Numerical study of cooling performance and flow characteristics of film hole-broken rib composite structure with squealer tip
The gas turbine blade tip might face substantial heat loads because of leakage flow between the blades and the casing. For blade tip cooling, a composite cooling structure with film holes and broken ribs is first used on GE-E3 blade in this work. The flow and cooling characteristics of the innovativ...
Saved in:
Published in | International journal of thermal sciences Vol. 204; p. 109211 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1290-0729 1778-4166 |
DOI | 10.1016/j.ijthermalsci.2024.109211 |
Cover
Loading…
Abstract | The gas turbine blade tip might face substantial heat loads because of leakage flow between the blades and the casing. For blade tip cooling, a composite cooling structure with film holes and broken ribs is first used on GE-E3 blade in this work. The flow and cooling characteristics of the innovative structure are studied by numerical simulation under various blowing ratio (BR) conditions. Meanwhile, the impact of modifying both the rib angle and the rib height on the adiabatic film cooling effectiveness (AFCE) at the tip of the squealer is analyzed. According to the results, adding rib structures to the squealer tip can effectively regulate the paths of cavity vortices and kidney-shaped vortex pairs (KVP) at the tip. As a result, the averaged AFCE at the blade tip is improved. The notch pressure-side broken rib structure has good aerothermal performance, and the highest AFCE at BRs of 0.50, 1.00, and 1.50 basically occur under the “R60-100 %” condition (R60 refers to the rib structure of 60°, and 100 % is the ratio of rib height to notch depth), and the corresponding AFCE are 27.71 %, 26.00 %, and 32.47 % higher than those of the no-rib case, respectively. The corresponding AFCE increased by 27.71 %, 26.52 %, and 32.47 %, respectively, compared to the no-rib condition. The highest AFCE at a BR of 1.50 occurs at “R75-70 %“, which is a 38.20 % increase in AFCE compared to the no rib case. The improvement in AFCE is due to the difference in the flow of the cooling jets, which are subject to cavity vortices at different BRs. The analysis shows that the addition of ribs disrupts the formation of KVPs and weakens the influence of the cavity vortex, thus reducing the low AFCE region at the lower end of the tip groove and increasing the AFCE. However, due to the blocking effect of the ribs, the pressure loss at the blade tip is elevated. The proposed blade tip cooling structure is expected to provide new ideas for the next generation of advanced gas turbine cooling designs.
•A composite tip cooling structure with film holes and broken ribs is proposed.•The flow and cooling characteristics under various blowing ratio conditions are studied.•Impact of modifying rib structure dimensions on effectiveness at squealer tip is analyzed.•Squealer tip ribs can regulate cavity vortices and kidney-shaped vortex pairs, thus improving cooling effectiveness.•The proposed tip cooling structure provides new ideas for next generation blade cooling designs. |
---|---|
AbstractList | The gas turbine blade tip might face substantial heat loads because of leakage flow between the blades and the casing. For blade tip cooling, a composite cooling structure with film holes and broken ribs is first used on GE-E3 blade in this work. The flow and cooling characteristics of the innovative structure are studied by numerical simulation under various blowing ratio (BR) conditions. Meanwhile, the impact of modifying both the rib angle and the rib height on the adiabatic film cooling effectiveness (AFCE) at the tip of the squealer is analyzed. According to the results, adding rib structures to the squealer tip can effectively regulate the paths of cavity vortices and kidney-shaped vortex pairs (KVP) at the tip. As a result, the averaged AFCE at the blade tip is improved. The notch pressure-side broken rib structure has good aerothermal performance, and the highest AFCE at BRs of 0.50, 1.00, and 1.50 basically occur under the “R60-100 %” condition (R60 refers to the rib structure of 60°, and 100 % is the ratio of rib height to notch depth), and the corresponding AFCE are 27.71 %, 26.00 %, and 32.47 % higher than those of the no-rib case, respectively. The corresponding AFCE increased by 27.71 %, 26.52 %, and 32.47 %, respectively, compared to the no-rib condition. The highest AFCE at a BR of 1.50 occurs at “R75-70 %“, which is a 38.20 % increase in AFCE compared to the no rib case. The improvement in AFCE is due to the difference in the flow of the cooling jets, which are subject to cavity vortices at different BRs. The analysis shows that the addition of ribs disrupts the formation of KVPs and weakens the influence of the cavity vortex, thus reducing the low AFCE region at the lower end of the tip groove and increasing the AFCE. However, due to the blocking effect of the ribs, the pressure loss at the blade tip is elevated. The proposed blade tip cooling structure is expected to provide new ideas for the next generation of advanced gas turbine cooling designs.
•A composite tip cooling structure with film holes and broken ribs is proposed.•The flow and cooling characteristics under various blowing ratio conditions are studied.•Impact of modifying rib structure dimensions on effectiveness at squealer tip is analyzed.•Squealer tip ribs can regulate cavity vortices and kidney-shaped vortex pairs, thus improving cooling effectiveness.•The proposed tip cooling structure provides new ideas for next generation blade cooling designs. |
ArticleNumber | 109211 |
Author | Zhang, Hui Zhang, Runsheng Li, Li Jia, Yibin Xiang, Zhen Xing, Jiangjiang Du, Xiaoze Han, Shaohua An, Na Liu, Qilong Zhou, Leping Guo, Tairan Qi, Shizhen Huo, Tianyi |
Author_xml | – sequence: 1 givenname: Zhen surname: Xiang fullname: Xiang, Zhen organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 2 givenname: Shaohua surname: Han fullname: Han, Shaohua organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 3 givenname: Shizhen surname: Qi fullname: Qi, Shizhen organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 4 givenname: Yibin surname: Jia fullname: Jia, Yibin organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 5 givenname: Tairan surname: Guo fullname: Guo, Tairan organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 6 givenname: Na surname: An fullname: An, Na organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 7 givenname: Qilong surname: Liu fullname: Liu, Qilong organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 8 givenname: Tianyi surname: Huo fullname: Huo, Tianyi organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 9 givenname: Jiangjiang surname: Xing fullname: Xing, Jiangjiang organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 10 givenname: Runsheng surname: Zhang fullname: Zhang, Runsheng organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 11 givenname: Leping orcidid: 0000-0001-9582-4237 surname: Zhou fullname: Zhou, Leping email: lpzhou@ncepu.edu.cn organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 12 givenname: Li surname: Li fullname: Li, Li organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 13 givenname: Hui surname: Zhang fullname: Zhang, Hui organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China – sequence: 14 givenname: Xiaoze surname: Du fullname: Du, Xiaoze organization: School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China |
BookMark | eNqNkE1PwzAMhiMEEmzwHyLuHUnatSsnEN_SBBc4R6nnMI-2GUnKxIH_TqZxQJw42ZL9PrKfEdvvXY-MnUoxkUKWZ6sJreISfWfaADRRQhVpUCsp99iRrKpZVsiy3E-9qkUmKlUfslEIKyFEVYv6iH09Dh16AtPyEIfFJ3eWg3Mt9a98jd66hO4BuekX3LZuw2FpvIGYMiEShO2-pbbjS9di1nj3hj331CRIt3aBIiauHyAOHvmG4pKH9wFNi55HWh-zA5sux5OfOmYvtzfPV_fZ_Onu4epynkGuipgVs8qWQoGFspk1UqWaN5B-hQKnZVGUUEMF2JSNBDmdgs1zIws5w0bZXNQyH7PzHRe8C8Gj1WtPnfGfWgq9FalX-rdIvRWpdyJT-OJPGCiaSK6P3lD7P8T1DoHpyQ9Cr9MGJq8L8ghRLxz9B_MNm8Ke7w |
CitedBy_id | crossref_primary_10_1063_5_0238759 crossref_primary_10_1016_j_ijthermalsci_2024_109653 |
Cites_doi | 10.2514/1.T4541 10.1016/j.jppr.2015.02.003 10.1115/1.1622712 10.1115/GT2006-90456 10.1016/j.ijthermalsci.2023.108636 10.1016/j.ijheatmasstransfer.2018.10.130 10.1016/j.applthermaleng.2018.10.093 10.2514/8.2010 10.1016/j.ijthermalsci.2023.108399 10.1016/j.ijthermalsci.2022.107544 10.1016/j.applthermaleng.2022.119623 10.1115/1.1400114 10.1063/5.0238759 10.1016/j.ijheatmasstransfer.2017.08.090 10.1115/1.3262266 10.1016/j.ijheatmasstransfer.2019.05.064 10.2514/3.12149 10.1115/1.1626684 10.1080/10407782.2020.1814591 10.1016/j.ijheatmasstransfer.2022.122999 10.1016/j.ijheatmasstransfer.2019.118561 10.1115/1.2929188 10.1115/1.4049920 10.1016/j.ijthermalsci.2022.108114 10.1016/j.ast.2023.108590 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Masson SAS |
Copyright_xml | – notice: 2024 Elsevier Masson SAS |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijthermalsci.2024.109211 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1778-4166 |
ExternalDocumentID | 10_1016_j_ijthermalsci_2024_109211 S1290072924003338 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSG SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c324t-487f602cfc6b8b12fc63bc024c4e56446c9c7ceb6b1c155cf33a1418eb2f30913 |
IEDL.DBID | .~1 |
ISSN | 1290-0729 |
IngestDate | Thu Apr 24 23:11:57 EDT 2025 Tue Jul 01 02:46:41 EDT 2025 Sat Jul 20 16:36:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rib angle Numerical simulation Film holes Vortex structure Rib height Squealer tip |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-487f602cfc6b8b12fc63bc024c4e56446c9c7ceb6b1c155cf33a1418eb2f30913 |
ORCID | 0000-0001-9582-4237 |
ParticipantIDs | crossref_primary_10_1016_j_ijthermalsci_2024_109211 crossref_citationtrail_10_1016_j_ijthermalsci_2024_109211 elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2024_109211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 2024-10-00 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of thermal sciences |
PublicationYear | 2024 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Zhou, Chen, Li, Wang (bib19) 2019; 130 (bib32) 2020 Denton (bib1) 1993; 78897 Sakaoglu, Kahveci (bib12) 2019; 143 Schabowski, Hodson (bib17) 2013; 136 Zhou, Luo, Du, Yan, Wang (bib27) 2024; 36 Jung, Kim, Joo, Lee (bib21) 2021; 143 Li (bib6) 2023; 186 Park, Lee, Lee, Chung, Kwak (bib23) 2016; 30 Li, Zhang, Jia, Liu, Feng (bib8) 2022; 194 Emmons (bib33) 1951; 18 Du, Li, Wang (bib26) 2022; 43 Liu, Li, Lin, You, Tao (bib5) 2022; 177 Zhao, Luo, Qiu, Wang, Wang, Sundén (bib24) 2021; 79 Mayle, Metzger (bib2) 1982 Yan, Huang, He (bib18) 2017; 115 Ameri (bib15) 2001; 123 Yaras, Zhu, Sjolander (bib13) 1989; 111 Menter (bib31) 1994; 32 Wang, Sundén, Zeng, Wang (bib4) 2015; 4 Yang, Tan, Shan (bib28) 2021; 36 Huang, Li, Su, Yuan (bib7) 2024; 195 Kwak, Han (bib30) 2003; 125 Heyes, Hodson, Dailey (bib14) 1992; 114 Zhang, Xia, Yang, Xi, Gao, Zhu (bib11) 2023; 142 Guo, Wang, Tao, Song, Li (bib9) 2023; 219 Zhao, Luo, Kan, Qiu, Zhou (bib25) 2019; vol. 58646 Collopy, Ligrani, Xu, Fox (bib10) 2023; 192 Kwak, Ahn, Han, Lee, Bunker, Boyle, Gaugler (bib3) 2003; 125 Kwak, Han (bib34) 2002; 36088 Harvey, Newman, Haselbach, Willer (bib16) 2006 (bib29) 1982 Du, Li, Li, Sunden (bib22) 2019; 147 Jiang, Li, Li (bib20) 2019; 139 Li (10.1016/j.ijthermalsci.2024.109211_bib6) 2023; 186 Liu (10.1016/j.ijthermalsci.2024.109211_bib5) 2022; 177 Kwak (10.1016/j.ijthermalsci.2024.109211_bib30) 2003; 125 Zhang (10.1016/j.ijthermalsci.2024.109211_bib11) 2023; 142 Jung (10.1016/j.ijthermalsci.2024.109211_bib21) 2021; 143 Heyes (10.1016/j.ijthermalsci.2024.109211_bib14) 1992; 114 Kwak (10.1016/j.ijthermalsci.2024.109211_bib34) 2002; 36088 Mayle (10.1016/j.ijthermalsci.2024.109211_bib2) 1982 Menter (10.1016/j.ijthermalsci.2024.109211_bib31) 1994; 32 Yaras (10.1016/j.ijthermalsci.2024.109211_bib13) 1989; 111 Du (10.1016/j.ijthermalsci.2024.109211_bib22) 2019; 147 Zhao (10.1016/j.ijthermalsci.2024.109211_bib24) 2021; 79 Zhou (10.1016/j.ijthermalsci.2024.109211_bib27) 2024; 36 Kwak (10.1016/j.ijthermalsci.2024.109211_bib3) 2003; 125 Yan (10.1016/j.ijthermalsci.2024.109211_bib18) 2017; 115 Li (10.1016/j.ijthermalsci.2024.109211_bib8) 2022; 194 Collopy (10.1016/j.ijthermalsci.2024.109211_bib10) 2023; 192 Zhou (10.1016/j.ijthermalsci.2024.109211_bib19) 2019; 130 Denton (10.1016/j.ijthermalsci.2024.109211_bib1) 1993; 78897 Zhao (10.1016/j.ijthermalsci.2024.109211_bib25) 2019; vol. 58646 Jiang (10.1016/j.ijthermalsci.2024.109211_bib20) 2019; 139 Du (10.1016/j.ijthermalsci.2024.109211_bib26) 2022; 43 Sakaoglu (10.1016/j.ijthermalsci.2024.109211_bib12) 2019; 143 Yang (10.1016/j.ijthermalsci.2024.109211_bib28) 2021; 36 Park (10.1016/j.ijthermalsci.2024.109211_bib23) 2016; 30 Emmons (10.1016/j.ijthermalsci.2024.109211_bib33) 1951; 18 Huang (10.1016/j.ijthermalsci.2024.109211_bib7) 2024; 195 Schabowski (10.1016/j.ijthermalsci.2024.109211_bib17) 2013; 136 (10.1016/j.ijthermalsci.2024.109211_bib29) 1982 Ameri (10.1016/j.ijthermalsci.2024.109211_bib15) 2001; 123 Wang (10.1016/j.ijthermalsci.2024.109211_bib4) 2015; 4 Guo (10.1016/j.ijthermalsci.2024.109211_bib9) 2023; 219 Harvey (10.1016/j.ijthermalsci.2024.109211_bib16) 2006 |
References_xml | – volume: 139 start-page: 860 year: 2019 end-page: 872 ident: bib20 article-title: Effects of the squealer winglet structures on the heat transfer characteristics and aerodynamic performance of turbine blade tip publication-title: Int. J. Heat Mass Tran. – volume: 4 start-page: 9 year: 2015 end-page: 22 ident: bib4 article-title: Film cooling effects on the tip flow characteristics of a gas turbine blade publication-title: Propuls. Power Res. – volume: 136 year: 2013 ident: bib17 article-title: The reduction of over tip leakage loss in unshrouded axial turbines using winglets and squealers publication-title: ASME J. Turbomach. – volume: 36088 start-page: 1073 year: 2002 end-page: 1082 ident: bib34 article-title: Heat transfer coefficient and film-cooling effectiveness on the squealer tip of a gas turbine blade publication-title: ASME – volume: 32 start-page: 1598 year: 1994 end-page: 1605 ident: bib31 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. – volume: 142 year: 2023 ident: bib11 article-title: Investigation of aerothermal performance of blade tip with conical holes in transonic flow publication-title: Aero. Sci. Technol. – volume: 194 year: 2022 ident: bib8 article-title: Experimental study about the tip phantom cooling with different cooling-hole configurations on the blade-surface publication-title: Int. J. Heat Mass Tran. – volume: 130 start-page: 585 year: 2019 end-page: 602 ident: bib19 article-title: Thermal performance of blade tip and casing coolant injection on a turbine blade with cavity and winglet-cavity tip publication-title: Int. J. Heat Mass Tran. – volume: 18 start-page: 490 year: 1951 end-page: 498 ident: bib33 article-title: The laminar-turbulent transition in a boundary layer-Part I publication-title: J. Aeronaut. Sci. – volume: 219 year: 2023 ident: bib9 article-title: Effects of the inclination angle of oval film holes on the aero-thermal performance of a squealer blade tip publication-title: Appl. Therm. Eng. – volume: 78897 year: 1993 ident: bib1 article-title: Loss mechanisms in turbomachines publication-title: ASME J. Turbomach. – volume: 125 start-page: 648 year: 2003 end-page: 657 ident: bib30 article-title: Heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade publication-title: ASME J. Turbomach. – volume: 111 start-page: 276 year: 1989 end-page: 283 ident: bib13 article-title: Flow field in the tip gap of a planar cascade of turbine blades publication-title: ASME J. Turbomach. – volume: 43 year: 2022 ident: bib26 article-title: Numerical investigations of multi-cavity tip effects on turbine blade tip flow and heat transfer characteristics publication-title: J. Propuls. Technol. – year: 2020 ident: bib32 article-title: ANSYS CFX-solver modeling guide – volume: 30 start-page: 120 year: 2016 end-page: 129 ident: bib23 article-title: Heat transfer and secondary flow with a multicavity gas turbine blade tip publication-title: ASME J. Thermophys. Heat Tr. – volume: vol. 58646 year: 2019 ident: bib25 publication-title: Numerical Investigation of Rotation Effects on the Flow and Heat Transfer on the Turbine Blade Tip Underside with Bleed Hole at Different Locations – volume: 123 start-page: 704 year: 2001 end-page: 708 ident: bib15 article-title: Heat transfer and flow on the blade tip of a gas turbine equipped with a mean camberline strip publication-title: ASME J. Turbomach – volume: 79 start-page: 40 year: 2021 end-page: 67 ident: bib24 article-title: Vortical structures and heat transfer augmentation of a cooling channel in a gas turbine blade with various arrangements of tip bleed holes publication-title: Numer. Heat Tr. A-Appl. – volume: 143 year: 2019 ident: bib12 article-title: Effect of cavity depth on thermal performance of a cooled blade tip under rotation publication-title: Int. J. Heat Mass Tran. – start-page: 585 year: 2006 end-page: 596 ident: bib16 article-title: An investigation into a novel turbine rotor winglet: Part 1—design and model rig test results publication-title: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain – volume: 147 start-page: 347 year: 2019 end-page: 360 ident: bib22 article-title: Influences of a multi-cavity tip on the blade tip and the over tip casing aerothermal performance in a high pressure turbine cascade publication-title: Appl. Therm. Eng. – year: 1982 ident: bib29 publication-title: Energy Efficient Engine High Pressure Turbine Detailed Design Report – volume: 114 start-page: 643 year: 1992 end-page: 651 ident: bib14 article-title: The effect of blade tip geometry on the tip leakage flow in axial turbine cascades publication-title: ASME J. Turbomach. – volume: 143 year: 2021 ident: bib21 article-title: Experimental study on aerodynamic loss and heat transfer for various squealer tips publication-title: ASME J. Turbomach. – volume: 36 year: 2024 ident: bib27 article-title: Numerical study of a novel cooling protection scheme with rail crown holes for the squealer tip in a turbine blade publication-title: Phys. Fluids – volume: 186 year: 2023 ident: bib6 article-title: Aerothermal performance analysis and knowledge discovery of film holes on the squealer tip of a gas turbine blade publication-title: Int. J. Therm. Sci. – start-page: 87 year: 1982 end-page: 92 ident: bib2 article-title: Heat transfer at the tip of an unshrouded turbine blade publication-title: International Heat Transfer Conference Digital Library – volume: 177 year: 2022 ident: bib5 article-title: An experimental and numerical investigation of film cooling effectiveness on a gas turbine blade tip region publication-title: Int. J. Therm. Sci. – volume: 192 year: 2023 ident: bib10 article-title: Effects of pressure side film cooling hole placement and condition on surface heat transfer coefficients along a transonic turbine blade tip publication-title: Int. J. Therm. Sci. – volume: 125 start-page: 778 year: 2003 end-page: 787 ident: bib3 article-title: Heat transfer coefficients on the squealer tip and near-tip regions of a gas turbine blade with single or double squealer publication-title: ASME J. Turbomach. – volume: 115 start-page: 955 year: 2017 end-page: 978 ident: bib18 article-title: Investigations into heat transfer and film cooling effect on a squealer-winglet blade tip publication-title: Int. J. Heat Mass Tran. – volume: 36 start-page: 1462 year: 2021 end-page: 1471 ident: bib28 article-title: Effects of rib structure on flow and heat transfer characteristics of film cooling rotor blade with squealer tip publication-title: J. Aero. Power – volume: 195 year: 2024 ident: bib7 article-title: Influence of film hole arrangement on cooling and aerodynamic performance of blade tip with squealer structure publication-title: Int. J. Therm. Sci. – volume: 30 start-page: 120 year: 2016 ident: 10.1016/j.ijthermalsci.2024.109211_bib23 article-title: Heat transfer and secondary flow with a multicavity gas turbine blade tip publication-title: ASME J. Thermophys. Heat Tr. doi: 10.2514/1.T4541 – volume: 4 start-page: 9 year: 2015 ident: 10.1016/j.ijthermalsci.2024.109211_bib4 article-title: Film cooling effects on the tip flow characteristics of a gas turbine blade publication-title: Propuls. Power Res. doi: 10.1016/j.jppr.2015.02.003 – volume: 125 start-page: 648 year: 2003 ident: 10.1016/j.ijthermalsci.2024.109211_bib30 article-title: Heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade publication-title: ASME J. Turbomach. doi: 10.1115/1.1622712 – start-page: 585 year: 2006 ident: 10.1016/j.ijthermalsci.2024.109211_bib16 article-title: An investigation into a novel turbine rotor winglet: Part 1—design and model rig test results publication-title: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain doi: 10.1115/GT2006-90456 – volume: 78897 year: 1993 ident: 10.1016/j.ijthermalsci.2024.109211_bib1 article-title: Loss mechanisms in turbomachines publication-title: ASME J. Turbomach. – volume: 195 year: 2024 ident: 10.1016/j.ijthermalsci.2024.109211_bib7 article-title: Influence of film hole arrangement on cooling and aerodynamic performance of blade tip with squealer structure publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2023.108636 – start-page: 87 year: 1982 ident: 10.1016/j.ijthermalsci.2024.109211_bib2 article-title: Heat transfer at the tip of an unshrouded turbine blade – volume: 43 year: 2022 ident: 10.1016/j.ijthermalsci.2024.109211_bib26 article-title: Numerical investigations of multi-cavity tip effects on turbine blade tip flow and heat transfer characteristics publication-title: J. Propuls. Technol. – volume: 130 start-page: 585 year: 2019 ident: 10.1016/j.ijthermalsci.2024.109211_bib19 article-title: Thermal performance of blade tip and casing coolant injection on a turbine blade with cavity and winglet-cavity tip publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.10.130 – volume: 147 start-page: 347 year: 2019 ident: 10.1016/j.ijthermalsci.2024.109211_bib22 article-title: Influences of a multi-cavity tip on the blade tip and the over tip casing aerothermal performance in a high pressure turbine cascade publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.093 – volume: 36088 start-page: 1073 year: 2002 ident: 10.1016/j.ijthermalsci.2024.109211_bib34 article-title: Heat transfer coefficient and film-cooling effectiveness on the squealer tip of a gas turbine blade publication-title: ASME – volume: 18 start-page: 490 year: 1951 ident: 10.1016/j.ijthermalsci.2024.109211_bib33 article-title: The laminar-turbulent transition in a boundary layer-Part I publication-title: J. Aeronaut. Sci. doi: 10.2514/8.2010 – volume: 192 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109211_bib10 article-title: Effects of pressure side film cooling hole placement and condition on surface heat transfer coefficients along a transonic turbine blade tip publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2023.108399 – year: 1982 ident: 10.1016/j.ijthermalsci.2024.109211_bib29 – volume: 177 year: 2022 ident: 10.1016/j.ijthermalsci.2024.109211_bib5 article-title: An experimental and numerical investigation of film cooling effectiveness on a gas turbine blade tip region publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2022.107544 – volume: 219 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109211_bib9 article-title: Effects of the inclination angle of oval film holes on the aero-thermal performance of a squealer blade tip publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119623 – volume: 123 start-page: 704 year: 2001 ident: 10.1016/j.ijthermalsci.2024.109211_bib15 article-title: Heat transfer and flow on the blade tip of a gas turbine equipped with a mean camberline strip publication-title: ASME J. Turbomach doi: 10.1115/1.1400114 – volume: 36 year: 2024 ident: 10.1016/j.ijthermalsci.2024.109211_bib27 article-title: Numerical study of a novel cooling protection scheme with rail crown holes for the squealer tip in a turbine blade publication-title: Phys. Fluids doi: 10.1063/5.0238759 – volume: 115 start-page: 955 year: 2017 ident: 10.1016/j.ijthermalsci.2024.109211_bib18 article-title: Investigations into heat transfer and film cooling effect on a squealer-winglet blade tip publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.08.090 – volume: 111 start-page: 276 year: 1989 ident: 10.1016/j.ijthermalsci.2024.109211_bib13 article-title: Flow field in the tip gap of a planar cascade of turbine blades publication-title: ASME J. Turbomach. doi: 10.1115/1.3262266 – volume: 139 start-page: 860 year: 2019 ident: 10.1016/j.ijthermalsci.2024.109211_bib20 article-title: Effects of the squealer winglet structures on the heat transfer characteristics and aerodynamic performance of turbine blade tip publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.05.064 – volume: 32 start-page: 1598 year: 1994 ident: 10.1016/j.ijthermalsci.2024.109211_bib31 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. doi: 10.2514/3.12149 – volume: 36 start-page: 1462 year: 2021 ident: 10.1016/j.ijthermalsci.2024.109211_bib28 article-title: Effects of rib structure on flow and heat transfer characteristics of film cooling rotor blade with squealer tip publication-title: J. Aero. Power – volume: 125 start-page: 778 year: 2003 ident: 10.1016/j.ijthermalsci.2024.109211_bib3 article-title: Heat transfer coefficients on the squealer tip and near-tip regions of a gas turbine blade with single or double squealer publication-title: ASME J. Turbomach. doi: 10.1115/1.1626684 – volume: 79 start-page: 40 year: 2021 ident: 10.1016/j.ijthermalsci.2024.109211_bib24 article-title: Vortical structures and heat transfer augmentation of a cooling channel in a gas turbine blade with various arrangements of tip bleed holes publication-title: Numer. Heat Tr. A-Appl. doi: 10.1080/10407782.2020.1814591 – volume: 194 year: 2022 ident: 10.1016/j.ijthermalsci.2024.109211_bib8 article-title: Experimental study about the tip phantom cooling with different cooling-hole configurations on the blade-surface publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2022.122999 – volume: 143 year: 2019 ident: 10.1016/j.ijthermalsci.2024.109211_bib12 article-title: Effect of cavity depth on thermal performance of a cooled blade tip under rotation publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.118561 – volume: 114 start-page: 643 year: 1992 ident: 10.1016/j.ijthermalsci.2024.109211_bib14 article-title: The effect of blade tip geometry on the tip leakage flow in axial turbine cascades publication-title: ASME J. Turbomach. doi: 10.1115/1.2929188 – volume: 143 year: 2021 ident: 10.1016/j.ijthermalsci.2024.109211_bib21 article-title: Experimental study on aerodynamic loss and heat transfer for various squealer tips publication-title: ASME J. Turbomach. doi: 10.1115/1.4049920 – volume: vol. 58646 year: 2019 ident: 10.1016/j.ijthermalsci.2024.109211_bib25 – volume: 186 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109211_bib6 article-title: Aerothermal performance analysis and knowledge discovery of film holes on the squealer tip of a gas turbine blade publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2022.108114 – volume: 136 year: 2013 ident: 10.1016/j.ijthermalsci.2024.109211_bib17 article-title: The reduction of over tip leakage loss in unshrouded axial turbines using winglets and squealers publication-title: ASME J. Turbomach. – volume: 142 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109211_bib11 article-title: Investigation of aerothermal performance of blade tip with conical holes in transonic flow publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2023.108590 |
SSID | ssj0007909 |
Score | 2.4319813 |
Snippet | The gas turbine blade tip might face substantial heat loads because of leakage flow between the blades and the casing. For blade tip cooling, a composite... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109211 |
SubjectTerms | Film holes Numerical simulation Rib angle Rib height Squealer tip Vortex structure |
Title | Numerical study of cooling performance and flow characteristics of film hole-broken rib composite structure with squealer tip |
URI | https://dx.doi.org/10.1016/j.ijthermalsci.2024.109211 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68rk2ym9fBQymWqtiLFnoL2c2upLZJqS2e9Lc7k4dtwUPBU0iYgWRn2JnZfPMNITc2drrGOmSuJQUTRntMakcxT8QBt2IJXoT9zs8Drz8UjyN31CDduhcGYZXV3l_u6cVuXT1pV6vZnqVp-wVPUJD3GlGQHCot7GAXPnr57fcK5uGHBcwDhRlK18SjBcYrHWOWNQVDqxRqRUcgu5Jj238HqbXA0zskB1XGSDvlSx2Rhs6Oyf4aj-AJ-Rosyx8vE1rQxdLcUJXjOJ43Olt1BtA4S6iZ5J9UbdI0o7xJJ1OKw3KZnOfvOqPzVFIEnCOqS9OSZ3Y51xRPbukHhBMILXO6SGenZNi7f-32WTVXgSlInxYMahTjWY4yypOBtB24cqng65XQLuRHngqVr7T0pK0g3VCG89gWdgBFuOHII3pGdrI80-eEhr7r68SxuNBgBhUHFg9NHFpxwgPLS3SThPVCRqoiHcfZF5OoRpeNo3UjRGiEqDRCk_Bf3VlJvbGV1l1tr2jDkSKIEVvoX_xT_5Ls4V2J97siO2AdfQ15y0K2Csdskd3Ow1N_8AM1cPIA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ7UelAPxmd8uwevmwILFA4emkbT-uhFm_RG2O2uoVJoao0n_7szBWqbeGjiiQR2EtiZzGP55huAG5s6XWMdcs-SLneN9rnUjuK-GwfCiiVaEfU7P_f8Tt99GHiDGrSrXhiCVZa-v_Dpc29d3mmUu9mYJEnjhU5QiPeaUJACK60N2CR2Kq8Om63uY6e3cMjNcI70oPWcBCru0TnMKxlRojVGXasEy0XHJYIlx7b_jlNLsed-D3bLpJG1ivfah5rODmBniUrwEL57n8W_l5TNGWNZbpjKaSLPG5v8NgewOBsyk-ZfTK0yNdN6k6RjRvNyuZzm7zpj00QywpwTsEuzgmr2c6oZHd6yD4woGF2mbJZMjqB_f_fa7vBytAJXmEHNOJYpxrccZZQvA2k7eBVS4dcrV3uYIvkqVE2lpS9thRmHMkLEtmsHWIcbQVSix1DP8kyfAAubXlMPHUu4GjWh4sASoYlDKx6KwPKH-hTCaiMjVfKO0_iLNKoAZqNoWQkRKSEqlHAKYiE7Kdg31pK6rfQVrdhShGFiDfmzf8pfw1bn9fkpeur2Hs9hm54U8L8LqKOm9CWmMTN5VZrpD3Wy9LE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+of+cooling+performance+and+flow+characteristics+of+film+hole-broken+rib+composite+structure+with+squealer+tip&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Xiang%2C+Zhen&rft.au=Han%2C+Shaohua&rft.au=Qi%2C+Shizhen&rft.au=Jia%2C+Yibin&rft.date=2024-10-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1290-0729&rft.eissn=1778-4166&rft.volume=204&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2024.109211&rft.externalDocID=S1290072924003338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon |