib height
Squealer tip
Vortex structure
Title Numerical study of cooling performance and flow characteristics of film hole-broken rib composite structure with squealer tip
URI https://dx.doi.org/10.1016/j.ijthermalsci.2024.109211
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68rk2ym9fBQymWqtiLFnoL2c2upLZJqS2e9Lc7k4dtwUPBU0iYgWRn2JnZfPMNITc2drrGOmSuJQUTRntMakcxT8QBt2IJXoT9zs8Drz8UjyN31CDduhcGYZXV3l_u6cVuXT1pV6vZnqVp-wVPUJD3GlGQHCot7GAXPnr57fcK5uGHBcwDhRlK18SjBcYrHWOWNQVDqxRqRUcgu5Jj238HqbXA0zskB1XGSDvlSx2Rhs6Oyf4aj-AJ-Rosyx8vE1rQxdLcUJXjOJ43Olt1BtA4S6iZ5J9UbdI0o7xJJ1OKw3KZnOfvOqPzVFIEnCOqS9OSZ3Y51xRPbukHhBMILXO6SGenZNi7f-32WTVXgSlInxYMahTjWY4yypOBtB24cqng65XQLuRHngqVr7T0pK0g3VCG89gWdgBFuOHII3pGdrI80-eEhr7r68SxuNBgBhUHFg9NHFpxwgPLS3SThPVCRqoiHcfZF5OoRpeNo3UjRGiEqDRCk_Bf3VlJvbGV1l1tr2jDkSKIEVvoX_xT_5Ls4V2J97siO2AdfQ15y0K2Csdskd3Ow1N_8AM1cPIA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ7UelAPxmd8uwevmwILFA4emkbT-uhFm_RG2O2uoVJoao0n_7szBWqbeGjiiQR2EtiZzGP55huAG5s6XWMdcs-SLneN9rnUjuK-GwfCiiVaEfU7P_f8Tt99GHiDGrSrXhiCVZa-v_Dpc29d3mmUu9mYJEnjhU5QiPeaUJACK60N2CR2Kq8Om63uY6e3cMjNcI70oPWcBCru0TnMKxlRojVGXasEy0XHJYIlx7b_jlNLsed-D3bLpJG1ivfah5rODmBniUrwEL57n8W_l5TNGWNZbpjKaSLPG5v8NgewOBsyk-ZfTK0yNdN6k6RjRvNyuZzm7zpj00QywpwTsEuzgmr2c6oZHd6yD4woGF2mbJZMjqB_f_fa7vBytAJXmEHNOJYpxrccZZQvA2k7eBVS4dcrV3uYIvkqVE2lpS9thRmHMkLEtmsHWIcbQVSix1DP8kyfAAubXlMPHUu4GjWh4sASoYlDKx6KwPKH-hTCaiMjVfKO0_iLNKoAZqNoWQkRKSEqlHAKYiE7Kdg31pK6rfQVrdhShGFiDfmzf8pfw1bn9fkpeur2Hs9hm54U8L8LqKOm9CWmMTN5VZrpD3Wy9LE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+of+cooling+performance+and+flow+characteristics+of+film+hole-broken+rib+composite+structure+with+squealer+tip&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Xiang%2C+Zhen&rft.au=Han%2C+Shaohua&rft.au=Qi%2C+Shizhen&rft.au=Jia%2C+Yibin&rft.date=2024-10-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1290-0729&rft.eissn=1778-4166&rft.volume=204&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2024.109211&rft.externalDocID=S1290072924003338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon